136 research outputs found

    Design and Implementation of Hardware Accelerators for Neural Processing Applications

    Full text link
    Primary motivation for this work was the need to implement hardware accelerators for a newly proposed ANN structure called Auto Resonance Network (ARN) for robotic motion planning. ARN is an approximating feed-forward hierarchical and explainable network. It can be used in various AI applications but the application base was small. Therefore, the objective of the research was twofold: to develop a new application using ARN and to implement a hardware accelerator for ARN. As per the suggestions given by the Doctoral Committee, an image recognition system using ARN has been implemented. An accuracy of around 94% was achieved with only 2 layers of ARN. The network also required a small training data set of about 500 images. Publicly available MNIST dataset was used for this experiment. All the coding was done in Python. Massive parallelism seen in ANNs presents several challenges to CPU design. For a given functionality, e.g., multiplication, several copies of serial modules can be realized within the same area as a parallel module. Advantage of using serial modules compared to parallel modules under area constraints has been discussed. One of the module often useful in ANNs is a multi-operand addition. One problem in its implementation is that the estimation of carry bits when the number of operands changes. A theorem to calculate exact number of carry bits required for a multi-operand addition has been presented in the thesis which alleviates this problem. The main advantage of the modular approach to multi-operand addition is the possibility of pipelined addition with low reconfiguration overhead. This results in overall increase in throughput for large number of additions, typically seen in several DNN configurations

    View on 5G Architecture: Version 1.0

    Get PDF
    The current white paper focuses on the produced results after one year research mainly from 16 projects working on the abovementioned domains. During several months, representatives from these projects have worked together to identify the key findings of their projects and capture the commonalities and also the different approaches and trends. Also they have worked to determine the challenges that remain to be overcome so as to meet the 5G requirements. The goal of 5G Architecture Working Group is to use the results captured in this white paper to assist the participating projects achieve a common reference framework. The work of this working group will continue during the following year so as to capture the latest results to be produced by the projects and further elaborate this reference framework. The 5G networks will be built around people and things and will natively meet the requirements of three groups of use cases: • Massive broadband (xMBB) that delivers gigabytes of bandwidth on demand • Massive machine-type communication (mMTC) that connects billions of sensors and machines • Critical machine-type communication (uMTC) that allows immediate feedback with high reliability and enables for example remote control over robots and autonomous driving. The demand for mobile broadband will continue to increase in the next years, largely driven by the need to deliver ultra-high definition video. However, 5G networks will also be the platform enabling growth in many industries, ranging from the IT industry to the automotive, manufacturing industries entertainment, etc. 5G will enable new applications like for example autonomous driving, remote control of robots and tactile applications, but these also bring a lot of challenges to the network. Some of these are related to provide low latency in the order of few milliseconds and high reliability compared to fixed lines. But the biggest challenge for 5G networks will be that the services to cater for a diverse set of services and their requirements. To achieve this, the goal for 5G networks will be to improve the flexibility in the architecture. The white paper is organized as follows. In section 2 we discuss the key business and technical requirements that drive the evolution of 4G networks into the 5G. In section 3 we provide the key points of the overall 5G architecture where as in section 4 we elaborate on the functional architecture. Different issues related to the physical deployment in the access, metro and core networks of the 5G network are discussed in section 5 while in section 6 we present software network enablers that are expected to play a significant role in the future networks. Section 7 presents potential impacts on standardization and section 8 concludes the white paper

    Exploring Deep Learning for deformative operators in vector-based cartographic road generalization

    Full text link
    Cartographic generalisation is the process by which geographical data is simplified and abstracted to increase the legibility of maps at reduced scales. As map scales decrease, irrelevant map features are removed (selective generalisation), and relevant map features are deformed, eliminating unnec- essary details while preserving the general shapes (deformative generalisation). The automation of cartographic generalisation has been a tough nut to crack for years because it is governed not only by explicit rules but also by a large body of implicit cartographic knowledge that conven- tional automation approaches struggle to acquire and formalise. In recent years, the introduction of Deep Learning (DL) and its inductive capabilities has raised hope for further progress. This thesis explores the potential of three Deep Learning architectures — Graph Convolutional Neural Network (GCNN), Auto Encoder, and Recurrent Neural Network (RNN) — in their application on the deformative generalisation of roads using a vector-based approach. The generated small- scale representations of the input roads differ substantially across the architectures, not only in their included frequency spectra but also in their ability to apply certain generalisation operators. However, the most apparent learnt and applied generalisation operator by all architectures is the smoothing of the large-scale roads. The outcome of this thesis has been encouraging but suggests to pursue further research about the effect of the pre-processing of the input geometries and the inclusion of spatial context and the combination of map features (e.g. buildings) to better capture the implicit knowledge engrained in the products of mapping agencies used for training the DL models

