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ABSTRACT 

 

This dissertation investigates high frequency devices and circuit modules for 

biochemical microsystems. These modules are designed towards replacing external bulky 

laboratory instruments and integrating with biochemical microsystems to generate and 

analyze signals in frequency and time domain. The first is a charge pump circuit with 

modified triple well diodes, which is used as an on-chip power supply. The second is an 

on-chip pulse generation circuit to generate high voltage short pulses. It includes a pulse-

forming-line (PFL) based pulse generation circuit, a Marx generator and a Blumlein 

generator. The third is a six-port circuit based on four quadrature hybrids with 2.0~6.0 

GHz operating frequency tuning range for analyzing signals in frequency domain on-

chip. The fourth is a high-speed sample-and-hold circuit (SHC) with a 13.3 Gs/s 

sampling rate and ~11.5 GHz input bandwidth for analyzing signals in time domain on-

chip. The fifth is a novel electron spin resonance (ESR) spectroscopy with high-

sensitivity and wide frequency tuning range. 
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CHAPTER ONE 
 

INTRODUCTION 
 
 

Over the past 25 years, there is a rapid development and increasing interest of 

micro total analysis systems (µTAS) [1.1]-[1.5]. Micro total analysis system, sometimes 

called lab-on-a-chip, is used to integrate one or several laboratory functions on a single 

chip. In 1975, the first analytical miniaturized device [1.6], a gas chromatographic 

analyzer, was developed to separate a simple mixture of compounds in a matter of 

seconds. In 1990, a miniaturized open-tubular liquid chromatograph based on silicon chip 

technology was presented by Manz and co-workers [1.7]. At the same time, the concept 

of “miniaturized total chemical analysis system” or µTAS was proposed by Manz, in 

which silicon chip analyzers incorporating sample pretreatment, separation, and detection 

devices were used to integrate a capillary electrophoresis on a chip [1.8]. Applications of 

micro total analysis systems span basic-science research, clinical medicine, diagnostics, 

environment, cellular studies, and field work. During the last several years, micro total 

analysis systems have extended their usefulness into many new fields. They are relatively 

new group of analytical tools, capable of analyzing DNA, proteins, cells, 

macromolecules, toxins or pathogens [1.9]. The ability of performing laboratory 

functions on a chip has opened new ways in modern analytical chemistry, medicine, 

genetic, cell biology and many other research areas.  

Recently, microfluidic and nanofluidic devices are as a subject of extensive 

research, for molecular analysis, biodefence, molecular biology and microelectronics 

[1.10]. They can obtain high sensitivity and high resolution by using very small volumes 
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of samples and fluids, which are regarded as the most powerful advantage of µTAS or 

lab-on-chip. For organism studies, microfluidic devices have provided controllable and 

sensitive analysis of small organisms, such as plants, protozoa, zebrafish, and worms 

[1.11]. Recent microfluidic technology has generated on chip mimics of angiogenesis and 

mechanical stimuli of organ systems [1.12]-[1.13]. Microfluidic and nanofluidic devices 

have been used for wide range of practical applications, including drug screening, drug 

synthesis, packaging, and formulation, water testing, biomedical science, cell biology, 

and chemistry [1.14]-[1.15]. Until now, successful microfluidic and nanofluidic devices 

have been used for clinical analysis with the following functions: handing of soluble, 

detecting pathogens in blood, and analysis of intact cells [1.16]. 

Although micro total analysis systems have gradually gained maturity, many of 

them need to connect to off-chip bulky instruments, including sampling units, electronic 

units and detector units, which cannot realize true lab-on-a-chip. A true lab-on-a-chip 

should not require an external laboratory to support its operation. These external units are 

used to provide signals to µTAS and analyze signals generated by µTAS in frequency 

and time domain. Thus, the benefits of small size and low complexity that have 

contributed to the popularity of microsystems have been somewhat lost. For further 

developing and minimizing µTAS, some external instruments for generating and 

analyzing signals are needed to be demonstrated to realize on chip. When fully 

developed, micro total analysis systems, which in themselves are completely equipped 

laboratory units applied to diagnostic, point-of-care (POC), clinical and environmental 

laboratory, are claimed to be low-cost, easy-to-use, portable and equipment-free. In the 
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developing countries, with limited resources, the healthcare infrastructure is less well 

developed. In this case, µTAS that do not rely on complicated instrumentation for result 

interpretation are extremely useful platform to provide affordable disease diagnosis and 

environmental monitoring to people living in the developing world. 

Up to this time, our group members have successfully reported label-free and 

non-invasive detection methods for the development of micro-total-analysis-systems. In 

[1.17], a high-sensitive on-chip radio frequency (RF) device is proposed to detect small 

dielectric property changes in microfluidic channels. In [1.18], Yang demonstrated a 

simple, ultra sensitive RF sensor to detect a single yeast cell and distinguish its viability 

in a microfluidic channel. In [1.19], Cui reported a tunable and highly sensitive RF sensor 

with tunable attenuators and phase shifters to measure the permittivity of materials in a 

microfluidic channel or nanofluidic channel. These proposed sensors are suited for 

biochemical applications, bio-analysis, biomedical, cell biology studies and clinical 

disease diagnostics. In the dissertation, a few integrated RF/microwave circuits and 

devices have been designed and demonstrated for the development of on-chip analytical 

tools, pulse generators and electron paramagnetic resonance (EPR) spectroscopy. These 

RF circuits, instead of some external bulky laboratory instruments, can be integrated with 

our biochemical microsystems and sensors to generate and analyze signals in frequency 

and time domain, which is great interest of the development of laboratory chips fully 

equipped laboratory units.   

Below is an outline of this dissertation, each chapter covers a high frequency 

circuit or device topic: 
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Chapter II presents charge pump circuits with modified triple well diodes as 

charge transfer switches. Model parameters of the modified triple well diode are 

extracted based on measured diode characteristics. 

Chapter Ш presents three types of CMOS pulse generation circuits, including a 

PFL-based pulse generation circuit with the stacked-MOSFET high voltage switch, an 

on-chip Marx generator and a Blumlein pulse generator. Generating high voltage short 

pulses is important for functionality integration, such as micro/nano electromechanical 

systems (MEMS/NEMS) actuation, electrophoresis, electroporation. The high voltage 

switch and the PFL-based pulse generation circuit are modeled and analyzed. All these 

pulse generators are implemented in a 0.13 µm CMOS process. 

Chapter IV presents a highly reconfigurable, low-power, and compact directional 

coupler. The active inductors and varactors are used in this directional coupler to tune 

operating frequencies and coupling-coefficients. The noise, noise figure, nonlinearity, 

and power consumption of the proposed directional coupler are analyzed and measured. 

A six-port circuit based on four quadrature hybrids is also proposed, designed and 

simulated for analyzing signals in frequency domain on chip.  

Chapter V presents a high-speed sample-and-hold circuit based on spatial 

sampling with CMOS transmission lines (TLs) for analyzing signals in time domain on 

chip. This circuit contains three main parts: an on-chip meandered coplanar waveguide 

for signal transmission, a clock signal generator, and elementary samplers. Each 

elementary sampler has an N-type field effect transistor as the sampling switch, a charge 
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holding capacitor, and a charge amplifier. Signal propagation on periodically loaded 

CMOS TLs is analyzed and simulated. 

Chapter VI presents a novel electron paramagnetic resonance spectroscopy with 

high sensitivity and multi-frequency operation for the development of micro-total-

analysis-systems. A radio frequency sensor with tunable attenuators and phase shifters is 

designed to simultaneously address the sensitivity and multi-frequency operation 

challenges in the development of EPR techniques. The EPR signals of 60 µg 1,1-

diphenyl-2picrylhydrazyl (DPPH) are measured from 1 GHz to 10 GHz.  
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CHAPTER TWO 

HIGH VOLTAGE CHARGE PUMP WITH TRIPLE WELL DIODES IN  

A 0.13 µm BULK CMOS PROCESS 

 
This chapter presents charge pump circuits with modified triple well diodes as 

charge transfer switches for charging on-chip pulsed-power systems in a low-voltage 

bulk CMOS process. Guard-rings and isolation deep n-wells are used to improve the 

breakdown voltages and reduce leakage currents of the diodes. Model parameters of the 

triple well diode are extracted based on measured diode characteristics. These parameters 

are then used to analyze our charge pump. The proposed charge pump circuits are 

implemented in a commercial 0.13µm bulk CMOS process. The output voltage of the 

four-stage charge pump circuit can be up to 18.1V, which is much higher than the n-

well/p-substrate breakdown voltage (~10V) of the given process. 

 

2.1 Introduction 

Charge pump circuits are often used to generate high voltages from a low voltage 

supply for a variety of applications, including driving nonvolatile memories [2.1], 

actuating MEMS devices [2.2] and charging on-chip pulsed-power systems [2.3]. In 

addition to high power transfer efficiencies, high output voltages are critical for charge 

pump circuits.  

A Dickson charge pump [2.4] is the most common charge pump circuit topology, 

in which charge transfer switches are critical components. Traditionally, diode-connected 

MOSFETs are used as the switching devices. However, the increase of threshold voltages 
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due to body effects [2.5] degrades circuit performance. Several methods are proposed to 

reduce such effects at the cost of auxiliary circuits and more power consumption [2.5]-

[2.8]. A floating-well technique [2.9] can also help reduce body effects, but it may 

generate substrate currents and affect other circuits on the same chip. Pn-junction diodes 

are also widely used in charge pump circuits. Yet, the output voltage level is limited by 

the breakdown of parasitic p-n junctions between the n+ region and the p-substrate 

[2.10]. The silicon-on-insulator (SOI) process [2.11] and polysilicon diodes [2.10] 

overcame such limitations. However, the intrinsic polysilicon layer [2.10] is not available 

in standard bulk CMOS processes, and the SOI CMOS process [2.11] is more expensive. 

Therefore, developing new circuit techniques in bulk CMOS processes for high voltage 

generation is of great interest. 

In this chapter, a charge pump circuit utilizing triple well diodes with guard rings 

as charge transfer switches is presented. Compared with standard triple well diodes that 

were attempted in a charge pump [2.12] to obtain 6-10 V output voltages from a 3.3V 

power supply, guard rings improve the breakdown voltages. Additionally, the anode and 

cathode of the diodes are completely isolated from bulk substrate by a buried deep n-type 

layer. Thus, the proposed charge pump circuit is not limited by the breakdown of 

parasitic p-n junctions and their leakage currents. The analysis of the modified triple well 

diode is presented in Section 2.2. Section 2.3 gives the results of the circuits implemented 

in a commercial 0.13µm bulk CMOS process. Section 2.4 concludes the chapter. 
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The diode model parameters, shown in Table 2.1, are extracted for circuit 

simulations. The initial values of these parameters were calculated from measured diode 

characteristics, including recombination, high-level injection, and series resistance effect. 

