693 research outputs found

    Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

    Full text link
    We propose a randomized block-coordinate variant of the classic Frank-Wolfe algorithm for convex optimization with block-separable constraints. Despite its lower iteration cost, we show that it achieves a similar convergence rate in duality gap as the full Frank-Wolfe algorithm. We also show that, when applied to the dual structural support vector machine (SVM) objective, this yields an online algorithm that has the same low iteration complexity as primal stochastic subgradient methods. However, unlike stochastic subgradient methods, the block-coordinate Frank-Wolfe algorithm allows us to compute the optimal step-size and yields a computable duality gap guarantee. Our experiments indicate that this simple algorithm outperforms competing structural SVM solvers.Comment: Appears in Proceedings of the 30th International Conference on Machine Learning (ICML 2013). 9 pages main text + 22 pages appendix. Changes from v3 to v4: 1) Re-organized appendix; improved & clarified duality gap proofs; re-drew all plots; 2) Changed convention for Cf definition; 3) Added weighted averaging experiments + convergence results; 4) Clarified main text and relationship with appendi

    Efficient cross-validation of the complete two stages in KFD classifier formulation

    Full text link
    This paper presents an efficient evaluation algorithm for cross-validating the two-stage approach of KFD classifiers. The proposed algorithm is of the same complexity level as the existing indirect efficient cross-validation methods but it is more reliable since it is direct and constitutes exact cross-validation for the KFD classifier formulation. Simulations demonstrate that the proposed algorithm is almost as fast as the existing fast indirect evaluation algorithm and the twostage cross-validation selects better models on most of the thirteen benchmark data sets.<br /

    Image Parsing with a Wide Range of Classes and Scene-Level Context

    Full text link
    This paper presents a nonparametric scene parsing approach that improves the overall accuracy, as well as the coverage of foreground classes in scene images. We first improve the label likelihood estimates at superpixels by merging likelihood scores from different probabilistic classifiers. This boosts the classification performance and enriches the representation of less-represented classes. Our second contribution consists of incorporating semantic context in the parsing process through global label costs. Our method does not rely on image retrieval sets but rather assigns a global likelihood estimate to each label, which is plugged into the overall energy function. We evaluate our system on two large-scale datasets, SIFTflow and LMSun. We achieve state-of-the-art performance on the SIFTflow dataset and near-record results on LMSun.Comment: Published at CVPR 2015, Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference o

    TransportTP: A two-phase classification approach for membrane transporter prediction and characterization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Membrane transporters play crucial roles in living cells. Experimental characterization of transporters is costly and time-consuming. Current computational methods for transporter characterization still require extensive curation efforts, especially for eukaryotic organisms. We developed a novel genome-scale transporter prediction and characterization system called TransportTP that combined homology-based and machine learning methods in a two-phase classification approach. First, traditional homology methods were employed to predict novel transporters based on sequence similarity to known classified proteins in the Transporter Classification Database (TCDB). Second, machine learning methods were used to integrate a variety of features to refine the initial predictions. A set of rules based on transporter features was developed by machine learning using well-curated proteomes as guides.</p> <p>Results</p> <p>In a cross-validation using the yeast proteome for training and the proteomes of ten other organisms for testing, TransportTP achieved an equivalent recall and precision of 81.8%, based on TransportDB, a manually annotated transporter database. In an independent test using the Arabidopsis proteome for training and four recently sequenced plant proteomes for testing, it achieved a recall of 74.6% and a precision of 73.4%, according to our manual curation.</p> <p>Conclusions</p> <p>TransportTP is the most effective tool for eukaryotic transporter characterization up to date.</p

    Image similarity in medical images

    Get PDF
    Recent experiments have indicated a strong influence of the substrate grain orientation on the self-ordering in anodic porous alumina. Anodic porous alumina with straight pore channels grown in a stable, self-ordered manner is formed on (001) oriented Al grain, while disordered porous pattern is formed on (101) oriented Al grain with tilted pore channels growing in an unstable manner. In this work, numerical simulation of the pore growth process is carried out to understand this phenomenon. The rate-determining step of the oxide growth is assumed to be the Cabrera-Mott barrier at the oxide/electrolyte (o/e) interface, while the substrate is assumed to determine the ratio β between the ionization and oxidation reactions at the metal/oxide (m/o) interface. By numerically solving the electric field inside a growing porous alumina during anodization, the migration rates of the ions and hence the evolution of the o/e and m/o interfaces are computed. The simulated results show that pore growth is more stable when β is higher. A higher β corresponds to more Al ionized and migrating away from the m/o interface rather than being oxidized, and hence a higher retained O:Al ratio in the oxide. Experimentally measured oxygen content in the self-ordered porous alumina on (001) Al is indeed found to be about 3% higher than that in the disordered alumina on (101) Al, in agreement with the theoretical prediction. The results, therefore, suggest that ionization on (001) Al substrate is relatively easier than on (101) Al, and this leads to the more stable growth of the pore channels on (001) Al

