
Fast Face-swap Using Convolutional Neural Networks

Iryna Korshunova1,2 Wenzhe Shi1 Joni Dambre2 Lucas Theis1
1Twitter

{iryna.korshunova, joni.dambre}@ugent.be

2IDLab, Ghent University
{wshi, ltheis}@twitter.com

Abstract

We consider the problem of face swapping in images,
where an input identity is transformed into a target iden-
tity while preserving pose, facial expression and lighting.
To perform this mapping, we use convolutional neural net-
works trained to capture the appearance of the target iden-
tity from an unstructured collection of his/her photographs.
This approach is enabled by framing the face swapping
problem in terms of style transfer, where the goal is to ren-
der an image in the style of another one. Building on re-
cent advances in this area, we devise a new loss function
that enables the network to produce highly photorealistic
results. By combining neural networks with simple pre- and
post-processing steps, we aim at making face swap work in
real-time with no input from the user.

1. Introduction and related work
Face replacement or face swapping is relevant in many

scenarios including the provision of privacy, appearance
transfiguration in portraits, video compositing, and other
creative applications. The exact formulation of this prob-
lem varies depending on the application, with some goals
easier to achieve than others.

Bitouk et al. [2], for example, automatically substituted
an input face by another face selected from a large database
of images based on the similarity of appearance and pose.
The method replaces the eyes, nose, and mouth of the face
and further makes color and illumination adjustments in or-
der to blend the two faces. This design has two major lim-
itations which we address in this paper: there is no control
over the output identity and the expression of the input face
is altered.

A more difficult problem was addressed by Dale et
al. [4]. Their work focused on the replacement of faces
in videos, where video footage of two subjects performing
similar roles are available. Compared to static images, se-
quential data poses extra difficulties of temporal alignment,
tracking facial performance and ensuring temporal consis-
tency of the resulting footage. The resulting system is com-

(a) (b) (c)

Figure 1: (a) The input image. (b) The result of face swapping with
Nicolas Cage using our method. (c) The result of a manual face
swap (source: http://niccageaseveryone.blogspot.
com).

plex and still requires a substantial amount of time and user
guidance.

One notable approach trying to solve the related problem
of pupeteering – that is, controlling the expression of one
face with another face – was presented by Suwajanakorn
et al. [29]. The core idea is to build a 3D model of both
the input and the replacement face from a large number of
images. That is, it only works well where a few hundred
images are available but cannot be applied to single images.

The abovementioned approaches are based on com-
plex multistage systems combining algorithms for face re-
construction, tracking, alignment and image compositing.
These systems achieve convincing results which are some-
times indistinguishable from real photographs. However,
none of these fully addresses the problem which we intro-
duce below.

Problem outline: We consider the case where given a
single input image of any person A, we would like to replace
his/her identity with that of another person B, while keeping
the input pose, facial expression, gaze direction, hairstyle
and lighting intact. An example is given in Figure 1, where
the original identity (Figure 1a) was altered with little or no
changes to the other factors (Figure 1b).

We propose a novel solution which is inspired by recent
progress in artistic style transfer [7, 14], where the goal is
to render the semantic content of one image in the style of
another image. The foundational work of Gatys et al. [7]
defines the concepts of content and style as functions in the

http://niccageaseveryone.blogspot.com
http://niccageaseveryone.blogspot.com

alignment realignment stitchinginput

Figure 2: A schematic illustration of our approach. After aligning the input face to a reference image, a convolutional neural network is
used to modify it. Afterwards, the generated face is realigned and combined with the input image by using a segmentation mask. The top
row shows facial keypoints used to define the affine transformations of the alignment and realignment steps, and the skin segmentation
mask used for stitching.

feature space of convolutional neural networks trained for
object recognition. Stylization is carried out using a rather
slow and memory-consuming optimization process. It grad-
ually changes pixel values of an image until its content and
style statistics match those from a given content image and
a given style image, respectively.

An alternative to the expensive optimization approach
was proposed by Ulyanov et al. [31] and Johnson et al. [9].
They trained feed-forward neural networks to transform any
image into its stylized version, thus moving costly compu-
tations to the training stage of the network. At test time,
stylization requires a single forward pass through the net-
work, which can be done in real time. The price of this
improvement is that a separate network has to be trained
per style.