Then these values are globally optimized by curve fitting with a modified least squares 

method, which greatly improves extraction accuracy and efficiency. Fig. 2.4 shows a 

comparison between simulated and measured diode characteristics. The simulation is 

based on the parameters listed in Table. 2.1. These curves are almost identical, which 

shows that the extracted model parameters can accurately describe the DC behavior of 

the triple well diodes. Fig. 2.5 shows the relationship among n+ cathode area, ideality 

factor N and series resistance RS. It also shows that when the n+ cathode area increases, 

the recombination current and resistance in the space charge region between the n guard 

ring and the p-well under the n+ cathode have the less effect on the characteristics of the 

triple well diodes.  

 
 

Figure 2.4 Measured and simulated triple well diode characteristics. 
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Figure 2.5 Relationship among cathode area, ideality factor and series resistance. 
 

TABLE 2.1 
MODIFIED TRIPLE WELL DIODE MODEL PARAMETERS 

Model Parameter Value 
IS 1.39 pA 
N 1.3874 
RS 3.7033 Ω 

IKF 4.76 mA 
ISR 46.8 pA 
NR 2.4944 
BV 10.06 V 
IBV 5.81 mA 

 

 
2.3 Charge Pump Circuit Implementation 

 
2.3.1 Circuit Design 

Fig. 2.6 shows an eight-stage charge pump circuit with 9 triple well diodes. CLK 

and CLKB are two out-of-phase clocks with an amplitude VCLK equivalent to VDD. 

Because the breakdown voltage of the capacitors in our CMOS process is ~7V, stacked 

capacitors are used for higher voltages. 
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( 1) ( ) .out D D DV N V V                                                  (2.2) 

And the power efficiency of the charge pump is defined as [2.20] 

out= out

DD DD

V I

V I
 


                                                      (2.3) 

 
The total current consumption of an N-stage charge pump can be expressed as 

[2.11] 

( 1) (2 1)D D O U T P SI N I N I N I                                      (2.4) 

where Ip is the current charging and discharging the clocked-plate parasitic capacitance, 

and IS is the current charging and discharging the switch-node parasitic capacitance. Also, 

Ip and IS for our proposed charge pump can be respectively given by [2.11] 

P p CLKI C V f                                                    (2.5) 

S S nI C V f                                                     (2.6) 

where ∆Vn is the voltage swing across the pumping capacitor, CP is the bottom-plate 

parasitic capacitance and CS is the combination of the top-plate and diode parasitic 

capacitance. As the bottom plate is driven by the clock in our charge pump, CS is small 

enough to neglect IS in (4) and the bottom-plate parasitic capacitance can be expressed as  

( 1)DD OUT
P

CLK

I N I
C

N V f

  


 
                                            (2.7) 

 

2.3.2 Measurement Results 

Four-stage, eight-stage and twelve-stage charge pump circuits with 6-pF metal-

insulator-metal (MIM) pumping capacitors, a 6-pF MIM load capacitor and triple well 
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Figure 2.8 Measured output voltages of the charge pump circuits with triple well diodes 

to drive capacitive loads under different VDD. The clock frequency is 5MHz. 

 
Figure 2.9 Measured output voltages of the four, and eight-stage charge pump circuits for 

different clock frequencies. The power supply is 1.6V. 

 

Fig. 2.10 shows the measured output voltage of the four-stage circuit with 1MΩ 

output resistors and without output resistor at a 5MHz clock frequency. In Fig. 2.10, the 

output voltage of the charge pump circuit realized with the triple well diodes can be as 

high as ~18.1 V. Fig. 2.11 shows the measured power efficiency of the proposed four-
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stage and eight-stage charge pump. The measured peak power efficiencies of these two 

charge pumps are about 42.59% at IOUT of 5 µA and about 41.92% at IOUT of 7 µA, 

respectively. From (2.3), the clocked-plate parasitic capacitance Cp has the main effect on 

the power efficiency. In a bottom-plate connection, a large bottom parasitic capacitance 

of stage capacitors results in lower power efficiency. Clocking the top plate of the stage 

capacitors will reduce Cp, which can result in higher power efficiency. Also, this top-

plate connection will cause the decrease in the voltage gain of each stage of the charge 

pump, which results in a lower output voltage. 

Currents IDD and IOUT, IDD=81.75 µA and IOUT=7 µA, for the eight-stage charge 

pump shown in Fig. 2.7 are measured with a Keithley 2612 system source meter, where 

the clock frequency is 5 MHz and the power supply is 1.6 V. From (2.7), CP can be 

calculated as 0.85 pF, which is used for a proposed charge pump simulation.  

 

Figure 2.10 Measured output voltages of the four-stage charge pump circuits with the 

1MΩ resistor and without the resistor under different VDD. The clock amplitude is always 

equal to VDD.  
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Figure 2.11 Measured power efficiency of the proposed four-stage and eight-stage charge 

pump circuits. 

 

2.3.3 Discussion 

The model parameters of the triple-well diode in Table 2.1 and the parasitic 

capacitance, Cp=0.85 pF, are used to obtain the simulation results in Fig. 2.12. It shows 

that results from simulations and measurements agree with each other reasonably well. 

This further validates our model parameter extraction (Table 2.1) and circuit design 

processes. Compared with ideal charge pumps, the measured output voltage increase is 

~16% lower while the simulated voltage increase is only ~6% lower when the supply 

voltage increases by ∆V. This discrepancy is likely due to the leakage currents from 

parasitic capacitors of triple well diodes and the voltage loss caused by the measurement 

system including contact pads, probes, connectors and cables. 
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Figure 2.12 Measured and simulated output voltages of the proposed four-stage and 

eight-stage charge pump circuits to drive capacitive loads. 

 

Fig. 2.13 shows a comparison of our charge pump circuit with circuits that use 

diode-connected MOSFETs and Schotty diodes as switches in the same technology. The 

simulations were conducted with 1.6V VDD for a different number of stages. It shows that 

for 5-stages or less, the circuit with Schottky diodes has higher output voltages due to 

lower cut-in voltages (~0.3V). When the number of stage increases, our circuit generates 

much higher voltages. For diode-connected MOSFETs, the increase of threshold voltage 

(Vth) due to body effects affects the output voltage and power efficiency. For Schotty 

diode circuits, the output voltage is limited by the breakdown of parasitic p-n junctions 

and leakage current to the substrate. Thus, the voltage gain per stage in the charge pump 

circuits with diode-connected MOSFETs or Schotty diodes decreases as the number of 

stages increases as discussed in the introduction. The output voltage of our proposed 
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bottom-plate parasitic capacitance and high cut-in voltage of the diodes. As shown in Fig. 

2.10, the output voltage of our circuit can drive a purely capacitive load up to ~18.1V. 

 

Figure 2.13 A comparison of the simulated output voltages of the charge pump circuits 

with triple well diodes, diode-connected MOSFETs and Schotty diodes as the number of 

stage increases. The clock frequency is 5 MHz. 

 

2.4 Conclusions 

Triple well diodes with guard rings and deep n-well isolation are designed and 

modeled for high-voltage operation in standard bulk CMOS processes. Four-stage, eight-

stage and twelve-stage charge pump circuits with triple well diodes as charge transfer 

switches have been implemented in a commercial 0.13µm bulk CMOS process. 

Compared with circuits that use diode connected FETs and Schottky diodes as switches, 

our circuits generate much higher output voltages. When a 6-pF capacitor is used as the 

load, the measured output voltage can be up to 18.1V, using a 5MHz two-phase 

nonoverlapping clock. The achieved voltage is much higher than the p-n junction 

breakdown voltages of the given processes. 
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CHAPTER THREE 

CMOS HIGH VOLTAGE SHORT PULSE GENERATORS 

 
We present three types of on-chip pulse generation circuits. The first is based on 

CMOS pulse-forming-lines (PFLs). It includes a four-stage charge pump, a four-stacked-

MOSFET switch and a 5 mm long PFL. The circuit is implemented in a 0.13 µm CMOS 

process. Pulses of ~1.8 V amplitude with ~135 ps duration on a 50 Ω load are obtained. 

The obtained voltage is higher than 1.6 V, the rated operating voltage of the process. The 

second is a high-voltage Marx generator which also uses stacked MOSFETs as high 

voltage switches. The output voltage is 11.68 V, which is higher than the highest 

breakdown voltage (~10 V) of the CMOS process. The third is a CMOS Blumlein 

generator including a two-stacked-MOSFET high voltage switch, a Blumlein PFL 

network, and an on-chip Klophenstein taper. Gaussian-like pulses of 725 mV peak-to-

peak amplitude, ~126 ps duration and 3.18 GHz bandwidth are measured on a 50 Ω load. 

After de-embedding the connection system and Klophenstein taper, the pulses of 1.88 V 

and 114 ps duration are obtained. These results significantly extend high-voltage short 

pulse generation capabilities of CMOS technologies.  

 

3.1 Introduction 

Generating high voltage short pulses on chip is important for functionality 

integration, such as micro/nano electromechanical systems (MEMS/NEMS) actuation 

[3.1], electrophoresis [3.2], electroporation [3.3] and cellular investigation [3.4]-[3.5]. 

Short electrical pulse is also important for various other applications, such as clocking 
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high-speed analog-to-digital converters (ADC) [3.6], synthesizing ultra-wideband (UWB) 

signals for UWB communications [3.7], and developing inexpensive terahertz (THz) 

pulse technologies. Nevertheless, techniques for high voltage pulse generations on chip 

are still under exploration.  

Digital circuits generate pulses with Vdd as the maximum available output 

voltages and fan-out-four (FO4) propagation delay as the shortest pulses on a load of 4-

inverters, which are usually much lighter than a 50 Ω load. Traditional analog circuits 

could generate higher voltage pulses, but limited by Vdd and breakdown voltages of the 

given technology. High-voltage CMOS processes may not be able to exploit the high-

speed capabilities of standard digital CMOS processes without incurring higher costs. 

Photoconductive switching [3.8] and transmission line discontinuities [3.9] generate short 

pulses. However, it is difficult to implement these circuits in a standard CMOS process. 

Nonlinear transmission lines (NLTL) [3.10]-[3.11], which consist of long transmission 

lines and dozens of varactors, can sharpen pulse edges. But these circuits occupy large 

chip areas and their high-voltage generation capabilities need to be demonstrated. The 

CMOS UWB pulse generators, which are based on a pulsed oscillator and a pulse 

shaping filter [3.12] or a distributed waveform  generator [3.13], generate pulses with 

high bandwidth (4.5 GHz [3.12] and 6 GHz [3.13]). These circuits are also not applied 

for high voltage generations. In [3.14]-[3.15], we proposed a pulse-forming-line (PFL) 

based CMOS generator, which significantly extends the high voltage short pulse 

generation capabilities of CMOS technologies. Nevertheless, the obtained pulses are 

modest, with 180 mV voltages and ~160 ps full-width-at-half-magnitude (FWHM) on a 
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50 Ω load. A 0.13 µm CMOS technology was used for circuit implementation. 

In this effort, we further expand our previous work to generate high output 

voltages. We also present a high-voltage CMOS Marx generator circuit and an on-chip 

Blumlein generator. Such circuits have not been reported so far. This chapter is organized 

as follows. Section 3.2 presents the proposed CMOS PFL-based pulse generation circuit, 

including a charge pump circuit, a high voltage switch and a PFL network. Section 3.3 

proposes a study of reducing the timing jitter induced by power-supply and ground noise 

in PFL-based pulse generation circuits. Section 3.4 presents an on-chip Marx generator. 

