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Abstract
Pairwise learning corresponds to the supervised learning setting where the goal is to make 
predictions for pairs of objects. Prominent applications include predicting drug-target or 
protein-protein interactions, or customer-product preferences. In this work, we present a 
comprehensive review of pairwise kernels, that have been proposed for incorporating prior 
knowledge about the relationship between the objects. Specifically, we consider the stand-
ard, symmetric and anti-symmetric Kronecker product kernels, metric-learning, Cartesian, 
ranking, as well as linear, polynomial and Gaussian kernels. Recently, a O(nm + nq) time 
generalized vec trick algorithm, where n , m , and q denote the number of pairs, drugs and 
targets, was introduced for training kernel methods with the Kronecker product kernel. 
This was a significant improvement over previous O(n2) training methods, since in most 
real-world applications m, q << n . In this work we show how all the reviewed kernels can 
be expressed as sums of Kronecker products, allowing the use of generalized vec trick for 
speeding up their computation. In the experiments, we demonstrate how the introduced 
approach allows scaling pairwise kernels to much larger data sets than previously feasible, 
and provide an extensive comparison of the kernels on a number of biological interaction 
prediction tasks.
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1  Introduction

The goal of supervised learning is to learn an unknown function f ∶ X → ℝ from a set of 
training examples Z = {(xi, yi)}

n
i=1

 each consisting of an input xi ∈ X  and an associated 
label yi ∈ ℝ . The learning algorithm returns a function that approximates the true function 
on the training set with the aim of generalizing to data unseen during the training phase.

In pairwise learning, each input x is viewed as a pair of objects x = (d, t) that we call 
here drugs d ∈ D and targets t ∈ T  . The task may, for example, then be to predict drug 
and target interaction y = f (d, t) values to test for novel interactions in drug discovery. This 
view is not unique and the inputs may be considered as paired in many different applica-
tions. For example, recommender system literature deals with ratings given to customer 
and product pairs (Basilico and Hofmann 2004; Menon and Elkan 2010; Rendle 2010). 
Information retrieval can be formulated as predicting the relevance of query and document 
pairs (Liu 2011). Bioinformatics has utilized machine learning for protein-protein (Ben-
Hur and Noble 2005; Ruan et al. 2018), protein-RNA (Bellucci et al. 2011) and drug-target 
(Gönen 2012; Pahikkala et al. 2015a; Cichonska et al. 2017, 2018) interaction prediction. 
Other applications include image labeling (Romera-Paredes and Torr 2015), and link pre-
diction in social networks (Pieter and Koller 2005) Various terminology and frameworks 
have been used to describe the general learning problem (see e.g. Waegeman et al. (2019) 
for overview). These include pairwise (kernel) learning (Ben-Hur and Noble 2005; Park 
and Chu 2009; Cichonska et al. 2017, 2018), dyadic prediction (Menon and Elkan 2010; 
Pahikkala et al. 2014; Schäfer and Hüllermeier 2015), pair-input prediction (Park and Mar-
cotte 2012), graph inference (Vert et  al. 2007), link prediction (Pieter and Koller 2005; 
Kashima et al. 2009a), relational learning (Pahikkala et al. 2010; Waegeman et al. 2012; 
Pahikkala et al. 2013), multi-task (Bonilla et al. 2007; Bernard et al. 2017) and as a special 
case zero-shot (Romera-Paredes and Torr 2015) learning.

Different fields often consider different but related pairwise prediction tasks. These 
tasks can be divided into settings where different methods are applicable and which have 
varying degrees of difficulty. For example, in recommender systems one often assumes 
that all customers and products belong to the training set and that there are some exam-
ple interactions for each customer and each product (Basilico and Hofmann 2004). Predic-
tions are needed for (customer, product)-pairs where the rating is missing. In this setting, 
methods based on factorizing the interaction matrix can be used, and no explicit features 
are required. However, in cold-start problems the task is to predict an interaction of a new 
customer and product pair, where we do not have any examples with the same customer 
or product in the training set. Basic factorization methods do not generalize to such set-
tings, rather methods that make use of customer and product features are needed (some-
times called side information). In this work, we restrict our considerations to methods that 
can generalize to novel drugs and targets, rather than just imputing missing interactions 
between known ones.

Kernel methods are a standard method in supervised learning. They provide feature 
based generalization beyond training drugs and targets, and are used as a competitive 
method especially in the cold start setting. Kernel methods can be applied when the train-
ing data either have explicit feature vectors or implicit feature vectors are defined via posi-
tive semidefinite kernel functions. When drugs and targets have separate features or ker-
nels, we can use pairwise kernels to define a kernel for the pair. One simple way to define a 
pairwise kernel, is to concatenate a feature vector for the drug and the target together, and 
apply a standard kernel such as polynomial or Gaussian on this feature vector. However, a 
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large variety of different kernels specifically defined for pairwise data have been introduced 
in previous literature, starting with the introduction of the standard (Ben-Hur and Noble 
2005; Basilico and Hofmann 2004; Oyama and Manning 2004) and symmetric (Ben-Hur 
and Noble 2005) Kronecker product kernels.

In this work we present a comprehensive review on pairwise kernels, and establish a 
joint framework under which the most commonly used of them can be expressed as linear 
combinations of Kronecker products. In particular, we cover the following kernels:

–	 Linear kernel
–	 2nd degreee polynomial kernel
–	 Gaussian kernel
–	 Kronecker product kernel (Ben-Hur and Noble 2005; Basilico and Hofmann 2004; 

Oyama and Manning 2004)
–	 symmetric Kronecker product kernel (Ben-Hur and Noble 2005)
–	 Anti-symmetric Kronecker product kernel (Pahikkala et al. 2010)
–	 Cartesian kernel (Kashima et al. 2009b)
–	 Metric learning pairwise kernel (Vert et al. 2007)
–	 Ranking kernel (Herbrich 2000; Waegeman et al. 2012)

In our framework, we represent the linear combinations corresponding to these kernels 
with specifically designed operator notation. The notation is not only mathematically ele-
gant but, as we show below, enables the analysis of the kernel properties and assumptions, 
fast computation and easy implementation.

We start by introducing the two most fundamental assumptions. The first, what we 
call pairwise data assumption, is that both the drugs and targets tend to appear several 
times as parts of different inputs in an observed data set. For example, the same drug di 
may belong to two different examples (di, tj) and (di, tk) . In particular, if n is the number of 
observed data and m and q denote the numbers of unique drugs and targets in the data, then 
n >> m + q . This observation can be used to develop methods with computational short-
cuts tailored specifically for the pairwise learning task, as we will elaborate below in more 
detail.

The second, what we refer to as non-linearity assumption, states another property 
inherent in pairwise learning problems, which is that the functions to be learned are usually 
not linear combinations of functions depending only of d or t . The opposite case, where the 
function can be expressed as f (d, t) = fd(d) + ft(t) for some fd and ft , would indicate that 
f (d1, t1) > f (d2, t1) ⟹ f (d1, t2) > f (d2, t2) for all drugs and targets, that is, if drug d1 is 
more effective than drug d2 against target t1 , then drug d1 is also more effective than drug d2 
against target t2 . In other words, there would always be a single drug that would be the best 
choice for all targets (and vice versa). This is illustrated in Fig. 1 with a simple example, 
where the effect of drug on target is a function of the row and column number parities of 
both drugs and targets. The ’chessboard’ is a true pairwise data set where an interaction 
exists between even drugs and odd targets, or vice versa, corresponding to a XOR function 
between their parities, that is unlearnable with linear methods according to the classical 
result by Minsky and Papert (1969). In contrast, the ’tablecloth’ a linear function of inter-
action strengths of odd drugs and odd targets, which are therefore completely independent 
of each other.

The runtime and in many cases the memory use of kernel solvers grow at least quadrati-
cally with respect to the number of pairs, and hence the use of pairwise kernels becomes 
infeasible in cases where the number of pairs is large. Faster training algorithms that avoid 
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the costly step of building the pairwise kernel matrix have been previously proposed for 
certain specific cases. A fast solution to compute closed form solution is known for Kro-
necker product kernel, when minimizing ridge regression loss on so-called complete data 
that includes labels between all training drugs and targets (Romera-Paredes and Torr 2015; 
Pahikkala et al. 2014, 2013; Stock et al. 2018, 2020). Kashima et al. (2009a) show how 
computations for Cartesian kernel can be made faster, and computational shortcuts for 
speeding up the use of the ranking kernel are known for the ridge regression (Pahikkala 
et al. 2009) and support vector machine algorithms (Kuo et al. 2014). Yet thus far there has 
been no unified approach that would allow to plug in any of the commonly used pairwise 
kernels to a kernel method training algorithm that guarantees better than O(n2) scaling.

