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Modeling Driver Behavior From Demonstrations in Dynamic
Environments Using Spatiotemporal Lattices

David Sierra González1, Ozgur Erkent1, Vı́ctor Romero-Cano2, Jilles Dibangoye1, and Christian Laugier1

Abstract— One of the most challenging tasks in the develop-
ment of path planners for intelligent vehicles is the design of the
cost function that models the desired behavior of the vehicle.
While this task has been traditionally accomplished by hand-
tuning the model parameters, recent approaches propose to
learn the model automatically from demonstrated driving data
using Inverse Reinforcement Learning (IRL). To determine if
the model has correctly captured the demonstrated behavior,
most IRL methods require obtaining a policy by solving the
forward control problem repetitively. Calculating the full policy
is a costly task in continuous or large domains and thus often
approximated by finding a single trajectory using traditional
path-planning techniques. In this work, we propose to find such
a trajectory using a conformal spatiotemporal state lattice,
which offers two main advantages. First, by conforming the
lattice to the environment, the search is focused only on
feasible motions for the robot, saving computational power.
And second, by considering time as part of the state, the
trajectory is optimized with respect to the motion of the
dynamic obstacles in the scene. As a consequence, the resulting
trajectory can be used for the model assessment. We show
how the proposed IRL framework can successfully handle
highly dynamic environments by modeling the highway tactical
driving task from demonstrated driving data gathered with an
instrumented vehicle.

I. INTRODUCTION

In reinforcement learning, the goal is to find a policy
that maximizes the accumulated long-term reward [1], [2].
Consequently, the behavior of an agent for a given task
is implicitly encoded by the reward function, i.e. given
the reward function and the agent’s dynamics, the optimal
policy is determined. Reward shaping techniques focus on
the design of reward functions that can guide and scale up
the search process of an exploring agent [3], [4]. However,
specifying an appropriate reward function for complex, high-
dimensional robotic problems can be extremely challenging,
and reward shaping techniques can lead to bugs in which
the reinforcement learning algorithm exploits the reward
function in ways not anticipated by the designer [5].

Instead of relying on hand-engineered reward functions,
the desired behavior of an agent in a given task can be
specified by providing expert demonstrations of the task
[6]. While it is possible to extract policies directly from
the demonstrations using imitation learning techniques, the
resulting policies tend to perform poorly when the agent
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diverges too much from the demonstrations [7]. It is com-
monly accepted that in reinforcement learning “the reward
function, rather than the policy or the value function, is the
most succinct, robust, and transferable definition of a task”
[8], [9]. In consequence, many imitation learning approaches
improve generalization by first learning the reward function
using Inverse Reinforcement Learning (IRL) [9], [10], and
then using it optimize the policy [8]. This has led to some
impressive results in real-world robotics problems such as
autonomous helicopter flight control [11], human activity
forecasting [12], human-like parking lot navigation [13] and
robotic manipulation tasks [14].

The design of cost functions to model the behavior of
drivers is a common topic in the Intelligent Vehicles research
domain (note that costs can be seen as negative rewards).
Traditionally, the process involves the design of each compo-
nent of the model using background knowledge [15], as well
as finding a balance between components that appropriately
captures the desired behavior. This last step is typically
addressed by hand-tuning the model parameters [15], [16],
[17], which becomes an increasingly difficult task as the
complexity of the model grows. Moreover, different scenar-
ios usually require different behavioral models, making the
hand-tuning a recurring operation. To avoid these problems,
recent efforts learn the model automatically from demon-
strated driving data using IRL for applications as diverse
as outdoor autonomous navigation [18], risk anticipation on
residential roads [19], highway maneuver prediction [20] and
communicative human-aware autonomous driving [21].

Traditional IRL approaches require solving the forward
control problem to obtain a policy in the inner loop of an
iterative optimization algorithm. A similarity metric between
the demonstrations and the policy is then computed and
used to determine if an appropriate model has been found.
In continuous domains, such as motion planning for au-
tonomous vehicles, finding the optimal policy is intractable.
Existing approximations propose to solve instead a local
control problem [22], construct a graph-based representa-
tion of the state-space [23], [24] or find instead a single
trajectory using path-planning techniques such as A∗ [25],
spline optimization [26], Rapidly-exploring Random Trees
[27], or Gaussian processes [28]. In dynamic environments,
even finding a single trajectory can become a challenging
task. As a consequence, in the particular case of driver
behavior modeling most existing approaches focus on static
environments [19], [29], [27].