Section 3.5 presents a CMOS Blumlein generator with an on-chip Klophenstein taper. 

Section 3.6 concludes this chapter.  

 

3.2 CMOS PFL-based High Voltage Pulse Generation Circuit 

The basic idea of a CMOS high voltage pulse generation circuit is to achieve high 

voltage (e.g. higher than 10 V, the breakdown voltages of N-well/Substrate of our given 

CMOS process) by exploiting the much higher voltage handling capabilities of the 

dielectric insulation layers between interconnect metals [3.16]. Figure 3.1 shows the on 

chip PFL-based high voltage pulse generation circuit, including a four-stage charge 

pump, a four-stacked-MOSFET switch and a 5 mm PFL. The four-stage charge pump is 

used as a high voltage source to generate the DC voltages higher than the power-supply 

voltage (Vdd). The four stacked MOSFET switch can operate at 4×Vdd (6.4 V) to 

overcome the limitation of breakdown voltages of MOSFETs, where Vdd (1.6 V) is the 

rated voltage of our given process [3.17]-[3.20]. When the switch is turned on by the 
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in diode voltage, N is the number of stages in the charge pump circuit, and f is the clock 

frequency. 

The reliable operation of the stacked-MOSFET switch determines the maximum 

charge pump output voltage. For the four stacked MOSFETs in Fig. 3.1, the pulse 

forming line network can be charged to 4×Vdd (~6.4 V). Thus a four-stage charge pump is 

chosen to obtain ~6.4 V output voltages from a 1.6 V power supply even though the ideal 

output voltage from this charge pump is 8 V. The voltage loss is due to charge loss 

through the current path formed by the voltage division resistors of the switch and the 

transmission lines. The output current (simulated) of the charge pump when imbedded in 

the circuit in Fig. 3.1 is shown in Fig. 3.2. It shows that the output current depends on the 

input power supply to the charge pump. Therefore, it is necessary to take into account 

this load effect when generating a given voltage. Fig. 3.3 shows the comparison of output 

voltage between analysis and simulation with different output currents. It is seen that the 

analysis results agree reasonably well with simulation results. Thus, Eq. (3.1) accurately 

describes the output voltage behavior of the charge pump circuit. 

 

Figure 3.2 Simulated output current from the charge pump to ground with different Vdd 

voltages. 
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Figure 3.3 Comparison of output voltage between analysis and simulation with different 

output currents. The power supply voltage is 1.6 V and the clock frequency is 5 MHz. 

 
Fig. 3.4 shows the required Vdd for a targeted Vout and a given load (i.e. Iout), 

obtained from Eq. (1), of the charge pump circuit. For 6.4 V output voltage, Vdd is less 

than 2.5 V, and the maximum output current is less than 30 µA. In our experimental test 

in section 3.4, a 2.4 V Vdd was chosen. Figure 3.4 shows that Iout is less than 30 µA and 

the output voltage is 6.6V, which is 0.2 V above 6.4 V. It should be pointed out that the 

2.4V Vdd is above the 1.2 V-1.6 V operating voltage of our given 0.13 µm CMOS 

process. Nevertheless, the MOSFETs in the stacked switch operate around 1.6 V. 

Furthermore, the breakdown voltage between gate/drain/source and the body of the 

MOSFETs in the technology is ~4.0 V. Thus, a 2.4 V Vdd does not cause breakdown 

issues in the charge pump circuit module. 

Higher output voltages can be achieved without using Vdd larger than 1.6 V. One 

approach is to add more stages in the charge pump circuit module. However, due to body 

effect for diode-connected MOSFETs [3.24] or breakdown of parasitic p-n junctions for 

diodes [3.25], output voltages of charge pump circuits are limited and cannot be a linear 
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function of the number of stages. Thus, modified triple well diodes are used as charge 

transfer switches to help solve this problem. In chapter two, we used modified triple well 

diodes in a 12 stage charge pump circuit and obtained as high as ~12.3 V output voltages 

to drive the 6 pF capacitive load from a 1.6 Vdd supply without breakdown concerns, 

which is much higher than the n-well/p-substrate junction breakdown voltage (~10 V). 

From Fig. 3.2, when Vdd is 1.6 V, the 8 stage charge pump with modified triple well 

diodes can generate ~6.4 V under ~12 µA output current to ground. 

 

Figure 3.4 Determination of input voltage to the charge pump for the given requirements. 

 

3.2.2 High Voltage Switch Design and Analysis 

Fig. 3.5 shows the high voltage switch with N stacked-MOSFETs, which can 
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N×Vdd into Vdd across each MOSFET. When M1 is turned on, its drain is discharged. 

Thus, its drain voltage is decreased. Then M2 is on, and similarly all the other MOSFETs 
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for each transistor in the stack can be expressed as [3.17] 
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'
1

0

( ) .dsNT tV t dt


                                                   (3.6) 

Figure 3.7 shows the transient response Vds4(t) for the switch with four stacked 

MOSFETs. Its derivative 4 ( )dsdV t
dt  is shown in Fig. 3.8. The definition of T1 is 

illustrated in Fig. 3.8 [3.27]. 

 
Figure 3.7 Transient response Vds4(t) for the switch with four stacked MOSFETs. 

 

Figure 3.8 Derivative of transient response Vds4(t). 
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By dividing the numerator with the denominator of the transfer function, Eq. (3.7) 

becomes 

2 2
1 1 1 1 1 2 2( ) 1 ( ) ( ) .T s b a s b a b a b s                                (3.8) 

If a unit impulse is applied to the circuit in Fig. 3.6, the transfer function has the 

relationship with 4 ( )dsdV t
dt

 

through Laplace transformation as 

'

0

( ) ( ) .st
dsNT s V t e dt


                                               (3.9) 

Expanding 
ste

 in a power series in st, Eq. (3.9) becomes 

2
' 2 '

0 0

( ) 1 ( ) ( ) .
2!dsN dsN

s
T s s t V t dt t V t dt

 

                            (3.10) 

Comparing Eq. (3.8) and Eq. (3.10), we have 

'
1 1 1

0

( )dsNT b a tV t dt


    ，                                         (3.11) 

where b1 and a1 are the sum of the pole and zero at each node in the high voltage 

switch, respectively. Assuming that a1 is zero, T1 can be obtained as 
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 (3.12) 

When the MOSFETs in series are the same size, the on-resistances and drain 

capacitances are all equal. 

1 2 1M M M N onR R R R                                          (3.13) 

1 2 1M M M NC C C C                                           (3.14) 
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Assuming that the dividing resistances Ri are much larger than the on-resistances 

RMi, based on Eq. (3.13) and Eq. (3.14), Eq. (3.12) can be simplified as [3.26] 

1

( 1) 1
.

( 1) 2 6 3
on N

on
N on

R C N N R N
T R

R N R

                
                       (3.15) 

Region II: After Region I, MN is turned on and the series transistors start 

discharging the load capacitance at the drain node of the topmost transistor. When the 

load capacitance is large compared to the drain/source capacitance, a Sakurai model is 

used to model time T2 in Region II [3.28]. In a Sakurai model, the delay degradation 

factor FD, defined as the ratio of the delay of series-connected MOSFETs to the delay of 

a single MOSFET, can be calculated as [3.28]  

1

1
1 (1 ) ( 1)

2
dsat dsat

D
dN dd th

I V
F N

I V V
         


，                         (3.16) 

where γ1 is the body-bias factor and IdN is the current for N series-connected MOSFETs.  

During time T2, the current discharging CL can be calculated from Eq. (3.16), 

therefore, 

2 .L dd L dd D

dN dsat

C V C V F
T

I I

  
                                          (3.17) 

Now the α-power law is used to model the topmost MOSFET MN. The I-V 

equations are [3.28] 

2 ds ds
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I I
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gs th
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dd th
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，         saturation region   (3.18b) 

where Idsat is the drain current when Vgs=Vds=Vdd, Vdsat is the drain saturation voltage 
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when Vgs=Vdd, and α is the velocity saturation index and is closely related to the velocity 

saturation of carriers. 

The differential equation that describes the discharge of the drain capacitance of 

the topmost transistor in the stacked switch is given by 

gout
MN gdN dsN

dVdV
C C I

dt dt
  ，                                       (3.19) 

where CMN is the capacitance at the drain node of MN and Vout is the drain voltage at the 

output node in Fig. 3.6. To solve Eq. (3.19), Vg and Vgs of MN can be modeled as 

1 1 1 1 2( ) ,gV t k t b T t T T                                           (3.20) 

2 2 1 1 2( ) ,gsV t k t b T t T T     ，                                    (3.21) 

where k1, k2 and b1, b2 are constants. Therefore, the operation of the high voltage switch 

during T2 can be analyzed as follows: 

(a) When Vth<Vgs<Vds+Vth, and the topmost MOSFET operates in the saturation 

region, Eq. (3.19) becomes 

.g gs thd
MN gdN dsat

dd th

dV V VdV
C C I

dt dt V V


 

    
                               (3.22) 

Then, Eq. (3.22) can be solved as 

  1 1
1 2 2

2

.
( 1) ( )

gdNdsat
d th

MN dd th MN

C kI
V k t b V t c

C k V V C



      

 
             (3.23) 

(b) When Vgs>Vds+Vth, and the topmost MOSFET operates in the triode region 

and its drain current rises until Idsmax. Idsmax can be expressed as 

max
DD

ds
L o on

V
I

R Z N R


  
，                                         (3.24) 

where Ron, the on-resistance of the MOSFET in switch, is 
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                                       (3.25) 

Since the drain current keeps the maximum value Idsmax in this region, the Vd 

reaches the minimum value 

m ax .d on dsV N R I                                             (3.26) 

With Eq. (3.15), (3.17), (3.23) and (3.26), the modeled output voltage for the high 

voltage switch with four stacked MOSFETs is shown in Fig. 3.9. The simulation result 

agrees reasonably well with the modeling result. The discrepancy is mainly caused by CM 

calculation errors. However, the errors do not significantly affect the output pulse 

modeling. Table 3.1 compares the modeled and simulated performance of the high 

voltage switch for different MOSFET sizes. The modeled results are nearly the same with 

the simulated ones, which confirms the validity of the switch modeling method. From 

Fig. 3.10, it shows that the fall time of the switch can reach minimum values between 200 

µm and 300 µm MOSFET width, while the voltage loss on the switch is less than 0.6 V. 

 

Figure 3.9 Simulated and modeled output voltage of the high voltage switch. 
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TABLE 3.1 Modeled and simulated parameters for high voltage switch 

MOS Width (µm) Result Fall Time (ps) Voltage Loss on Switch (V) 
100 Modeled 51.0 1.21 

Simulated 56.9 1.31 
200 Modeled 32.8 0.63 

Simulated 34.5 0.642 
300 Modeled 32.1 0.399 

Simulated 31.0 0.434 
400 Modeled 34.1 0.319 

Simulated 32.1 0.331 
500 Modeled 37.2 0.268 

Simulated 34.3 0.28 
 

 

Figure 3.10 Modeled switch performance with different MOSFET sizes. 