While achieving remarkable results on transferring the
style of many artworks, the neural style transfer method
is less suited for photorealistic transfer. The reason ap-
pears to be that the Gram matrices used to represent the
style do not capture enough information about the spatial
layout of the image. This introduces unnatural distortions
which go unnoticed in artistic images but not in real images.
Li and Wand [14] alleviated this problem by replacing the
correlation-based style loss with a patch-based loss preserv-
ing the local structures better. Their results were the first to
suggest that photo-realistic and controlled modifications of
photographs of faces may be possible using style transfer

techniques. However, this direction was left fairly unex-
plored and like the work of Gatys et al. [7], the approach
depended on expensive optimization. Later applications of
the patch-based loss to feed-forward neural networks only
explored texture synthesis and artistic style transfer [15].

This paper takes a step forward upon the work of Li
and Wand [14]: we present a feed-forward neural net-
work, which achieves high levels of photorealism in gener-
ated face-swapped images. The key component is that our
method, unlike previous approaches to style transfer, uses a
multi-image style loss, thus approximating a manifold de-
scribing a style rather than using a single reference point.
We furthermore extend the loss function to explicitly match
lighting conditions between images. Notably, the trained
networks allow us to perform face swapping in, or near, real
time. The main requirement for our method is to have a
collection of images from the target (replacement) identity.
For well photographed people whose images are available
on the Internet, this collection can be easily obtained.

Since our approach to face replacement is rather unique,
the results look different from those obtained with more
classical computer vision techniques [2, 4, 10] or using im-
age editing software (compare Figures 1b and 1c). While it
is difficult to compete with an artist specializing in this task,
our results suggest that achieving human-level performance
may be possible with a fast and automated approach.

3x128x128

3x64x64

3x32x32

3x16x16

3x8x8 block
32

block
32

block
32

block
32

block
32

+ block
64

+ block
96

+ block
128

+ block
160

conv 1x1
3 maps

block
N

conv 3x3
N maps

conv 3x3
N maps

conv 1x1
N maps

+

upsample

depth
concat

Figure 3: Following Ulyanov et al. [31], our transformation network has a multi-scale architecture with inputs at different resolutions.

2. Method
Having an image of person A, we would like to transform

his/her identity into person B’s identity while keeping head
pose and expression as well as lighting conditions intact.
In terms of style transfer, we think of input image A’s pose
and expression as the content, and input image B’s identity
as the style. Light is dealt with in a separate way introduced
below.

Following Ulyanov et al. [31] and Johnson et al. [9],
we use a convolutional neural network parameterized by
weights W to transform the content image x, i.e. input
image A, into the output image x̂ = fW(x). Unlike pre-
vious work, we assume that we are given not one but a set
of style images which we denote by Y = {y1, . . . ,yN}.
These images describe the identity which we would like to
match and are only used during training of the network.

Our system has two additional components performing
face alignment and background/hair/skin segmentation. We
assume that all images (content and style), are aligned to
a frontal-view reference face. This is achieved using an
affine transformation, which aligns 68 facial keypoints from
a given image to the reference keypoints. Facial keypoints
were extracted using dlib [11]. Segmentation is used to re-
store the background and hair of the input image x, which
is currently not preserved by our transformation network.
We used a seamless cloning technique [23] available in
OpenCV [20] to stitch the background and the resulting
face-swapped image. While fast and relatively accurate
methods for segmentation exist, including some based on
neural networks [1, 19, 22], we assume for simplicity that

a segmentation mask is given and focus on the remaining
problems. An overview of the system is given in Figure 2.

In the following we will describe the architecture of the
transformation network and the loss functions used for its
training.

2.1. Transformation network

The architecture of our transformation network is based
on the architecture of Ulyanov et al. [31] and is shown in
Figure 3. It is a multiscale architecture with branches op-
erating on different downsampled versions of the input im-
age x. Each such branch has blocks of zero-padded convo-
lutions followed by linear rectification. Branches are com-
bined via nearest-neighbor upsampling by a factor of two
and concatenation along the channel axis. The last branch
of the network ends with a 1 × 1 convolution and 3 color
channels.