An exact computationally efficient algorithm has recently been proposed (Airola and 
Pahikkala 2018) for the special case of Kronecker product kernels when the data is not 
complete. The computational complexity of multiplying a vector with the kernel matrix 
is reduced from O(n2) to O(nm + nq) . This improvement has already shown to have major 
practical relevance, for example, the winning team of a recently held IDG-DREAM Drug-
Kinase Binding Prediction Challenge on developing models for predicting unexplored 
drug-target potencies, used this algorithm (Cichonska et al. 2021).

In this work, we extend this result to present the first general O(nm + nq) approach that 
simultaneously covers all the widely used pairwise kernels. This is a major improvement if 
the pairwise assumption holds, and the approach also allows accelerating the computation 
of the more traditional standard kernels, such as Gaussian and polynomial, if the data can 
be decomposed as pairwise. This is made possible by the proposed operator framework.

Finally, we perform an experimental comparison of different pairwise kernels on four 
different biological data sets, in which we compare the prediction performance, training 
time, number of training iterations and memory usage. The kernels are compared with 
each other in the following four different prediction tasks: First, prediction of interaction 
strength between a drug and a target of which both have been observed in the training data 
as part of some other drug-target pair with a known interaction strength. Second, inter-
action strength prediction with novel targets that have not been observed in the training 
data as part of any known drug-target pair. Third, prediction with novel drugs, and fourth, 
prediction with both novel drugs and targets. As is shown in by the results, the prediction 

Fig. 1   Illustration of pairwise data. The ’chessboard’ is a XOR-function of drug and target parities, whereas 
’tablecloth’ is a SUM-function of the parities
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performances in these four tasks are tremendously different, hence underlying the impor-
tance that they should be separately considered in pairwise learning studies. Further, the 
results indicate that it is not at all self-evident that the expected prediction performance 
improvements of the nonlinear pairwise kernels over the linear ones implied by the nonlin-
earity assumption would always translate to practice.

To conclude, the major contributions of this work are as follows:

–	 Review of the standard kernels for pairwise data that establishes a common operator 
based framework for analysing and implementing the kernels.

–	 The framework allows accelerating the computation of matrix-vector products with the 
pairwise kernels to O(nm + nq) time, leading to considerably faster training methods.

–	 Comprehensive experimental comparison of the pairwise kernels on biological interac-
tion data sets with four different prediction problems.

2 � Pairwise learning problem

Given the spaces of drugs D and targets T  , the possible drug and target pairs are the Car-
tesian product X = D × T  . The label space is denoted Y , where Y = ℝ for regression 
and Y = {0, 1} for classification. We further denote the joint space of the pairwise inputs 
and labels as Z = X × Y . The observed data set consists of n labeled drug-target pairs 
Z obs = (X obs , �) ∈ (D × T × Y)n . We further define � ∈ Dn and � ∈ Tn to be drug and tar-
get sequences such that (di, ti) = xi . Finally, we let D obs and T obs denote the sets of drugs 
and targets observed in the sample and Z obs to denote the set of observed unique drug-
target pairs, so that we have m =⏐ D obs ⏐ unique drugs and q =⏐ T obs ⏐ unique targets,

Our goal is to learn a prediction function f ∶ D × T → Y from the training set, such that 
f  can correctly predict the labels for a new pair (d, t) ∈ D × T  . The drug d and target t in 
the new pair may or may not belong to drugs D obs and targets T obs observed during training 
time. Here, four different settings emerge, as illustrated in Fig. 2: 

1.	 d ∈ D obs and t ∈ T obs : prediction for known drugs and targets
2.	 d ∈ D obs and t ∉ T obs : prediction for novel targets
3.	 d ∉ D obs and t ∈ T obs : prediction for novel drugs
4.	 d ∉ D obs and t ∉ T obs : prediction for novel drugs and targets

In the literature specific settings in Fig.  2 have been sometimes considered separately. 
For example, Setting 1 can be solved even without drug or target features using matrix 

Fig. 2   Illustration of a pairwise 
data set with (drug,target)-pairs 
and sparse labels. Different types 
of test sets corresponding to dif-
ferent settings are illustrated with 
different colors



548	 Machine Learning (2022) 111:543–573

1 3

factorization methods (Basilico and Hofmann 2004). However, the latent representations 
learned by matrix factorization methods do not generalize to drugs and targets outside the 
training set (Settings  2-4). The pairwise kernel learning approach considered in this work is 
applicable in all of the four settings.

Recent studies have highlighted, that the prediction performance and optimal choice of 
kernel and hyperparameters for a pairwise learning method crucially depend on the assump-
tion of how the test pairs overlap with training data (Park and Marcotte 2012; Pahikkala et al. 
2015a; Stock et al. 2020). An experimental observation made over a large variety of different 
studies was that Setting 1 is usually the easiest to predict accurately, followed by Settings 2 
and 3, whereas making accurate predictions in Setting 4 tends to be very challenging. As rec-
ommended in previous studies (Park and Marcotte 2012; Pahikkala et al. 2015a; Stock et al. 
2020), we will always generate separate test sets for each of the four settings in the experi-
ments to give a comprehensive view of how the learned prediction functions generalize to 
different types of test pairs. Depending on the amount of data, this can be implemented either 
with a single split to training and test sets, or by using cross-validation with repeated splits. 
The way the data splitting is implemented is defined in Table  1.

3 � Learning algorithm

In this section we present a supervised machine learning approach for learning with pairwise 
kernels. The computational shortcuts presented in this paper can be used to speed up any opti-
mization approach whose computational complexity is dominated by multiplications of a pair-
wise kernel matrix with a vector, such as the truncated Newton method (Airola and Pahikkala 
2018). In this paper we focus on kernel ridge regression, as it is a widely used method that 
admits a closed form solution and simplifies the following considerations.

To learn a prediction function, we consider the regularized empirical risk minimization 
problem

Table 1   Training and test set 
split in different settings

Setting Task Validation method

Setting 1 d ∈ D obs and 
t ∈ T obs

Split samples Z obs = Z train ∪ Z test

Setting 2 d ∈ D obs and 
t ∉ T obs

Split targets T obs = T train ∪ T test.
Then

(xi, yi) ∈

{
Z train , if ti ∈ T train

Z test , if ti ∈ T test

Setting 3 d ∉ D obs and 
t ∈ T obs

Split drugs D obs = D train ∪D test

Then

(xi, yi) ∈

{
Z train , if di ∈ D train

Z test , if di ∈ D test

Setting 4 d ∉ D obs and 
t ∉ T obs

Split both targets T obs = T train ∪ T test

and drugs D obs = D train ∪D test

Then
(xi, yi) ∈

⎧⎪⎨⎪⎩

Z train , if ti ∈ T train and di ∈ D train

Z test , if ti ∈ T test and di ∈ D test

Z ignored , otherwise
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where � ∈ ℝ
n are the predicted outputs and � ∈ ℝ

n the correct outputs, L a convex non-
negative loss function and 𝜆 > 0 a regularization parameter.

To define a kernel learning problem, let kD,T ∶ (D × T) × (D × T) → ℝ be a posi-
tive semidefinite pairwise kernel function. Denote the kernel matrix containing the ker-
nel evaluations between the drug-target pairs used to train the model as � ∈ ℝ

n×n such that 
�i,j = kD,T((di, ti), (dj, tj)) . Choosing the reproducing kernel Hilbert space (RKHS) associated 
with kD,T  as the hypothesis space H for risk minimization, the representer theorem (Schölkopf 
et al. 2001) implies that the minimizing function can be written as:

where � ∈ ℝ
n is the vector of dual coefficients. Accordingly, the predictions for the training 

data can be written with the kernel matrix as � = ��.
Kernel ridge regression (see e.g. (Poggio and Smale 2003)) is a special case of the 

regularized empirical risk minimization, where the loss function is the squared loss 
L(�, �) = ‖� − �‖2 . The optimization problem then has a direct solution in terms of matrix 
algebra. The ridge regression problem can be formulated as solving the dual parameter vector 
� ∈ ℝ

n:

It can be shown that this corresponds to solving the linear equation:

Solving this system with a method that computes � requires at least O(n2) time and 
memory, which is not practical in many pairwise learning problems, where n can be in 
the range of 105 or more. A much more efficient solution can be found, when the kernel 
matrix can be expressed as a Kronecker product matrix. Assume we have a drug ker-
nel function kD ∶ D ×D → ℝ and a target kernel function kT ∶ T × T → ℝ . The Kro-
necker product kernel is then defined as the product of the drug and target kernels 
kD,T((d, t), (d, t)) = kD(d, d)kT(t, t).