 

3.2.3 Output Pulse Analysis 

The current that passes through the PFL network and the load impedance RL can 

be expressed as [3.29] 
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where δ is the propagation time of the signal on transmission line, Rsw is the resistance 

from the high voltage switch, and U is the Heaviside step function. These are given as 
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                             (3.29) 

where ReqMN(t)=VdsMN(t)/IdsMN(t).  

The output voltage on the load impedance RL is 

( ) ( ).out L lV t R i t                                               (3.30) 

 
With Eq. (3.30), the output pulse for the on-chip PFL-based high voltage pulse 

generation circuit with four stacked MOSFET switch is modeled and shown in Fig. 3.11. 

The obtained pulse agrees reasonably well with the simulated one, which validates the 

high voltage switch and output pulse modeling method. 

 

Figure 3.11 Modeled and simulated output voltage for PFL-based high voltage pulse 

generation circuit. 
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measured output voltages of the charge pump with diode-connected zero Vth MOSFETs 
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The simulated output pulse shown in Fig. 3.14 has 93 ps FWHM. The 16 ps 

difference mainly comes from the slow switching process and the parasitic capacitances 

of the stacked MOSFETs. And the obtained pulse amplitude is ~2.51 V, which is ~0.69 V 

less than Vdd/2. The difference is likely due to on-resistances of stacked MOSFETs and 

slow trigger pulse rise time. 

The output pulse was measured with a Tektronix DSA8200 sampling oscilloscope 

with an 80E06 sampling module which has 70+GHz bandwidth. The measured output 

pulses are shown in Fig. 3.15. From Fig. 3.15 (a), the output pulse amplitude is ~925 mV 

with ~141 ps pulse width under Average Acquisition Mode. Fig. 3.15 (b) shows the 

measured output pulse with ~1.13 V amplitude under Envelope Acquisition Mode. A 

connection system with probes, cables and connectors is used to bring the output pulses 

to the 50 Ω terminated oscilloscope. This connection system is characterized with the 

two-port R&S ZVA50 vector network analyzer which has 50 GHz bandwidth. The 

obtained frequency response of the connection system is shown in Fig. 3.16, which 

results in a voltage loss on the output pulse. 

 

Figure 3.14 Simulated output pulse with and without measurement connection system. 
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(a) 

 
(b) 

Figure 3.15 Measured output pulses (a) under Average Acquisition Mode and (b) under 

Envelope Acquisition Mode. 

 

Figure 3.16 Frequency response of the connection system. 
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TABLE 3.2 Simulated output pulse with and without connection system 

 Amplitude (V) Duration (ps) Fall time (ps) Rise time (ps) 
Before Attenuation 2.51 93 43.5 57.5 
After Attenuation 1.27 95 45.5 70 

 

MATLAB simulation shows that if the simulated output pulse in Fig. 3.14 is used 

as the input of the connection system, the output shown in Fig. 3.14 is attenuated to half 

of the input mainly caused by the connection system. The output pulse of ~1.27 V with 

~95 ps FWHM is obtained by taking into account the connection effect. The comparison 

between the input and output pulse is summarized in Table 3.2. It indicates that the 

connection system attenuates the output pulse by a factor of ~2. To de-embed the 

connection system effect for the measured pulse under Average Acquisition Mode shown 

in Fig. 3.15 (a), the pulse of ~1.8 V with 135 ps is obtained. We estimate that the output 

amplitude, under Envelope Acquisition Mode shown in Fig. 3.15 (b), is ~2.26 V before 

being attenuated by the connection system, which is about 90% of the simulation value. 

The measured results in Fig. 3.15 (a) are far from the ideal output of 3.2 V and 77 

ps FWHM. The results are also worse than the simulated results, 2.51 V amplitude with 

93 ps pulse duration. The on-resistances and parasitic capacitances of the stacked 

MOSFET switch cause voltage loss and slower on and off switch time, which reduces 

pulse amplitude and increase pulse width. Nevertheless, the output pulse is higher than 

the rated Vdd of the process with a pulse width close to 2×τFO4 on a 50 Ω load. The circuit 

performance can be further improved for higher voltages and shorter pulses. For instance, 

MOSFETs with compact waffle layout, instead of the conventional multi-finger layout 

used in Fig. 3.13, can be used for switch layout. The waffle MOSFETs offer about 50% 
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reduction in gate resistance, 50% reduction in source/drain to substrate capacitance, 30%-

40% reduction in area, and 30%-50% enhancement in fmax [3.30]-[3.31], for the same 

device width. Charge pumps with modified triple-well diodes in the same process can be 

used to generate 12.3 V from 1.6 V, much higher than 6.4 V in Fig. 3.13. Thus, higher 

outputs can be expected even though more MOSFETs are needed for the switch. 

Additionally, more advanced CMOS technologies will boost the speed of the switch 

further, which is effective to generate shorter pulses on a 50 Ω load. Therefore, our PFL 

circuit techniques have the potential to generate picosecond pulses. 

 

3.3 Reducing Power-Supply and Ground Noise Induced Timing Jitter in PFL-Based Pulse 

Generation Circuits 

Recently, we proposed pulse-forming-line (PFL) based short pulse generation 

circuits shown in Fig. 3.17 [3.15], [3.32], which significantly extends the short pulse 

generation capabilities of CMOS technology. The circuit has three main components: a 

trigger pulse generator in Fig. 3.18, a switch and a PFL network. In [3.15], an NFET 

switch is used to generate ~168 mV and ~116 ps pulses on a 50 Ω load under 1.6 V Vc. 

Nevertheless, the measured pulse duration and fall/rise times are much longer than 

simulation results due to timing jitters. Since the time properties of the trigger pulse 

generator are easily affected by any change in the power or ground. The jitters are mainly 

induced by power-supply and ground noise disturbances in the trigger pulse generator 

consisting of conventional CMOS inverters and NAND gates, which causes pulse murky 

rise and fall edges and measurement uncertainty.  
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3.3.2 Time Jitter Model for PFL-Based Pulse Generation Circuits 

The response surface model (RSM) combined with latin hypercube sampling 

(LHS) is proposed as the surrogate model for analyzing the timing jitter of short pulse 

generation circuits. LHS, a space filling design, is used to uniformly sample points in the 

whole design space [3.35]. Cadence simulations are used to obtain the timing jitters at 

different sets of sampling points. Then the RSM of the timing jitter is built on these 

sampling points.  

To model the timing jitter characteristics of short pulse generators, power supply 

Vdd, power-supply noise standard deviation σV and ground noise standard deviation σG are 

used as input variables. Table I summarizes the LHS design for 8 sampling points on each 

of these three inputs. 

A response surface model can be represented as [3.36] 

2
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1 1 1
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k k k k

i i ii i ij i j
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                                       (3.32) 

where k is the number of independent input variables. Based on the sampling points listed 

in Table 3.3, the corresponding timing jitters for the CMOS short pulse generator can be 

simulated through Cadence. The RSM of the timing jitter is built as 
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The RSM of the CMOS short pulse generator timing jitter shows good agreement 

with the Cadence simulations, as shown in Fig. 3.22. Based on Eq. (3.33), the timing 

jitter as function of Vdd, σV and σG shown in Fig. 3.23 can be obtained. Fig. 3.23 shows 
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3.3.4 Conclusions 

This section presents an investigation of the timing jitter induced by power-supply 

and ground noise in proposed PFL-based pulse generation circuits. And the response 

surface model combined with latin hypercube sampling is used to model the timing jitter. 

In order to reduce the timing jitter in short pulse generators, MCML logic circuits are 

implemented in the trigger pulse generator. Moreover, it is shown that the power-supply 

and ground noise induced timing jitter generated by the MCML short pulse generation 

circuit has a 50% improvement over the conventional CMOS designs. 

 

3.4 On-chip Marx Generator 

Marx generators, which generate high-voltage high-power electrical pulses from 

low-voltage and low-power supplies, are a common module in pulsed power systems 

[3.37]. The capacitors in a Marx generator is charged in parallel and then discharged in 

series, effectively increasing the output voltage to N×Vc, where N is the number of 

capacitors and Vc is the charging voltage. Therefore, it is of great interest to develop on-

chip Marx generators, which have not been reported so far, to overcome the voltage and 

power limitation of CMOS technologies. 

A potential application of such Marx generator circuits is to realize a truly 

portable lab-on-chip system that need high-voltage and high-power electrical pulses, 

which are not available with standard CMOS devices and circuits [3.2], [3.38]. For 

instance, pulsed field electrophoresis requires a field intensity of 1-10 kV/m across a ~ 

10-100 µm microfluidic channel. Thus, voltages of 10 V to 100 V, which are much 
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Assuming RL is much larger than the series resistor Req and the load capacitance 

CL is smaller than the equivalent capacitance Ceq, the inverse transform of Eq. (3.39) 

gives [3.29]  

(t) exp exp .
1 1 L eq eq L

eq L
eq L L eq

V t t
v

R C R C
R C

R C R C

    
                    
 

              (3.40) 

The rise time of the output is controlled by the on-resistances of the high voltage 

switches and the load capacitor. And the duration of the output can be tuned by changing 

the duration time of the trigger signals. 

 

3.4.2 Stacked MOSFETs As High Voltage Switches 

Fig. 3.30 shows the high voltage switch with four stacked MOSFETs since the 

breakdown voltage of a single MOSFET is limited. Table 3.5 shows the design 

parameters for capacitors (C2~C4) obtained from Eq. (3.3). Fig. 3.31 shows the 

simulation result of 4 stacked MOSFETs switch. When the stack turns on, all the four 

devices turn on almost simultaneously, pulling the output to low voltage level. Due to ON 

resistance of four devices in series, the output voltage does not fall to zero. In Fig. 3.31, 

the four stacked MOSFETs switch is biased with 6.4 V supply. When the stacked 

MOSFETs are turned off, each device supports an even 1.6 V share of the 6.4 V supply. 
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voltage and the switch is triggered, it discharges to generate a Vc pulse across a matched 

load ZL, where Vc is the charging voltage [3.29]. Therefore, it is of great interest to 

develop on chip Blumlein generators, which have not been reported so far. Yet, high-

impedance loads are not matched to 50 Ω-terminations oscilloscopes typically have. The 

mismatch leads to voltage loss during measurements. This work also introduces an on-

chip Klophenstein taper to convert the load ZL to 50 Ω, which helps avoid reflections. 

The Blumlein pulse generator is simple and compact since it does not need extra pulse 

shaping networks and can generate pulses directly from a DC-voltage input. 

 

3.5.1 On-chip Blumlein Pulse Generator Design Consideration 

Fig. 3.35 shows the schematic diagram of the on chip Blumlein generator with a 

Klophenstein taper and a stacked-MOSFET high voltage switch. The transmission line 

characteristic impedance Zo is related to the load ZL by the relation Zo=45Ω=ZL/2=90Ω/2 

[3.43]. The Klophenstein impedance taper with 11 sections is used to match 50 Ω load of 

an oscilloscope in order to avoid reflections. The first section of the taper acts as the load 

ZL. Because coplanar waveguide (CPW) provides higher operating frequencies, 

minimizes crosstalk and noise, and is easier for on-chip fabrication. On-chip CPWs are 

chosen for our circuit. In this work, the high voltage switch is a two-stacked-MOSFETs. 