In this work, we propose to integrate the IRL paradigm
with a motion planner based on conformal spatiotemporal



state lattices [30]. State lattices provide a search space
of dynamically feasible actions that can additionally be
conformed to the structured environment of public roadways
[31]. This has the immediate advantages of limiting the
size of the search space and producing trajectories that
satisfy the kinematic constraints of the vehicle. By using
the spatiotemporal variant, which includes time in the state-
space, we sacrifice the optimality of the solution in exchange
for increased awareness about the surrounding traffic. We
hypothesize that this planning variant resembles more closely
the behavior of human drivers and that in consequence, the
resulting trajectories constitute a better evaluation metric
for the model. The proposed approach is experimentally
validated by successfully modeling the highway driving task
from suboptimal driving demonstrations gathered with an
instrumented vehicle.

The rest of the paper is organized as follows: Section
II provides the necessary background about IRL and state
lattices; Section III details the proposed modeling frame-
work; Section IV describes our experimental setup and shows
the qualitative and quantitative experimental results. Lastly,
Section V concludes.

II. BACKGROUND

In this section, we briefly describe the Markov Decision
Process (MDP) formulation of IRL, the problematic of ap-
plying traditional IRL approaches in dynamic environments,
and the path planning approach based on spatiotemporal state
lattices that we use to circumvent that problem.

A. Inverse Reinforcement Learning

Generally speaking, the goal of IRL is to undercover
the preferences behind exhibited behaviors [9]. The task is
typically framed in the MDP framework. An MDP is defined
as a tuple 〈S,A, {Psa}, C, γ〉, where S and A are the state
and action spaces respectively, Psa(·) is the state transition
probability upon taking action a in state s, C : S 7→ R is the
cost function, and γ ∈ [0, 1) is the discount factor. For real-
world driving tasks, the state and action spaces are very large,
i.e. S .

= Rn and A .
= {g|g : S 7→ S}. In this work, we make

use of a state-lattice to compactly represent the underlying
state and action spaces by exploiting the environment and
non-holonomic motion constraints of the vehicle. We provide
further details in subsection II-B.

A policy is defined as any map π : S → A. The value
function for a policy π, can be evaluated at any arbitrary
state s ∈ S as follows:

V π(s) = E[

∞∑

t=0

γtC(St) | π, S0 = s] (1)

Solving an MDP implies finding the policy π that minimizes
V π , that is, for any arbitrary state s ∈ S we have that:

V ∗(s) = min
π

V π(s)

= C(s) + min
a∈A

Es′∼Psa(·)[V
∗(s′)] (2)

where notation s′ ∼ Psa(·) means the expectation is with
respect to s′ distributed according to Psa(·).

IRL addresses the case where the cost function C is
not known, but instead we have access to a set of ex-
pert, possibly suboptimal, demonstrated trajectories D =
{ξ[1], ξ[2], . . . , ξ[M ]}. A trajectory is defined as a sequence
of states of a vehicle ξ = {s1, . . . , sT }. The majority of
IRL algorithms assume that the cost function can be fully
specified as a linear combination of features:

C(s) = wT f(s) (3)

where w = (w1, w2, . . . , wK) is the unknown weight vector
and f(s) = (f1(s), . . . , fK(s)) is the feature vector that
parameterizes state s, both of dimension K. We shall use
short-hand notation fξ to denote the sum of features along
any arbitrary trajectory ξ:

fξ
.
=

[
T∑

t=1

f(st)|ξ = (s1, . . . , sT )

]
(4)

The goal of IRL is then to find the weight parameters
w for which the optimal policy, obtained by solving the
corresponding planning problem, would achieve similar tra-
jectories to those demonstrated according to a given statistic.
Abbeel and Ng propose to use the feature expectations
as the similarity metric [8]. Unfortunately, this is an ill-
posed problem, as many different weights can make the
demonstrated behavior optimal. An additional complication
is that, in real-world applications, the demonstrations are
typically suboptimal.