In the following considerations, we also use the following linear operator notation for the 
kernels. For the drug kernel, � ∈ ℝ

D×D such that �
d,d

= kD(d, d) , and for the target kernel 
� ∈ ℝ

T×T  such that �t,t = kT(t, t) . For finite domains of drugs and targets, the operators can 
be considered as matrices, whose rows and columns are indexed with drugs and targets instead 
of positive integers. Their addition, scalar multiplication, transpose and Kronecker prod-
uct of these operators also naturally extend to infinite and continuous domains. For exam-
ple, the operator corresponding to Kronecker product kernel over drug and target kernels is 
�⊗ � ∈ ℝ

(D×T)×(D×T) so that (�⊗ �)
(d,t),(d,t)

= �
d,d
�t,t , and with the parenthesis notation 

we stress that both the rows and columns of the Kronecker product operator are indexed by 
drug-target pairs. Extending the matrix product is more involved in general but the products 
considered in this paper are always well-defined. This is enough for our purposes, and hence 
we avoid going into further technical details.

f = argminf∈H

�
L(�, �) +

�

2
‖f‖2

H

�

f (d, t) =

n∑
i=1

aikD,T((di, ti), (d, t))

� = argmin�∈ℝn‖� −��‖2 + ��T��

(1)(� + ��)� = �
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Let �(�, �) ∈ ℝ
n×(D×T) denote the Kronecker product indexing operator, whose rows are 

indexed by a sample of n drug-target pairs and columns by all drug-target pairs in the space 
D × T  . Its values, as a function of the sequences � ∈ Dn and � ∈ Tn , are defined as follows:

Below, we omit explicitly writing � and � for clarity when they are clear from the context. 
In the literature, this type of constructs are sometimes called sampling operators, as they 
select a finite sample from a space of possibilities.

For two samples of data, say X = (�, �) and X = (�, �) , the kernel matrix containing all 
Kronecker product kernel evaluations between data in the first and second sample can then 
be expressed as �(�, �)(�⊗ �)�(�, �)T . The second sample can be, for example, a valida-
tion sets used for selecting an appropriate value of the regularization parameter, the num-
ber of training iterations, or kernel parameter values. It can also be used for prediction per-
formance evaluation of the final model with a separate test set or in general for performing 
predictions for data with unknown labels.

Substituting the kernel matrix of evaluations between the training data with itself to (1), 
we end up to the following linear system:

This linear system can be solved iteratively, for example, with the minimal residual method 
(Saad and Schultz 1986), combined with early stopping. A single training iteration in 
Equation 2 requires matrix vector products of the form � ← (�(�⊗ �)�T + 𝜆�)� . Given 
a vector of parameters � , predictions for another sample of data not used in training can be 
computed as a single matrix vector product � = �(�, �)(�⊗ �)�(�, �)T� , where � ∈ ℝ

n 
and � ∈ ℝ

n.
Table 2 presents the relevant dimensions associated to the matrix vector products. We 

next recollect the following result (Airola and Pahikkala 2018) concerning matrix-vector 
products in which the matrix consists of a Kronecker product that is indexed from both 
left and right sides. This theorem is a generalization of Roth’s column lemma (Roth 1934), 
often known as the “vec-trick”.

Theore.m 1  (Airola and Pahikkala (2018)) Let

Then, the operation

�(�, �)i,(d,t) =

{
1 if (d, t) = (di, ti)

0 otherwise
.

(2)(�(�⊗ �)�T + 𝜆�)� = �

�(�, �) ∈ ℝ
n×(D×T)

�(�, �) ∈ ℝ
n×(D×T)

� ∈ ℝ
n

� ∈ ℝ
n

Table 2   Notation denoting the 
numbers of pairs, drugs and 
targets

n The number of pairs in the first sample
m The number of unique drugs in the first sample
q The number of unique targets in the first sample
n The number of pairs in the second sample
m The number of unique drugs in the second sample
q The number of unique targets in the second 

sample
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can be carried out in O( min (qn + mn,mn + qn)) time using a sparse Kronecker product 
multiplication algorithm known as the generalized vec-trick (GVT).

The theorem implies that in training, the Kronecker product kernel matrix can be multi-
plied with a dual parameter vector in O(qn + mn) time. The cost of computing predictions 
simultaneously for a set of data not used for training is O( min (qn + mn,mn + qn)) , where 
the overlined symbols denote the dimensions of the set for which the predictions are com-
puted. This is much more efficient than the O(n2) or O(nn) costs of explicitly forming the 
kernel matrices, since typically m, q << n and m, q << n.

4 � Sum of Kronecker products framework for pairwise kernels

In this section we discuss different pairwise kernels presented in the literature and show 
how they can be expressed as sums of Kronecker products. Each matrix vector product can 
then be calculated as a sum of individual Knocker product terms. This allows the applica-
tion of GVT shortcut to all of these kernels, which results in efficient algorithm for both 
training and making predictions.

Table  4 highlights an important limitation that applies to some of the kernels. These 
require homogeneous domains, i.e. they assume both objects in the pair belong to the same 
domain D = T  , so that x = (d, t) ∈ D ×D . For the other kernels, we can have heterogene-
ous domains. Further, the Cartesian kernel is designed to be used in Setting 1 only, as it 
does not allow generalization to such drugs and targets that are not included in the training 
data.

The pairwise kernels can be motivated through feature mappings, since dif-
ferent pairwise kernel functions in Table  3 imply different implicit feature map-
pings for the pair as listed in Table  4. The implicit drug and target feature map-
pings �D ∶ D → ℝ

r and �T ∶ T → ℝ
s are defined by the drug and target kernels 

� ← �(�, �)(�⊗ �)�(�, �)T�

Table 3   Kernel functions of 
different pairwise kernels

We show that all of these kernels can be expressed as a combination 
Kronecker products of a separate drug and target kernel

Kernel kD,T((d, t), (d, t)) or kD,D((d, d
�), (d, d�))

Linear kD(d, d) + kT(t, t)

Poly2D (kD(d, d) + kT(t, t))
2

Gaussian exp(−�
‖‖‖�D(d) − �D(d)

‖‖‖) exp(−�
‖‖‖�T(t) − �T(t)

‖‖‖)
Kronecker kD(d, d)kT(t, t)

Symmetric kD(d, d)kD(d
�, d�) + kD(d, d

�)kD(d
�, d)

Anti-Symmetric kD(d, d)kD(d
�, d�) − kD(d, d

�)kD(d
�, d)

Ranking kD(d, d) − kD(d, d
�) − kD(d

�, d) + kD(d
�, d�)

MLPK (kD(d, d) − kD(d, d
�) − kD(d

�, d) + kD(d
�, d�))2

Cartesian kD(d, d)�(t = t) + �(d = d)kT(t, t)
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kD(d, d) = ⟨�D(d),�D(d)⟩ and kT(t, t) = ⟨�T(t),�T(t)⟩ . Then the feature vector of the 
pair is defined by the feature mapping �D,T ∶ D × T → ℝ

p corresponding to the pair-
wise kernel kD,T((d, t), (d, t)) = ⟨�D,T(d, t),�D,T(d, t)⟩ . The claimed feature maps can 
be proven simply by computing the inner product and checking that it matches the def-
inition of the kernel function. In the following, we discuss the implied pairwise feature 
vector �D,T((d, t)) ∶= (xd,t

1
,… , xd,t

p
) ∈ ℝ

p of each pairwise kernel in terms of the drug 
�d(d) ∶= (xd

1
,… , xd

r
) ∈ ℝ

r and the target �t(t) ∶= (xt
1
,… , xt

s
) ∈ ℝ

s feature vectors. This 
motivates the kernels and demonstrates the intuition behind using a specific kernel for a 
specific task.

4.1 � Linear

The pairwise linear kernel is computed as the linear kernel on the concatenated fea-
ture vector. The feature vector is the concatenation of the drug and target feature vec-
tors �d,t = (�d, �t) . The resulting features consists of the union of original drug features 
(xd

i
)i=1…r and target features (xt

i
)i=1…s . In this feature mapping, each feature contributes 

equally to interaction strength in every drug and target pair. Interaction is predicted simply 
by the presence or absence of certain features in the drug or the target, regardless of which 
drug and target pair is being tested. Given drug d and target t, the predicted interaction of 
the drug on the target is given by f (d, t) = ⟨�d, �d⟩ + ⟨�t, �t⟩ . This implies a global order-
ing of drugs, where drugs and targets are completely decoupled. If drug d1 is more effective 
than drug d2 against target t1 , then drug d1 is also more effective than drug d2 against target 
t2 : f (d1, t1) > f (d2, t1) ⟹ (d1, t2) > f (d2, t2) . In the resulting model, some drugs and tar-
gets simply have more interactions than others, but there are no interactions between drug 
and target features. The artificial chessboard problem illustrated in Fig. 1 is an example of a 
data set, that is impossible to model using the pairwise linear kernel.

4.2 � Polynomial

The pairwise polynomial kernel is computed as the polynomial kernel on the concatenated 
feature vector. On a second degree polynomial kernel without bias, the feature vector is 
the tensor product of the concatenated feature vector with itself �d,t = (�d, �t)⊗ (�d, �t) . 

