
NASA-CR-190631

The Multidriver:
A Reliable Multicast Service

Using the Xpress Transfer Protocol

f_ • 0

Z _ 0

,, t_
O_Z
I._ _-_

c_
_W

it)
LU

F--_)

_m..J
0
O:E
Ow
,-_uJ

I -J
oc0o

I
_J
_uJ

0

0
W-
0

t_
O-

_J
U.
to
Z

I--

uJ

uJ

T

OA

E
i

_,-,,,v'p

U 0
tl ,qut_

0

J,,',',4

0
Q,._

.,=,

_ O_

r

7

Bert J. Dempsey
John C. Fenton

Alfred C. Weaver

Digital Technology

August, 1990

:i

Cooperative Agreement NCC 9-16

Research Activity No. SE.31

NASA Joi_nls0n Space Center

Engineering Directorate

Flight Data Systems Division

Research Institute for Computing and Information Systems

University of Houston-Cleat Lake

INTERIM REPORT

https://ntrs.nasa.gov/search.jsp?R=19920024324 2020-03-17T11:17:34+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42811423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The RICIS Concept

The University of Houston-Clear Lake established the Research InsUtute for

CompuUngand Information Systems (RICIS} in 1986 to encourage the NASA

Johnson Space Center [JSC) and local industry to actively support research

in the computing and informat!on sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to jointly define and manage an integrated

program of research in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May 1986, to Jointly plan and execute such research

through RIClS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educaUonal facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UHCL, the mission is being

implemented through interdisciplinary involvement of faculty and students

from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates wlth industry in a companion program. This program

is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-

tional sources of expertise to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee RICIS research ant education programs, while other research

organizations are involved via the =gateway" concept.

A major role of RICIS then is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and informa-

tion sciences. RICIS, working Jointly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates

technical results into the goals of UHCL, NASA/JSC and industry.

RICIS Preface

This research was conducted under auspices of the Research Institute for Computing

and Information Systems by Bert J. Dempsey, John C. Fenton and Alfred C. Weaver

of Digital Technology. Dr. George Collins, Associate Professor of Computer

Systems Design, served as RICIS research coordinator.

Funding was provided by the Engineering Directorate, NASA/JSC through

Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and the

University of Houston-Clear Lake. The NASA research coordinator for this activity

was Frank W. Miller of the Systems Development Branch, Flight Data Systems

Division, Engineering Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

The Multidriver:
A Reliable Multicast Service

using the Xpress Transfer Protocol

Bert J. Dempsey, John C. Fenton, and Alfred C. Weaver

Department of Computer Science
Thornton Hall

University of Virginia

Charlottesville, Virginia 22903

(804) 924-7605

bjd7p@virginia.edu, jcf5a@virginia.edu, weaver@virginia.edu

Abstract

A reliable multicast facility extends traditional point-to-point virtual circuit reliability to one-

to-many communication. Such services can provide more efficient use of network resources, a

powerful distributed name binding capability, and reduced latency in multidestination message

delivery. These benefits wiU be especially valuable in real-time environments where reliable

multicast can enable new applications and increase the availability and the reliability of data

and services. In this paper we present a unique multicast service that exploits features in the

next-generation, real-time transfer _ layer protocol, the Xpress Transfer Protocol (XTP). In its

reliable mode_, the service offers error, flow, and mte-controUed multidestination delivery of

arbitrary-sized messages, with provision for the coordination of reliable reverse channels.

Performance measurements on a single-segment Proteon ProNET-4 4 Mbps 802.5 token ring

with heterogeneous nodes are discussed.

' The transfer layer incorporates the functionalities of the transport and network layers of the ISO
OSI Reference Model into a single layer.

Table Of Contents

1 Introduction ...

2 lAVA XTP Drivers ...

3 The Multidriver ...

3.1 Multidriver Design ...

3.2 Multidriver Service Primitives ...

3.3 Control Scheme ..

4 Related Work ...

5 Performance Measurements and Functionality Demonstration

5.1 Multidestination File Transfer_._..,,...

5.2 Implosion Control ..

5.3 Multicast Transaction Latency ..

6 Conclusions ... ;: ..

1

3

4

5

7

9

11

13

13

15

15

17

ii

References

.

.

.

.

.

6.

.

8.

11.

12.

13.

14.

17.

M. Ahamad, M. H. Ammar, J. M. Bemabeu-Arban and M. Khalidi, Using
Multicast Communication to Locate Resources in LAN-Based Distributed System,

Proceedings of the 13th Conference on Local Computer Networks, Minneapolis,
Minnesota, 1988.