The network in Figure 3, which is designed for 128×128
inputs, has 1M parameters. For larger inputs, e.g. 256×256
or 512 × 512, it is straightforward to infer the architecture
of the extra branches. The network output is obtained only
from the branch with the highest resolution.

We found it convenient to firstly train the network on
128 × 128 inputs, and then use it as a starting point for the
network operating on larger images. In this way, we can
achieve higher resolutions without the need to retrain the
whole model. Although, we are restrained by the availabil-
ity of high quality image data for model’s training.

2.2. Loss functions

For every input image x, we aim to generate an x̂
which jointly minimizes the following content and style
loss. These losses are defined in the feature space of the
normalised version of the 19-layer VGG network [7, 27].
We will denote the VGG representation of x on layer l as
Φl(x). Here we assume that x and every style image y are
aligned to a reference face. All images have the dimension-
ality of 3×H ×W .
Content loss: For the lth layer of the VGG network, the
content loss is given by [7]:

Lcontent(x̂,x, l) =
1

|Φl(x)|
‖Φl(x̂)− Φl(x)‖22, (1)

where |Φl(x)| = ClHlWl is the dimensionality of Φl(x)
with shape Cl ×Hl ×Wl.

In general, the content loss can be computed over mul-
tiple layers of the network, so that the overall content loss
would be:

Lcontent(x̂,x) =
∑
l

Lcontent(x̂,x, l) (2)

Style loss: Our loss function is inspired by the patch-based
loss of Li and Wand [14]. Following their notation, let
Ψ(Φl(x̂)) denote the list of all patches generated by loop-
ing overHl×Wl possible locations in Φl(x̂) and extracting
a squared k × k neighbourhood around each point. This
process yields M = (Hl − k + 1) × (Wl − k + 1) neural
patches, where the ith patch Ψi(Φl(x̂)) has dimensions of
Cl × k × k.

For every such patch from x̂ we find the best matching
patch among patches extracted from Y and minimize the
distance between them. As an error metric we used the co-
sine distance dc:

dc(u,v) = 1− u>v

||u|| · ||v||
, (3)

Lstyle(x̂,Y, l) =
1

M

M∑
i=1

dc
(
Ψi(Φl(x̂)),Ψi(Φl(yNN(i)))

)
,

(4)

where NN(i) selects for each patch a corresponding style
image. Unlike Li and Wand [14], who used a single style
image y and selected a patch among all possible patches
Ψ(Φl(y)), we only search for patches in the same location i,
but across multiple style images:

NN(i) = arg min
j=1,...,Nbest

dc (Ψi(Φl(x̂)),Ψi(Φl(yj))) . (5)

We found that only taking the best matching Nbest < N
style images into account worked better, which here are as-

conv 3x3,
8 maps,
ReLU

input A
identity: X
pose: Y
light: Z

max
pool
2x2

fully
connected,

16 units
 input B

identity: not X
pose: Y
light: Z

 input C
identity: any

pose: Y
light: not Z

Figure 4: The lighting network is a siamese network trained to
maximize the distance between images with different lighting con-
ditions (inputs A and C) and to minimize this distance for pairs
with equal illumination (inputs A and B). The distance is defined
as an L2 norm in the feature space of the fully connected layer.
All input images are aligned to the same reference face as for the
inputs to the transformation network.

sumed to be sorted according to the Euclidean distance be-
tween their facial landmarks and landmarks of the input im-
age x. In this way every training image has a costumized
set of style images, namely those with similar pose and ex-
pression.

Similar to Equation 2, we can compute style loss over
multiple layers of the VGG.
Light loss: Unfortunately, the lighting conditions of the
content image x are not preserved in the generated image x̂
when only using the above-mentioned losses defined in the
VGG’s feature space. We address this problem by introduc-
ing an extra term to our objective which penalizes changes
in illumination. To define the illumination penalty, we ex-
ploited the idea of using a feature space of a pretrained net-
work in the same way as we used VGG for the style and
content. Such an approach would work if the feature space
represented differences in lighting conditions. The VGG
network is not appropriate for this task since it was trained
for classifying objects, where illumination information is
not particularly relevant.

