4,962 research outputs found

    Motion Synthesis and Control for Autonomous Agents using Generative Models and Reinforcement Learning

    Get PDF
    Imitating and predicting human motions have wide applications in both graphics and robotics, from developing realistic models of human movement and behavior in immersive virtual worlds and games to improving autonomous navigation for service agents deployed in the real world. Traditional approaches for motion imitation and prediction typically rely on pre-defined rules to model agent behaviors or use reinforcement learning with manually designed reward functions. Despite impressive results, such approaches cannot effectively capture the diversity of motor behaviors and the decision making capabilities of human beings. Furthermore, manually designing a model or reward function to explicitly describe human motion characteristics often involves laborious fine-tuning and repeated experiments, and may suffer from generalization issues. In this thesis, we explore data-driven approaches using generative models and reinforcement learning to study and simulate human motions. Specifically, we begin with motion synthesis and control of physically simulated agents imitating a wide range of human motor skills, and then focus on improving the local navigation decisions of autonomous agents in multi-agent interaction settings. For physics-based agent control, we introduce an imitation learning framework built upon generative adversarial networks and reinforcement learning that enables humanoid agents to learn motor skills from a few examples of human reference motion data. Our approach generates high-fidelity motions and robust controllers without needing to manually design and finetune a reward function, allowing at the same time interactive switching between different controllers based on user input. Based on this framework, we further propose a multi-objective learning scheme for composite and task-driven control of humanoid agents. Our multi-objective learning scheme balances the simultaneous learning of disparate motions from multiple reference sources and multiple goal-directed control objectives in an adaptive way, enabling the training of efficient composite motion controllers. Additionally, we present a general framework for fast and robust learning of motor control skills. Our framework exploits particle filtering to dynamically explore and discretize the high-dimensional action space involved in continuous control tasks, and provides a multi-modal policy as a substitute for the commonly used Gaussian policies. For navigation learning, we leverage human crowd data to train a human-inspired collision avoidance policy by combining knowledge distillation and reinforcement learning. Our approach enables autonomous agents to take human-like actions during goal-directed steering in fully decentralized, multi-agent environments. To inform better control in such environments, we propose SocialVAE, a variational autoencoder based architecture that uses timewise latent variables with socially-aware conditions and a backward posterior approximation to perform agent trajectory prediction. Our approach improves current state-of-the-art performance on trajectory prediction tasks in daily human interaction scenarios and more complex scenes involving interactions between NBA players. We further extend SocialVAE by exploiting semantic maps as context conditions to generate map-compliant trajectory prediction. Our approach processes context conditions and social conditions occurring during agent-agent interactions in an integrated manner through the use of a dual-attention mechanism. We demonstrate the real-time performance of our approach and its ability to provide high-fidelity, multi-modal predictions on various large-scale vehicle trajectory prediction tasks

    Towards Target-Driven Visual Navigation in Indoor Scenes via Generative Imitation Learning

    Full text link
    We present a target-driven navigation system to improve mapless visual navigation in indoor scenes. Our method takes a multi-view observation of a robot and a target as inputs at each time step to provide a sequence of actions that move the robot to the target without relying on odometry or GPS at runtime. The system is learned by optimizing a combinational objective encompassing three key designs. First, we propose that an agent conceives the next observation before making an action decision. This is achieved by learning a variational generative module from expert demonstrations. We then propose predicting static collision in advance, as an auxiliary task to improve safety during navigation. Moreover, to alleviate the training data imbalance problem of termination action prediction, we also introduce a target checking module to differentiate from augmenting navigation policy with a termination action. The three proposed designs all contribute to the improved training data efficiency, static collision avoidance, and navigation generalization performance, resulting in a novel target-driven mapless navigation system. Through experiments on a TurtleBot, we provide evidence that our model can be integrated into a robotic system and navigate in the real world. Videos and models can be found in the supplementary material.Comment: 11 pages, accepted by IEEE Robotics and Automation Letter

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar

    Modeling Driver Behavior From Demonstrations in Dynamic Environments Using Spatiotemporal Lattices

    Get PDF
    International audienceOne of the most challenging tasks in the development of path planners for intelligent vehicles is the design of the cost function that models the desired behavior of the vehicle. While this task has been traditionally accomplished by hand-tuning the model parameters, recent approaches propose to learn the model automatically from demonstrated driving data using Inverse Reinforcement Learning (IRL). To determine if the model has correctly captured the demonstrated behavior, most IRL methods require obtaining a policy by solving the forward control problem repetitively. Calculating the full policy is a costly task in continuous or large domains and thus often approximated by finding a single trajectory using traditional path-planning techniques. In this work, we propose to find such a trajectory using a conformal spatiotemporal state lattice, which offers two main advantages. First, by conforming the lattice to the environment, the search is focused only on feasible motions for the robot, saving computational power. And second, by considering time as part of the state, the trajectory is optimized with respect to the motion of the dynamic obstacles in the scene. As a consequence, the resulting trajectory can be used for the model assessment. We show how the proposed IRL framework can successfully handle highly dynamic environments by modeling the highway tactical driving task from demonstrated driving data gathered with an instrumented vehicle

    On a Connection between Differential Games, Optimal Control, and Energy-based Models for Multi-Agent Interactions

    Full text link
    Game theory offers an interpretable mathematical framework for modeling multi-agent interactions. However, its applicability in real-world robotics applications is hindered by several challenges, such as unknown agents' preferences and goals. To address these challenges, we show a connection between differential games, optimal control, and energy-based models and demonstrate how existing approaches can be unified under our proposed Energy-based Potential Game formulation. Building upon this formulation, this work introduces a new end-to-end learning application that combines neural networks for game-parameter inference with a differentiable game-theoretic optimization layer, acting as an inductive bias. The experiments using simulated mobile robot pedestrian interactions and real-world automated driving data provide empirical evidence that the game-theoretic layer improves the predictive performance of various neural network backbones.Comment: International Conference on Machine Learning, Workshop on New Frontiers in Learning, Control, and Dynamical Systems (ICML 2023 Frontiers4LCD
    • …
    corecore