FDD! Token Ring Media Access Control Standard, American National Standards
Institute, Feb. I986. Draft proposed Standard X3T9.5/83-16, Rev. 10.

K. Birman and T. Joseph, Reliable Communication in the Presence of Failures,

ACM Transactions on Computer Systems 5,1 (February 1987), 47-76.

J. Chang and N. F. Maxemchuk, Reliable Broadcast Protocols, ACM Transactions

on Co.raputer Science 2,3 (Aug. 1984), 251-273.

D. R. Cheriton and W. Zwaenepoel, Distributed Process Groups in the V Kernel,
ACM Transactions on Computer Systems 3.2 (May 1985), 77-107.

D. Cheriton and C. L. Williamson, VMTP as the Transport Layer for High-
Performance Distributed Systems, IEEE Communications Magazine, June 1989,
37-44.

G. Chesson, The Protocol Engine Project, Unix Review, September 1987.

D. Comer, lnternetworking with TCP/IP, Prentice-Hall, Englewood Cliffs, New
Jersey, 1988.

E. C. Cooper, Circus: A Replicated Procedure Call Facility, Fourth Symposium on
Reliability in Distributed Software and Database Systems, 1984.

J. Crowcroft and K. Paliwoda, A Multicast Transport Protocol, CCR 18,4 (Aug.
1988), 247-256.

The Ethernet: A Local Area Network _ Data Link Layer and Physical Layer

Specifications, Digital Equipment Corporation, Intel Corporation, Xerox
Corporation, November 1982.

D. T. Green and D. T. Marlow, SAFENET -- ALAN for Navy Mission Critical
Systems, Proc. of the 14th Conference on Local Computer Networks, Minneapolis,
Minnesota, October 1989.

IEEE Standard 802.2 Logical Link Control, Institute of Electrical and Electronics

Engineers, 1984.

IEEE Standard 802.4 Token-Passing Bus Access Method and Physical Layer
Specifications, Institute of Electrical and Electronics Engineers, 1985.

IEEE Standard 802.5 Token Ring Access Method and Physical Layer
Specifications, Institute of Electrical and Electronics Engineers, 1985.

IEEE Standard 802.3 Carrier Sense Multiple Access with Collision Detection

(CSMA/CD) Access Method and Physical Layer Specifications, Institute of

Electrical and Electronics Engineers, 1985.

Information Processing Systems - Open Systems lnterconnection - Basic Reference
Model, Intemational Organization for Standardization, Oct. 1984. Draft
International Standard 7498.

iii

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

T. Joseph and K. Birman, Reliable Broadcast Protocols, in Distributed Systems, S.
Mullender (editor), ACM Press, 1989, 293-319.

M. F. Kaashoek, A. S. Tanenbaum, S. F. Hummel and H. E. Bal, An Efficient

Reliable Broadcast Protocol, Operating Systems Review 23,4 (October 1989).

J. Kramer, J. Magee and A. Lister, CONIC: An Integrated Approach to Distributed

Computer Control Systems, IEE Proceedings Part E 130,1 (January 1983), 1-10.

J. Lederburg and K. U. K., Towards a National Collaboratory, Report of an
Invitational NFS Workshop, March 1989.

L. Liang, S. T. Chanson and G. W. Neufield, Process Groups and Group
Communications: Classifications and Requirements, IEEE Computer 23,2

(February 1990), 56-66.

D. T. Marlow, Requirements for a High Performance Transport Protocol for Use
on Naval Platforms, Revision 1, Naval Surface Warfare Center, July 1989.

J. F. McNabb and A. C. Weaver, A Real-Time Network Performance Monitor for

Token Rings, MILCOM 89, Boston, Mass., October 1989.

Xpress Transfer Protocol Definition: Revision 3.4, Protocol Engines, Incorporated,
Santa Barbara, Califomia, July 1989.

B. Rajagopalan and P. McKinley, A Token-Based Protocol for Reliable, Ordered
Multicast Communication, Proceedings of Eighth Symposium on Reliable

Distributed Systems, Seattle, Washington, October 1989.

S. Ramakrishnan and B. Jain, A Negative Acknowledgement with Periodic Polling
Protocol for Multicast over LANs, IEEE INFOCOM 1987: The Conference on

Computer Communications Proceedings, San Francisco, California, April 1987.

