9 research outputs found

    Deterministic 1-k routing on meshes with applications to worm-hole routing

    Get PDF
    In 11-kk routing each of the n2n^2 processing units of an n×nn \times n mesh connected computer initially holds 11 packet which must be routed such that any processor is the destination of at most kk packets. This problem reflects practical desire for routing better than the popular routing of permutations. 11-kk routing also has implications for hot-potato worm-hole routing, which is of great importance for real world systems. We present a near-optimal deterministic algorithm running in \sqrt{k} \cdot n / 2 + \go{n} steps. We give a second algorithm with slightly worse routing time but working queue size three. Applying this algorithm considerably reduces the routing time of hot-potato worm-hole routing. Non-trivial extensions are given to the general ll-kk routing problem and for routing on higher dimensional meshes. Finally we show that kk-kk routing can be performed in \go{k \cdot n} steps with working queue size four. Hereby the hot-potato worm-hole routing problem can be solved in \go{k^{3/2} \cdot n} steps

    Broadcasting in Hyper-cylinder graphs

    Get PDF
    Broadcasting in computer networking means the dissemination of information, which is known initially only at some nodes, to all network members. The goal is to inform every node in the minimal time possible. There are few models for broadcasting; the simplest and the historical model is called the Classical model. In the Classical model, dissemination happens in synchronous rounds, wherein a node may only inform one of its neighbors. The broadcast question is: What is the minimum number of rounds needed for broadcasting, and what broadcast scheme achieves it? For general graphs, these questions are NP-hard, and it is known to be at least 3 - ε inapproximable for any real ε > 0. Even for some very restricted classes of graphs, the questions remain as an NP-hard problem. Little is known about broadcasting in restricted graphs, and only a few classes have a polynomial solution. Parallel and distributed computing is one of the important domains which relies on efficient broadcasting. Hypercube and torus are the most used network topology in this domain. The widespread use is not only due to their simplicity but also is for their efficiency and high robustness (e.g., fault tolerance) while having an acceptable number of links. In this thesis, it is observed that the Cartesian product of a number of path and cycle graphs produces a valuable set of topologies, we called hyper-cylinders, which contain hypercube and Torus as well. Any hyper-cylinder shares many of the beneficial features of hypercube and torus and might be a suitable substitution in some cases. Some hyper-cylinders are also similar to other practically used topologies such as cube-connected cycles. In this thesis, the effect of the Cartesian product on broadcasting and broadcasting of hyper-cylinders under the Classical and Messy models is studied. This will add a valuable class of graphs to the limited classes of graphs which have a polynomially computable broadcast time. In the end, the relation between worst-case originators and diameters in trees is studied, which may help in the broadcast study of a larger class of graphs where any tree is allowed instead of a path in the Cartesian product

    Progress Report : 1991 - 1994

    Get PDF

    Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation

    Get PDF
    Block matching motion estimation algorithms are widely used in video coding schemes. In this paper,we design an efficient hierarchical block matching motion estimation (HBMME) algorithm on a hypercube multiprocessor. Unlike systolic array designs, this solution is not tied down to specific values of algorithm parameters and thus offers increased flexibility. Moreover, the hypercube network can efficiently handle the non regular data flow of the HBMME algorithm. Our techniques nearly eliminate the occurrence of “difficult” communication patterns, namely many-to-many personalized communication, by replacing them with simple shift operations. These operations have an efficient implementation on most of interconnection networks and thus our techniques can be adapted to other networks as well. With regard to the employed multiprocessor we make no specific assumption about the amount of local memory residing in each processor. Instead, we introduce a free parameter S and assume that each processor has O(S) local memory. By doing so, we handle all the cases of modern multiprocessors, that is fine-grained, medium-grained and coarse-grained multiprocessors and thus our design is quite general

    Fifth Biennial Report : June 1999 - August 2001

    No full text

    Design and analysis of sequential and parallel single-source shortest-paths algorithms

    Get PDF
    We study the performance of algorithms for the Single-Source Shortest-Paths (SSSP) problem on graphs with n nodes and m edges with nonnegative random weights. All previously known SSSP algorithms for directed graphs required superlinear time. Wie give the first SSSP algorithms that provably achieve linear O(n-m)average-case execution time on arbitrary directed graphs with random edge weights. For independent edge weights, the linear-time bound holds with high probability, too. Additionally, our result implies improved average-case bounds for the All-Pairs Shortest-Paths (APSP) problem on sparse graphs, and it yields the first theoretical average-case analysis for the "Approximate Bucket Implementation" of Dijkstra\u27s SSSP algorithm (ABI-Dijkstra). Futhermore, we give constructive proofs for the existence of graph classes with random edge weights on which ABI-Dijkstra and several other well-known SSSP algorithms require superlinear average-case time. Besides the classical sequential (single processor) model of computation we also consider parallel computing: we give the currently fastest average-case linear-work parallel SSSP algorithms for large graph classes with random edge weights, e.g., sparse rondom graphs and graphs modeling the WWW, telephone calls or social networks.In dieser Arbeit untersuchen wir die Laufzeiten von Algorithmen für das Kürzeste-Wege Problem (Single-Source Shortest-Paths, SSSP) auf Graphen mit n Knoten, M Kanten und nichtnegativen zufälligen Kantengewichten. Alle bisherigen SSSP Algorithmen benötigen auf gerichteten Graphen superlineare Zeit. Wir stellen den ersten SSSP Algorithmus vor, der auf beliebigen gerichteten Graphen mit zufälligen Kantengewichten eine beweisbar lineare average-case-Komplexität O(n+m)aufweist. Sind die Kantengewichte unabhängig, so wird die lineare Zeitschranke auch mit hoher Wahrscheinlichkeit eingehalten. Außerdem impliziert unser Ergebnis verbesserte average-case-Schranken für das All-Pairs Shortest-Paths (APSP) Problem auf dünnen Graphen und liefert die erste theoretische average-case-Analyse für die "Approximate Bucket Implementierung" von Dijkstras SSSP Algorithmus (ABI-Dijkstra). Weiterhin führen wir konstruktive Existenzbeweise für Graphklassen mit zufälligen Kantengewichten, auf denen ABI-Dijkstra und mehrere andere bekannte SSSP Algorithmen durchschnittlich superlineare Zeit benötigen. Neben dem klassischen seriellen (Ein-Prozessor) Berechnungsmodell betrachten wir auch Parallelverarbeitung; für umfangreiche Graphklassen mit zufälligen Kantengewichten wie z.B. dünne Zufallsgraphen oder Modelle für das WWW, Telefonanrufe oder soziale Netzwerke stellen wir die derzeit schnellsten parallelen SSSP Algorithmen mit durchschnittlich linearer Arbeit vor

