11,747 research outputs found

    Fast Evolutionary Adaptation for Monte Carlo Tree Search

    Get PDF
    This paper describes a new adaptive Monte Carlo Tree Search (MCTS) algorithm that uses evolution to rapidly optimise its performance. An evolutionary algorithm is used as a source of control parameters to modify the behaviour of each iteration (i.e. each simulation or roll-out) of the MCTS algorithm; in this paper we largely restrict this to modifying the behaviour of the random default policy, though it can also be applied to modify the tree policy

    Fast Approximate Max-n Monte Carlo Tree Search for Ms Pac-Man

    Get PDF
    We present an application of Monte Carlo tree search (MCTS) for the game of Ms Pac-Man. Contrary to most applications of MCTS to date, Ms Pac-Man requires almost real-time decision making and does not have a natural end state. We approached the problem by performing Monte Carlo tree searches on a five player maxn tree representation of the game with limited tree search depth. We performed a number of experiments using both the MCTS game agents (for pacman and ghosts) and agents used in previous work (for ghosts). Performance-wise, our approach gets excellent scores, outperforming previous non-MCTS opponent approaches to the game by up to two orders of magnitude. © 2011 IEEE

    Approximating n-player behavioural strategy nash equilibria using coevolution

    Get PDF
    Coevolutionary algorithms are plagued with a set of problems related to intransitivity that make it questionable what the end product of a coevolutionary run can achieve. With the introduction of solution concepts into coevolution, part of the issue was alleviated, however efficiently representing and achieving game theoretic solution concepts is still not a trivial task. In this paper we propose a coevolutionary algorithm that approximates behavioural strategy Nash equilibria in n-player zero sum games, by exploiting the minimax solution concept. In order to support our case we provide a set of experiments in both games of known and unknown equilibria. In the case of known equilibria, we can confirm our algorithm converges to the known solution, while in the case of unknown equilibria we can see a steady progress towards Nash. Copyright 2011 ACM

    A Survey of Monte Carlo Tree Search Methods

    Get PDF
    Monte Carlo tree search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarize the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work

    Helping AI to Play Hearthstone: AAIA'17 Data Mining Challenge

    Full text link
    This paper summarizes the AAIA'17 Data Mining Challenge: Helping AI to Play Hearthstone which was held between March 23, and May 15, 2017 at the Knowledge Pit platform. We briefly describe the scope and background of this competition in the context of a more general project related to the development of an AI engine for video games, called Grail. We also discuss the outcomes of this challenge and demonstrate how predictive models for the assessment of player's winning chances can be utilized in a construction of an intelligent agent for playing Hearthstone. Finally, we show a few selected machine learning approaches for modeling state and action values in Hearthstone. We provide evaluation for a few promising solutions that may be used to create more advanced types of agents, especially in conjunction with Monte Carlo Tree Search algorithms.Comment: Federated Conference on Computer Science and Information Systems, Prague (FedCSIS-2017) (Prague, Czech Republic

    Ms Pac-Man versus Ghost Team CEC 2011 competition

    Get PDF
    Games provide an ideal test bed for computational intelligence and significant progress has been made in recent years, most notably in games such as Go, where the level of play is now competitive with expert human play on smaller boards. Recently, a significantly more complex class of games has received increasing attention: real-time video games. These games pose many new challenges, including strict time constraints, simultaneous moves and open-endedness. Unlike in traditional board games, computational play is generally unable to compete with human players. One driving force in improving the overall performance of artificial intelligence players are game competitions where practitioners may evaluate and compare their methods against those submitted by others and possibly human players as well. In this paper we introduce a new competition based on the popular arcade video game Ms Pac-Man: Ms Pac-Man versus Ghost Team. The competition, to be held at the Congress on Evolutionary Computation 2011 for the first time, allows participants to develop controllers for either the Ms Pac-Man agent or for the Ghost Team and unlike previous Ms Pac-Man competitions that relied on screen capture, the players now interface directly with the game engine. In this paper we introduce the competition, including a review of previous work as well as a discussion of several aspects regarding the setting up of the game competition itself. © 2011 IEEE

    RevBayes: Bayesian Phylogenetic Inference Using Graphical Models and an Interactive Model-Specification Language.

    Get PDF
    Programs for Bayesian inference of phylogeny currently implement a unique and fixed suite of models. Consequently, users of these software packages are simultaneously forced to use a number of programs for a given study, while also lacking the freedom to explore models that have not been implemented by the developers of those programs. We developed a new open-source software package, RevBayes, to address these problems. RevBayes is entirely based on probabilistic graphical models, a powerful generic framework for specifying and analyzing statistical models. Phylogenetic-graphical models can be specified interactively in RevBayes, piece by piece, using a new succinct and intuitive language called Rev. Rev is similar to the R language and the BUGS model-specification language, and should be easy to learn for most users. The strength of RevBayes is the simplicity with which one can design, specify, and implement new and complex models. Fortunately, this tremendous flexibility does not come at the cost of slower computation; as we demonstrate, RevBayes outperforms competing software for several standard analyses. Compared with other programs, RevBayes has fewer black-box elements. Users need to explicitly specify each part of the model and analysis. Although this explicitness may initially be unfamiliar, we are convinced that this transparency will improve understanding of phylogenetic models in our field. Moreover, it will motivate the search for improvements to existing methods by brazenly exposing the model choices that we make to critical scrutiny. RevBayes is freely available at http://www.RevBayes.com [Bayesian inference; Graphical models; MCMC; statistical phylogenetics.]

    Knowledge-based fast evolutionary MCTS for general video game playing

    Get PDF
    General Video Game Playing is a game AI domain in which the usage of game-dependent domain knowledge is very limited or even non existent. This imposes obvious difficulties when seeking to create agents able to play sets of different games. Taken more broadly, this issue can be used as an introduction to the field of General Artificial Intelligence. This paper explores the performance of a vanilla Monte Carlo Tree Search algorithm, and analyzes the main difficulties encountered when tackling this kind of scenarios. Modifications are proposed to overcome these issues, strengthening the algorithm's ability to gather and discover knowledge, and taking advantage of past experiences. Results show that the performance of the algorithm is significantly improved, although there remain unresolved problems that require further research. The framework employed in this research is publicly available and will be used in the General Video Game Playing competition at the IEEE Conference on Computational Intelligence and Games in 2014
    corecore