R. Simoncic, A. C. Weaver, B. G. Cain and M. A. Colvin, SHIPNET: A Real-time

Local Area Network for Ships, Proc. of the 13th Conference on Local Computer

Networks, Minneapolis, Minnesota, October 1988.

W. StaUings, Handbook of Computer Communications Standards, Volume I: The

Open Systems Interconnection (OSI) Model and OSI-Related Standards,
Macmillan, Inc., 1987.

1. Introduction

Multicasting refers to a communication facility for effecting delivery of a message to a

well-defined set of destinations. Many modem networks, in particular Local Area Networks

(LANs) conforming to the IEEE 802 standards ([14-16]), Ethemet ([11]), the ANSI FDDI

standard ([2]), propagate frames such that all nodes on a frame's originating segment have the

opportunity to capture it. Host interfaces support hardware filtering on group addresses, making

machine-level multicast widely available in LANs. Recent research efforts have focused on

integrating this underlying selective broadcast with the reliable services of peer protocols in the

higher layers of the ISO OSI Reference Model ([i7]). The resulting reliable multicast promises

substantial efficiencies in network resource utilization and reduced latency for multidestination

messages.

The need for multicasting arises naturally in a number of existing and emerging

applications: resource location in a LAN ([1]), distributed databases ([3] [4]), industry process

control ([20]), support for distributed operating system services ([19] [5]), replicated procedure

calls ([9]), support for real-time command-and-control platforms ([23]), and collaborative

development systems ([21]). Exploiting parallelism in delivery and message processing,

multicasting may enable real-time applications whose message latency requirements cannot be

met with unicast protocols. Applications such as resource location use a multicast to achieve a

nan-time binding between a logical set of destinations (the rnulticast group) and the current

group membership. The rim-time binding afforded by location independent addressing reduces

the complexity in managing group commum_c_ia_0n arid provides a high degree of service and

data availability. Reliable one-to-many comm_cation also opens up the possibility of

synchronizing distributed processes without incurring the network-wide processing overhead

and security problems inherent to broadcasting.

2

The networking community has recognized that, as the trend toward distributed systems

continues to accelerate, multicast support within next-generation transport layer protocols will

represent an important new functionality. First generation protocols (e.g. the DoD Transmission

Control Protocol (TCP) [8] and ISO TP-4 [29]) did not anticipate the changes over the past

decade in underlying network hardware, transmission speeds, and communication patterns that

have enabled and driven the interest in reliable multicast. In this paper we present a unique

multicast service that takes advantage of features in the next-generation, lightweight transfer

layer protocol, the Xpress Transfer Protocol ([7]) (XTP).

As a modular part of the service interface routines to the University of Virginia

implementation of the protocol (UVA XTP), our multicast facility, the Multidriver, exploits

features in XTP in order to provide two multicast services, one unreliable and the other reliable.

The Multidriver user receives a channel to which the user may submit either a complete

message buffer or a data stream. Message boundaries are preserved, and a mechanism exists for

synchronizing data delivery at the set of receivers. The Multidriver's reliable service uses as its

primitive multicast transactions. It provides error, rate, and flow-controlled delivery in both the

forward (reques0 and reverse (responses) channels. User-specified bounds control the number

of multicast group members that may participate in an exchange and the number that must

receive the request in order for the transfer to be considered successful.

The remainder of the paper is organized as follows. Section 2 outlines the basic

architecture of UVA XTP and the function of XTP drivers. Section 3 describes _e Multidriver

design, service primitives, and control scheme. Section 4 examines related work from the

literature. Section 5 presents some performance measurements, and Section 6 our conclusions.

2. UVA XTP Drivers

The UVA XTP architecturehas a layered structure. The bottom layer represents the 802.2

Logical Link Control (LLC) ([13]) interface to the network. Above the LLC sits the XTP

Engine, which performs protocol processing on XTP contexts, the structures that hold

connection state information at an endpoint. (In UVA XTP each context must either be a

transmit or a receive context.) At the highest layer reside XTP drivers. Drivers are special

purpose modules that use the low-level interface to the Engine to implement an XTP service

interface. Engine and driver communicate through shared memory in the context structures, a

small set of C subroutines, and upcalls. XTP drivers handle decisions about retransrnission,

flow control, synchronization, and buffering in order that the Engine performs only the protocol

processing common to all XTP users.