Table 4   Properties of different 
pairwise kernels

The middle column denotes whether the kernel allows heterogenous 
domains and the last column shows the feature map of the kernel

Kernel D ≠ T �D,T((d, t)) or �D,D((d, d
�))

Linear X (�D(d),�T(t))

Poly2D X (𝜙D(d),𝜙T(t))⊗ (𝜙D(d),𝜙T(t))

Kronecker X 𝜙D(d)⊗𝜙T(t)

Symmetric
√
1∕2(𝜙D(d)⊗𝜙D(d

�) + 𝜙D(d
�)⊗𝜙D(d))

Anti-Symmetric
√
1∕2(𝜙D(d)⊗𝜙D(d

�) − 𝜙D(d
�)⊗𝜙D(d))

Ranking �D(d) − �D(d
�)

MLPK (𝜙D(d) − 𝜙D(d
�))⊗ (𝜙D(d) − 𝜙D(d

�))

Cartesian X (𝜙D(d)⊗ eT, eD ⊗𝜙T(t))
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The resulting features include three types of terms: self interactions between drug features 
(xd

i
xd
j
)i=1…r,j=1…r , pairwise interactions between drug and target features (xd

i
xt
j
)i=1…r,j=1…s , 

and self interactions between target features (xt
i
xt
j
)i=1…s,j=1…s . The self interactions contrib-

ute to a global ordering of drugs and targets, similar to the linear kernel. However, the pair-
wise interactions model actual interactions of drug and target features: a drug and target 
pair may be interacting if for example the features indicate that a certain chemical structure 
in a drug binds to a certain receptor on a target.

4.3 � Gaussian

The pairwise Gaussian kernel is defined as the Gaussian kernel on the concatenated feature 
vector. This kernel exp(−�‖‖‖(�d, �t) − (�

d
, �

t
)
‖‖‖) = exp(−�

‖‖‖�d − �
d‖‖‖) exp(−�

‖‖‖�t − �
t‖‖‖) can 

be expressed as product of Gaussian drug and target kernels. This is a special case of the 
Kronecker product kernel, and will thus not be considered separately in the following.

4.4 � Kronecker product

The Kronecker product kernel (Ben-Hur and Noble 2005; Basilico and Hofmann 2004; 
Oyama and Manning 2004) is computed as the product of drug and target kernels. The fea-
ture vector is given as a tensor product of the drug and target feature vectors �d,t = �d ⊗ �t . 
The resulting feature vector consists of simply all the pairwise interactions (xd

i
xt
j
)i=1…r,j=1…s . 

These are same as the pairwise interactions in the polynomial kernel with self-interations 
excluded. The Kronecker product kernel can be motivated as the simplest kernel that mod-
els actual pairwise interactions in drug and target features. The Kronecker kernel is an uni-
versal kernel, if the drug and target kernels are universal (e.g. Gaussian) (Waegeman et al. 
2012).

4.5 � Symmetric and anti‑symmetric kernels

If we assume homogeneous domains, feature vectors can 
be written as a sum of symmetric and anti-symmetric parts 
�D,D((d, d

�)) = 1∕2(�D,D((d, d
�)) + �D,D((d

�, d))) + 1∕2(�D,D((d, d
�)) − �D,D((d

�, d)))   . 
The symmetric Kronecker kernel (Ben-Hur and Noble 2005) is motivated by apply-
ing the symmetrization to the Kronecker kernel feature vector. This results in a 
tensor product of the drug and target feature vectors with only symmetric parts 
�d,d

�

= 1∕2(�d ⊗ �d
�

+ �d
�

⊗ �d) . The resulting features consist of all symmetric pairwise 
interactions (1∕2(xd

i
xd

�

j
+ xd

�

i
xd
j
))i=1…r,j=1…r . When all interactions are known to be sym-

metric by definition, the symmetric Kronecker kernel is sometimes referred to as the Kro-
necker kernel in the literature. Several works have analysed the theoretical properties of the 
symmetric and antisymmetric Kronecker kernels (Pahikkala et al. 2010; Waegeman et al. 
2012; Brunner et al. 2012; Pahikkala et al. 2015b; Gnecco 2017, 2018).

4.6 � Ranking

The feature vector of the ranking kernel is the difference of drug and target feature vectors 
�d,d

�

= �d − �d
� , which are assumed to belong to the same domain (Herbrich 2000; Wae-

geman et al. 2012). The resulting features consist of pairwise differences (xd
i
− xd

�

i
)i=1…r . 
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The ranking kernel can model ranking representable relations, i.e. relations constructed 
from some utility function h such that f (d, d�) = h(d) − h(d�) . For the ranking kernel 
f (d, d�) = ⟨�, �d⟩ − ⟨�, �d�⟩ , which provides a global ranking of drugs based on their fea-
ture representation. The ranking kernel can be considered as an anti-symmetric linear ker-
nel as can be observed from the operator notation below.

Pahikkala et al. (2009) show that the ranking kernel matrix can be computed using the 
oriented incidence operator � ∈ ℝ

D×n where

as � T �� . Since � can be implemented with a sparse matrix, this allows efficient kernel 
matrix vector multiplication in O(m2 + n) time without need to use GVT.

4.7 � MLPK

The MLPK kernel (Vert et al. 2007) is computed as the ranking kernel squared. The fea-
ture vector is given by the tensor product of the pairwise difference vector with itself 
�d,d

�

= (�d − �d
�

)⊗ (�d − �d
�

) . The features consists of all pairwise interactions of pair-
wise differences ((xd

i
− xd

�

i
)(xd

j
− xd

�

j
))i=1…r,j=1…r . This models interaction of a pair in the 

terms of how similar the drug and the target in the pair are. The formulation compares 
both elementwise differences, and possible interactions between the differences. The 
MLPK kernel can also be motivated as a distance learning problem by adding an extra 
parameter constraint to the standard SVM optimization problem (Vert et al. 2007). There, 
the goal is to learn a linear map such that the function is modelled by the Euclidean dis-
tance metric between feature vectors: learn a positive semidefinite matrix � such that 
f (d, d�) = (�d − �d

�

)T�(�d − �d
�

).

4.8 � Cartesian

The Cartesian kernel (Kashima et al. 2009b) is computed as the drug kernel when the tar-
gets match, and the target kernel when the drugs match. The feature vector is given as a 
concatenation of the drug feature vector (target specific) and the target feature vector (drug 
specific) �d,t = (�d ⊗ et, ed ⊗ �t) . The resulting features are sparse with nonzero terms 
(xd

i
�(t = tj))i=1…r,j=1…q and (�(d = di)x

t
j
)i=1…m,j=1…s corresponding to drug and target spe-

cific features. The full parameter vector � can be partitioned into drug specific (�d)d∈D 
and target specific (�t)t∈T  parameters, with separate parameters learned for each drug and 
target. This means that target features may have different effects, depending on the drug, 
and vice versa. In this sense the learned model includes pairwise interactions, but it does 
not utilize information between similar interactions in different pairs and cannot generalize 
to drugs or targets that have not been seen in the training set. Kashima et al. (2009b) show 
that the Cartesian kernel can be represented as a Kronecker sum, and thus using the stand-
ard vec trick (Roth 1934) kernel matrix multiplication can be done in O(m2q + q2m) time. 
In this work, we improve on this result.

�d,(di,d
�
i
) =

⎧
⎪⎨⎪⎩

1 if di = d

−1 if d�
i
= d

0 otherwise

.
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4.9 � Efficient computation of pairwise kernels

In this section we show how the pairwise kernel matrices of the above described kernels 
can be conveniently written as sums of Kronecker product matrices. For this purpose, we 
make the following definitions.

Definition 1  (Commutation and unification operators) The commutation operator 
� ∈ ℝ

(T×D)×(D×T) has its values defined as

Note that if the domains D and T  are different, the row indexing of any operator will 
be changed from D × T  to T ×D if multiplied from left with � . Its inverse operator 
�T ∈ ℝ

(D×T)×(T×D) is defined analogously, by switching the drug and target domains. The 
values are also defined similarly when D = T  but in this case we use the notation

The unification operator � ∈ ℝ
(D×T)×(D×D) has its values defined as:

The corresponding unification operator � ∈ ℝ
(T×D)×(T×T) is defined analogously, by switch-

ing the drug and target domains. The values are also defined similarly when D = T  but in 
this case we use the notation

For convenience, we also give the values of the product of operators �� ∈ ℝ
(D×T)×(T×T):

as this product is also heavily used in the forthcoming considerations.

In the following example, we illustrate finite dimensional examples of both commuta-
tion and unification operators that are, due to their finiteness, representable as matrices.