The switch can operate under 2×Vdd (3.2 V), where Vdd (1.6 V) is the rated highest 

operating voltage of our given process. A high voltage source (Vc=3.2 V), which can be 

easily provided by charge pump circuits, is used to charge Blumlein PFL network. When 

the switch is turned on by the trigger signal, which is sharpened by a trigger pulse 



 

gener

gener

Fig. 3

 

reflec

minim

chip K

to 50

impe

wher

coeff

length

rator, the B

rated with an

3.35 Propose

Compared

ction coeffic

mum length

Klophenstei

0 Ω, which

dance variat

e  ,z A  is d

ficient at zer

h of Klophen

Blumlein PF

n ideal ampl

ed on-chip B

3

d with other

cient in the p

h for a speci

n transmissi

h is suitable

tion for the K


1

ln
2

Z z

defined as th

ro frequency

nstein taper.

FL discharge

itude of 3.2 

Blumlein gen

.5.2 On-chip

r impedance 

pass band fo

ified maxim

ion line tape

e for measu

Klophenstein


ln
cosh

o
o L

Z Z

 cA

he integral o

y, Γm is the 

. 

63 

es through 

V. 

nerator with 

p Klophenste

tapers, the K

or a specified

mum reflecti

r is chosen t

urements. T

n taper is giv

 2 2
h
o zA

LA

 


1cosh o

m

  

of a modified

maximum r

its load. T

a Klophenst

ein Taper 

Klophenstei

d taper leng

ion coefficie

to convert hi

The logarith

ven by [3.45

 1, , 0A for

                   

d Bessel fun

ripple in the

he output p

 

tein taper 

n taper has 

gth, and, sim

ent [3.44]. T

igh-impedan

hm of the 

] 

 z L            

                    

nction, Γo is 

e passband, 

pulse is the

the minimum

milarly has th

Therefore, o

nce 90 Ω loa

characteristi

            (3.41

           (3.42

the reflectio

and L is th

en 

m 

he 

on 

ad 

ic 

1) 

2) 

on 

he 



64 
 

The passband for the Klopfenstein taper is defined as βL>A. And the resulting 

reflection coefficient is given by  

 
  

   
2 2cos

,
cosh

j L

o

L A
e for L A

A
                         (3.43) 

Fig. 3.36 shows the simulated reflection coefficient for our taper. From Fig. 3.36, 

the taper gives the desired response of |Γ|<0.02 for f>10 GHz. 

 

Fig. 3.36 Simulated result of on-chip Klophenstein taper 

 

3.5.3 On-chip Blumlein Pulse Generator Measurement Results 

The on-chip Blumlein generator is fabricated in an IBM 0.13 µm CMOS process. 

Fig. 3.37 shows a micrograph of the generator with two 3.75 mm meander transmission 

lines and a Klophenstein taper. It occupies an area of 1125 µm×1140 µm without the 

measurement pads. The two stacked MOSFETs used in this circuit can switch 2×Vdd (3.2 

V). Therefore, the ideal output has 3.2 V amplitude and 60 ps full-width-at-half-

maximum (FWHM). 
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Fig. 3.38 Measured output pulses of on-chip Blumlein generator 

 

The power spectral density (PSD) of the measured pulse from Fig. 3.38 was 

calculated by using the Fourier transform, shown in Fig. 3.39. It is seen that the 10 dB 

pulse bandwidth is 3.18 GHz. 

 

Fig. 3.39 Power spectrum of the output of on-chip Blumlein generator 

 

3.6 Conclusions 

In summary, a PFL-based high voltage short pulse generation circuit is 

implemented in a commercial 0.13 µm CMOS technology. The circuit includes a charge-

pump module, a switch, and a pulse forming line. The high-voltage switch consists of 
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four-stacked-MOSFETs and operates under 6.4 V with ~9 Ω on resistance and ~33 ps fall 

time. Output pulses of ~1.8 V with ~135 ps FWHM on a 50 Ω load are obtained. The 

obtained voltage is higher than the rated-operating voltage (1.2-1.6 V). The pulse FWHM 

is close to 2×τFO4.  

An on-chip 3-stage Marx generator is designed and implemented in CMOS 

process. When a parallel combination of 1 MΩ and 13 pF is used as the load, the 

measured output voltage is up to 11.68 V with 1.35 ns rise time and 1.64 ns fall time. The 

voltage is well above the breakdown voltages of the FET (3.3V) and well-substrate 

junction 10 V of the given technology.  

In this chapter, we also describe an on-chip Blumlein generator, including a two-

stacked-MOSFET switch, a Klophenstein taper, and a Blumlein PFL network. A 

Klophenstein taper is included for broadband impedance transformation. The circuit is 

implemented in a standard 0.13 µm CMOS process. The measured output pulses on a 50 

Ω load are 725 mV with ~126 ps FWHM and 3.18 GHz bandwidth. The pulse repetition 

rate can be up to 125 MHz. After de-embedding the effects of the connection system and 

Klophensein taper, pulses of ~1.88 V and ~114 ps can be obtained. The obtained voltage 

is higher than the rated Vdd (1.2-1.6 V) of the process. 
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CHAPTER FOUR 

A HIGHLY RECONFIGURABLE LOW-POWER CMOS DIRECTIONAL COUPLER 

AND SIX-PORT CIRCUIT 

  

A CMOS broadband six-port circuit based on four quadrature hybrids is designed 

and proposed for analyzing signals in frequency domain. To realize the tunable and 

broadband six-port circuit, this chapter also presents a highly reconfigurable, low-power, 

and compact directional coupler. The coupler uses varactors and novel active inductors to 

achieve wide tuning ranges of operating frequencies and coupling coefficients. The use of 

a low-pass circuit architecture with only two inductors minimizes chip area, power 

consumption, and noise. The coupler is implemented in a 0.13 µm CMOS process. It 

occupies an area of 350 µm×340 µm and consumes 40 mW or less power. The obtained 

1-dB compression point is -3.2 dBm, and the measured noise figure is ~23 dB. These 

parameters compare favorably with previously published reconfigurable couplers. The 

measured coupling coefficient can be tuned from 1.3 dB to 9.0 dB at 4 GHz with 32 dB 

or better isolation and 15 dB or better return loss. The operating center frequency can be 

tuned from 2.0 GHz to 6.0 GHz for a nominal 3-dB operation. These results agree with 

theoretical predictions and simulations reasonably well. 

 

4.1 A Highly Reconfigurable Low-power CMOS Directional Coupler 

Directional-couplers are widely used in various microwave systems, including 

balanced mixers, balanced amplifiers, phase shifters, filters, and phase array antennas 
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[4.1]-[4.5]. Conventional directional couplers, such as branch-line couplers, Lange 

couplers and coupled-line couplers, are realized with distributed transmission lines. At 

lower giga-hertz frequencies, these lines lead to large areas, which are a challenge in 

integrated microwave circuit development. Hence, various lumped-element directional-

couplers are proposed to address the problem [4.6]-[4.8]. Additionally, reconfigurable 

directional-couplers, which have tunable coupling coefficients [4.9]-[4.12] and operating 

frequencies [4.13]-[4.17], are under development for applications in sequential 

amplifiers, reconfigurable antenna arrays and multi-standard systems.  

Tuning elements, such as varactors and inductors, are needed to build 

reconfigurable couplers. Different circuit architectures, which are mostly derived from 

distributed transmission-line (TL) counterparts, determine the number of tuning 

components and the performance of the couplers. For instance, varactors were used to 

tune coupling-coefficients in [4.9]-[4.12] with large bias voltages (up to 30V in [4.9] and 

25V in [4.10]). The couplers occupy large areas when compared to lumped-element ones. 

Varactors were also used to tune the center frequency of couplers in [4.13]-[4.16]. The 

circuits therein also occupy large areas and need large bias voltages. RF MEMS switches 

were used to build directional-couplers in [4.17]. However, the switches are not standard 

CMOS devices and have many challenges of their own. Therefore, fully integrated 

CMOS hybrids have been investigated. These CMOS circuits use active inductors and 

varactors to tune operating frequencies [4.18] and coupling-coefficients [4.19]. 

Nevertheless, current CMOS hybrids have limited frequency tuning range and significant 

power consumption.  
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Ignoring the isolation capacitors CMIM1 and CMIM2, the even-odd mode analysis 

technique [4.20] gives the scattering parameter matrix of the hybrid as  

     
11 2

e oS
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 where Te,o and Γe,o are the transmission and reflection coefficients of the even- and odd- 

mode partial circuits, respectively. They are 
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where B1 and B2 are susceptances of capacitors C1 and C2, respectively; XL the reactance 

of the inductors L and Zo=50 Ω the system impedance.  To achieve low reflection 

coefficient and high isolation, we have 
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11 41 0S S                                                         (4.9) 

which yields 
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where o is the center frequency of the hybrid. 

The transmission coefficient S21 and S31 are 
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A. Coupling Coefficients 

The coupling coefficient of the proposed directional coupler at fo is 

                       1
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which is independent of inductor L. Therefore, MOS varactors C1 and C2 can be used to 

tune the coupling coefficient independently as the calculation results shown in Fig. 4.2. 

Fig. 4.2 also shows the coupling coefficients (|S31|) obtained from Cadence Spectre 

simulation with the extracted coupler circuit of Fig. 4.1. It shows that theoretical 

predictions agree with simulation results reasonably well; an 8.0dB coupling-coefficient 

tuning range (fo=4GHz) can be achieved. To keep ω0 unchanged, matching conditions 

satisfied, and isolation performance unaffected, Fig. 4.3 (a) shows the choice of inductor 
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circuit, which will be further discussed later. Inductance L is varied to tune the operating 

frequency of the coupler. The discrepancy is mainly caused by parasitic components of 

circuit elements, such as poly-Si gate resistance of MOS varactors, parasitic resistance 

and capacitance of active inductors. Nevertheless, it shows that a 5GHz tuning range can 

be obtained.  

 

Figure 4.4 The operating center frequency for a 3dB nominal coupling-coefficient. L is 

calculated from (4.16). The simulation results are obtained by tuning varactors C1, C2 and 

active inductors L in Fig. 4.1. 

 
Figure 4.5 The tuning of C2 and L with C1 for the 3dB coupling coefficient operations in 

Fig. 4.4. 
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The above analysis shows that our chosen coupler in Fig. 4.1 has independent fo 

and coupling coefficient tuning capabilities. In our chosen CMOS process, the coupling 

coefficient can be tuned from ~0.5dB to ~8dB, and the operating frequency can be tuned 

from ~2GHz to ~6GHz.  

 

4.1.2 Circuit Implementation and Measurement Results 

The directional coupler in Fig. 4.1 is implemented in a 0.13µm CMOS process. 

MOS varactors are used for C1 and C2. Capacitor C1 is tunable from 250 fF to 1.1 pF and 

the capacitor C2 from 145 fF to 610 fF. The use of a paired coupling capacitors for C1 

improved the reciprocity (i.e. symmetry) of the circuit, therefore, the coupler 

performance. CMIM1 and CMIM2 are for DC isolation. MOS varactors can be approximated 

by a resistor (RS) in series with a nonlinear capacitor. RS is dominated by the poly-Si gate 

resistance. This series resistance has a strong impact on the coupler’s insertion loss. 

