
Knowledge-based Fast Evolutionary MCTS
for General Video Game Playing

Diego Perez, Spyridon Samothrakis and Simon Lucas
School of Computer Science and Electronic Engineering

University of Essex, Colchester CO4 3SQ, UK
dperez@essex.ac.uk, ssamot@essex.ac.uk, sml@essex.ac.uk

Abstract—General Video Game Playing is a game AI domain in
which the usage of game-dependent domain knowledge is very
limited or even non existent. This imposes obvious difficulties
when seeking to create agents able to play sets of different games.
Taken more broadly, this issue can be used as an introduction to
the field of General Artificial Intelligence. This paper explores
the performance of a vanilla Monte Carlo Tree Search algorithm,
and analyzes the main difficulties encountered when tackling
this kind of scenarios. Modifications are proposed to overcome
these issues, strengthening the algorithm’s ability to gather and
discover knowledge, and taking advantage of past experiences.
Results show that the performance of the algorithm is signif-
icantly improved, although there remain unresolved problems
that require further research. The framework employed in this
research is publicly available and will be used in the General
Video Game Playing competition at the IEEE Conference on
Computational Intelligence and Games in 2014.

I. INTRODUCTION

Games are splendid benchmarks to test different algorithms,
understand how new add-ons or modifications affect their per-
formance, and to compare different approaches. Quite often,
the research exercise is focused on one or several algorithms,
measuring their performance in one particular game.

In most games used by researchers, there exists the possibil-
ity of adding a significant amount of domain knowledge that
helps the algorithms tested to achieve the game goals. Whilst
not considered ’incorrect’, this addition can raise doubts as to
whether the type of knowledge introduced is better suited to
only certain of the algorithms under comparison, or even cast
doubt on how much of the success of an algorithm can be
attributed to the algorithm itself or to the heuristics employed.

It could even be possible to argue that, in spite of applying
the same heuristics in all algorithms, the comparison could
still be unbalanced in certain cases, as some heuristics could
benefit certain algorithms more than others. When comparing
algorithms, it may possibly be fairer to allow each algorithm to
use its best possible heuristic. But should we not then compare
the quality of each heuristic separately as well?

The objective of General Game Planning (GGP) and Gen-
eral Video Game Playing (GVGP) is to by-pass the addition of
game specific knowledge, especially if the algorithm is tested
in games that have not been played before. This is the aim of
the General Video Game Playing Competition [15], a computer
game playing contest that will be held for the first time at the
IEEE Conference on Computational Intelligence and Games
(CIG) 2014.

Obviously, algorithms that approach GVGP problems may
still count on some kind of domain knowledge, and the
questions raised above could still be asked. Indeed, many
different algorithms can be employed for GVGP, and chances
are that heuristics will still make a big difference. However,
by reducing the game-dependent knowledge, approaches are
forced to be more general, and research conducted in this field
is closer to the open domain of General Artificial Intelligence.

The goal of this paper is to show how and why a well
known algorithm, Monte Carlo Tree Search (MCTS), struggles
in GVGP when there is no game specific information, and to
offer some initial ideas on how to overcome this issue.

The paper is structured as follows: Section II reviews the
related literature in GGP and GVGP, as well as past uses of
MCTS in this field. Then, Section III describes the framework
used as a benchmark for this research. Section IV explains
the MCTS algorithm, a default controller and its limitations.
Section V proposes a solution to the problems found in the
previous section. Section VI details the experimental work
and, finally, Section VII draws some conclusions and proposes
future work.

II. RELATED RESEARCH

One of the first attempts to develop and establish a general
game playing framework was carried out by the Stanford
Logic Group of Stanford University, when they organized the
first AAAI GGP competition in 2005 [8]. In this competition,
players (also referred to in this paper as agents, or controllers)
would receive declarative descriptions of games at runtime
(hence, the game rules were unknown beforehand), and would
use this information to play the game effectively. These com-
petitions feature finite and synchronous games, described in
a Game Definition Language (GDL), and include games such
as Chess, Tic-tac-toe, Othello, Connect-4 or Breakthrough.