To get the desirable property of lighting sensitivity,
we constructed a small siamese convolutional neural net-
work [3]. It was trained to discriminate between pairs of
images with either equal or different illumination condi-
tions. Pairs of images always had equal pose. We used
the Exteded Yale Face Database B [8], which contains
grayscale portraits of subjects under 9 poses and 64 light-
ing conditions. The architecture of the lighting network is
shown in Figure 4.

(a)

(b)

(c)

Figure 5: (a) Original images. (b) Top: results of face swapping with Nicolas Cage, bottom: results of face swapping with Taylor Swift.
(c) Top: raw outputs of CageNet, bottom: outputs of SwiftNet. Note how our method alters the appearance of the nose, eyes, eyebrows,
lips and facial wrinkles. It keeps gaze direction, pose and lip expression intact, but in a way which is natural for the target identity. Images
are best viewed electronically.

We will denote the feature representation of x in the last
layer of the lighting network as Γ(x) and introduce the fol-
lowing loss function, which tries to prevent generated im-
ages x̂ from having different illumination conditions than
those from the content image x. Both x̂ and x are single-
channel luminance images.

Llight(x̂,x) =
1

|Γ(x)|
‖Γ(x̂)− Γ(x)‖22 (6)

Total variation regularization: Following the work of
Johnson [9] and others, we used regularization to encour-
age spatial smoothness:

LTV (x̂) =
∑
i,j

(x̂i,j+1 − x̂i,j)
2 + (x̂i+1,j − x̂i,j)

2 (7)

The final loss function is a weighted combination of the

described losses:

L(x̂,x,Y) =Lcontent(x̂,x) + αLstyle(x̂,Y)+

βLlight(x̂,x) + γLTV (x̂)
(8)

3. Experiments
3.1. CageNet and SwiftNet

Technical details: We trained a transformation network to
perform the face swapping with Nicolas Cage, of whom we
collected about 60 photos from the Internet with different
poses and facial expressions. To further increase the num-
ber of style images, every image was horizontally flipped.
As a source of content images for training we used the
CelebA dataset [18], which contains over 200,000 images
of celebrities.

Training of the network was performed in two stages.

Figure 6: Left: original image, middle and right: CageNet trained
with and without the lighting loss.

Firstly, the network described in Section 2.1 was trained to
process 128× 128 images. It minimized the objective func-
tion given by Equation 8, where Llight was computed using
a lighting network also trained on 128 × 128 inputs. In
Equation 8, we used β = 10−22 to make the lighting loss
Llight comparable to content and style losses. For the total
variation loss, we chose γ = 0.3 .

Training the transformation network with Adam [12]
for 10K iterations with a batch size of 16 took 2.5 hours
on a Tesla M40 GPU (Theano [30] and Lasagne [6] im-
plementation). Weights were initialized orthogonally [26].
The learning rate was decreased from 0.001 to 0.0001 over
the course of the training following a manual learning rate
schedule.

With regards to the specifics of style transfer, we used
the following settings. Style losses and content loss were
computed using VGG layers {relu3_1,relu4_1} and
{relu4_2} respectively. For the style loss, we used a
patch size of k = 1. During training, each input image was
matched to a set of Nbest style images, where Nbest was
equal to 16. The style weight α in the total objective func-
tion (Equation 8) was the most crucial parameter to tune.
Starting from α = 0 and gradually increasing it to α = 20
yielded the best results in our experiments.

Having trained a model for 128×128 inputs and outputs,
we added an extra branch for processing 256× 256 images.
The additional branch was optimized while keeping the rest
of the network fixed. The training protocol for this network
was identical to the one described above, except the style
weight α was increased to 80 and we used the lighting net-
work trained on 256 × 256 inputs. The transformation net-
work takes 12 hours to train and has about 2M parameters,
of which half are trained during the second stage.
Results: Figure 5b shows the final results of our face swap-
ping method applied to a selection of images in Figure 5a.

Figure 7: Left: original image, middle and right: CageNet trained
on 256 × 256 images with style weights α = 80 and α = 120
respectively. Note how facial expression is altered in the latter
case.