The inductors in Fig. 4.1 are critical for the coupler operation. We employ the 

novel active inductor proposed in [4.21]-[4.22], as shown in Fig. 4.6 (a), while the design 

parameters are listed in the Table 4.1. Based on a gyrator-C architecture, two 

transconductance amplifiers are used to convert the susceptance of the gate-source 

capacitance of M5 and M6 to inductive impedance. M9, M10, M11 and M12 are the 

feedback pairs which can improve the self-resonant frequency, inductance value and Q 

factor of the active inductor. The equivalent circuit model in Fig. 4.6 (b) gives the input 

impedance as [4.22] 
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coefficient of the proposed coupler can be tuned from 1.3dB to 9.0dB while the isolation 

is better than 30 dB on a 40MHz bandwidth. Therefore, 74%-9% of the input power at 

port 1 is transmitted to port 3. Moreover, the return loss is better than 15dB, as shown in 

Fig. 4.10. The insets of Fig. 4.8, 4.9 and 4.10 show the comparison of S31, S41 and S11 

magnitudes from calculation, simulation and measurement at 4GHz with 2.2dB coupling 

coefficient. These results agree with each other reasonably well. The directional coupler 

draws approximately 18mA dc current from a 1.6V voltage supply. The power 

consumption is 28.8mW. Across the entire coupling coefficient tuning range, the 

insertion loss is less than ~2dB. 

 

 
 
 

Figure 4.8 Tuning the coupling coefficients at fo=4GHz with different bias voltage Var1 

and Var2. The blue straight line in inset represents theoretical result, the green dash-dot 

line represents simulation result and red dash line represents measurement result.   
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Figure 4.9 Measured isolation |S41| for the coupling coefficients in Fig. 4.8.  

 
Figure 4.10 Measured return loss for the coupling coefficients in Fig. 4.8. 

 

B. Center Frequency 

Fig. 4.11 shows |S21|, |S31| versus frequency for different center frequencies. The 

cross point values of |S21| and |S31| are shown in Fig. 4.12 [4.23]. And Fig. 4.12 presents 

the measured insertion loss |S21|, |S31| and phase differences  S21- S31 when fo is tuned 

from 2GHz to 6GHz for a nominal 3-dB operation. Their magnitudes fluctuate from -

3.18dB to -4.33dB. So the worst insertion loss is 1.33dB, and with the phase differences 

between port2 and port3 from ~88° to ~92°. Thus, the output phase error is less than 2°. 
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Figure 4.13 Measured isolation |S41| versus frequency for different fo in Fig. 4.11.  

 

Figure 4.14 Measured return loss |S11| for different fo in Fig. 4.11. 

 

C. 1-dB Compression Point and Noise 

Fig. 4.15 shows |S21| and |S31| at fo=4GHz versus input power level from -30 dBm 

to 5 dBm. When ports 3 and 4 terminated 50Ω loads, the 1dB compression point of the 

coupler is -3.2dBm. Compared with the coupler proposed in [4.18]-[4.19], our coupler 

has higher 1dB compression point [4.24], due to the use of differential active inductors. 

Fig. 4.16 shows all the noise current sources of the proposed coupler. The noise 

contribution of varactors C1 and C2 are modeled by a shunt noise current source inc1 and 

inc2x, respectively [4.25], where x is the port number. We have 
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To obtain the output referred noise of the proposed coupler for port 2 and port 3, 

we first calculate the impedance at each port. The impedance is a parallel combination of 

Zo and the input impedance Zin of the port. Based on even and odd mode half circuit 

analysis, Zin at port 2 can be expressed as [4.26] 

                                2 2 2

2 2 2

e o

in e o

V V V
Z

I I I


 


                                               (4.23) 

where 2
eV and 2

oV are the even and odd mode voltage at port 2, respectively, and 2
eI  and 2

oI

are the currents through port 2. Then, the output noise voltage at port 2 is  

         2

2 2 2 2 2 2
2 1 21 22 24

/ / ( )
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2
o in

n nc nc nc nc total

Z Z w
V i i i i I             (4.24) 

Fig. 4.17 shows the measured and simulated output noise voltages when fo is 

4GHz. Simulation results agree reasonably well with that from (4.24). The 

measurements, conducted with a spectrum analyzer with FS-noise software, yield slightly 

higher noise voltages. This discrepancy is likely due to the effects of the contact pads and 

repeatability of probe-pad contacts, since multiple probe-tip-pads contacts are needed for 

the measurements. Fig. 4.18 shows measured output noise at port 2 for different fo. 

Compared with the coupler in [4.19], our coupler has less output noise (less than 4.0 

nV/√Hz). 
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4.19. Also shown is the NF obtained with a Y-factor method, which is extracted from the 

following equation [4.28]-[4.29] 

o s

o s

N kT G
F

kT G


     (4.25) 

where F is the noise figure, N is the added noise of the whole system, Gs is the power 

gain. The obtained NF from these two measurements agrees with each other reasonably. 

Fig. 4.20 shows measured output noise figure at port 2 at different center frequencies. 

The obtained NF is large. Simulation analysis shows that the active inductors are the 

main noise source. Nevertheless, low noise amplifiers [4.30] can be used to suppress 

noise [4.31]-[4.33] for applications. Simple amplifiers [4.34] could also be used in 

conjunction with the coupler. Compared with using LNAs, total chip areas are smaller, 

but with higher noise figure.  

Table 4.2 summaries the performance of the coupler in this work and compares 

with other published couplers. A few observations can be made. First, our coupler has a 

frequency tuning range that is a few times wider than previously published CMOS 

couplers. The tuning range is comparable with the coupler in [4.15], which has a fixed 

coupling coefficient. The coupler in [4.15] reported the widest frequency tuning range so 

far, but occupies much larger area. Second, compared with other CMOS couplers, our 

coupler has much wider coupling coefficient tuning range. Third, compared with the 

coupler in [4.19] our coupler occupies 1/4 of the area and consumes ~1/10 of the power. 

At the same time, our coupler has higher 1-dB compression point and less noise. 
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Power dissipation - 17.6 to 
24.6mW 

132 to 
316mW 

19.84 to  
39.1mW 

Size 7mm×10mm 400×200 µm 730×600 µm 350×340 µm 
1dB compression 

point 
- -16dBm -4.16dBm -3.2dBm 

 

 

4.1.3 Conclusions 

A highly reconfigurable, low-power, and compact directional coupler is proposed, 

analyzed and implemented in a 0.13µm CMOS process. Varactors and novel active 

inductors are used as the tuning components. The operating center frequency of the 

coupler is tunable from 2.0GHz to 6.0GHz with return loss better than 15dB and isolation 

better than 32dB. The coupling coefficient can be tuned independently from 1.3dB to 

9.0dB. The measured 1-dB compression point is -3.2dBm. These parameters are much 

better than previously published couplers. This coupler consumes 40mW or less power, 

which is much lower than that of similar couplers.  

 

4.2 A Broadband and Highly Reconfigurable CMOS Six-port Circuit 

Many microwave applications need to measure the reflection coefficient of a 

device-under-test (DUT) over a specified frequency range. Vector network analyzers 

(VNA) are often used to perform this task. Nevertheless, their excellent performance is 

offset by high cost and bulky size. 

In [4.35], Engen proposed a six-port reflectometer as an alternative to the 

conventional network analyzer for the first time. The six-port, shown in Fig. 4.21, is used 

to measure the complex reflection coefficient of a DUT by using four power readings and 
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(b) 

Figure 4.24 Simulation results of six-port circuit at (a) 2 GHz and (b) 6 GHz. 

 

Fig. 4.25 shows the measured transmission coefficients from port 1 to port i (i=2, 

3, 4, 5, 6) and from port 2 to port i (i=3, 5, 6) by ZVA50 vector network analyzer. 

Compared with the expected transmission coefficients from port 1 to port i (i=2, 3, 4, 5, 

6), which are -6 dB for S21, S31, and S41; -9 dB for S51 and S61, the worst insertion loss can 

be up to ~16 dB. Thus, the q-point distribution of the CMOS six-port circuit was 

seriously affected. Fig. 4.26 shows |S31| and |S61| at 2 GHz versus input power level from -

40 to 10 dBm. The 1-dBm compression point of the six port circuit is ~-15 dBm. Based 

on the non-linearity of the six-port circuit, the maximum input power should be smaller 

than -15 dBm. Therefore, the powers at port i (i=3, 4, 5, 6) are too small to obtain by 

Gigatronics 8651A power meters with 80421A power sensors. 
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(a) 

 

(b) 

Figure 4.25 Measured transmission coefficients from (a) port 1 to port i (i=2, 3, 4, 5, 6) 

(b) port 2 to port i (i=3, 5, 6) 
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                                  (a)                                                                       (b) 

Figure 4.26 Measured (a)| S31| (b) |S61| with different input power. 

 

The performance of the CMOS six-port circuit was seriously affected by large 

insertion loss and power measurement limitation. Nonetheless, simulations show that our 

six-port circuit can be used to measure on-chip scattering parameters and tuned from 2 

GHz to 6 GHz. Therefore, future works are needed to reduce the insertion loss and 

improve input dynamic range and power detection capability. The performance of the 

tunable and integrated six-port circuit will be demonstrated through measuring dielectric 

changes of water and other chemical agents.    
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CHAPTER FIVE 

 A SPATIAL SAMPLING BASED 13.3 Gs/s SAMPLE-AND-HOLD CIRCUIT 

 
This chapter presents a high-speed sample-and-hold circuit (SHC) for very fast 

signal analysis. Spatial sampling techniques are exploited with CMOS transmission lines 

(TLs) in a 0.13 µm standard CMOS process. The SHC includes on chip coplanar 

waveguides (CPW) for signal and clock pulse transmission, a clock pulse generator, and 

three elementary samplers periodically (L=7.2 mm) placed along the signal propagation 

line. The SHC samples at 13.3 Gs/s. The circuit occupies an area of 1660 µm×820 µm 

and consumes ~6 mW at a supply voltage of 1.2 V. The obtained input bandwidth is 

~11.5 GHz.  

 

5.1 Introduction 

Many experimental domains, such as high-power microwaves (HPM) lasers, 

optics, pulsed range radars, and ultra-wide-band (UWB) communications, often need to 

measure very short pulses in real-time since the pulses are non-repetitive or at a low 

repetition rate [5.1]-[5.2]. High-speed analog-to-digital converters (ADCs) are critical in 

these applications [5.3]. But, the performances of such ADCs are often limited by their 

sampling rate and jitter. Therefore, laser-based digitizers and photonic approaches have 

been explored to achieve high sampling rates and high time resolutions, such as the 10 

Tsample/s real-time digitization [5.4], 100 Gs/s ADCs [5.5], and 15 fs low jitter 

operations [5.6]. However, these techniques are not compatible with CMOS technologies. 