Example 1  Consider a finite space of drugs of size ⏐ D ⏐= 3 and a finite space of targets 
⏐ T ⏐= 2 . Then, the commutation operator � ∈ ℝ

(T×D)×(D×T) can be represented as the fol-
lowing matrix:

�
(t,d),(d,t)

=

{
1 if d = d and t = t

0 otherwise
.

�
(d� ,d),(d,d�)

=

{
1 if d = d and d� = d�

0 otherwise
.

�
(d,t),(d,d�)

=

{
1 if d = d = d�

0 otherwise
.

�
(d,d�),(d,d�)

=

{
1 if d = d = d�

0 otherwise
.

��
(d,t),(t,t�)

=

{
1 if t = t = t�

0 otherwise
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where rows and columns are arranged according to the natural order of the target-drug and 
drug-target pairs, respectively. This is in the literature known as the commutation matrix 
(see e.g. Magnus and Neudecker (1979)). The unification operator � ∈ ℝ

(D×T)×(D×D) can be 
represented as the matrix

where the rows and columns are arranged in the natural order of the drug-target pairs and 
drug-drug pairs, respectively.

From the above definition of the commutation and unification operators, we obtain a cheat 
sheet of rules indicated by the following lemma:

Theorem 2  For � ∈ ℝ
(T×D)×(D×T) , we have

And for � ∈ ℝ
(D×D)×(D×D)

Further, for � ∈ ℝ
(T×D)×(D×D) , we have

where �⊙2 denotes the elementwise square of � , and � ∈ ℝ
T×T  is an operator with all val-

ues equal to one.

For the values, we have

where � ∈ ℝ
(D×T)×(D×D) , and

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

��T = �T� = �

�[�⊗ �] = [�⊗ �]�

�[�⊗ �]�T = [�⊗ �]

� = �T

�[�⊗ �] = [�⊗ �]�

�[�⊗ �]� = [�⊗ �]

�[�⊗ �]�T = [�⊙2 ⊗ �] .

[�(�⊗ �)�T ]
(d,t),(d,t)

= (�⊗ �)
(d,d),(d,d)

,
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where � ∈ ℝ
(D×T)×(T×T).

Finally, if D = T  , we further have:

Proof  The listed results are straightforward operator algebraic manipulations based on Def-
inition 1.	� ◻

From the above results, we can conclude the following results concerning certain specific 
pairwise kernels in particular:

Corollary 1  The kernel matrices of the linear, second order polynomial, Kronecker product, 
Cartesian, symmetric, anti-symmetric, ranking and metric learning pairwise kernels for 
two samples of data, say X = (�, �) and X = (�, �) , can be expressed as �(�, �)�D,T�(�, �) , 
where �D,T  is the corresponding operator of all kernel values as follows: 

Kernel �D,T ∈ ℝ
(D×T)×(D×T) or �D,D ∈ ℝ

(D×D)×(D×D)

Linear �⊗ � + �⊗ �

Poly2D �(�⊗ �)�T + 2�⊗ � + ��(�⊗ �)�T�

Kronecker �⊗ �

Cartesian �⊗ � + �⊗ �

Symmetric (� + �)(�⊗ �)

Anti-Symmetric (� − �)(�⊗ �)

Ranking (� − �)(�⊗ �)(� − �)

MLPK (� + �)(� −�)(�⊗ �)(� −�)T (� + �)

 Their products with vectors can be computed with GVT in O( min (qn + mn,mn + qn)) 
time.

Proof  We first show that the kernel matrices over the whole domain of D and T  can be 
compactly expressed with the operator notation and show the indexed case afterwards.

[��(�⊗ �)�T�T ]
(d,t),(d,t)

= (�⊗ �)(t,t),(t,t) ,

(�⊗ �)
(d,d�),(d,d�)

= (�⊗ �)
(d� ,d),(d�,d)

(�(�⊗ �))
(d,d�),(d,d�)

= (�⊗ �)
(d� ,d),(d,d�)

(�(�⊗ �))
(d,d�),(d,d�)

= (�⊗ �)
(d,d),(d,d�)

((�⊗ �)�T )
(d,d�),(d,d�)

= (�⊗ �)
(d,d�),(d,d)

(��(�⊗ �))
(d,d�),(d,d�)

= (�⊗ �)
(d� ,d�),(d,d�)

((�⊗ �)�T�)
(d,d�),(d,d�)

= (�⊗ �)
(d,d),(d�,d�)

(�(�⊗ �)�T )
(d,d�),(d,d�)

= (�⊗ �)
(d,d),(d,d)

(��(�⊗ �)�T )
(d,d�),(d,d�)

= (�⊗ �)
(d� ,d�),(d,d)

(�(�⊗ �)�T�)
(d,d�),(d,d�)

= (�⊗ �)
(d,d),(d�,d�)

(��(�⊗ �)�T�)
(d,d�),(d,d�)

= (�⊗ �)
(d� ,d�),(d�,d�)
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Now, recall that if we have two samples of data, say X = (�, �) and X = (�, �) , and we 
intend to calculate all kernel evaluations between data in the first sample with the second 
sample, the matrix consisting of these kernel evaluations is defined as follows:

� Kronecker

(d,t),(d,t)
= kD(d, d)kT(t, t)

= �
d,d
�t,t

= (�⊗ �)
(d,t),(d,t)

� Linear

(d,t),(d,t)
= kD(d, d) + kT(t, t)

= (�⊗ � + �⊗ �)
(d,t),(d,t)

�
Poly2D

(d,t),(d,t)
= (kD(d, d) + kT(t, t))

2

= kD(d, d)kD(d, d) + 2kD(d, d)kT(t, t) + kT(t, t)kT(t, t)

= (�(�⊗ �)�T + 2�⊗ � + ��(�⊗ �)�T�)
(d,t),(d,t)

� Cartesian

(d,t),(d,t)
= kD(d, d)𝛿(t, t) + 𝛿(d, d)kT(t, t)

= (�⊗ � + �⊗ �)
(d,t),(d,t)

�
Symmetric

(d,d�),(d,d�)
= kD(d, d)kD(d

�, d�) + kD(d
�, d)kD(d, d

�)

= (�⊗ �)
(d,d�),(d,d�)

+ (�⊗ �)
(d�,d),(d,d�)

= ((� + �)(�⊗ �))
(d,d�),(d,d�)

�
Anti-Symmetric

(d,d�),(d,d�)
= kD(d, d)kD(d

�, d�) − kD(d
�, d)kD(d, d

�)

= ((� − �)(�⊗ �))
(d,d�),(d,d�)

�
Ranking

(d,d�),(d,d�)
= kD(d, d) − kD(d

�, d) − kD(d, d
�) + kD(d

�, d�)

= [(� − �)(�⊗ �)(� − �)]
(d,d�),(d,d�)

�MLPK

(d,d�),(d,d�)
=
(
kD(d, d) − kD(d

�, d) − kD(d, d
�) + kD(d

�, d�)
)2

= kD(d, d)
2 + kD(d

�, d)2 + kD(d, d
�)2 + kD(d

�, d�)2

+ 2kD(d, d)kD(d
�, d�) + 2kD(d

�, d)kD(d, d
�)

− 2kD(d, d)kD(d
�, d) − 2kD(d, d)kD(d, d

�)

− 2kD(d
�, d)kD(d

�, d�) − 2kD(d, d
�)kD(d

�, d�)

= (�(�⊗ �)�T + ��(�⊗ �)�T

+�(�⊗ �)�� + ��(�⊗ �)�T� + 2(�⊗ �)

+ 2�(�⊗ �) − 2�(�⊗ �) − 2��(�⊗ �) − 2(�⊗ �)�T

− 2(�⊗ �)�T�)
(d,d�),(d,d�)

= [(� + �)(� −�)(�⊗ �)(� −�)(� + �)]
(d,d�),(d,d�)

� = �(�, �)� kernel (�,�)�(�, �)T
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By setting � = � and � = � we may as a special case define the kernel matrix for the train-
ing data.

We also have the following rules on permuting either of the indexing matrices with the 
commutation or the unification operator:

To obtain the incomplete data pairwise kernel matrix, we multiply the complete data pair-
wise kernel matrix � kernel (�,�) with the indexing matrix �(�, �) and �(�, �)T from left 
and right sides, respectively. The complete data pairwise kernel matrix is a sum of per-
muted Kronecker product matrices, so these results imply different indexing matrices for 
each term in the sum. We can then apply GVT to each term separately. 	�  ◻

We have two ways of calculating an identical matrix-vector product given kernel matri-
ces and sample indices �, �, �, � , with vectors � ∈ ℝ

n, � ∈ ℝ
t : 

1.	 Use the standard matrix vector product with the kernel matrix: � ← ��,
2.	 Use GVT in Theorem (1): � ← vectrick (�,�,�, �, �, �, �).