The raw outputs of the neural network are given in Fig-
ure 5c. We find that the neural network is able to intro-
duce noticeable changes to the appearance of a face while
keeping head pose, facial expression and lighting intact.
Notably, it significantly alters the appearance of the nose,
eyes, eyebrows, lips, and wrinkles in the faces, while keep-
ing gaze direction and still producing a plausible image.
However, coarser features such as the overall head shape
are mostly unaltered by our approach, which in some cases
diminishes the effect of a perceived change in identity. One
can notice that when target and input identities have differ-
ent skin colors, the resulting face has an average skin tone.
This is partly due to the seamless cloning of the swapped
image with the background, and to a certain extent due to
the transformation network. The latter fuses the colors be-
cause its loss function is based on the VGG network, which
is color sensitive.

To test how our results generalize to other identities,
we trained the same transformation network using approx-
imately 60 images of Taylor Swift. We find that results of
similar quality can be achieved with the same hyperparam-
eters (Figure 5b).

Figure 6 shows the effect of the lighting loss in the total
objective function. When no such loss is included, images
generated with CageNet have flat lighting and lack shadows.

While the generated faces often clearly look like the tar-
get identity, it is in some cases difficult to recognize the
person because features of the input identity remain in the
output image. They could be completely eliminated by in-
creasing the weight of the style loss. However, this comes
at the cost of ignoring the input’s facial expression as shown
in Figure 7, which we do not consider to be a desirable
behaviour since it changes the underlying emotional inter-
pretation of the image. Indeed, the ability to transfer ex-

Figure 8: Top: original images, middle: results of face swapping
with Taylor Swift using our method, bottom: results of a baseline
approach. Note how the baseline method changes facial expres-
sions, gaze direction and the face does not always blend in well
with the surrounding image.

pressions distinguishes our approach from other methods
operating on a single image input. To make the compari-
son clear, we implemented a simple face swapping method
which performs the same steps as in Figure 2, except for the
application of the transformation network. This step was re-
placed by selecting an image from the style set whose facial
landmarks are closest to those from the input image. The
results are shown in Figure 8. While the baseline method
trivially produces sharp looking faces, it alters expressions,
gaze direction and faces generally blend in worse with the
rest of the image.

In the following, we explore a few failure cases of our ap-
proach. We noticed that our network works better for frontal
views than for profile views. In Figure 9 we see that as we
progress from the side view to the frontal view, the face be-
comes more recognizable as Nicolas Cage. This may be
caused by an imbalance in the datasets. Both our training
set (CelebA) and the set of style images included a lot more
frontal views than profile views due to the prevalence of
these images on the Internet. Figure 9 also illustrates the
failure of the illumination transfer where the network am-
plifies the sidelights. The reason might be the prevalence
of images with harsh illumination conditions in the training
dataset of the lighting network.

Figure 10 demonstrates other examples which are cur-
rently not handled well by our approach. In particular, oc-

cluding objects such as glasses are removed by the network
and can lead to artefacts.
Speed and Memory: A feed-forward pass through the
transformation network takes 40 ms for a 256 × 256 input
image on a GTX Titan X GPU. For the results presented
in this paper, we manually segmented images into skin and
background regions. However, a simple network we trained
for automatic segmentation [25], can produce reasonable
masks in about 5 ms. Approximately the same amount of
CPU time (i7-5500U) is needed for image alignment. While
we used dlib [11] for facial keypoints detection, much faster
methods exist which can run in less than 0.1 ms [24]. Seam-
less cloning using OpenCV on average takes 35 ms.

At test time, style images do not have to be supplied to
the network, so the memory consumption is low.

4. Discussion and future work
By the nature of style transfer, it is not feasible to evalu-

ate our results quantitatively based on the values of the loss
function [7]. Therefore, our analysis was limited to subjec-
tive evaluation only. The departure of our approach from
conventional practices in face swapping makes it difficult to
perform a fair comparison to prior works. Methods, which
solely manipulate images [2, 10] are capable of producing
very crisp images, but they are not able to transfer facial
poses and expressions accurately given a limited number
of photographs from the target identity. More complex ap-
proaches, on the other hand, require many images from the
person we want to replace [4, 29].

