6 research outputs found

    A general-purpose toolbox for efficient Kronecker-based learning

    Get PDF
    Pairwise learning is a machine learning paradigm where the goal is to predict properties of pairs of objects. Applications include recommender systems, molecular network inference, and ecological interaction prediction. Kronecker-based learning systems provide a simple yet elegant method to learn from such pairs. Using tricks from linear algebra, these models can be trained, tuned, and validated on large datasets. Our Julia package Kronecker.jl aggregates these shortcuts and efficient algorithms using a lazily evaluated Kronecker product ‘⊗’, such that it is easy to experiment with learning algorithms using the Kronecker product.</p

    Fast Kronecker Product Kernel Methods via Generalized Vec Trick

    No full text

    Generalized vec trick for fast learning of pairwise kernel models

    Get PDF
    Pairwise learning corresponds to the supervised learning setting where the goal is to make predictions for pairs of objects. Prominent applications include predicting drug-target or protein-protein interactions, or customer-product preferences. In this work, we present a comprehensive review of pairwise kernels, that have been proposed for incorporating prior knowledge about the relationship between the objects. Specifically, we consider the standard, symmetric and anti-symmetric Kronecker product kernels, metric-learning, Cartesian, ranking, as well as linear, polynomial and Gaussian kernels. Recently, a O(nm + nq) time generalized vec trick algorithm, where n, m, and q denote the number of pairs, drugs and targets, was introduced for training kernel methods with the Kronecker product kernel. This was a significant improvement over previous O(n(2)) training methods, since in most real-world applications m, q << n. In this work we show how all the reviewed kernels can be expressed as sums of Kronecker products, allowing the use of generalized vec trick for speeding up their computation. In the experiments, we demonstrate how the introduced approach allows scaling pairwise kernels to much larger data sets than previously feasible, and provide an extensive comparison of the kernels on a number of biological interaction prediction tasks

    Crowdsourced mapping of unexplored target space of kinase inhibitors

    Get PDF
    Despite decades of intensive search for compounds that modulate the activity of particular protein targets, a large proportion of the human kinome remains as yet undrugged. Effective approaches are therefore required to map the massive space of unexplored compound–kinase interactions for novel and potent activities. Here, we carry out a crowdsourced benchmarking of predictive algorithms for kinase inhibitor potencies across multiple kinase families tested on unpublished bioactivity data. We find the top-performing predictions are based on various models, including kernel learning, gradient boosting and deep learning, and their ensemble leads to a predictive accuracy exceeding that of single-dose kinase activity assays. We design experiments based on the model predictions and identify unexpected activities even for under-studied kinases, thereby accelerating experimental mapping efforts. The open-source prediction algorithms together with the bioactivities between 95 compounds and 295 kinases provide a resource for benchmarking prediction algorithms and for extending the druggable kinome