In computing the pairwise kernel matrix � = �(�, �)� kernel (�,�)�(�, �)T , only elements 
in the indexing matrices need to be computed. The computational complexity of imple-
menting approach 1 directly is O(nn) . Based on Theorem 1 and Corollary 1, the complexity 
of approach 2 for any of the kernels listed in Table 4 is O( min (qn + mn,mn + qn)) . For 
the training kernel matrix, these complexities can be simplified as O(n2 ) and O(qn + mn).

5 � Data sets

We apply the pairwise kernel learning framework to four biological data sets. As shown 
in Table 5, the data sets have quite different characteristics. They vary in the number of 
samples, ratio of drugs to targets, homogeneity, density, and features. While our data sets 
belong to the same domain, the different prediction tasks provide an useful benchmark on 
how pairwise kernels perform over different applications.

�(�, �)� = �(�, �)

�(�, �)� = �(�,�)

�T�(�, �)T = �(�, �)T

�T�(�, �)T = �(�, �)T

Table 5   Data sets used in the experiments. We report for each data set the number of pairs and unique 
drugs and targets, and whether the data is homogenous. Density is the fraction of drug target pairs that have 
known labels. We denote the number of drug kernels |�| , target kernels |�| and pairwise kernels |�|
Data set Pairs Drugs Targ. Hom. Dens. |�| |�| |�|
Heterodimer 5497 1526 1526 X 0.2% 3 6
Metz 93 356 156 1421 42% 2 2 4
Merget 167 995 2967 226 25% 10 9 4
Kernel filling 8 803 089 2967 2967 X 100% 10 6
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5.1 � Heterodimer

Many proteins bind together and form multiprotein structures called protein complexes, 
which have essential roles in a variety of biological functions. To understand how proteins 
function, one needs to identify those sets of proteins that form complexes. A significant 
fraction of known protein complexes are heterodimers, that is, formed by the assembly of 
only two proteins. Recent research has taken into account information from measured pro-
tein-protein interactions and other possible protein information sources in order to develop 
new methods for predicting complexes, especially for smaller sizes (Ruan et  al. 2018; 
Maruyama 2011; Ruan et al. 2013).

Labels for a heterodimer data set can be generated from databases of curated pro-
tein complexes. We created positive and negative examples following a paper which 
applied Naive Bayes for supervised learning of heterodimers (Maruyama 2011). The 
labels are based on CYC2008 (Pu et al. 2008), a comprehensive catalogue of 408 manu-
ally curated yeast protein complexes, and WI-PHI (Kiemer et al. 2007), a dataset 49607 
(protein,protein)-interactions. A positive (negative) example of a heterodimer is a pair of 
proteins satisfying the following conditions: 

1.	 is (is not) a heterodimeric protein complex in CYC2008
2.	 is not (is) a proper subset of any other complex in CYC2008
3.	 WI-PHI includes the PPI corresponding to it

This results in a total of 152 positive examples and 5345 negative examples.
Following research that sought to improve heterodimer predictions (Ruan et al. 2018), 

we added protein features by considering domain, phylogenetic profile and subcellular 
localization properties. The idea is that proteins having a similar specification are more 
likely to form a complex because they are functionally linked. We obtained the domain and 
subcellular location information from UniProtKB and the phylogenetic profile from KEGG 
OC (Nakaya et al. 2012). The feature map � for each of the 1526 proteins is one of three 
binary vectors (length in parenthesis): 

1.	 � dom (Pi)j : the j-th domain occurs in the protein Pi (2554),
2.	 � phylo (Pi)j : the j-th genome contains the homolog Pi (768),
3.	 � local (Pi)j : the j-th subcellular localization contains the protein Pi (83).

We computed the protein kernels � using the Tanimoto kernel on these binary feature vec-
tors. Given binary vectors � and � of length l, it is defined as the ratio of bits set to 1 in both 
vs. bits set to 1 in either: kd(�, �) =

∑l

i=1
min (vi, vi)∕

∑l

i=1
max (vi, vi).

5.2 � Metz

Understanding interactions beween chemical compounds and cellular targets is an impor-
tant research topic in biology. For example, protein kineases control many aspects of the 
cell life cycle, and drugs that inhibit specific kineases have been developed to treat sev-
eral diseases. Large-scale bioactivity assays enable the prediction of interactions across 
wide panels kinease inhibitors and their potential cellular targets. In particular, super-
vised machine learning is a promising approach of predicting interactions since it can use 
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structural similarities among the drug compounds and genomic similarities among target 
proteins.

Labels for an interaction data set were based on biochemical selectivity assays for clin-
ically relevant kinease inhibitors by Metz et  al. (2011). The interaction affinity between 
a ligand molecule (e.g. a drug compound) and a target molecule (e.g. a protein kinease) 
reflects how tightly the ligand binds to a particular target, quantified using the inhibition 
constant Ki . The smaller the Ki bioactivity, the higher the interaction affinity between the 
chemical compond and the protein kinase. We binarized the real valued interactions using 
a relatively stringent threshold of Ki < 28.18 nm into 2798 interacting and 90 558 non-
interacting pairs.

Following a study that investigated how well machine learning based methods work 
in different prediction tasks (Pahikkala et al. 2015a), we extracted features for both drugs 
and targets. Drug features were based on chemical properties, where structural fingerprint 
similarity was computed as the two dimensional (2D) Tanimoto coefficient based on the 
structure clustering server at PubChem. Target features were based on genomic data, where 
sequence similarities were computed using a normalized version of the Smith-Waterman 
(SW) score. In total, we have 156 drugs and 1421 targets, with a symmetric 156 × 156 
(drug, drug)-similarity matrix Xd and a symmetric 1421 × 1421 (target,target)-similarity 
matrix Xt . Following the previous study, we used the drug and target similarity matrix rows 
as feature vectors, computing either a linear kernel k Linear (�i, �j) = ⟨�i, �j⟩ or a Gaussian 
kernel k Gaussian (�i, �j) = e−�‖�i−�j‖

2

 with bandwidth � = 10−5 [4]. Assuming that target and 
drug kernels have the same specification, we then have either linear or Gaussian drug ker-
nels � and target kernels �.

5.3 � Merget

A study of similar drug bioactivity prediction appears in Cichonska et al. (2018), where 
the task was also to predict the interaction affinity between drug compounds and protein 
kinease targets. The authors evaluated the pairwise kronecker kernel resulting from 3210 
different combinations of 10 drug and 320 target kernels. Many of the pairwise kernels 
were created by using varying choices of target kernel hyperparameters. This study is inter-
esting for our purposes, because we can use these kernels to evaluate how different pair-
wise kernels compare on different features.

The labels were created by processing the drug-target interactions in Merget (Merget 
et  al. 2016) updated with ChEMBL bioactivities (Sorgenfrei et  al. 2018). The authors 
used only drugs that had more than 1% of bioactivities across kineases measured and only 
kineases with both domain and ATP binding pocket amino acid subsequences at PROSITE 
(Sigrist et al. 2012). This resulted in 2967 drugs and 226 protein kinases, with a total of 
167 995 binding values.

The features were defined directly through multiple kernel functions for both drugs and 
targets. Drug kernels � were based on Tanimoto kernels using 10 different binary molecu-
lar fingerprints obtained with rcdk R package (Guha et  al. 2007). Given a fixed choice 
of hyperparameters they had 9 different protein kernels � : three Gaussian kernels based 
on gene ontology (GO) annotations, three kernels based Smith-Waterman (SW) sequence 
similarities, and three generic string (GS) kernels. Gaussian kernels were based on three 
GO profiles: molecular function, biological process and cellular components. The SW ker-
nels and GS kernels are both based on three possible amino acid sequences: full kinase 
sequences, kinase domain subsequences and ATP binding pocket subsequences. These 
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kernels used BLOSUM 50 as amino acid descriptors. These 9 protein kernels were origi-
nally expanded into 320 different kernels by varying the choice of hyperparameters.

5.4 � Kernel filling

In the final experiment, we use the data set in Cichonska et  al. (2018) to define a novel 
prediction task that has an even larger data set, in order to use it for scalability experiments. 
The authors calculated 10 different drug kernels (�i)i=1...10 , which can be used both as 
labels and as features in a kernel filling prediction task. Given n = 2967 drugs, each drug 
kernel is a �i ∈ ℝ

2967×2967 matrix. If some of the 2967 × 2967 = 8803089 possible entries 
are missing, they can be predicted using another kernel that has these entries. For a choice 
of kernels i ≠ j , denote Y = vec (�i) as the label vector and �j as the drug kernel. The drug 
kernel is plugged into a pairwise kernel to predict the label vector.