The Maximum Entropy IRL framework addresses both
problems by modeling expert behavior as a distribution over
trajectories and applying the principle of Maximum Entropy
to select the one that does not exhibit any additional pref-
erences beyond matching feature expectations [32]. Under
this model, the probability of a trajectory is proportional to
the negative exponential of the costs encountered along the
trajectory:

Pw(ξ) =
1

Z(w)
exp(−wT fξ) (5)

Let L(w) be the likelihood function of w given observed
trajectories. To find the parameter vector w∗ that optimizes
L(w), one can rely on its gradient:

∇L(w) = f̃ − Eξ∼Pw(·)[fξ] = f̃ −
∑

s∈S
ρw(s)f(s) (6)

where f̃
.
= 1

M

∑M
i=1 fξ[i] represents the average sum of

features of the demonstrations and ρw denotes the expected
state visitation frequencies under parameter vector w.

To obtain the expectation in Eq. 6, the calculation of the
full policy is required, which is not tractable in continuous
or large domains. A common workaround is to compute, at
each optimization step, a single trajectory instead. This can
be done for instance using A∗ [25] or RRTs [27]. In all these
cases, convergence guarantees are sacrificed for tractability
since the likelihood function is no longer convex. In dynamic



Fig. 1: Structure of the spatiotemporal state lattice. Road-
aligned states are sampled at regular longitudinal intervals on
each lane and connected with feasible paths using parametric
optimal control. The spatiotemporal planner searches for the
best trajectory in the lattice and keeps the problem tractable
by pruning the search space [30].

environments, finding a trajectory that minimizes the cost can
be particularly challenging. In this paper, we propose to use
a conformal spatiotemporal lattice, which is described next.

B. Conformal Spatiotemporal State Lattices

State lattices provide a concise representation of continu-
ous state-spaces using a discrete search graph of dynamically
attainable states [33]. They are a very convenient approach
for path planning in structured environments as they can
be conformed to the environment by applying a state-based
sampling strategy [31]. Sampled states can then be connected
using an inverse path generator [34]. A path, denoted τ , is
defined as a continuous curve through a 4-dimensional state-
space [x, y, θ, κ] connecting two endpoint states; x represents
the longitudinal position along the road, y the lateral position,
θ the heading, and κ the curvature or rate of change of the
heading. In Fig. 1 we show the paths that connect sampled
feasible vehicle states along the road.

The state lattice graph is built over the states of the
MDP, which is an idea already explored in the RL literature
[35], [36], [24]. The state space of the underlying MDP
is 7-dimensional. Each state s is a tuple (x, y, θ, κ, t, v, ã),
where t denotes time, v velocity, and ã acceleration. The
nodes of the graph are samples from the state space. The
edges correspond to the actions. An edge (or local trajectory)
represents the traversal of the path between two nodes with
a given acceleration value, i.e. ej : [tsj , t

e
j ] 7→ R6 with

j ∈ {1, 2, . . . , E}, and where the number of edges E
is determined by the number of paths in the lattice and
the number of acceleration actions available. Within this
lattice framework, a full trajectory ξ is a sequence of edges
from a start to a goal state. Due to the different lengths
and durations of the edges, the lattice graph represents a

Algorithm 1: Spatiotemporal trajectory search
input : w, T , ã, s0
output: Best trajectory found ξ∗

1 SpatiotemporalSearch
2 foreach station Ωi do
3 foreach vertex νj do
4 foreach node sk do
5 if ĉ(sk) 6=∞ then
6 foreach ã ∈ ã do
7 Construct edge e
8 Determine edge end node send
9 Evaluate c(e) using (7)

10 Get node sold at cell of arrival
11 if ĉ(sk) + c(e) < ĉ(sold) then
12 sold ← send
13 Find final node s∗ = arg mins ĉ(s) s.t. s[t] ≥ T
14 return backtrace trajectory ξ∗

deterministic Semi-Markov Decision Process (SMDP). We
will refer to this deterministic SMDP as a graph-MDP. The
cost of traversing an edge ej is then given by

c(ej)
.
=

∫ tej

tsj

γt−t
s
jC(st = ej(t))dt (7)

In practice, this integral can be approximated by sampling
states along the edge.