    Machine learning applications for censored data

    Get PDF
    The amount of data being gathered has increased tremendously as many aspects of our lives are becoming increasingly digital. Data alone is not useful, because the ultimate goal is to use the data to obtain new insights and create new applications. The largest challenge of computer science has been the largest on the algorithmic front: how can we create machines that help us do useful things with the data? To address this challenge, the field of data science has emerged as the systematic and interdisciplinary study of how knowledge can be extracted from both structed and unstructured data sets. Machine learning is a subfield of data science, where the task of building predictive models from data has been automated by a general learning algorithm and high prediction accuracy is the primary goal. Many practical problems can be formulated as questions and there is often data that describes the problem. The solution therefore seems simple: formulate a data set of inputs and outputs, and then apply machine learning to these examples in order to learn to predict the outputs. However, many practical problems are such that the correct outputs are not available because it takes years to collect them. For example, if one wants to predict the total amount of money spent by different customers, in principle one has to wait until all customers have decided to stop buying to add all of the purchases together to get the answers. We say that the data is ’censored’; the correct answers are only partially available because we cannot wait potentially years to collect a data set of historical inputs and outputs. This thesis presents new applications of machine learning to censored data sets, with the goal of answering the most relevant question in each application. These applications include digital marketing, peer-to-peer lending, unemployment, and game recommendation. Our solution takes into account the censoring in the data set, where previous applications have obtained biased results or used older data sets where censoring is not a problem. The solution is based on a three stage process that combines a mathematical description of the problem with machine learning: 1) deconstruct the problem as pairwise data, 2) apply machine learning to predict the missing pairs, 3) reconstruct the correct answer from these pairs. The abstract solution is similar in all domains, but the specific machine learning model and the pairwise description of the problem depends on the application.Kerätyn datan määrä on kasvanut kun digitalisoituminen on edennyt. Itse data ei kuitenkaan ole arvokasta, vaan tavoitteena on käyttää dataa tiedon hankkimiseen ja uusissa sovelluksissa. Suurin haaste onkin menetelmäkehityksessä: miten voidaan kehittää koneita jotka osaavat käyttää dataa hyödyksi? Monien alojen yhtymäkohtaa onkin kutsuttu Datatieteeksi (Data Science). Sen tavoitteena on ymmärtää, miten tietoa voidaan systemaattisesti saada sekä strukturoiduista että strukturoimattomista datajoukoista. Koneoppiminen voidaan nähdä osana datatiedettä, kun tavoitteena on rakentaa ennustavia malleja automaattisesti datasta ns. yleiseen oppimisalgoritmiin perustuen ja menetelmän fokus on ennustustarkkuudessa. Monet käytännön ongelmat voidaan muotoilla kysymyksinä, jota kuvaamaan on kerätty dataa. Ratkaisu vaikuttaakin koneoppimisen kannalta helpolta: määritellään datajoukko syötteitä ja oikeita vastauksia, ja kun koneoppimista sovelletaan tähän datajoukkoon niin vastaus opitaan ennustamaan. Monissa käytännön ongelmissa oikeaa vastausta ei kuitenkaan ole täysin saatavilla, koska datan kerääminen voi kestää vuosia. Jos esimerkiksi halutaan ennustaa miten paljon rahaa eri asiakkaat kuluttavat elinkaarensa aikana, täytyisi periaatteessa odottaa kunnes yrityksen kaikki asiakkaat lopettavat ostosten tekemisen jotta nämä voidaan laskea yhteen lopullisen vastauksen saamiseksi. Kutsumme tämänkaltaista datajoukkoa ’sensuroiduksi’; oikeat vastaukset on havaittu vain osittain koska esimerkkien kerääminen syötteistä ja oikeista vastauksista voi kestää vuosia. Tämä väitös esittelee koneoppimisen uusia sovelluksia sensuroituihin datajoukkoihin, ja tavoitteena on vastata kaikkein tärkeimpään kysymykseen kussakin sovelluksessa. Sovelluksina ovat mm. digitaalinen markkinointi, vertaislainaus, työttömyys ja pelisuosittelu. Ratkaisu ottaa huomioon sensuroinnin, siinä missä edelliset ratkaisut ovat saaneet vääristyneitä tuloksia tai keskittyneet ratkaisemaan yksinkertaisempaa ongelmaa datajoukoissa, joissa sensurointi ei ole ongelma. Ehdottamamme ratkaisu perustuu kolmeen vaiheeseen jossa yhdistyy ongelman matemaattinen ymmärrys ja koneoppiminen: 1) ongelma dekonstruoidaan parittaisena datana 2) koneoppimista sovelletaan puuttuvien parien ennustamiseen 3) oikea vastaus rekonstruoidaan ennustetuista pareista. Abstraktilla tasolla idea on kaikissa paperissa sama, mutta jokaisessa sovelluksessa hyödynnetään sitä varten suunniteltua koneoppimismenetelmää ja parittaista kuvausta
    corecore