Compared to previous style transfer results our method
achieves high levels of photorealism. However, they can
still be improved in multiple ways. Firstly, the quality of
generated results depends on the collection of style images.
Face replacement of a frontal view typically results in bet-
ter quality compared to profile views. This is likely due to
a greater number of frontal view portraits found on the In-
ternet. Another source of problems are uncommon facial
expressions and harsh lighting conditions from the input to
the face swapped image. It may be possible to reduce these
problems with larger and more carefully chosen photo col-
lections. Some images also appear oversmoothed. This may
be improved in future work by adding an adversarial loss,
which has been shown to work well in combination with
VGG-based losses [13, 28].

Another potential improvement would be to modify the
loss function so that the transformation network preserves
occluding objects such as glasses. Similarly, we can try to
penalize the network for changing the background of the in-
put image. Here we used segmentation in a post-processing
step to preserve the background. This could be automated
by combining our network with a neural network trained for
segmentation [17, 25].

Figure 9: Top: original images, bottom: results of face swapping with Nicolas Cage. Note how the identity of Nicolas Cage becomes more
identifiable as the view changes from side to frontal. Also note how the light is wrongly amplified in some of the images.

Further improvements may be achieved by enhancing the
facial keypoint detection algorithm. In this work, we used
dlib [11], which is accurate only up to a certain degree of
head rotation. For extreme angles of view, the algorithm
tries to approximate the location of invisible keypoints by
fitting an average frontal face shape. Usually this results
in inaccuracies for points along the jawline, which cause
artifacts in the resulting face-swapped images.

Other small gains may be possible when using the VGG-
Face [21] network for the content and style loss as sug-
gested by Li et al. [16]. Unlike the VGG network used
here, which was trained to classify images from various cat-
egories [5], VGG-Face was trained to recognize about 3K
unique individuals. Therefore, the feature space of VGG-
Face would likely be more suitable for our problem.

5. Conclusion
In this paper we provided a proof of concept for a fully-

automatic nearly real-time face swap with deep neural net-
works. We introduced a new objective and showed that style
transfer using neural networks can generate realistic images
of human faces. The proposed method deals with a specific
type of face replacement. Here, the main difficulty was to
change the identity without altering the original pose, facial
expression and lighting. To the best of our knowledge, this
particular problem has not been addressed previously.

While there are certainly still some issues to overcome,
we feel we made significant progress on the challenging
problem of neural-network based face swapping. There are
many advantages to using feed-forward neural networks,
e.g., ease of implementation, ease of adding new identities,
ability to control the strength of the effect, or the potential
to achieve much more natural looking results.

Figure 10: Examples of problematic cases. Left and middle: facial
occlusions, in this case glasses, are not preserved and can lead to
artefacts. Middle: closed eyes are not swapped correctly, since no
image in the style set had this expression. Right: poor quality due
to a difficult pose, expression, and hair style.

Photo credits
The copyright of the photograph used in Figure 2 is

owned by Peter Matthews. Other photographs were part
of the public domain or made available under a CC license
by the following rights holders: Angela George, Manfred
Werner, David Shankbone, Alan Light, Gordon Correll,
AngMoKio, Aleph, Diane Krauss, Georges Biard.

References
[1] A. Bansal, X. Chen, B. Russell, A. Gupta, and D. Ramanan.

PixelNet: Towards a General Pixel-Level Architecture, 2016.
arXiv:1609.06694v1.

[2] D. Bitouk, N. Kumar, S. Dhillon, P. Belhumeur, and S. K.
Nayar. Face swapping: Automatically replacing faces in
photographs. In ACM Transactions on Graphics (SIG-
GRAPH), 2008.

[3] S. Chopra, R. Hadsell, and Y. Lecun. Learning a similarity
metric discriminatively, with application to face verification.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 539–546. IEEE Press, 2005.

[4] K. Dale, K. Sunkavalli, M. K. Johnson, D. Vlasic, W. Ma-
tusik, and H. Pfister. Video face replacement. ACM Trans-
actions on Graphics (SIGGRAPH), 30, 2011.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2009.

[6] S. Dieleman, J. Schluter, C. Raffel, E. Olson, S. K. Sonderby,
D. Nouri, D. Maturana, M. Thoma, E. Battenberg, J. Kelly,
J. D. Fauw, M. Heilman, D. M. de Almeida, B. McFee,
H. Weideman, G. Takacs, P. de Rivaz, J. Crall, G. Sanders,
K. Rasul, C. Liu, G. French, and J. Degrave. Lasagne: First
release., Aug. 2015.