Among the winners of the different editions, Upper Confi-
dence bounds for Trees (UCT) and Monte Carlo Tree Search
(MCTS) approaches deserve a special mention. CADIA-
Player, developed by Hilmar Finnsson in his Master’s the-
sis [5], [6], was the first MCTS based approach to be declared
winner of the competition, in 2007. The agent used a form of
historic heuristic and parallelization, capturing game properties
during the algorithm roll-outs.

The winner of two later editions, 2009 and 2010, was
another MCTS based approach, developed by J. Méhat and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/74370984?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


T. Cazenave [12]. This agent, named Ary, studied the con-
cept of parallelizing MCTS in more depth, implementing the
root parallel algorithm. The idea behind this technique is to
perform independent Monte-Carlo tree searches in parallel in
different CPU. When the decision time allowed to make a
move is over, a master component decides which action to
take among the ones suggested by the different trees.

Other interesting MCTS-based players for GGP are Cen-
turio, from Möller et al. [13], that combines parallelized
MCTS with Answer Set Programming (ASP), and the agent
by Sharma et al. [17], that generates domain-independent
knowledge and uses it to guide the simulations in UCT.

In GGP, the time allowed for each player to pick a move
can vary from game to game. The time allowed is usually
indicated in seconds. Therefore, any player will be able to
spend at least 1 second of decision time in choosing the next
action to make. Whilst this is an appropriate amount of time
for the types of games that feature in GGP competitions, a
similar decision time cannot be afforded in video (real-time)
games. Here the agents perform actions at a much higher rate,
making them appear almost continuous to a human player,
in contrast to turn-based games. Additionally, the real-time
component allows for an asynchronous interaction between
the player and the other entities: the game progresses even if
the player does not take any action.

During the last few years, important research has been car-
ried out in the field of general video-game playing, specifically
in arcade games where the games are clearly not turn-based
and where the time allowed for the agents to pick an action
is measured in milliseconds. Most of this research has been
performed in games from the Atari 2600 collection. Bellemare
et al. [2] introduced the Arcade Learning Environment (ALE),
a platform and a methodology to evaluate AI agents in domain-
independent environments, employing 55 games from Atari
2600. In this framework, each observation consists of a single
frame: a two dimensional (160×210) array of 7-bit pixels. The
agent acts every 5 frames (12 times per second), and the action
space contains the 18 discrete actions allowed by the joystick.
The agent, therefore, must analyze the screen to identify game
objects and perform a move accordingly, in a decision time of
close to 80ms.

Several approaches have been proposed to deal with this
kind of environment, such as Reinforcement Learning and
MCTS [2]. M. Hausknecht et al. [9] employed evolutionary
neural networks to extract higher-dimensional representation
forms from the raw game screen. Yavar Naddaf, in his Master’s
thesis [14], extracted feature vectors from the game screen,
that were used in conjunction with Gradient-descent Sarsa(λ)
and UCT. Also in this domain, Bellemare et al. [7] explored
the concept of contingency awareness using Atari 2600 games.
Contingency awareness is “the recognition that a future obser-
vation is under an agent’s control and not solely determined by
the environment” [7, p. 2]. In this research, the authors show
that contingency awareness helps the agent to track objects
on the screen and improve on existing methods for feature
construction.

Similar to the Atari 2600 domain, J. Levine et al. [10]
recently proposed the creation of a benchmark for General
Video Game playing that complements Atari 2600 in two
ways: the creation of games in a more general framework,
and the organization of a competition to test the different
approaches to this problem. Additionally, in this framework,
the agent does not need to analyze a screen capture, as all
information is accessible via encapsulated objects. It is also
worthwhile highlighting that the game rules are never given
to the agent, something that is usually done in GGP.

This new framework is based on the work of Tom
Schaul [16], who created a Video Game Description Language
(VGDL) to serve as a benchmark for learning and planning
problems. The first edition of the General Video Game AI
(GVGAI) Competition, organized by the authors of the present
paper, and Julian Togelius and Tom Schaul, will be held at the
IEEE Conference on Computational Intelligence and Games
(CIG) in 2014 [15]. This paper uses the framework of this
competition as a benchmark, including some of the games
that feature in the contest.