ADCs in InP HBT technologies [5.7] and SiGe BiCMOS processes [5.8] can achieve 
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sampling rates up to 40Gs/s. But it is difficult for these ADCs to capture single short 

pulses. The processes are also more expensive than standard CMOS processes. Time-

interleaving strategies (6-bit 16 Gs/s ADC in Ref. [5.9], 40 Gs/s ADC in Ref. [5.10]) and 

flash ADC technologies (6 bit 25 Gs/s flash interpolating ADC in Ref. [5.11]) are 

effective approaches to develop high-speed and high-resolution CMOS ADCs. However, 

the clock distribution networks consume significant power and pose design challenges to 

meet the stringent clock skew requirements. Meanwhile, clock jitter becomes a major 

factor limiting the progress of such ADCs for higher sampling rates and resolutions. 

Hence, exploring new approaches that can further reduce jitter is necessary. Since high-

speed sample-and-hold circuits (SHCs) are commonly the first stage and the key for high 

performance ADCs, therefore, developing high-speed CMOS SHCs is of great interest.  

 In this work, we propose a spatial-sampling based CMOS SHC. Previously, such 

spatial sampling techniques have been explored with InP and GaAs MMIC technologies 

[5.12]-[5.13]. Our SHC exploits on-chip transmission lines (TL) to capture and store 

single short signal pulses as well as clock pulses. Only one clock pulse is needed to 

obtain multiple sampling points. Thus, the clock jitter issues are significantly alleviated, 

since the passive clock distribution transmission line does not induce jitters. This chapter 

is arranged as the following: section 5.2 presents the design topology of our CMOS SHC; 

section 5.3 gives the circuit measurement results; section 5.4 is the conclusions. 
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with signal propagation constants, 0 0 0j    , and characteristic impedance Z0. The 

periodic loading of elementary samplers further changes signal propagation constant to

j    . The constant γ and its frequency dependence can be obtained by considering a 

unit cell that is repeated N-times in Fig. 5.1. The ABCD matrix of the unit cell is [5.14]  

2

0 0 0 0

1
0 0 0 0

cosh( ) sinh( ) sinh( ) (cosh( ) 1)
2 2

sinh( ) (cosh( ) 1) cosh( ) sinh( )
2 2

j jbZ
l Zb l Z l lA B

C D jb j
Z l l l Zb l

   

   

 
    

   
       

，
                        (5.1) 

where b is the load from the elementary sampler, which can be modeled as a series of the 

channel resistance, Rd, of M and the capacitor CH. Equation (5.1) shows that the ABCD 

matrix of the unit cell is equal to the product of the ABCD matrices representing the 

CPW lines with L/2 length and the shunt load from the elementary sampler. This ABCD 

matrix is a characteristic of the unit cell, which relates the frequency-dependent input 

voltage and current of the unit cell to the output voltage and current. The ABCD matrix 

of the unit cell is then converted to its scattering parameter matrix, and its transfer 

function can be derived. The inverse Fourier transform of the obtained transfer function 

gives signal transmission on these loaded CPW lines. Figure 5.2 shows the propagation 

of a narrow pulse on such a loaded CPW line when the line period L is 7.2 mm, CH is 451 

fF, and Rd=3.5 Ω, which are the same as the values in Fig. 5.6 in Section 5.3. The CPW 

line is a standard device component in advanced CMOS technologies, which has broader 

operating frequency range with less loss and dispersion. Figure 5.2 indicates that the 

pulse is attenuated and deformed. As a result, the number of elementary samplers for the 

SHC in Fig. 5.1 will be reduced. The clock signal pulse in Fig. 5.1 is deformed, which 
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causes an increase of the rise and fall times. Thus, the resolution of the SHC will be 

decreased. 

 
Fig. 5.2 The transmission of a narrow pulse on CPW lines. 

 

5.2.2 On-chip Clock Signal Generation Circuit 

Figure 5.3 shows the schematic of the clock pulse generator used in the SHC. This 

generator can convert an external trigger pulse with slow edges to a typical clock pulse 

signal with ~50 ps full-width-at-half-maximum (FWHM) [5.14] in a standard 0.13 µm 

CMOS technology. The main block in this generator is the CMOS NAND gate fed by the 

input signal and its delayed inverse, which is used to generate a short pulse with a 

duration determined by the propagation delay of the inverter. A chain of three inverters is 

used to shape the rise and fall times of the short pulses to drive the sampling MOSFET 

switch. Narrow clock pulse signal can help avoid interference from reflected waves at 

adjacent elementary samplers. Furthermore, it is useful to minimize the nonlinear 

components of the sampled signal. 
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Fig. 5.7 SHC outputs with a step waveform with 200 ps rise time. 

            

                   (a)                                                           (b) 
 

Fig. 5.8 SHC with a single pulse (a) Input pulse (b) Simulated output pulse. 

 

In addition to the pulsed signals, a 10 GHz sinusoidal signal with a peak-to-peak 

voltage of 100 mV is also used as the input. The initial delay of the sinusoidal signal is 

varied from 0 to 100 ps in 512 steps. The FFT plot of the 512 sampled voltages from the 

second sampling channel is shown in Fig. 5.9. Based on the FFT results, dynamic 

performance parameters of the three sampling channels are summarized in Table. 5.1. It 

indicates that the SNR values of the three channels are decreasing from channel 1 to 

channel 3. This is because the magnitude of the input signal is attenuated along the 
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meandered transmission line. Also, the SDNR, SFDR, and THD of the first channel are 

smaller than those of the other two channels. This is because the nonlinear effects are 

more severe in the first sampling channel due to larger input magnitude. 

 

Fig. 5.9 The FFT plot for the second sampling channel 

TABLE 5.1 Dynamic performance parameters of three sampling channels 

 Output 1 Output 2 Output 3
SNR (dB) 74.7774 69.7521 53.3121

SDNR (dB) 21.8505 26.4982 23.2769
SFDR (dB) 21.9009 26.7465 23.2999
THD (dB) -21.8505 -26.5693 -23.2812

 

The test setup shown in Fig. 5.10 was used to measure the SHC. Measurements 

were performed on chip by using high frequency multi-contact probes. Time domain 

measurements were conducted by using a Tektronix DPO7354 digital oscilloscope and a 

Model 4050B pulse generator from Picosecond Pulse Labs. Frequency domain 

measurements were evaluated by using the oscilloscope and an Agilent 83712B 

synthesized CW generator. The signals, generated by a Model 4050B pulse generator, are 

split into signal set_in, clk_in, and Trigger, respectively, by using power dividers. 
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measured 3-dB bandwidths for channel one and channel two are larger than 11 GHz. The 

reason for the fluctuations in the frequency response of the SHC is mainly due to the 

parasitic inductance of probe-tip-pad contact. 

 

   (a) 

 
    (b) 

 

Fig. 5.11  Measured waveforms for input signals with (a) 350 ps and (b) 130 ps. 
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                      (b)                                                         (c) 
 

Fig. 5.12 (a) Simulated input bandwidth of the sample-and-hold circuit (b) Measured 

output frequency response for channel 1 (c) channel 2. 

Table 5.2 summaries the operation features of this circuit and some previously 

reported circuits. A few observations can be made. First, the input bandwidth for the 

circuit described in this work is much higher than other reported circuits. Second, the 

total power consumption is ~ 6 mW from a 1.2 V supply, a 90% improvement over 

previous designs. Third, the digitizer in Ref. 5.12 has higher sampling rate, but occupies 

much larger area. At the same time, based on distributed amplifiers periodically loaded 

on a transmission line, the circuit in Ref. 5.16 has 20 Gs/s sampling rate, higher than our 

SHC’s. Yet, the circuit has larger power consumption and smaller input bandwidth. 

TABLE 5.2. SHC circuit performance summary and comparison 

Parameters [5.12] [5.15] [5.16] This work 
Sampling 
Frequency 

20 Gs/s 6.4 Gs/s 20 Gs/s 13.3 Gs/s 

Input Bandwidth @ 
-3dB 

8 GHz > 6 GHz 1.8 GHz 11.5 GHz 

Power Consumption  470 mW 71 mW 6 mW 
Voltage Supply  5.1 V 1.2 V 1.2 V 

Technology 
0.18 µm GaAs 

PHEMT 
0.25 µm SiGe 

BiCMOS 
0.13 µm 
CMOS 

0.13 µm 
CMOS 

Chip Area 3×4 mm2 1.1 mm2 0.09 mm2 1.36 mm2
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5.4 Conclusions 

This paper presents a spatial-sampling-based sample-and-hold circuit for low 

voltage, low power, and high-speed operations. The circuit is implemented in a 

commercial 0.13 µm CMOS technology, with 13.3 Gs/s sampling rate and ~11.5 GHz 

input bandwidth. The power consumption is ~ 6 mW, which is significantly lower than 

previous reported multi-gigahertz SHCs. The post-layout simulations and measurements 

show that the circuit is promising to capture on-chip signals with 100 ps fast edges and is 

possible to capture very short single pulses with 100 ps duration. 
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CHAPTER SIX 

BROADBAND HIGH-SENSITIVITY ELECTRON SPIN RESONANCE 

SPECTROSCOPY 

 

This chapter presents a novel electron spin resonance (ESR) spectroscopy 

technique, which provides wide frequency tuning capabilities while enables high-

sensitivity ESR operations. The use of frequency sweeping eliminates microphonic noise, 

which is an inherent challenge for high-frequency ESR systems. We demonstrate the 

ESR technique by measuring 60 µg DPPH powder from 1 GHz to 10 GHz at the room 

temperature. A meandered microstrip line is built and used for the test. 

 

6.1 Introduction 

Broadband and multi-frequency electron spin resonance (ESR) spectroscopy, also 

referred to as electron paramagnetic resonance (EPR) spectroscopy, enables many 

important new applications, including the distinction between field-dependent and field-

independent paramagnetic resonance processes, the study of frequency-dependent 

linewidth, and the differentiation between the spectra of different paramagnetic species 

[6.1]. Therefore, a few approaches have been explored to expand the frequency coverage 

capabilities of current ESR techniques, which often lead to single frequency operations 

for an ESR system. Using tunable cavities is a straightforward idea to cover multi-

frequencies [6.2]-[6.3], but the ESR sensitivity is limited due to small filling factors and 

the degradation of cavity quality-factors when lossy materials are tested. Non-resonant 
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structures are broadband and can handle high filling factors [6.4]-[6.5], yet, the ESR 

sensitivity is compromised due to the absence of frequency-selectivity (e.g. 5 mg of 

DPPH is used in [6.5]). So are the superconducting coplanar waveguides (CPW) that 

were recently used for non-conventional ESR studies from 0.5 to 40 GHz at 1.4 K [6.6]. 

Thus, it is of great interest to develop new techniques that address the frequency tuning 

and sensitivity challenges.  

The use of narrow-band resonant cavities in conventional ESR techniques also 

requires field-modulation and field sweeping. As a result, it is challenging to use these 

ESR systems to investigate effects and processes that depend on magnetic field history as 

well as to detect small zero-field gaps in nanometer-size magnetic systems [6.5]. 

Additionally, modulating magnetic field induces microphonic noise [6.7]-[6.9], which 

becomes a very difficult issue at high-frequencies (e.g. at terahertz). Hence, exploring 

new approaches that can avoid field modulations is also of great interest. 