The separation of policy (driver) and mechanism (Engine) enables great flexibility in

designing the user interface to UVA XTP. Drivers can be tailored to the communication needs

of a particular application or class of applications. To facilitate driver development, we have

implemented a set of primitives that are functionally modeled on UNIX system calls so as to

provide a well-known user interface. From them XTP drivers have been written for several

communication services, including file transfer, memory-to-memory transfer, and stream I/O.

Driver primitives interoperate so that an application links with a driver library and includes only

the code necessary for that application. The code fragment in Figure 1 illustrates the use of

driver routines. It shows an application that reads characters from the network and displays

them until the connection is closed.

main()

{
XTP_startupO;
if (xhandle = X_open("pipein","r",device)) < SUCCESS)

{ fprintf(stderr,"Unable to receive from networkO);
XTP_finish(-1); }

while ((c=X__getc(xhandle)) > EOF)

putchar(c);
X_close(xhandle);

XTP_finish(1);

}

Figure 1 -- XTP Driver Primitives

3. The Muitidriver

Our multicast facility is implemented as an XTP driver (the Multidriver) that provides the

user with four primitives. For unreliable service, the user calls an initializing routine to set up

state for a multicast transmit context. Data transfer through the context is then available using

any of the driver routines. For reliable multicasting, the user calls an initializing routine that

carries out a series of actions: (1) it sets up the transmit context; (2) it creates a user-specified

number of receive contexts (response contexts); (3) it issues a connection set-up packet from the

transmit context in order to establish the multicast (forward) connection; and (4) it monitors the

contexts set up in (2) to ensure the establishment of some user-controlled number of

connections between multicast group members and the response contexts. After these

cormections are made, the user can carry out a reliable multicast transaction with the set of

receivers that have established response channels.

XTP provides a packet of type FIRST, which can carry user data as well as addressing

information, to set up a connection. After a FIRST packet establishes the connection, the data

source issues DATA packets. In a reliable unicast, the sending context determines when the

receiving context will issue CNTL packets, which contain control information, by setting

certain request bits in out-going DATA (or FIRST) packets. Within the byte-sequenced data

stream of an XTP connection, out-of-band, or tagged, data can appear as the first 8 (BTAG

header bit set) or the last 8 (ETAG header bit set) bytes of a DATA or FIRST packet. At the

remote end, XTP passes up tagged data uninterpreted to the user ([25]). The Multidriver

suppresses XTP's error control, e.g. the multicast transmitting context never sets status request

header bits in a DATA packet. For reliable multicasting, the Multidriver manages its own

control scheme by sending control information as tagged data, which can be multiplexed with

user data, in both the forward and reverse channels.

3.1. Multidriver Design

The Multidriver design focuses on extending the unicast virtual circuit paradigm to a

one-to-many connection. ImpIementation of this model requires solving synchronization and

coordination problems not encountered in unicast protocols. Control information for the

multicast connection must be efficiently and effectively collected at the multicast source and

there coalesced into directives for the multicast transmit context.

ReliabIe one-to-many delivery implies the existence of some method for tracking the

progress of a set of receivers. Otherwise, the multicast sender cannot provide reliable delivery

since it cannot detect lagging or failed receivers. Rather than constructing its own method for

handling the control flow from multiple data sinks, the Multidriver uses a well-defined

mechanism already available within the Xpress Transfer Protocol -- XTP connections. Unicast

connections to response contexts create channe!s for driver-level control information as well as

client data.

Laminating together XTP connections makes sense for a number of reasons. First, XTP

supports rapid connection set-up and tear-down. An XTP FIRST packet can establish a

connection and carry user data (as well as deliver tagged data). Connection tear-down involves

a 2- or 3-packet handshake that is initiated by the final DATA packet in the transfer. Second,

the mapping of individual receivers to their response channels takes place dynamically as in-

coming FIRST packets establish connections with response contexts; no prior coordination or

management is needed. Finally, since control communication can be restricted to tagged data,

the side channels enable bi-directional user data flows, i.e. multicast transactions. Reply

handling in client/server interactions has been recognized as an important component of

multicast communication in many classes of applications ([22]).

For many-to-one data flows, particularly within a LAN, the phenomenon of network

implosion must be addressed. Implosion refers to the tendency of multicast receivers to

synchronize the sending of their control packets in any transmitter-driven scheme.