To create a smaller data set, we can sample an n × n submatrix from both kernel matri-
ces, and split these entries into n train training samples and use remaining samples as setting 
1 test samples. The entries outside the submatrix are test samples in settings 2, 3, and 4. 
The original data set is dense and real-valued; each (drug, drug)-pair has a latent feature 
vector encoded by the second kernel. Because we are predicting kernel encoded similari-
ties of n drugs that belong to the same domain, the data set is also homogeneous.

6 � Experiments

We implemented ridge regression with the minimum residual optimization method, which 
is an iterative method for the numerical solution of a system of linear equations. The 
matrix vector products required within the minimum residual method were computed with 
either of two algorithms. Given a vector to be multiplied with a pairwise Kronecker kernel 
matrix, the baseline algorithm uses the explicit kernel matrix and the standard matrix vec-
tor product, whereas the fast method uses the GVT algorithm. We used the scipy.sparse.lin-
alg.minres method in the SciPy library. The method CGKronRLS in the RLScore software 
package includes an user friendly implementation of GVT (Pahikkala and Airola 2016), for 
example. These two methods are identical except for the calculation of the matrix vector 
products.

Instead of solving the system completely, the minimum residual method can be run up 
to a given number of iterations. To speed up training, iterations may be stopped before the 
least squares solution is reached. In practice, a limited number of iterations is often suf-
ficient to reach optimal model performance, where a separate validation set can be used to 
check whether model performance increases with more iterations. Limiting the number of 
iterations is also an effective regularization method, known as early-stopping in the litera-
ture. A method that includes early stopping therefore has the number of iterations k as a 
hyperparameter. Regularization can then be performed either by setting the Tikhonov regu-
larization parameter � to a small constant and limiting the number of iterations k, or finding 
an optimal � and stopping iterations when the model has converged. Figure 3 illustrates the 
effect of early stopping in the Ki data set. The best validation set AUC was reached either 
by stopping the training early, or by finding the optimal regularization parameter and run-
ning the iterations until convergence.

We implemented early stopping ridge regression as follows. The algorithm fits ridge 
regression ridge (Z obs , kD, kT, kD,T, setting) given a data set Z obs , drug kernel kD , target 
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kernel kT  , pairwise kernel kD,T  , and setting. We use 9-fold cross-validation, according to 
the setting (see Table 1), to split the data set into Z train and Z test pair during each round. On 
each round of cross-validation, the training set Z train is further split into an inner training 
set Z inner and a validation set Z validation according to the setting. The optimal hyperparame-
ter for the number of iterations k is then found by running the minimum residual algorithm 
on Z inner until the AUC stops increasing in Z validation for a given number of iterations. The 
number of iterations required and the observed AUC on the validation set is stored. Finally, 
the model is fit to the full training set Z train using this many iterations. The resulting model 
is used to make predictions for the test set Z test , for which the AUC is measured.

6.1 � Heterodimers

We tested different pairwise kernels, features and settings in the heterodimers data set. The 
experiment included every combination of following choices: 

1.	 Drug kernel kD ∈ {k Domain
D

, k Genome
D

, k Location
D

}

2.	 Pairwise kernel kD,T ∈ {k Linear
D,T

, k
Poly2D

D,T
, k Kron.

D,T
, k Cartesian

D,T
, k

Symm.

D,T
, k MLPK

D,T
}

3.	 Setting ∈ {1, 2, 3, 4} splits Z train into 75% Z inner and 25% Z validation . We fit ridge regres-
sion in Z inner while the AUC in Z validation is improving.

4.	 We then train a model ← ridge (Z train , kD, kT, kD,T, setting) with the optimal number 
of iterations and calculate the AUC corresponding to Setting ∈ {1, 2, 3, 4} in Z test.

The results in Fig. 4 show that the best pairwise kernel strongly depends on features. For 
domain features, the MLPK is by far the best pairwise kernel with almost perfect predic-
tions. However, for genome and location features the best kernels are the second degree 
polynomial and symmetric Kronecker kernels by a notable margin. While the best pair-
wise kernel depends on the underlying features, using different drug kernel (Min/MinMax/
Norm) for the binary feature vectors did not have significant effects, so we report only the 
Tanimoto, or MinMax, kernel. The best kernel does not seem to vary by the setting, but 
the later settings are slightly more challenging. The linear kernel that excludes pairwise 
interactions, and simply models some proteins having more interactions than others, offers 
suprisingly good results. However, it seems that in this data set there are also significant 
pairwise interactions that the other kernels are able to capture.

Fig. 3   AUC per iteration and the effect of early stopping in the Ki data set
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6.2 � Metz

We tested different pairwise kernels, features and settings in the Metz data set. The experi-
ment included every combination of following choices: 

1.	 The drug and target kernels (kD, kT) ∈ {(k Linear
D

, k Linear
T

), (k Gaussian
D

, k Gaussian
T

)}

2.	 The pairwise kernel kD,T ∈ {k Linear
D,T

, k
Poly2D

D,T
, k Kronecker

D,T
, k Cartesian

D,T
}

3.	 Setting ∈ {1, 2, 3, 4} splits Z train into 75% Z inner and 25% Z validation . We fit ridge regres-
sion in Z inner while the AUC in Z validation is improving.

4.	 We then train a model ← ridge (Z train , kD, kT, kD,T, setting) with the optimal number 
of iterations and calculate the AUC corresponding to Setting ∈ {1, 2, 3, 4} in Z test.

The results in Fig.  5 show that for both Linear and Gaussian drug kernels, the second 
degree polynomial and Kronecker pairwise kernels have the best and comparable perfor-
mance, because they also include pairwise interactions. The linear kernel offers suprisingly 
good results, not very far from optimal, but there are also some pairwise interactions that 
contribute to the prediction task. The cartesian kernel is not much better than random on 
the task. There seem to be some benefits from using the Gaussian instead of the linear drug 

Fig. 4   Heterodimers data set: mean and standard deviation of AUCs in test folds for different kernels and 
settings

Fig. 5   Metz data set: mean and standard deviation of AUCs in test folds for different kernels and settings
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kernel, which are comparable in magnitude to the benefits from modeling pairwise interac-
tions. Regardless of the drug kernels used as features, over different experiments the rela-
tive pairwise kernel performance is the same.

6.3 � Merget

We tested different pairwise kernels, features and settings in the Merget data set. The 
experiment included every combination of following choices: 

1.	 The drug and target kernels 

2.	 The pairwise kernel kD,T ∈ {k Linear
D,T

, k
Poly2D

D,T
, k Kronecker

D,T
, k Cartesian

D,T
}

3.	 Setting ∈ {1, 2, 3, 4} splits Z train into 75% Z inner and 25% Z validation . We fit ridge regres-
sion in Z inner while the AUC in Z validation is improving.

4.	 We then train a model ← ridge (Z train , kD, kT, kD,T, setting) with the optimal number 
of iterations and calculate the AUC corresponding to Setting ∈ {1, 2, 3, 4} in Z test.

We obtain close to identical results for different (drug kernel, target kernel)-pairs, so we 
only present the first two pairs. The results in Fig. 6 closely mirror the Metz data set. Poly-
nomial and Kronecker kernel are the best with comparable performance in all pairs. Linear 
kernel has almost as good results, even though some pairwise interactions can be found 
between the drugs and the targets. Cartesian kernel is not much better than random, with an 
exception in setting 3. Over all possible drug and target kernel pairs, different features do 
not seem to have much of an effect on prediction performance or relative order of kernels. 
This is suprising given that the original study was motivated as a method that enables one 
to use a large mixture of different kernels to improve prediction performance.

(kD, kT) ∈{(k
sp

D
, k

GS-atp-5.4.4

T
), (k circular

D
, k

GS-atp-5.4.4

T
),

(k kr
D

, k
GS-atp-5.4.4

T
), (k circular

D
, k GS-kindom-5.4.4

T
),

(k circular
D

, k
GO-bp-71

T
), (k circular

D
, k GO-cc-19

T
),

(k circular
D

, k SW-kindom
T

), (k circular
D

, k GS-full-5.3.
T

)}

Fig. 6   Merget data set: mean and standard deviation of AUCs in test folds for different kernels and settings
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6.4 � Kernel filling

We predict the missing labels in a drug kernel matrix � = vec (� circular) using another 
drug kernel matrix � = � estate as features. Different choices of drug kernels for labels 
and features result in a drastically different absolute prediction performance. However, 
not much difference is observed in the relative order of the pairwise kernels. For brevity, 
we therefore report the experiment on these two kernels, as they offered reasonable but 
not exceptionally high or low prediction performance.