III. THE GVGAI FRAMEWORK

This section describes the framework and games employed
in this research.

A. Games

The GVGAI competition presents several games divided
into three sets: training, validation, and test. The first set
(the only one ready at the time this research was conducted)
is public to all competitors, in order for them to train and
prepare their controllers, and is the one used in the experiments
conducted for this paper. The objective of the validation set
is to serve as a hidden set of games where participants can
execute their controllers in the server. Finally, the test set is
another set of secret games for the final evaluation of the
competition.

Each set of games is composed of 10 games, and there
are 5 different levels available for each one of them. Most
games have a non-deterministic element in the behaviour of
their entities, producing slightly different playouts every time
the same game and level is played. Also, all games have a
maximum number of game steps to be played (2000), in order
to avoid degenerate players never finishing the game. If this
limit is violated, the result of the game will count as a loss.

The 10 games from the training set are described in Table I.
As can be seen, the games differ significantly in winning
conditions, different number of non-player characters (NPCs),
scoring mechanics and even in the available actions for the
agent. For instance, some games have a timer that finishes
the game with a victory (as in Survive Zombies) or a defeat
(as in Sokoban). In some cases, it is desirable to collide with
certain moving entities (as in Butterflies, or in Chase) but, in
other games, those events are what actually kill the player (as
in Portals, or also in Chase). In other games, the agent (or
avatar) is killed if it collides with a given sprite, that may
only be killed if the avatar picks the action USE appropriately



Game Description Score Actions

Aliens

Similar to traditional Space Invaders, Aliens features the player
(avatar) in the bottom of the screen, shooting upwards at aliens that
approach Earth, who also shoot back at the avatar. The player loses if
any alien touches it, and wins if all aliens are eliminated.

• 1 point is awarded for each alien or pro-
tective structure destroyed by the avatar.

• −1 point is given if the player is hit.

LEFT,
RIGHT,
USE.

Boulderdash

The avatar must dig in a cave to find at least 10 diamonds, with the
aid of a shovel, before exiting through a door. Some heavy rocks may
fall while digging, killing the player if it is hit from above. There
are enemies in the cave that might kill the player, but if two different
enemies collide, a new diamond is spawned.

• 2 points are awarded for each diamond
collected, and 1 point every time a new
diamond is spawned.

• −1 point is given if the avatar is killed by
a rock or an enemy.

LEFT,
RIGHT,
UP,
DOWN,
USE.

Butterflies

The avatar must capture butterflies that move randomly around the
level. If a butterfly touches a cocoon, more butterflies are spawned.
The player wins if it collects all butterflies, but loses if all cocoons
are opened.

• 2 points are awarded for each butterfly
captured.

LEFT,
RIGHT,
UP,
DOWN.

Chase

The avatar must chase and kill scared goats that flee from the player.
If a goat finds another goat’s corpse, it becomes angry and chases the
player. The player wins if all scared goats are dead, but it loses if is
hit by an angry goat.

• 1 point for killing a goat.
• −1 point for being hit by an angry goat.

LEFT,
RIGHT,
UP,
DOWN.

Frogs
The avatar is a frog that must cross a road, full of tracks, and a river,
only traversable by logs, to reach a goal. The player wins if the goal
is reached, but loses if it is hit by a truck or falls into the water.

• 1 point for reaching the goal.
• −2 points for being hit by a truck.

LEFT,
RIGHT,
UP,
DOWN.

Missile
Command

The avatar must shoot at several missiles that fall from the sky, before
they reach the cities they are directed towards. The player wins if it
is able to save at least one city, and loses if all cities are hit.

• 2 points are given for destroying a missile.
• −1 point for each city hit.

LEFT,
RIGHT,
UP,
DOWN,
USE.

Portals
The avatar must find the goal while avoiding lasers that kill him. There
are many portals that teleport the player from one location to another.
The player wins if the goal is reached, and loses if killed by a laser.

• 1 point is given for reaching the goal.
LEFT,
RIGHT,
UP,
DOWN.