    A comparative study of routing protocols in MANETs

    Get PDF
    Mobile Ad Hoc networks are emerging area of mobile computing. A mobile ad hoc network (MANET) is composed of mobile routers and associated hosts connected by wireless links. The routers are free to move randomly and organize themselves arbitrarily, thus, the network\u27s wireless topology may change rapidly and unpredictably. In fact, it is considered that each node would have some capacity to relay the information thus constrained by computational power, battery life and increasingly complex routing with added functionality of a router. Nodes may keep joining and leaving an ad hoc network. Such a network may operate in a stand alone fashion, or may be connected to the larger Internet. Lack of infrastructure in ad hoc networks sets new challenges for routing algorithms where the network is formed by a collection of wireless mobile nodes dynamically forming a temporary network without the use of any existing network infrastructure or centralized administration. A number of routing protocols like Dynamic Source Routing (DSR), Ad Hoc On-Demand Distance Vector Routing (AODV), Destination-Sequenced Distance-Vector (DSDV), Zone Routing Protocol (ZRP) and Temporally Ordered Routing Algorithm (TORA) have been implemented. In this thesis an attempt has been made to compare the performance of prominent on-demand reactive routing protocols for mobile ad hoc networks (AODV and TORA), along with the traditional proactive DSDV protocol. Although AODV and TORA share similar on-demand behavior, the differences in the protocol mechanics can lead to significant performance differentials. The performance differentials are analyzed using varying network loads, mobilities, and network sizes. These simulations are carried out using network simulator (ns-2.1b9a) to run mobile ad hoc network simulations

    Reconfigurable Receiver Front-Ends for Advanced Telecommunication Technologies

    Get PDF
    The exponential growth of converging technologies, including augmented reality, autonomous vehicles, machine-to-machine and machine-to-human interactions, biomedical and environmental sensory systems, and artificial intelligence, is driving the need for robust infrastructural systems capable of handling vast data volumes between end users and service providers. This demand has prompted a significant evolution in wireless communication, with 5G and subsequent generations requiring exponentially improved spectral and energy efficiency compared to their predecessors. Achieving this entails intricate strategies such as advanced digital modulations, broader channel bandwidths, complex spectrum sharing, and carrier aggregation scenarios. A particularly challenging aspect arises in the form of non-contiguous aggregation of up to six carrier components across the frequency range 1 (FR1). This necessitates receiver front-ends to effectively reject out-of-band (OOB) interferences while maintaining high-performance in-band (IB) operation. Reconfigurability becomes pivotal in such dynamic environments, where frequency resource allocation, signal strength, and interference levels continuously change. Software-defined radios (SDRs) and cognitive radios (CRs) emerge as solutions, with direct RF-sampling receivers offering a suitable architecture in which the frequency translation is entirely performed in digital domain to avoid analog mixing issues. Moreover, direct RF- sampling receivers facilitate spectrum observation, which is crucial to identify free zones, and detect interferences. Acoustic and distributed filters offer impressive dynamic range and sharp roll off characteristics, but their bulkiness and lack of electronic adjustment capabilities limit their practicality. Active filters, on the other hand, present opportunities for integration in advanced CMOS technology, addressing size constraints and providing versatile programmability. However, concerns about power consumption, noise generation, and linearity in active filters require careful consideration.This thesis primarily focuses on the design and implementation of a low-voltage, low-power RFFE tailored for direct sampling receivers in 5G FR1 applications. The RFFE consists of a balun low-noise amplifier (LNA), a Q-enhanced filter, and a programmable gain amplifier (PGA). The balun-LNA employs noise cancellation, current reuse, and gm boosting for wideband gain and input impedance matching. Leveraging FD-SOI technology allows for programmable gain and linearity via body biasing. The LNA's operational state ranges between high-performance and high-tolerance modes, which are apt for sensitivityand blocking tests, respectively. The Q-enhanced filter adopts noise-cancelling, current-reuse, and programmable Gm-cells to realize a fourth-order response using two resonators. The fourth-order filter response is achieved by subtracting the individual response of these resonators. Compared to cascaded and magnetically coupled fourth-order filters, this technique maintains the large dynamic range of second-order resonators. Fabricated in 22-nm FD-SOI technology, the RFFE achieves 1%-40% fractional bandwidth (FBW) adjustability from 1.7 GHz to 6.4 GHz, 4.6 dB noise figure (NF) and an OOB third-order intermodulation intercept point (IIP3) of 22 dBm. Furthermore, concerning the implementation uncertainties and potential variations of temperature and supply voltage, design margins have been considered and a hybrid calibration scheme is introduced. A combination of on-chip and off-chip calibration based on noise response is employed to effectively adjust the quality factors, Gm-cells, and resonance frequencies, ensuring desired bandpass response. To optimize and accelerate the calibration process, a reinforcement learning (RL) agent is used.Anticipating future trends, the concept of the Q-enhanced filter extends to a multiple-mode filter for 6G upper mid-band applications. Covering the frequency range from 8 to 20 GHz, this RFFE can be configured as a fourth-order dual-band filter, two bandpass filters (BPFs) with an OOB notch, or a BPF with an IB notch. In cognitive radios, the filter’s transmission zeros can be positioned with respect to the carrier frequencies of interfering signals to yield over 50 dB blocker rejection