Synchronized transmission can result in bursts of traffic on the network and the inability of the

multicast source's network interface to capture frames arriving back-to-back. Since the

Multidriver supports the gathering of user-level responses from multicast group members, the

problem of coordinating the reverse channels grows with the product of the amount of data in

the reverse channel from each receiver and multicast set size. The Multidriver implements

mechanisms that allow the multicast source to control network implosion. The administrator of

implosion control policy, whether a human user or a management protocol, can use these

mechanisms to determine the appropriate implosion control strategy. The synchronization

issues involved with network implosion are highly dependent on system parameters. Hence the

appropriate strategy is for the multicast communication fa_;ility to provide the user with

parameters that can be tuned to the target environment.

The Multidriver design implements error, flow, and rate control for the multicast

connection. The multicast source solicits control parameters from the set of receivers in the

exchange. At the multicast source, after each receiver has responded, the Multidriver takes the

minimum of the reported control parameter values and submits this information to the multicast

transmitcontextin theformof anXTPCNTLpacket.Sincethemulticasttransmitcontextis

unawarethatCNTLpacketsarebeingmanufacturedfromabove(bytheMultidriver)insteadof

arrivingfrom below(off thenetwork),protocolprocessinginsidetheXTPEnginetakesplace

exactly as with reliable unicasting. In this way, control information from multiple

communicationendpointsis coalescedinto directivesfor controllingthe multicasttransfer

withouttheadditionof extracheckswithinthetransmitEngine.

Error controlusesa go-back-Nretransmissionstrategyas selectiveretransmissionfor

multicastin a LAN environment(e.g.low latenciesandrelativelyhigh bandwidths)seem

unjustifiablycomplex.TheMultidriverreleasesdatain thetransmitbufferassoonasarriving

controlinformationindicatesthatall receiversin theexchangehavethatdata.Flow andrate

controlpoliciesconformto thesmallestvaluesreportedfrom the receivergroupsincefaster

transferwill onlyresultin costlyerrorsduetodroppedpackets.

3.2. Multidriver Service Primitives

X_Mopen(name, mode, device)

Depending on the value of mode, this routine either opens up a multicast context for

unreliable multicast transmission or opens up a context for multicast reception. In the

latter case, X__Mopen () opens a receive context that listens on the group address as-

sociated with name.

For unreliable multicast transmission, a transmit context is initialized such that the header

bits for multicast (MULTI) and datagram transmission (NOERR) will be set in all FIRST

and DATA packets issued from the context Header bits requesting CNTL packets are

guaranteed not to be set in any out-going packet. Otherwise, X_Mopen () performs the

same state initialization as its unicast counterpart, XOpen (). X__Mopen () returns a

handleof typeXFILEthattheusermustuse in driver calls to identify the opened XTP con-

text.

The parameter name has a string value identifying a multicast group. The string is

mapped internally to the addresses that identify the set of listeners that make up the multi-

cast group. These addresses include the medium dependent hardware address, typically a

group address, and the transfer layer address. The format of the transfer layer address

depends on the environment since XTP supports multiple addressing modes. The parame-

ter device is present since a single implementation of XTP can multiplex between mul-

tiple network interfaces.

X_MRopen(group, response, device, rain, max, &xliles[max])

X_MRopen () performs a series of actions. It sets up a transmit context to send to

the multicast address to which group maps, and it initializes max receive contexts

to listen on the address to which response maps. A FIRST packet is issued from

the transmit context with tagged data containing the value of the parameter

response, and a timer set. Upon expiration of the timer, X__MRopen () retums to

the user with an error indication if fewer than rain multicast set members have esta-

blished connections with local response contexts. Otherwise, X MRopen retums the

user a XFILE handle to the multicast transmit context and places a XFtLE handle in the

array xfiles [] for each active response context, up to a limit of max.

X_MRciose(xfile, &xfiles[])

x MRclose () closes a reliable group transmit context, xfile, and its associated

responsecontexts,xfiles [].

X_MRreply(xfile)

The multicast receiver opens a receive context (using X_Mopen ()) that listens on

the group address. Upon the arrival of a FIRST packet, the Multidriver checks the

ETAG header bit. If ETAG is set, the Multidriver opens a transmit context (the re-

turn context) and sends a FIRST packet to the address to which the string in the

ETAG field maps (see Figure 2).

X_MRreply () allows the local client process to send data to the multicast source using

the return context. The parameter xfile provides the handle of the multicast receive

context, not the return context, since the return context is managed completely internally

by the Multidriver. X_MRreply () returns the user a special handle of type KEY for the

return context. The KEY handle can be used in place of an XFa.E handle in driver routines,

which check for this special case. With the exception of this indirection and the loss of

the tagged data feature, the return channel functions as an ordinary XTP reliable unicast

connection.