To handle highly-dynamic environments, we have consid-
ered time as part of the state-space. This renders the exact so-
lution of graph-MDP using traditional dynamic programming
methods intractable. Instead, we solve the path planning
problem using the approach presented by McNaughton et al.
[30], in which a pruning strategy is applied to keep the size
of the state-space within feasible limits. We provide here a
summary of the approach and refer the reader to the original
publication for a detailed description.

The key idea of this approach in order to attain tractability
is to specify the time-dependent components of the graph
(that is, the velocity and time components of the nodes)
online as the search proceeds. In other words, the search
graph is dynamically built during the search. Let us define a
vertex ν as the set of all nodes with the same [x, y, θ, κ, ã]
components. Additionally, a station Ω is defined as the set
of all vertices whose states’ x component is equal. For all
vertices, a discrete range of threshold times and velocities is
specified, determining a grid-like structure (see Fig. 1). For
each vertex, only a single node is allowed to exist per cell,
which efficiently prunes the search space.

The search for the best trajectory is based on maintaining
the minimum cost ĉ : S 7→ R that requires traveling from
the start node s0 to any other node in the graph. Initially,
this value is set to infinity for all nodes other than the start
node. The search begins from the start node and proceeds
recursively along the stations, as specified in Algorithm 1.
For each node in a given station, the outgoing edges (which
are determined by the paths of the lattice and the allowed
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Fig. 2: Continuous features selected for the time-to-collision,
time-headway, and desired velocity deviation signals.

accelerations ã) are created and evaluated. The acceleration
followed during each edge determines the vertex to which the
end node is associated. The time and velocity components of
the end node determine the cell within the vertex to which
it is assigned. If another node (sold in Algorithm 1) had
already been assigned to the same cell, the one with the
lowest accumulated cost between the two is kept. The search
continues until the final station is reached. In general, one of
the challenges of searching with this spatiotemporal lattice
is selecting the final node. For our IRL learning purpose this
becomes a trivial task: we select the node with the lowest
accumulated cost and with an associated time beyond the
threshold time T , which is given by the duration of the
corresponding demonstrated trajectory. We detail this in the
next section. The best trajectory ξ∗ is found by backtracking
until the initial node.

III. METHOD

In this section, we detail how to put together the MaxEnt
IRL framework with the spatiotemporal lattice planner in or-
der to learn driver behaviors from demonstrations in dynamic
environments. In the first place, we will list the features that
we have selected to compose the cost function. Then, we
describe the proposed algorithm.

A. Feature selection

In this paper, we evaluate our approach on highway driving
data gathered with an instrumented vehicle. The goal is to
find the model that best captures the demonstrated behavior.
The capacity of the model to capture any behavior will
always be constrained by the composing features and the
shape of the function. The following features have been
selected using background knowledge:

a) Lane: this is a binary mutually-exclusive feature
aimed to model the preference of the driver to stay on a
given lane. Typically, a driver will remain on the right-most
lane unless an overtake needs to be performed.

b) Time-to-collision (TTC): this is an indicator of
highly dangerous states. It is defined as the remaining time
until a collision occurs if two vehicles continue on the same
course and at the same speed. We model it with two Gaussian
distributions: a narrow one that aims to capture the high cost
associated to low TTC values, and a wider one that represents
mildly dangerous states. This feature is considered both for

Algorithm 2: IRL with Spatiotemporal State Lattices
for Driver Modeling in Dynamic Environments

input : D, w0, δ, ã
output: optimal weights w∗

1 w← w0

2 while not converged do
3 Ξf̃ ← 0, Ξfξ∗ ← 0
4 foreach ξi ∈ D do
5 Determine road waypoints
6 Construct state lattice (Fig. 1)
7 Ξf̃ ← Ξf̃ + fξ[i]
8 ξ∗ ← SpatiotemporalSearch(w, T (ξ[i]), ã, s0(ξ[i]))
9 Ξfξ∗ ← Ξfξ∗ + fξ∗

10 ∇w ← 1
M (Ξf̃ − Ξfξ∗ )