    Navigating the roadblocks to spectral color reproduction: data-efficient multi-channel imaging and spectral color management

    Get PDF
    Commercialization of spectral imaging for color reproduction will require the identification and traversal of roadblocks to its success. Among the drawbacks associated with spectral reproduction is a tremendous increase in data capture bandwidth and processing throughput. Methods are proposed for attenuating these increases with data-efficient methods based on adaptive multi-channel visible-spectrum capture and with low-dimensional approaches to spectral color management. First, concepts of adaptive spectral capture are explored. Current spectral imaging approaches require tens of camera channels although previous research has shown that five to nine channels can be sufficient for scenes limited to pre-characterized spectra. New camera systems are proposed and evaluated that incorporate adaptive features reducing capture demands to a similar few channels with the advantage that a priori information about expected scenes is not needed at the time of system design. Second, proposals are made to address problems arising from the significant increase in dimensionality within the image processing stage of a spectral image workflow. An Interim Connection Space (ICS) is proposed as a reduced dimensionality bottleneck in the processing workflow allowing support of spectral color management. In combination these investigations into data-efficient approaches improve two critical points in the spectral reproduction workflow: capture and processing. The progress reported here should help the color reproduction community appreciate that the route to data-efficient multi-channel visible spectrum imaging is passable and can be considered for many imaging modalities

    High Frequency Devices and Circuit Modules for Biochemical Microsystems

    Get PDF
    This dissertation investigates high frequency devices and circuit modules for biochemical microsystems. These modules are designed towards replacing external bulky laboratory instruments and integrating with biochemical microsystems to generate and analyze signals in frequency and time domain. The first is a charge pump circuit with modified triple well diodes, which is used as an on-chip power supply. The second is an on-chip pulse generation circuit to generate high voltage short pulses. It includes a pulse-forming-line (PFL) based pulse generation circuit, a Marx generator and a Blumlein generator. The third is a six-port circuit based on four quadrature hybrids with 2.0~6.0 GHz operating frequency tuning range for analyzing signals in frequency domain on-chip. The fourth is a high-speed sample-and-hold circuit (SHC) with a 13.3 Gs/s sampling rate and ~11.5 GHz input bandwidth for analyzing signals in time domain on-chip. The fifth is a novel electron spin resonance (ESR) spectroscopy with high-sensitivity and wide frequency tuning range

    Computational design and designability of gene regulatory networks

    Full text link
    Nuestro conocimiento de las interacciones moleculares nos ha conducido hoy hacia una perspectiva ingenieril, donde diseños e implementaciones de sistemas artificiales de regulación intentan proporcionar instrucciones fundamentales para la reprogramación celular. Nosotros aquí abordamos el diseño de redes de genes como una forma de profundizar en la comprensión de las regulaciones naturales. También abordamos el problema de la diseñabilidad dada una genoteca de elementos compatibles. Con este fin, aplicamos métodos heuríticos de optimización que implementan rutinas para resolver problemas inversos, así como herramientas de análisis matemático para estudiar la dinámica de la expresión genética. Debido a que la ingeniería de redes de transcripción se ha basado principalmente en el ensamblaje de unos pocos elementos regulatorios usando principios de diseño racional, desarrollamos un marco de diseño computacional para explotar este enfoque. Modelos asociados a genotecas fueron examinados para descubrir el espacio genotípico asociado a un cierto fenotipo. Además, desarrollamos un procedimiento completamente automatizado para diseñar moleculas de ARN no codificante con capacidad regulatoria, basándonos en un modelo fisicoquímico y aprovechando la regulación alostérica. Los circuitos de ARN resultantes implementaban un mecanismo de control post-transcripcional para la expresión de proteínas que podía ser combinado con elementos transcripcionales. También aplicamos los métodos heurísticos para analizar la diseñabilidad de rutas metabólicas. Ciertamente, los métodos de diseño computacional pueden al mismo tiempo aprender de los mecanismos naturales con el fin de explotar sus principios fundamentales. Así, los estudios de estos sistemas nos permiten profundizar en la ingeniería genética. De relevancia, el control integral y las regulaciones incoherentes son estrategias generales que los organismos emplean y que aquí analizamos.Rodrigo Tarrega, G. (2011). Computational design and designability of gene regulatory networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1417
    • …
    corecore