The multicast receive context and its return context are always closed together and can be

closed in two ways. Either the remote end transmits a close indication to the receiving

context or the return context, or the local user closes the receiving context. The local user

cannot close the retum context directly.

3.3. Control Scheme

All tagged data in a reliable multicast transaction exchange represents driver-level control

information, which is embedded in both the forward and reverse data streams. At a multicast

group member, if the local application process does not generates reverse direction data, then

the return context will be issuing XTP DATA packets containing only tagged data. For tagged

10

tagged
data

in

DATA

0 1 2 3 4 5 6

J

control

byte

% I ••

"%reserved , , deliver-to

", '_backoff ", sequence
% I %

" Imultiplier ", number
% | %%

% I ,,_

%%

r Lrese ed
J deliver-to

__ flow/error controlrate control

__ use-backoff

-- connection establishment

7

tagged

data
I

I

FIRST _
I

I

I

i I

I

I

I

_backoff
l

0 1 2 3 4 5 6

_,- NAME<

%

%

%

%

multiplier 1

7

_ connection establishment

Figure 2 -- Muitidriver Control Scheme

data in the source-to-group (forward) direction, the first byte of the the tagged data field serves

11

asa controlbyte(seeFigure2). In thereversedirection,nocontrolbyte is needed.ETAG

fieldscarryresponsesto theflow/errorcontrolflag (seebelow),andBTAG fieldscarryrate

controlparameters.

(1) connectionestablishmentflag-- indicatesthepresencein thetaggeddatafieldof (1) a

stringthatmapsto theaddresson whichto openthereturncontextand(2) an integer

denotingmulticastsetsize.BeforetransmittingtheFIRSTpacketfromthereturncontext,

the Multidriver receiver waits a random amount of time between 0 and

BACKOFF_TIME,whichisdeterminedbythemulticastsetsize.

(2) flow/errorcontrolflag-- requeststheremoteendto reportoneplusthesequencenumber

of the last byte receivedin orderat the receivingcontextandoneplus thesequence

numberof thelastbytethatthereceivingcontextwill accept.

(3) ratecontrolflag-- requeststhe remote end to report its XTP rate control parameters,

BURST and RATE.

(4) deliver-to flag -- notifies the remote end not to deliver data to the destination process

beyond the enclosed sequence number. The deliver-to flag offers the multicast source a

mechanism for synchronizing message commitment.

(5) use-backoff flag -- delivers an integer used for BACKOFF_TIME computation. The flag

indicates that a multicast receiver must use the accompanying integer to compute the

value of its BACKOFF_TIME variable and begin using a random backoff between 0 and

BACKOFF_TIME for each packet transmitted from the return context.

4. Related Work

The Multidriver provides a multicast service for error, rate, and flow-controlled

multidestination delivery of arbitrary-sized messages and coordinates the reliable response data

12

channels. It does not attempt to address the message ordering and group management issues

found in reliable broadcast protocols such as ([26] [4] [18]), though the Multidriver has

attractive features (e.g. the deliver-to flag for atomic message delivery at all destinations) for

use in building such protocols.

The transport layer multicast protocol proposed in [10] does provide for one-to-many

reliable delivery and addresses the issue of many-to-one response collection. Service interfaces

to the protocol allow users to select the destination group by cardinality and by explicit address.

This protocol differs from the Multidriver in that the former focuses on accommodating the

general case of receivers being connected across WANs as well as LANs. An experimental

implementation of the protocol exists in user space under UNIX, but no performance

measurements are cited.

A protocol based on Negative Acknowledgement with Periodic Polling (NAPP) ([27])

takes the novel approach of having background daemons at each receiver that assure progress

and periodically send liveness messages to the source during a multicast distribution. Receivers

multicast control information so that all group members overhear each other, and each control

message that reaches the multicast source contains a report on all receivers' sliding windows. A

primary drawback to NAPP's approach is the management of adaptive timers in the face of

dynamic system parameters, changes in group size, and connections made by multicast sources

of varying processing power. The defaults for the timers that drive the background daemons at

each multicast group member may be inappropriate for a particular connection. Short transfers

will suffer unpredictable delays and/or periods of temporary instability as timers adapt. NAPP

does not provide for data in the return channels.

