6,871 research outputs found

    A hybrid technique for face detection in color images

    Get PDF
    In this paper, a hybrid technique for face detection in color images is presented. The proposed technique combines three analysis models, namely skin detection, automatic eye localization, and appearance-based face/nonface classification. Using a robust histogram-based skin detection model, skin-like pixels are first identified in the RGB color space. Based on this, face bounding-boxes are extracted from the image. On detecting a face bounding-box, approximate positions of the candidate mouth feature points are identified using the redness property of image pixels. A region-based eye localization step, based on the detected mouth feature points, is then applied to face bounding-boxes to locate possible eye feature points in the image. Based on the distance between the detected eye feature points, face/non-face classification is performed over a normalized search area using the Bayesian discriminating feature (BDF) analysis method. Some subjective evaluation results are presented on images taken using digital cameras and a Webcam, representing both indoor and outdoor scenes

    Classification of Humans into Ayurvedic Prakruti Types using Computer Vision

    Get PDF
    Ayurveda, a 5000 years old Indian medical science, believes that the universe and hence humans are made up of five elements namely ether, fire, water, earth, and air. The three Doshas (Tridosha) Vata, Pitta, and Kapha originated from the combinations of these elements. Every person has a unique combination of Tridosha elements contributing to a person’s ‘Prakruti’. Prakruti governs the physiological and psychological tendencies in all living beings as well as the way they interact with the environment. This balance influences their physiological features like the texture and colour of skin, hair, eyes, length of fingers, the shape of the palm, body frame, strength of digestion and many more as well as the psychological features like their nature (introverted, extroverted, calm, excitable, intense, laidback), and their reaction to stress and diseases. All these features are coded in the constituents at the time of a person’s creation and do not change throughout their lifetime. Ayurvedic doctors analyze the Prakruti of a person either by assessing the physical features manually and/or by examining the nature of their heartbeat (pulse). Based on this analysis, they diagnose, prevent and cure the disease in patients by prescribing precision medicine. This project focuses on identifying Prakruti of a person by analysing his facial features like hair, eyes, nose, lips and skin colour using facial recognition techniques in computer vision. This is the first of its kind research in this problem area that attempts to bring image processing into the domain of Ayurveda

    Automatic human face detection for content-based image annotation

    Get PDF
    In this paper, an automatic human face detection approach using colour analysis is applied for content-based image annotation. In the face detection, the probable face region is detected by adaptive boosting algorithm, and then combined with a colour filtering classifier to enhance the accuracy in face detection. The initial experimental benchmark shows the proposed scheme can be efficiently applied for image annotation with higher fidelity

    Fast human detection for video event recognition

    Get PDF
    Human body detection, which has become a research hotspot during the last two years, can be used in many video content analysis applications. This paper investigates a fast human detection method for volume based video event detection. Compared with other object detection systems, human body detection brings more challenge due to threshold problems coming from a wide range of dynamic properties. Motivated by approaches successfully introduced in facial recognition applications, it adapts and adopts feature extraction and machine learning mechanism to classify certain areas from video frames. This method starts from the extraction of Haar-like features from large numbers of sample images for well-regulated feature distribution and is followed by AdaBoost learning and detection algorithm for pattern classification. Experiment on the classifier proves the Haar-like feature based machine learning mechanism can provide a fast and steady result for human body detection and can be further applied to reduce negative aspects in human modelling and analysis for volume based event detection

    Fast Face-swap Using Convolutional Neural Networks

    Get PDF
    We consider the problem of face swapping in images, where an input identity is transformed into a target identity while preserving pose, facial expression, and lighting. To perform this mapping, we use convolutional neural networks trained to capture the appearance of the target identity from an unstructured collection of his/her photographs.This approach is enabled by framing the face swapping problem in terms of style transfer, where the goal is to render an image in the style of another one. Building on recent advances in this area, we devise a new loss function that enables the network to produce highly photorealistic results. By combining neural networks with simple pre- and post-processing steps, we aim at making face swap work in real-time with no input from the user
    • 

    corecore