11 w← w − δ∇w

12 return w

the front and the back in the lane of the corresponding state
of the vehicle, accounting for a total of four features. The
one-dimensional Gaussians used are shown in Fig. 2.

c) Time-headway (TH): the time-headway indicates
potentially dangerous situations. It is defined as the time
elapsed between the back of the lead vehicle passing a point
and the front of the following vehicle passing the same point.
It can be seen as the equivalent of distance when driving at
high speeds. We model it similarly as the TTC.

d) Deviation from desired speed: this feature models
the cost that is paid when the vehicle is forced to deviate from
the desired speed, which we set to the speed limit. We model
it with the cumulative distribution function of the inverse-
gamma. For low deviations, the feature is not activated and
no cost is paid. Beyond a given threshold, the value of the
feature rises sharply and with it the associated cost. This
should force the vehicle to overtake if it is safe.

e) Acceleration: we consider the absolute value of the
acceleration as a feature to discourage strong accelerations
or decelerations.

f) Distance: the distance traveled along the road is
considered as a feature with a negative weight value in order
to encourage the vehicle to make progress.

B. Inverse Reinforcement Learning using spatiotemporal
state lattices

As we have introduced in subsection II-A, we approximate
the feature expectations in Eq. 6 by the features associated
to a single trajectory found using the spatiotemporal planner.
This enables us to calculate the approximated gradient and
perform gradient-based optimization.

The whole process is described in Algorithm 2. We set
the initial weights w0 as an input to the algorithm, as they
can be set using background knowledge. Additionally, a set
of discrete valid acceleration actions ã and the optimization
step-size δ need to be specified. Until convergence, the algo-
rithm repeatedly iterates over the demonstrated trajectories
D to optimize the weight vector w. For each demonstration,
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a state lattice is deployed adapted to the shape of the road.
Starting from the initial state of the demonstrated trajectory,
and with the threshold time set to the last timestamp in
the demonstration, we obtain a trajectory ξ∗ with Algorithm
1. This trajectory is obtained in an obstacle-aware manner
and, in consequence, it can be used in the evaluation of the
current estimate of the model. The sum of features of the
demonstrations and of the planned trajectories are aggregated
in the container variables Ξf̃ and Ξfξ∗ respectively. After
iterating over each epoch, the average gradient is calculated
and used to update the current estimate of the weights w.

IV. EXPERIMENTAL EVALUATION

We evaluate our driver modeling approach based on IRL
with spatiotemporal state lattices using demonstrated driving
data gathered on a French two-lane highway. The goal is
to capture the demonstrated behavior in the model. We first
present the dataset used and provide details about the tested
lattice configuration; then we discuss the evaluation metrics
and competing approaches against we compare; finally, we
present the qualitative and quantitative results obtained.

A. Dataset and lattice configuration

As training data, we use 170s of annotated highway
driving data. It consists of a variety of traffic scenes with
an average duration of 10s, including lane changes in both
directions, getting stuck behind slow traffic and free driving.
The tracking of the obstacles was performed with a grid-
based tracker [37], but only the lane in which they circulate
was annotated, i.e. there is no lateral in-lane position in-
formation. This is also true for the ego-vehicle performing
the demonstrations. This motivated us to setup the lattice
as seen in Fig. 1, with the nodes of the lattice always at
the center of the lanes. The longitudinal separation between
stations was set to 50m, the allowed accelerations were 9
equidistant discrete values in the range [-2, 2] m/s2. The
threshold values that determine the composition of the grid
of subnodes were set to 6 equidistant values in the interval
[25, 38] m/s for the velocity, and the range between 0.5s
and the maximum timestamp in the demonstration sampled
every 0.5s for the time dimension. This defines a much finer
grid than the one proposed in the original paper [30].

(a) Front view at t = 7.0 (b) Back view at t = 7.0

(c) Predicted behavior of the ego-vehicle surrounded by obstacle traces.
The stronger the color gradient, the higher the time.

(d) Velocity prediction (e) Acceleration prediction

Fig. 4: Prediction of behavior based on the optimized model.