The Versatile Message Transaction Protocol (VMTP) ([6]) uses the transaction paradigm

as the basis of all communication. It supports a multicast transaction primitive in which at least

13

oneresponsefromthemulticastgroupdefinesasuccessfultransaction.Responsesafterthefirst

onearebufferedfor theuseranddeliveredif requested.Messagingservicereliabilitydepends,

beyondtheinitial response,on the reliability of user-level transactions.

5. Performance Measurements and Functionality Demonstration

UVA XTP is designed to serve as the transfer layer component for a real-time

communications subsystem such as that specified in the SAFENET standards for military and

commercial ships ([12]). In the UVA implementation, XTP runs on top of a real-time, link layer

messaging service ([28]). Performance measurements below were done on a single-segment

Proteon ProNET-4 4 Mbps 802.5 token ring. Network nodes include ALR 25 MHz Intel 386

FlexCaches (Flexs), Zenith 16 MHz Intel 386 machines (Zeniths), a 16 MHz Intel 286 Compaq

(Compaq), and 4.77 MHz Intel 8086 Leading Edge PCs (LEdges). All nodes have AT buses.

5.1. Muitidestination File Transfer

Multicasting offers efficient bulk data transfer due to parallelism in delivery and message

processing. Fault tolerant systems with replicated file servers, for instance, could benefit from a

reliable multicast service for the delivery of file copies to the file server group. Table 1 shows

the achievable throughput in delivering a large file reliably to a group of servers using the

Multidriver.

i4

Table 1

MulticastFileTransfer

Transmitting Node: 4.7 MHz Leading Edge PC

Number of Receiving Nodes Receiving Nodes Average Throughput (in Kbits/s) . Range
1 Flex 174.7 Kbits/s 181.8 -- 168.7

2 2 Flexs 149.1 Kbits/s 149.7 --i48.1

3 "_2Flexs, 1 Zenith 112.9 Kbits/s 122.2 -- 108.1

4 I 2 Flexs, 2 Zeniths 98.7 Kbits/s 103.3 -- 97.2

2 Flexs, 2 Zeniths
5 95.7 Kbits/s 100.7 -- 92.7

1 Compaq

These measurements were taken using a real-time network monitor ([24]) that timestamps

each packet to an accuracy of 100 milliseconds. An application program transferred a 350,000

byte file from sender to a set of receiving nodes with one receiving context per node. The

measurement began with the first packet containing data and ended when all data had been

acknowledged at the sender. Error due to clock resolution is less than two percent.

Using the same driver routines, unicast transfers from the same transmitting node (a

LEdge) to either a Flex, a Zenith, or a Compaq averaged 209.1 Kbits/s with a range of 200.0 -

217.0 Kbit/s. Multicasting to a group containing only one receiver causes a 16.45% drop in

throughput when compared to unicasting. With two receivers, however, sequential unicasting is

29.9% slower than multicasting, and the advantage of multicasting grows with each node added.

At five nodes, sequential unicasting is 56.3% slower than a multicast transfer. These figures

indicate that for bulk data movement the Multidriver can achieve substantially better

performance than unicast transfers and that these efficiencies are realized as soon as more than a

single host has joined the multicast group.

Reliable multicast connections are necessarily bound by the slowest member of the

receiving group. Hence it is not surprising that the addition of a Zenith to the receiver set of 2

Flexs produces a severe (24.3%) drop in the multicast throughput. In contrast, the addition of a

second Zenith to the receiver set consisting of 2 Flexs and a Zenith or the addition of a Compaq

15

to thesetof 2Flexsand2Zenithscausesmuchsmallerdrops(12.6%and3.0%,respectively).

5.2. ImplosionControl

Our testbedshowedno evidenceof network implosion, i.e. synchronizing receivers

overrunning the tmnsmitter's network interface. But the testbed has only a few nodes, and no

more than 2 identical nodes were involved in any data exchange. Larger node populations and

more homogeneous networks would be expected to have implosion problems.

However, the phenomenon of a fast node sending back-to-back packets too fast for the

slow transmitter to catch the second packet was observed during early development of the

Multidriver. Under some circumstances, this rate control problem caused significant delays. It

appeared when timing factors resulted in a fast receiver reaching a state in which it began

transmitting back-to-back packets to the transmitter. Resolution of the problem was

straightforward since XTP defines rate control mechanisms. The transmitter's response

contexts contain rate control parameters that are conveyed to the remote return contexts in XTP

CNTL packets. The return contexts are thereby restrained to respect a minimum interpacket

gap when transmitting. (The rate control flag in the Multidriver control scheme provides for

rate control in the one-to-many direction.)

