5,657 research outputs found

    The Raincore Distributed Session Service for Networking Elements

    Get PDF
    Motivated by the explosive growth of the Internet, we study efficient and fault-tolerant distributed session layer protocols for networking elements. These protocols are designed to enable a network cluster to share the state information necessary for balancing network traffic and computation load among a group of networking elements. In addition, in the presence of failures, they allow network traffic to fail-over from failed networking elements to healthy ones. To maximize the overall network throughput of the networking cluster, we assume a unicast communication medium for these protocols. The Raincore Distributed Session Service is based on a fault-tolerant token protocol, and provides group membership, reliable multicast and mutual exclusion services in a networking environment. We show that this service provides atomic reliable multicast with consistent ordering. We also show that Raincore token protocol consumes less overhead than a broadcast-based protocol in this environment in terms of CPU task-switching. The Raincore technology was transferred to Rainfinity, a startup company that is focusing on software for Internet reliability and performance. Rainwall, Rainfinity’s first product, was developed using the Raincore Distributed Session Service. We present initial performance results of the Rainwall product that validates our design assumptions and goals

    Computing in the RAIN: a reliable array of independent nodes

    Get PDF
    The RAIN project is a research collaboration between Caltech and NASA-JPL on distributed computing and data-storage systems for future spaceborne missions. The goal of the project is to identify and develop key building blocks for reliable distributed systems built with inexpensive off-the-shelf components. The RAIN platform consists of a heterogeneous cluster of computing and/or storage nodes connected via multiple interfaces to networks configured in fault-tolerant topologies. The RAIN software components run in conjunction with operating system services and standard network protocols. Through software-implemented fault tolerance, the system tolerates multiple node, link, and switch failures, with no single point of failure. The RAIN-technology has been transferred to Rainfinity, a start-up company focusing on creating clustered solutions for improving the performance and availability of Internet data centers. In this paper, we describe the following contributions: 1) fault-tolerant interconnect topologies and communication protocols providing consistent error reporting of link failures, 2) fault management techniques based on group membership, and 3) data storage schemes based on computationally efficient error-control codes. We present several proof-of-concept applications: a highly-available video server, a highly-available Web server, and a distributed checkpointing system. Also, we describe a commercial product, Rainwall, built with the RAIN technology

    RGB : a scalable and reliable group membership protocol in mobile Internet

    Get PDF
    2004-2005 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    A Configurable Transport Layer for CAF

    Full text link
    The message-driven nature of actors lays a foundation for developing scalable and distributed software. While the actor itself has been thoroughly modeled, the message passing layer lacks a common definition. Properties and guarantees of message exchange often shift with implementations and contexts. This adds complexity to the development process, limits portability, and removes transparency from distributed actor systems. In this work, we examine actor communication, focusing on the implementation and runtime costs of reliable and ordered delivery. Both guarantees are often based on TCP for remote messaging, which mixes network transport with the semantics of messaging. However, the choice of transport may follow different constraints and is often governed by deployment. As a first step towards re-architecting actor-to-actor communication, we decouple the messaging guarantees from the transport protocol. We validate our approach by redesigning the network stack of the C++ Actor Framework (CAF) so that it allows to combine an arbitrary transport protocol with additional functions for remote messaging. An evaluation quantifies the cost of composability and the impact of individual layers on the entire stack

    Issues in designing transport layer multicast facilities

    Get PDF
    Multicasting denotes a facility in a communications system for providing efficient delivery from a message's source to some well-defined set of locations using a single logical address. While modem network hardware supports multidestination delivery, first generation Transport Layer protocols (e.g., the DoD Transmission Control Protocol (TCP) (15) and ISO TP-4 (41)) did not anticipate the changes over the past decade in underlying network hardware, transmission speeds, and communication patterns that have enabled and driven the interest in reliable multicast. Much recent research has focused on integrating the underlying hardware multicast capability with the reliable services of Transport Layer protocols. Here, we explore the communication issues surrounding the design of such a reliable multicast mechanism. Approaches and solutions from the literature are discussed, and four experimental Transport Layer protocols that incorporate reliable multicast are examined

    Exploiting replication in distributed systems

    Get PDF
    Techniques are examined for replicating data and execution in directly distributed systems: systems in which multiple processes interact directly with one another while continuously respecting constraints on their joint behavior. Directly distributed systems are often required to solve difficult problems, ranging from management of replicated data to dynamic reconfiguration in response to failures. It is shown that these problems reduce to more primitive, order-based consistency problems, which can be solved using primitives such as the reliable broadcast protocols. Moreover, given a system that implements reliable broadcast primitives, a flexible set of high-level tools can be provided for building a wide variety of directly distributed application programs

    The multidriver: A reliable multicast service using the Xpress Transfer Protocol

    Get PDF
    A reliable multicast facility extends traditional point-to-point virtual circuit reliability to one-to-many communication. Such services can provide more efficient use of network resources, a powerful distributed name binding capability, and reduced latency in multidestination message delivery. These benefits will be especially valuable in real-time environments where reliable multicast can enable new applications and increase the availability and the reliability of data and services. We present a unique multicast service that exploits features in the next-generation, real-time transfer layer protocol, the Xpress Transfer Protocol (XTP). In its reliable mode, the service offers error, flow, and rate-controlled multidestination delivery of arbitrary-sized messages, with provision for the coordination of reliable reverse channels. Performance measurements on a single-segment Proteon ProNET-4 4 Mbps 802.5 token ring with heterogeneous nodes are discussed

    Cooperating runtime systems in LiPS

    Get PDF
    Performing computation using networks of workstations is increasingly becoming an alternative to using a supercomputer. This approach is motivated by the vast quantities of unused idle-time available in workstation networks. Unlike comptuting o a tighty coupled parallel computer, where a fixed number of processor nodes is used within a computation, the number of usable nodes in a workstation network is constantly changing over time. Additionally, workstations are more frequently subject to outages, e.g. due to reboots. The question arises how applications, adapting smoothly to this environment, should be realized. LiPS is a system for distributed computing using idle-cycles in networks for workstations. This system is ints version 2.3 is currently used at the Universität des Saarlandes in Saarbrücken, Germany to perform computationally intensive applications in the field of cryptography on a net of approximately 250 workstations and should be enhanced to work within an environment of more than 1000 machines all over the world within the next years. In this paper we present the runtime systems of LiPS along with performance measurements taken with the current LiPS development version 2.4

    Totally Ordered Broadcast and Multicast Algorithms: A Comprehensive Survey

    Get PDF
    Total order multicast algorithms constitute an important class of problems in distributed systems, especially in the context of fault-tolerance. In short, the problem of total order multicast consists in sending messages to a set of processes, in such a way that all messages are delivered by all correct destinations in the same order. However, the huge amount of literature on the subject and the plethora of solutions proposed so far make it difficult for practitioners to select a solution adapted to their specific problem. As a result, naive solutions are often used while better solutions are ignored. This paper proposes a classification of total order multicast algorithms based on the ordering mechanism of the algorithms, and describes a set of common characteristics (e.g., assumptions, properties) with which to evaluate them. In this classification, more than fifty total order broadcast and multicast algorithms are surveyed. The presentation includes asynchronous algorithms as well as algorithms based on the more restrictive synchronous model. Fault-tolerance issues are also considered as the paper studies the properties and behavior of the different algorithms with respect to failures
    corecore