Because there is so much data available in this task, we used separate test sets. For N 
samples, the data set Z obs is split into a (Z train , Z

(1)
test , Z

(2)
test , Z

(3)
test , Z

(4)
test )-partition by tak-

ing a subset of k drugs such that approximately 50% of the subset results in Z train with 
N samples and rest of the subset is Z(1)

test
 , with other drugs defining Z(2)

test , Z
(3)
test , Z

(4)
test

 . We 
then tested different drug and pairwise kernels to test how the number of iterations, 
CPU time, memory usage and the AUC on the test set is affected by the choice of the 
pairwise kernel. The experiment included every combination of following choices: 

1.	 The pairwise kernel kD,T ∈ {k Linear
D,T

, k
Poly2D

D,T
, k Kronecker

D,T
, k Cartesian

D,T
, k

Symmetric

D,T
, k MLPK

D,T
}

2.	 The setting ∈ {1, 2, 3, 4} splits the data set Z train into 75% training set Z inner and 25% 
validation set Z validation.

We iteratively fit early stopping ridge regression in Z inner while the AUC in Z validation is 
improving, and then save the optimal number of iterations. We then train the model on 
Z train for that many iterations and evaluate the AUC on Z( setting)

test
.

The number of iterations required to reach an optimal model is shown in Fig. 7. The 
number of iterations depends on the performance it is possible to achieve in a given set-
ting. More iterations are needed to find a more elaborate model when it is possible to 
achieve a better prediction performance. Setting 1 requires most iterations, setting 2/3 
somewhat less, and setting 4 fewest iterations to reach an optimal solution. Fitting the 
MLPK and symmetric Kronecker kernel seem to require significantly more iterations 
than other kernels. Note how the number of iterations is very modest, relative to the 
total number of samples that is theoretically needed to fully solve the linear system.

The CPU time in seconds and memory usage in GiB are shown in Fig.  7, respec-
tively. The standard method requires significantly more time than the GVT method. 
At a time when the standard method ran out of memory, the training was taking over 
an hour whereas GVT completed in a second. The performance of GVT has a small 
constant term depending on how many summands of Kronecker kernels are required in 
the pairwise kernel expression. The Kronecker kernel is fastest of these because it has 
only one term and the MLPK slowest because it has 10 such terms. The naive method 
requires significantly more memory because it stores the full O(n2) pairwise kernel 
matrix whereas GVT only stores the O(m2) drug and O(q2) kernel matrices. Here we 
have n ≈ 0.5q2 , which implies complexities O naive (q

4) vs. O GVT (q
2) . The naive method 

experiments were stopped when N required > 16 GiB memory, which did not become an 
issue with GVT for the size of this data set.

Prediction performance comparisons, quantified with the AUC in Fig.  7, are quite 
complicated because they depend on the setting and the size of the data set. We make 
the following observations in different settings: 
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1.	 Setting 1: The MLPK kernel has slightly higher performance for larger data sets 
N > 10000 . The Kronecker, second degree polynomial, and symmetric Kronecker ker-
nels are comparable to each other and quite close to the MLPK. For medium data sets 
N ≤ 10000 , they perform better and incorporating prior knowledge via symmetrization 
may provide a small benefit. The linear kernel is significantly worse except for very 
small data sets N ≤ 1000.

2.	 Setting 2/3: The settings are equivalent because the domain is homogeneous. The MLPK 
kernel has worst performance for all data set sizes, and the linear kernel is significantly 
worse except for the smallest N ≤ 1000 data sets. The Kronecker, second degree poly-
nomial, and symmetric Kronecker kernels have best and almost identical performance. 
The general prediction accuracy is somewhat lower because the prediction task has 
become more difficult

3.	 Setting 4: The results are similar to setting 2/3, but the overall prediction accuracy is 
even slightly lower.

6.5 � Comparison to Nyström approximation with Falkon

The method proposed in this article allows computing efficiently the exact solution to the 
regularized risk minimization problem for a family of commonly used pairwise kernels. 
In the following experiments, we compare the approach to a standard approximation 

Fig. 7   Kernel filling data set: GVT (solid) versus Baseline (dashed). The AUCs of Kronecker, Poly2D and 
Symmetric kernels are almost identical and plotted on top of each other. Further, all the baselines have the 
same memory usage, and their time consumption is close to identical with each other
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method that speeds up training by using only a random subset of the training data to 
represent the learned function. Specifically, we compare the proposed method, imple-
mented in RLScore package (Pahikkala and Airola 2016), to the Nyström-method based 
training algorithm implemented in the Falkon package (Rudi et al. 2017; Meanti et al. 
2020). The Nyström approximation allows speeding up kernel methods on large data 
sets, though there is a trade-off in accuracy if the approximation is not sufficient. This 
introduces an additional hyperparameter: the number of basis vectors N used as an 
approximation. The method then computes the kernel �̃ ∈ ℝ

n×N between data points 
and basis vectors, and Falkon solves the resulting linear system using a preconditioned 
conjugate gradient optimizer. Our pairwise kernel implementation inherits the falkon.
kernels.kernel.Kernel class from Falkon, and is implemented as c-language extension 
using Cython to guarantee efficiency. The comparison was implemented on the kernel 
filling task described in the previous section.

Our experiments in Fig.  8 collaborate theoretic results, which state that increasing 
the number of basis vectors will result in a higher accuracy when properly regularized. 
The solution converges to the full solution as the number of basis vectors approaches the 
number of data points. We also saw that limiting the number of basis vectors effectively 
regularizes the problem, as the model converges quickly and early stopping results in 
an identical solution. However, a kernel matrix with 1 024 000 samples and 2048 basis 
vectors already consumes 16GiB memory so we use this as the best approximation. To 
align the results with RLScore, we use a regularization parameter � = 1e − 5 and early 
stopping based on a validation set. In Fig. 9, we perform experiments to compare the 
Falkon method with N = 32, 128, 512, 2048 basis vectors against RLScore that computes 
the full solution using GVT, both with the Kronecker product kernel. The experiments 
are otherwise identical to the previous experiment with the standard kernel method 
versus the GVT based method. We see that the quality of the approximation increases 
with the number of basis vectors, almost reaching the AUC of the RLScore implemen-
tation. RLScore has lower runtime and lower memory requirement. We conclude that 
both methods provide a drastically smaller runtime and memory use compared to the 
standard method, but are quite comparable to each other in computational requirements. 
RLScore provides slightly better AUC with less computational resources, especially in 
Setting 1.

Fig. 8   Tuning the hyperparameters of Falkon package with 64 000 data points: the number of basis vectors 
(middle) and regularization (right). Only a few iterations are required to reach optimal validation AUC (left)
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7 � Discussion and conclusion

In this work we reviewed the most commonly used pairwise kernels and introduced an 
operator based framework for analysing and implementing the kernels. The framework 
allows applying the generalized vec-trick algorithm (Airola and Pahikkala 2018) for speed-
ing up matrix-vector products for the kernels, allowing much faster training and prediction 
than with explicit computation of the kernel matrix. As a specific use case we considered 
the ridge regression method, but the approach can be also used for speeding up the (sub)
gradient computations for other types of regularized kernel methods, such as kernel logistic 
regression or support vector machines. Our experiments on drug-target data show that the 
approach allows scaling to much larger problem sizes than without the computational short 
cuts, and provides better predictive performance with the same computational resources 
than Falkon (Rudi et al. 2017), a the state-of-the art method for training large-scale kernel 
machines. Further, the choice of optimal kernel is seen to be highly dependant on both the 
problem domain and the type of prediction task considered.

An interesting observation that can be made from the experimental results is that in 
many cases the linear pairwise kernel produces results that are competitive with those 
obtained using the non-linear kernels. This is surprising in the sense that the kernel allows 
only expressing functions of the form f (d, t) = fd(d) + ft(t) that score the drugs and targets 
separately without truly modeling interactions between them. It seems implausible that the 

Fig. 9   Kronecker kernel: Nyström approximation given a number of basis vectors implemented by the 
’Falkon’ package vs. full solution implemented with GVT by ’RLScore’



570	 Machine Learning (2022) 111:543–573

1 3

non-linearity assumption would not hold in the domain of drug-target interaction predic-
tion, or other similar interaction prediction tasks, since this would imply the existence of 
"universal drug" that would be the optimal choice for all targets. We observed from our 
experimental results that, with larger sample sizes (see Fig. 7), the nonlinear kernels were 
better able to capture the nonlinear components of the underlying signal, and the relative 
strength of the nonlinear part likely determines how large training sample is needed to cap-
ture it. An example showing the extreme cases containing either nonlinear or linear signal 
components only is given in Fig. 1. The nonlinear component also may easily "drown" with 
high dimensional data, as the number of interaction terms increases quickly as its function.

We make the GVT code publicly available as part of the open source RLScore machine 
learning library (Pahikkala and Airola 2016), allowing other researchers and developers 
to make use of the described kernel matrix multiplication short cuts. Our work considers 
the specific case of pairwise data, an open question remains under what conditions similar 
efficient methods can be derived in general to n th order tensorial data, which could be a 
Kronecker product of more than two kernel matrices. For example, the data may consist of 
triplets (drug, target, cell line) where each object in the triplet has its own kernel.
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