309 research outputs found

    Improving Ieee 802.11 Wlan Handoff Latency by Access Point-Based Modification

    Get PDF
    IEEE 802.11 WLAN provides multimedia services like live telecast, video streaming, video conferencing, Voice over IP (VoIP) to its users. For deployment of these fast real time services, it needs stringent Quality of service (QoS) requirement such as delay time less than 150ms for VoIP, and packet loss rate of 1%. The mobility service for users come with cost of handoff process required when mobile stations get connected from 1 Access point (AP) to another for continuous service. In existing 802.11 IEEE handoff procedure, the scanning phase can exceed duration of 200ms and packet loss can exceed 10%. Thus, proposed methodology focuses on achieving reduced overall handoff latency by implementing handoff delay duration less than 150ms which is the need for seamless service in IEEE 802.11 WLAN

    An Adaptive Multimedia-Oriented Handoff Scheme for IEEE 802.11 WLANs

    Full text link
    Previous studies have shown that the actual handoff schemes employed in the IEEE 802.11 Wireless LANs (WLANs) do not meet the strict delay constraints placed by many multimedia applications like Voice over IP. Both the active and the passive supported scan modes in the standard handoff procedure have important delay that affects the Quality of Service (QoS) required by the real-time communications over 802.11 networks. In addition, the problem is further compounded by the fact that limited coverage areas of Access Points (APs) occupied in 802.11 infrastructure WLANs create frequent handoffs. We propose a new optimized and fast handoff scheme that decrease both handoff latency and occurrence by performing a seamless prevent scan process and an effective next-AP selection. Through simulations and performance evaluation, we show the effectiveness of the new adaptive handoff that reduces the process latency and adds new context-based parameters. The Results illustrate a QoS delay-respect required by applications and an optimized AP-choice that eliminates handoff events that are not beneficial.Comment: 20 pages, 14 figures, 4 table

    A Novel Design and Implementation of Dos-Resistant Authentication and Seamless Handoff Scheme for Enterprise WLANs

    Get PDF
    With the advance of wireless access technologies, the IEEE 802.11 wireless local area network (WLAN) has gained significant increase in popularity and deployment due to the substantially improved transmission rate and decreased deployment costs. However, this same widespread deployment makes WLANs an attractive target for network attacks. Several vulnerabilities have been identified and reported regarding the security of the current 802.11 standards. To address those security weaknesses, IEEE standard committees proposed the 802.11i amendment to enhance WLAN security. The 802.11i standard has demonstrated the capability of providing satisfactory mutual authentication, better data confidentiality, and key management support, however, the design of 802.11i does not consider network availability. Thus 802.11i is highly susceptible to malicious denial-of-service (DoS) attacks, which exploit the vulnerability of unprotected management frames. This paper proposes, tests and evaluates a combination of three novel methods by which the exploitation of 802.11i by DoS attacks can be improved. These three methods include an access point nonce dialogue scheme, a fast access point transition protocol handoff scheme and a location management based selective scanning scheme. This combination is of particular value to real-time users running time-dependant applications such as VoIP. In order to acquire practical data to evaluate the proposed schemes, a prototype network has been implemented as an experimental testbed using open source tools and drivers. This testbed allows practical data to be collected and analysed. The result demonstrates that not only the proposed authentication scheme eradicates most of the DoS vulnerabilities, but also substantially improved the handoff performance to a level suitable for supporting real-time services

    Multichannel Virtual Access Points for Seamless Handoffs in IEEE 802.11 Wireless Networks

    No full text
    Session: Handoff and Mobility Management 2International audienceWithin IEEE 802.11 Wireless Local Area Networks (WLANs), client stations can move freely, but because of the short range of their Access Points (APs), they usually need to reassociate with different APs to continue to communicate. When changing APs, a client station starts a process known as a handoff that can take up to 2 seconds, which is too long for real-time applications such as Voice over IP (VoIP). Various solutions have been proposed to change or improve the client behaviour when doing a handoff. Previously, we proposed the idea of Virtual Access Points (VAP) implemented on APs in which a client station changes APs without disrupting its current communication. Based on this new concept, we have developed a solution called Multichannel Virtual Access Points (mVAP) to take advantage of APs operating on multiple channels. We have implemented mVAP using PACMAP, a tool for packet manipulation, and evaluated its performance. Our results show that mVAP is a new efficient technique for seamless handoffs without performance degradation

    Fast Dual-Radio Cross-Layer Handoffs in Multi-Hop Infrastructure-mode 802.11 Wireless Networks for In-Vehicle Multimedia Infotainment

    Full text link
    Minimizing handoff latency and achieving near-zero packet loss is critical for delivering multimedia infotainment applications to fast-moving vehicles that are likely to encounter frequent handoffs. In this paper, we propose a dual-radio cross-layer handoff scheme for infrastructure-mode 802.11 Wireless Networks that achieve this goal. We present performance results of an implementation of our algorithm in a Linux-based On-Board-Unit prototype.Comment: Presented (oral) at IEEE Advanced Networking and Telecommunications, 2008 (ANTS 2008) Conference (http://www.antsconference.org) held at Indian Institute of Technology, Mumbai. Awarded Best Paper (Honorable Mention

    Multimedia

    Get PDF
    The nowadays ubiquitous and effortless digital data capture and processing capabilities offered by the majority of devices, lead to an unprecedented penetration of multimedia content in our everyday life. To make the most of this phenomenon, the rapidly increasing volume and usage of digitised content requires constant re-evaluation and adaptation of multimedia methodologies, in order to meet the relentless change of requirements from both the user and system perspectives. Advances in Multimedia provides readers with an overview of the ever-growing field of multimedia by bringing together various research studies and surveys from different subfields that point out such important aspects. Some of the main topics that this book deals with include: multimedia management in peer-to-peer structures & wireless networks, security characteristics in multimedia, semantic gap bridging for multimedia content and novel multimedia applications
    corecore