5.3. Multicast Transaction Latency

The Multidriver supports as a communication primitive reliable multicast transactions.

Many classes of distributed applications could benefit from reliable multicast transactions.

Some distributed processing entities, for instance, require a method of negotiating for access to

global system resources. Examples include the locking of a global variable for updating

purposes and the ability to elect, based on run-time information, particular entities out of a set

to perform a necessary task ([23]). This negotiation process usually requires the exchange of

short messages and may have real-time constraints as well. The dominant consideration is not,

16

as with file transfer,greaterthroughputandmoreefficientuseof networkresources,but

messagelatency.The inherent parallelism in multicasting suggests that it can produce lower

latencies than a series of unicasts.

Table 2

MulticastRoundtrip Latency

Transmitting Node: 25 MHz 80386 Flex
1-byte messages

Number of Receiving Nodes Receivin_ Nodes Average Roundtr_ Latency (in msecs)
Flex 53.2 ms

2 1 Flex, 1 Zenith 53.7 ms

3 1 Flex, 2 Zeniths 53.8 ms

4 1 Flex, 2 Zeniths 54.0 ms
1 Compaq

5 1 Flex, 2 Zeniths, 58.0 ms
1 Compaq, 1 LEdge

Table 3

Unicast Roundtrip Latency

Transmitting Node: 25 MHz 80386

1-byte messages

Receiving Node
Flex

Zenith

Compaq

Leading Edge

Flex

Average Roundtrip Latency (in msecs)
5.63 ms

6.85 ms
9.63 ms

17.02 ms

Table 2 and Table 3 show the measured latency experienced by the Multidriver user in

sending a reliable 1-byte multicast and unicast messages from a Flex. These measurements use

a clock with resolution of 50 millisecs and average over 1500 transfers.

The tables show that the Multiddver imposes a much higher latency cost than unicast, but

latency costs increase slowly as the number of receiving nodes grows. For a Flex-to-Flex

17

transfer,multicastlatencyis anorderof magnitudegreaterthanunicast.Forthe5-nodereceiver

set in Table 2, a seriesof unicastwould take45.98ms as opposedto 58.0ms usinga

Multidriverconnection.By extrapolation,theexperimentaldatasuggeststhattheMultidriver

offerslower latenciesonly in thecasewherethenumberof nodesin themulticastgroupis

relativelylarge(e.g. generallygreaterthan8-10)and/orunicastlatencyis high with some

membersof themulticastgroup.

Therelativelyhighminimumlatencyof theMultidriverschemereflectsthefactthatthe

Multidrivercontrolinformationmustcrosstheboundary from Engine to Driver on the remote

end. Urticast latencies measure Engine-to-Engine interaction since, upon reception of the FIRST

packet containing the byte of user data, the receiving Engine sends back an XTP CNTL packet.

The transmitting Engine receives the CNTL packet and signals the user, and the clock is

stopped. In contrast, under the Multidriver, the arriving FIRST packet at the remote end

contains tagged data, which must be delivered to the driver level. A FIRST packet containing

the driver-level acknowledgement is then constructed and transmitted from the return context.

This reverse-direction FIRST packet is acknowledged with an XTP CNTL packet at the original

transmitter's response context before the user is notified and the clock stopped.

6. Conclusions

The Multidriver demonstrates that a reliable multicast transaction service can be

constructed using the mechanisms provided by XTP Revision 3.4. Under this facility the user

receives a reliable multicast channel that has available all the services of a unicast channel and

can be accessed with the same procedural interface. Reliable response channels from every

group member are available for reply collection. Mechanisms are defined for implosion control

to ensure the feasibility of large multicast groups, and atomic message delivery to a group of

receivers can be accommodated.

18

Measurements of the Mulfidriver facility provide strong evidence of the advantage of

reliable multicast over a series of unicast for multidestination bulk data transfers. Latency

measurements indicate that the Multidriver imposes a high fixed minimum latency that, in order

to best multiple unicasts, must be amortized over a large (e.g. 6-10 or more) multicast group.

Latency and other performance metrics would be greatly enhanced if the functionality of the

Multidriver were directly supported in the underlying protocol, XTP. The principles and ideas

behind the Multidriver scheme could be incorporated into XTP without much new mechanism

or complexity in the protocol design. In any case, from the general view providing strong

support for reliable multicasting appears necessary in the face of both escalating demand for

reliable multi-party communication protocols and clear evidence of their value and feasibility,

as demonstrated by the Multidriver scheme.