Recently, an interference based radio-frequency (RF) device is proposed to 

achieve high sensitivity operations while covering a very wide frequency range [6.10]. In 

this work, we further develop the RF technique to address the ESR challenges mentioned 

above. The design considerations of our ESR system are given in Section 6.2. Section 6.3 

presents our ESR measurement results with DPPH powders. Section 6.4 concludes the 

chapter. 

6.2 ESR System Design Considerations 

Fig. 6.1 (a) is the schematic of the proposed ESR system. It consists of a vector 

network analyzer (VNA), broadband Wilkinson power dividers, tunable phase shifters (ϕ) 
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quality factor Qeff, defined as Qeff=fo/∆f3dB, of the system in Fig. 6.1 can be very high, e.g. 

~ 3×106 in [6.10], therefore, we expect the sharp frequency selectivity can boost ESR 

sensitivity significantly when compared with the CPW and micro-coil based techniques. 

The operating frequency tuning range, from ~ 1 GHz to 10 GHz in this work, is 

determined by the components in Fig. 6.1 (a). If even broader frequency tuning is desired, 

different frequency bands can be combined as demonstrated from ~ 20 MHz to 40 GHz 

in [6.10]. 

 

6.3 ESR Experiments 

To demonstrate the ESR system with high sensitivity and multi-frequency 

operation at room temperature, 60 µg DPPH powder was placed in the PDMS well at the 

sensing zone in Fig. 6.1. An RF power of 0 dBm is used in the experiment. We first tune 

the transmission coefficient |S21|min to -90 dB ~ -95 dB. Fig. 6.3 (a) shows the measured 

ESR signals of DPPH at 5 GHz, when the external magnetic field is swept. Fig. 3(b) 

summarizes S21,min in Fig. 3(a) at different external magnetic fields and Fig. 3(c) 

summarizes the frequency f0 of S21,min. If μ’ and μ” in Fig. 6.1(b) account for the observed 

absorption and phase shift, respectively, then Fig. 3(b) resembles the absorption ESR 

signals obtained in conventional ESR systems where magnetic field modulations are used. 

Fig. 3 (c) represents dispersion ESR signals from μ’, which is different from expected one 

as shown in Fig. 1 (c). The reason for this difference is still under exploration. Such 

information is not currently available from conventional ESR techniques. Nevertheless, 

further work is needed to differentiate the contributions from μ’ and μ”. 
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b ∆ B : linewidth as shown in Fig. 6.3 (b). 

c |S21|baseline : background insertion loss  

d ∆ |S21| : largest |S21| magnitude changes during ESR absorption occurrence as shown in 

Fig. 6.3 (b).  

 

6.4 Discussions and Conclusions 

Compared with the results in [6.5], our ESR sensitivity is very high. But it seems 

that our sensitivity is less impressive when compared with the results in [6.11] and 

conventional high-Q cavity based ESR systems despite the fact that our effective Q is 

much higher than those systems. Further work is needed to understand the differences 

and issues. 

Our proposed technique measures both the magnitude and phase of ESR signals 

quantitatively in frequency domain even though further work is needed to extract μ’ and μ” 

as well as the number of spins in the test sample. Conventional ESR techniques are often 

considered qualitative since cavity induced phase shift is often exploited for high-

sensitivity operations. As a result, simultaneous measurements of ESR standards with 

known spin numbers are often needed to quantify the unknown ESR test samples. 

In summary, our proposed ESR technique presents unique sensitivity 

enhancement schemes and frequency tuning approaches, which are promising to address 

the sensitivity and multi-frequency operations difficulties of current ESR techniques as 

well as the microphonic noise issues. Based on a simple meandered microstrip line, 60 μg 

of DPPH powder is characterized from 1 to 10 GHz. Both absorption and dispersion ESR 
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signals are obtained at high sensitivities even though further work is needed to quantify 

and differentiate the underline physical processes. 
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CHAPTER SEVEN 

CONCLUSION 

 

This dissertation investigates high frequency devices and circuit modules for 

biochemical microsystems. These modules are designed towards replacing external bulky 

laboratory instruments and integrating with biochemical microsystems. Charge pump 

circuits are used as on-chip power supply. CMOS pulse generation circuits are designed 

for generating high voltage short pulses on chip. A sample-and-hold circuit and a six port 

circuit are used as on-chip analytical tools to analyze signals in time and frequency 

domain. 

Charge pump circuits with modified triple well diodes as charge transfer switches 

are presented in Chapter II. Model parameters of the modified triple well diode are 

extracted based on measured diode characteristics. The proposed charge pump circuits 

are implemented in a commercial 0.13μm bulk CMOS process. The output voltage of the 

four-stage charge pump circuit can be up to 18.1V, which is much higher than the 

nwell/p-substrate breakdown voltage (~10V) of the given process. 

Chapter Ш presents three types of on-chip pulse generation circuits. The first is 

based on CMOS pulse-forming-lines (PFLs). It includes a four-stage charge pump, a 

four-stacked-MOSFET switch and a 5 mm long PFL. The circuit is implemented in a 

0.13 µm CMOS process. Pulses of ~1.8 V amplitude with ~135 ps duration on a 50 Ω 

load are obtained. The obtained voltage is higher than 1.6 V, the rated operating voltage 

of the process. The second is a high-voltage Marx generator which also uses stacked 
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MOSFETs as high voltage switches. The output voltage is 11.68 V, which is higher than 

the highest breakdown voltage (~10 V) of the CMOS process. The third is a CMOS 

Blumlein generator including a two-stacked-MOSFET high voltage switch, a Blumlein 

PFL network, and an on-chip Klophenstein taper. Gaussian-like pulses of 725 mV peak-

to-peak amplitude, ~126 ps duration and 3.18 GHz bandwidth are measured on a 50 Ω 

load. After de-embedding the connection system and Klophenstein taper, the pulses of 

1.88 V and 114 ps duration are obtained. These results significantly extend high-voltage 

short pulse generation capabilities of CMOS technologies.  

A highly reconfigurable, low-power, and compact directional coupler is presented 

in Chapter IV. The active inductors and varactors are used in this directional coupler to 

tune operating frequencies and coupling-coefficients. The coupler is implemented in a 

0.13 µm CMOS process. It occupies an area of 350 µm×340 µm and consumes 40 mW or 

less power. The obtained 1-dB compression point is -3.2 dBm, and the measured noise 

figure is ~23 dB. The measured coupling coefficient can be tuned from 1.3 dB to 9.0 dB 

at 4 GHz with 32 dB or better isolation and 15 dB or better return loss. The operating 

center frequency can be tuned from 2.0 GHz to 6.0 GHz for a nominal 3-dB operation. A 

six-port circuit based on four quadrature hybrids is also proposed, designed and simulated 

for analyzing signals in frequency domain on chip. However, the performance of the 

CMOS six-port circuit was seriously affected by large insertion loss and power 

measurement limitation. Thus, future work will be focused on designing miniaturized 

vector network analyzer integrated with our biochemical systems. The preliminary work 

on the miniaturized VNA is shown in Appendix A.  
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A high-speed sample-and-hold circuit (SHC) is designed and implemented for 

very fast signal analysis in time domain in Chapter V. Spatial sampling techniques are 

exploited with CMOS transmission lines in a 0.13 µm standard CMOS process. The SHC 

includes on chip coplanar waveguides (CPW) for signal and clock pulse transmission, a 

clock pulse generator, and three elementary samplers periodically (L=7.2 mm) placed 

along the signal propagation line. The SHC samples at 13.3 Gs/s. The circuit occupies an 

area of 1660 µm×820 µm and consumes ~6 mW at a supply voltage of 1.2 V. The 

obtained input bandwidth is ~11.5 GHz. 

Finally, a novel electron spin resonance spectroscopy (ESR) technique with high 

sensitivity and wide frequency tuning capabilities is proposed for the development of 

biochemical microsystems in Chapter VI. The ESR technique was demonstrated by 

measuring 60 µg DPPH powder from 1 GHz to 10 GHz. A meandered microstrip line is 

built and used for the test. Further work is needed to extract μ’ and μ” as well as the 

number of spins in the test sample. 
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APPENDIX A 

 

Miniaturized vector network analyzers (VNAs) integrated with biochemical 

microsystems offer an attractive approach to the measurement of the complex 

permittivity of different materials. Miniaturized VNAs, instead of bulky commercial 

VNAs, can be used to analyze signals generated by biochemical microsystems in 

frequency domain.  

Fig. A-1 shows the schematic diagram of the miniaturized VNA [4.42]. The 

interferometer or sensor is excited with a RF signal. The measured signal is converted to 

an intermediate frequency (IF) fIF by multiplying with a signal at a LO frequency. The RF 

and LO oscillator are linked through a phase locked loop to a common crystal-stabilized 

frequency reference. The IF filter is used to keep the noise out of the obtained IF signal. 

A small IF bandwidth increases the dynamic range of the miniaturized VNA. Another LO 

oscillator generates a sinusoidal signal which is used to mix the IF signal down to two 

DC signals. These two multipliers are known as I/Q demodulator. The low-pass filters are 

used to suppress all other frequency components and retain the two DC signals I and Q, 

corresponding to the real and imaginary parts of S21. The dielectric permittivity of the 

materials under test onto the interferometer can be extracted from the S21 measurements. 

Fig. A-2 shows the ideal ADS simulation model of the miniaturized VNA 

integrated with our interferometer. A harmonic balance simulation is used to obtain I and 

Q outputs of the I/Q demodulator. Fig. A-3 compares the S21 simulation results of the 
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(a) 

 

(b) 

Figure A-5 S21 (a) magnitude (b) phase obtained from the real miniaturized VNA. 

 

Fig. A-6 shows the preliminary lab setup to test the miniaturized VNA prototype. 

It consists of an ADL5380 I/Q demodulator, an ADF 4351 wideband synthesizer, and an 

ADRF6510 with programmable filters and variable gain amplifiers. A resonator was used 
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(b) 

Figure A-7 S21 magnitude of the resonator obtained from (a) a commercial VNA (b) our 

miniaturized VNA. 

 

In Fig. A-7, the S21 magnitude of the resonator obtained from the miniaturized 

VNA resembles the shape of the measurement result obtained by the commercial VNA. 

However, an amplification of 7 dB for the S21 magnitude measured by our miniaturized 

VNA is obtained by a comparison with a commercial VNA, due to amplifiers used in the 

prototype shown in Fig. A-6. Thus, the calibration is needed to perform. Additionally, 

when a piece of PDMS is placed on the resonator, the peak of the S21 magnitude is shifted 

to the lower frequency. And this shift can be obtained by our miniaturized VNA, as 

shown in Fig. A-7 (b). 

The preliminary measurement results shown above verify that the approach to the 

miniaturized VNA is valid. Therefore, our prototype for VNA can be continued to 
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implement and improve. Future works will be focused on obtaining S21 phases of DUT by 

our miniaturized VNA, improving the dynamic range and reducing the noise floor. 

Calibration procedure is also needed to develop for our miniaturized VNA. Furthermore, 

our prototype will be used in the measurement of the complex permittivity of different 

materials, which is important for the development of biochemical microsystems.      
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