    Fast Gossiping in Square Meshes/Tori with Bounded-Size Packets

    Get PDF
    AbstractÐGossiping is the communication problem in which each node has a unique message �token) to be transmitted to every other node. The nodes exchange their tokens by packets. A solution to the problem is judged by how many rounds of packet sending it requires. In this paper, we consider the version of the problem in which small-size packets �each carrying exactly one token) are used, the links �edges) of the network are half-duplex �only one packet can flow through a link at a time), and the nodes are all-port �a node's incident edges can all be active at the same time). This is also known as the H * model. We study the 2D square mesh and the 2D square torus. An improved, asymptotically optimal algorithm for the mesh and an optimal algorithm for the torus are presented. Index TermsÐGossiping, all-to-all broadcast, total exchange, collective communication, parallel algorithms, interconnection networks, communication optimization, scheduling.

    -

    Get PDF
    We study the performance of algorithms for the Single-Source Shortest-Paths (SSSP) problem on graphs with n nodes and m edges with nonnegative random weights. All previously known SSSP algorithms for directed graphs required superlinear time. Wie give the first SSSP algorithms that provably achieve linear O(n-m)average-case execution time on arbitrary directed graphs with random edge weights. For independent edge weights, the linear-time bound holds with high probability, too. Additionally, our result implies improved average-case bounds for the All-Pairs Shortest-Paths (APSP) problem on sparse graphs, and it yields the first theoretical average-case analysis for the "Approximate Bucket Implementation" of Dijkstra's SSSP algorithm (ABI-Dijkstra). Futhermore, we give constructive proofs for the existence of graph classes with random edge weights on which ABI-Dijkstra and several other well-known SSSP algorithms require superlinear average-case time. Besides the classical sequential (single processor) model of computation we also consider parallel computing: we give the currently fastest average-case linear-work parallel SSSP algorithms for large graph classes with random edge weights, e.g., sparse rondom graphs and graphs modeling the WWW, telephone calls or social networks.In dieser Arbeit untersuchen wir die Laufzeiten von Algorithmen für das Kürzeste-Wege Problem (Single-Source Shortest-Paths, SSSP) auf Graphen mit n Knoten, M Kanten und nichtnegativen zufälligen Kantengewichten. Alle bisherigen SSSP Algorithmen benötigen auf gerichteten Graphen superlineare Zeit. Wir stellen den ersten SSSP Algorithmus vor, der auf beliebigen gerichteten Graphen mit zufälligen Kantengewichten eine beweisbar lineare average-case-Komplexität O(n+m)aufweist. Sind die Kantengewichte unabhängig, so wird die lineare Zeitschranke auch mit hoher Wahrscheinlichkeit eingehalten. Außerdem impliziert unser Ergebnis verbesserte average-case-Schranken für das All-Pairs Shortest-Paths (APSP) Problem auf dünnen Graphen und liefert die erste theoretische average-case-Analyse für die "Approximate Bucket Implementierung" von Dijkstras SSSP Algorithmus (ABI-Dijkstra). Weiterhin führen wir konstruktive Existenzbeweise für Graphklassen mit zufälligen Kantengewichten, auf denen ABI-Dijkstra und mehrere andere bekannte SSSP Algorithmen durchschnittlich superlineare Zeit benötigen. Neben dem klassischen seriellen (Ein-Prozessor) Berechnungsmodell betrachten wir auch Parallelverarbeitung; für umfangreiche Graphklassen mit zufälligen Kantengewichten wie z.B. dünne Zufallsgraphen oder Modelle für das WWW, Telefonanrufe oder soziale Netzwerke stellen wir die derzeit schnellsten parallelen SSSP Algorithmen mit durchschnittlich linearer Arbeit vor

    Efficient Passive Clustering and Gateways selection MANETs

    Get PDF
    Passive clustering does not employ control packets to collect topological information in ad hoc networks. In our proposal, we avoid making frequent changes in cluster architecture due to repeated election and re-election of cluster heads and gateways. Our primary objective has been to make Passive Clustering more practical by employing optimal number of gateways and reduce the number of rebroadcast packets
    corecore