B. Metrics and competing approaches

The metric that we use is the modified Hausdorff distance
(MHD), which is a generalized distance metric between point
sequences and typically used for this kind of evaluation [12],
[38], [29]. Given the lack of a ground truth cost function,
we follow previous work and additionally provide the values
of task-specific metrics obtained by solving the planning
problem with the optimized model. We consider average
speed, average acceleration and the total time spent on
each lane. Regarding the competing approaches, we consider
solving the planning problem by examining only the state of
the environment at the beginning of the demonstration, and
a slightly more refined approach that uses a sliding window
over each demonstration. The optimization takes place at this
time window and the environment is assumed static as in the
first competing approach. To compensate for this assumption,
the optimization is performed on overlapping time windows.
This approach has been used in the context of social robotic
navigation [39], [40]. We set the length of the time window
to 5s, with overlapping of 2.5s between optimization cycles.

C. Qualitative results

In the first place, we show the convergence of the algo-
rithms in Fig. 3. The proposed approach converges smoothly



(a) Back view at t = 8.0 (b) Back view at t = 13.0

(c) Position prediction (d) Velocity prediction

Fig. 5: Prediction of behavior for a right-merge scene.

(a) Front view at t = 5.0 (b) Back view at t = 5.0

(c) Position prediction (d) Velocity prediction

Fig. 6: Prediction of overtaking behavior.

TABLE I: Performance statistics

METHOD MHD Avg speed
(m/s)

Avg accel.
(m/s2)

t left
(s)

t right
(s)

Static 0.031 30.67 -0.026 36.46 108.98
Window 0.145 25.04 -1.024 65.83 79.61

Proposed 0.016 32.88 0.045 59.86 85.58
Ground

truth - 31.93 0.019 51.55 93.89

from an initial high deviation between the empirical features
and the approximated expected sum of features. The initial
low value for the window approach is probably due to
the shorter length of the “windowed” demonstrations. As it
can be seen, the norm of the proposed approach does not
converge to zero. This is due to the high suboptimality of
the demonstrations and also to their long distances. One of
the features considered in our model is the deviation from the
desired velocity, which we assumed to be the speed limit. We
can see for instance in Fig. 5d, that the demonstrated velocity
does not attempt to reach the speed limit of 36.1m/s, despite
not having any obstacles in front (not seen in the figure).

The results shown in Figs. 4-6 correspond to roughly 150s
of demonstrated driving data that were used for testing the
resulting optimized model. We used the spatiotemporal state
lattice planner to produce a trajectory based on the optimized
model and we compare it against the demonstrated data. Fig.
4 shows the results for a scene in which the ego-vehicle
approaches slow traffic ahead and it is not safe to perform
a lane change due to the presence of a vehicle on lane 2.
The predicted behavior is a deceleration in order to reduce
the relative velocity with the traffic ahead, which matches
with the demonstrated behavior. Fig. 5, consists of a merge
to the right lane after an overtake. The model correctly
captures that, in the absence of obstacles, the demonstrations
suggested driving on the right-most lane. In a similar fashion,

Fig. 6 shows that the predicted behavior when approaching
slow traffic ahead with no vehicles blocking the left lane is an
overtake. In this case the lane change trajectory is preferred
because it allows an acceleration towards the speed limit,
which in turn maximizes the traveled distance.

D. Qualitative results

Table I shows the performance metrics obtained on the
roughly 150s of evaluation driving data. The proposed
approach seems to clearly have captured the demonstrated
behavior better than the “static” and “window” approaches:
it obtains a lower average MHD and resembles the ground
truth more closely in the task-specific metrics.

V. CONCLUSIONS

We have presented a driver modeling algorithm based on
a combination of Maximum Entropy IRL and a spatiotem-
poral state lattice motion planner. The proposed approach is
suitable for learning behavior models from demonstrations in
highly dynamic environments. We validated our proposal us-
ing demonstrated suboptimal highway driving data gathered
with an instrumented vehicle. Despite having been trained
with general driving data containing all kinds of situations
such as merges to the right, overtakes, getting stuck behind
slow traffic and free driving, the model successfully captured
the main characteristics of the demonstrated behavior. We
show this result in both quantitative and qualitative exper-
iments. Future work will study the effect of the sampling
strategy on the quality of the model, explore the use of non-
linear models, and also address stop-and-go scenarios by ex-
tending the original spatiotemporal state lattice formulation.
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