[7] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer
using convolutional neural networks. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jun 2016.

[8] A. Georghiades, P. Belhumeur, and D. Kriegman. From few
to many: Illumination cone models for face recognition un-
der variable lighting and pose. IEEE Trans. Pattern Anal.
Mach. Intelligence, 23(6):643–660, 2001.

[9] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for
real-time style transfer and super-resolution. In Computer
Vision - ECCV 2016 - 14th European Conference, Amster-
dam, The Netherlands, October 11-14, 2016, Proceedings,
Part II, pages 694–711, 2016.

[10] I. Kemelmacher-Shlizerman. Transfiguring portraits. ACM
Transaction on Graphics, 35(4):94:1–94:8, July 2016.

[11] D. E. King. Dlib-ml: A Machine Learning Toolkit. Journal
of Machine Learning Research, 10:1755–1758, 2009.

[12] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization, 2014. arXiv:1412.6980.

[13] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Aitken, A. Te-
jani, J. Totz, Z. Wang, and W. Shi. Photo-Realistic Single Im-
age Super-Resolution Using a Generative Adversarial Net-
work, 2016. arXiv:1609.04802.

[14] C. Li and M. Wand. Combining markov random fields and
convolutional neural networks for image synthesis. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

[15] C. Li and M. Wand. Precomputed real-time texture synthe-
sis with markovian generative adversarial networks, 2016.
arXiv:1604.04382v1.

[16] M. Li, W. Zuo, and D. Zhang. Convolutional network for
attribute-driven and identity-preserving human face genera-
tion, 2016. arXiv:1608.06434.

[17] S. Liu, J. Yang, C. Huang, and M. Yang. Multi-objective
convolutional learning for face labeling. In IEEE Conference
on Computer Vision and Pattern Recognition, (CVPR) 2015,
Boston, MA, USA, June 7-12, 2015, pages 3451–3459, 2015.

[18] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face
attributes in the wild. In Proceedings of International Con-
ference on Computer Vision (ICCV), Dec. 2015.

[19] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
3431–3440, 2015.

[20] OpenCV. Open source computer vision library. https:
//github.com/opencv/opencv, 2016. [Online; ac-
cessed 24-October-2016].

[21] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face
recognition. In British Machine Vision Conference, 2015.

[22] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. ENet:
A Deep Neural Network Architecture for Real-Time Seman-
tic Segmentation, 2016. arXiv:1606.02147.

[23] P. Pérez, M. Gangnet, and A. Blake. Poisson image edit-
ing. In ACM Transactions on Graphics (SIGGRAPH), SIG-
GRAPH ’03, pages 313–318, New York, NY, USA, 2003.
ACM.

[24] S. Ren, X. Cao, Y. Wei, and J. Sun. Face Alignment at 3000
FPS via Regressing Local Binary Features. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 1685–1692, 2014.

[25] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolu-
tional Networks for Biomedical Image Segmentation, pages
234–241. Springer International Publishing, Cham, 2015.

[26] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact so-
lutions to the nonlinear dynamics of learning in deep linear
neural networks, 2013. arXiv:1312.6120.

[27] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[28] C. K. Sønderby, J. Caballero, L. Theis, W. Shi, and F. Huszár.
Amortised MAP Inference for Image Super-resolution. arXiv
preprint arXiv:1610.04490, 2016.

[29] S. Suwajanakorn, S. M. Seitz, and I. Kemelmacher-
Shlizerman. What makes Tom Hanks look like Tom Hanks.
In 2015 IEEE International Conference on Computer Vision,
ICCV 2015, Santiago, Chile, December 7-13, 2015, pages
3952–3960, 2015.

[30] Theano Development Team. Theano: A Python frame-
work for fast computation of mathematical expressions, May
2016. arXiv:1605.02688.

[31] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Tex-
ture networks: Feed-forward synthesis of textures and styl-
ized images. In International Conference on Machine Learn-
ing (ICML), 2016.

https://github.com/opencv/opencv
https://github.com/opencv/opencv