    Image similarity in medical images

    Get PDF

    Apprentissage semi-supervisé pour les SVMS et leurs variantes

    Get PDF
    La reconnaissance de formes est un domaine fort intéressant de l'intelligence artificielle. Pour résoudre les problèmes de reconnaissance de formes, des classifieurs sont construits en utilisant des prototypes de données à reconnaître ainsi que leur classe d'appartenance. On parie d'apprentissage supervisé. Aujourd'hui, face aux importants volumes de données disponibles, le coût de l'étiquetage des données devient très exorbitant. Ainsi, il est impraticable, voir impossible d'étiqueter toutes les données disponibles. Mais puisque, nous savons que la performance d'un classifieur est liée au nombre de données d'apprenfissage, la principale question qui ressort est comment améliorer l'apprentissage d'un classifieur en ajoutant des données non étiquetées à l'ensemble d'apprentissage. La technique d'apprenfissage issue de la réponse à cette quesfion est appelée apprentissage semi- supervisé. La machine à vecteurs de support(SVM) et sa variante Least-Squares SVM (LS-SVM) sont des classifieurs particuliers basés sur le principe de la maximisation de la marge qui leur confère un fort pouvoir de généralisation. Au cours de nos travaux de recherche, nous avons considéré l'apprentissage semi-supervisé de ces machines. Dès lors, nous avons proposé diverses techniques d'apprentissage de ces machines pour accomplir cette tâche. Dans un premier temps, nous avons ufilisé l'inférence bayésienne pour estimer les paramètres du modèle et les étiquettes. Ainsi, nous avons élaboré des formulations bayésiennes à un et deux niveau(x) d'inférence, qui sont par la suite appliquées aux SVMs et aux LS-SVMs dans le contexte de l'apprentissage semi-supervisé. Dans un second temps, nous avons proposé d'améliorer la technique d'auto-apprentissage, en utilisant un classifieur d'approche générative pour aider le principal classifieur discriminant entraîné en semi-supervisé à étiqueter les données. Nous nommons cette stratégie Apprentissage soutenu (Help-Training), et nous l'avons appliqué avec succès aux SVMs et à sa variante LS-SVM. Nos divers algorithmes d'apprentissage semi-supervisé ont été testés sur des données artificielles et réelles et ont donné des résultats encourageants. Cette validation a été appuyée par une analyse montrant les avantages et les limites de chacun des méthodes développées

    Large-scale inference in the focally damaged human brain

    Get PDF
    Clinical outcomes in focal brain injury reflect the interactions between two distinct anatomically distributed patterns: the functional organisation of the brain and the structural distribution of injury. The challenge of understanding the functional architecture of the brain is familiar; that of understanding the lesion architecture is barely acknowledged. Yet, models of the functional consequences of focal injury are critically dependent on our knowledge of both. The studies described in this thesis seek to show how machine learning-enabled high-dimensional multivariate analysis powered by large-scale data can enhance our ability to model the relation between focal brain injury and clinical outcomes across an array of modelling applications. All studies are conducted on internationally the largest available set of MR imaging data of focal brain injury in the context of acute stroke (N=1333) and employ kernel machines at the principal modelling architecture. First, I examine lesion-deficit prediction, quantifying the ceiling on achievable predictive fidelity for high-dimensional and low-dimensional models, demonstrating the former to be substantially higher than the latter. Second, I determine the marginal value of adding unlabelled imaging data to predictive models within a semi-supervised framework, quantifying the benefit of assembling unlabelled collections of clinical imaging. Third, I compare high- and low-dimensional approaches to modelling response to therapy in two contexts: quantifying the effect of treatment at the population level (therapeutic inference) and predicting the optimal treatment in an individual patient (prescriptive inference). I demonstrate the superiority of the high-dimensional approach in both settings

    Kernel learning at the first level of inference

    Get PDF
    Kernel learning methods, whether Bayesian or frequentist, typically involve multiple levels of inference, with the coefficients of the kernel expansion being determined at the first level and the kernel and regularisation parameters carefully tuned at the second level, a process known as model selection. Model selection for kernel machines is commonly performed via optimisation of a suitable model selection criterion, often based on cross-validation or theoretical performance bounds. However, if there are a large number of kernel parameters, as for instance in the case of automatic relevance determination (ARD), there is a substantial risk of over-fitting the model selection criterion, resulting in poor generalisation performance. In this paper we investigate the possibility of learning the kernel, for the Least-Squares Support Vector Machine (LS-SVM) classifier, at the first level of inference, i.e.parameter optimisation. The kernel parameters and the coefficients of the kernel expansion are jointly optimised at the first level of inference, minimising a training criterion with an additional regularisation term acting on the kernel parameters. The key advantage of this approach is that the values of only two regularisation parameters need be determined in model selection, substantially alleviating the problem of over-fitting the model selection criterion. The benefits of this approach are demonstrated using a suite of synthetic and real-world binary classification benchmark problems, where kernel learning at the first level of inference is shown to be statistically superior to the conventional approach, improves on our previous work (Cawley and Talbot, 2007) and is competitive with Multiple Kernel Learning approaches, but with reduced computational expense
    • …
    corecore