Sokoban The avatar must push boxes so they fall into holes. The player wins
if all boxes are made to disappear, and loses when the timer runs out.

• 1 point is given for each box pushed into
a hole.

LEFT,
RIGHT,
UP,
DOWN.

Survive
Zombies

The avatar must stay alive while being attacked by spawned zombies.
It may collect honey, dropped by bees, in order to avoid being killed
by zombies. The player wins if the timer runs out, and loses if hit by
a zombie while having no honey (otherwise, the zombie dies).

• 1 point is given for collecting one piece
of honey, and also for killing a zombie.

• −1 point if the avatar is killed, or it falls
into the zombie spawn point.

LEFT,
RIGHT,
UP,
DOWN.

Zelda

The avatar must find a key in a maze to open a door and exit. The
player is also equipped with a sword to kill enemies existing in the
maze. The player wins if it exits the maze, and loses if it is hit by an
enemy.

• 2 points for killing an enemy, 1 for col-
lecting the key, and another point for reach-
ing the door with it.

• −1 point if the avatar is killed.

LEFT,
RIGHT,
UP,
DOWN,
USE.

TABLE I: Games in the training set of the GVGAI Competition, employed in the experiments of this paper.

(in close proximity, as when using the sword in Zelda, or at a
greater distance, as when shooting in Aliens). Figure 1 shows
some games from the training set.

These differences in game play make the creation of a
simple game-dependent heuristic a relatively complex task, as
the different mechanisms must be handled on a game per game
basis. Furthermore, a controller created following these ideas,
would probably fail to behave correctly in other unseen games
in the competition.

B. The framework

All games are written in VGDL, a video-game description
language that is able to fully define a game, typically in less
than 50 lines. For a full description of VGDL, the reader
should consult [16]. The framework used in the competition,
and in this paper, is a Java port of the original Python version
of VGDL, originally developed by Tom Schaul.

Each controller in this framework must implement two
methods, a constructor for initializing the agent (only called
once), and an act function to determine the action to take at
every game step. The real-time constraints of the framework
determine that the first call must be completed in 1 second,
while every act call must return a move to make within a time
budget of 40 milliseconds (or the agent will be disqualified).
Both methods receive a timer, as a reference, to know when
the call is due to end, and a StateObservation object
representing the current state of the game.

The state observation object is the window the agent has
to the environment. This state can be advanced with a given
action, allowing simulated moves by the agent. As the games
are generally stochastic, it is the responsibility of the agent to
determine how to trust the results of the simulated moves.

The StateObservation object also provides informa-
tion about the state of the game, such as the current time step,



Fig. 1: Four of the ten training set games: from top to bottom, left to right, Boulderdash, Survive Zombies, Aliens and Frogs.

score, or whether the player won or lost the game (or is still
ongoing). Additionally, it provides the list of actions available
in the game that is being played. Finally, two more involved
pieces of information are available to the agent:
• A history of avatar events, sorted by time step, that have

happened in the game so far. An avatar event is defined
as a collision between the avatar, or any sprite produced
by the avatar (such as bullets, shovel or sword), and any
other sprite in the game.

• Lists of observations and distances to the sprites in the
game. One list is given for each sprite type, and they
are grouped by the sprite’s category. This category is
determined by the apparent behaviour of the sprite: static,
non-static, NPCs, collectables and portals (doors).

Although it might seem that the latter gives too much
information to the agent, the controller still needs to figure
out how these different sprites affect the game. For instance,
no information is given as to whether the NPCs are friendly
or dangerous. The agent does not know if reaching the portals
would make him win the game, would kill the avatar, or simply
teleport it to a different location within the same level.

IV. MONTE CARLO TREE SEARCH

Monte Carlo Tree Search (MCTS) is a tree search algorithm
that has had an important impact in Game AI since it was
introduced in 2006 by several researchers. An extensive survey
of MCTS methods is covered by Browne et al. in [4].

MCTS estimates the average value of rewards by iteratively
sampling actions in the environment, building an asymmetric
tree that leans towards the most promising portions of the
search space. Each node in the tree holds certain statistics
about how often a move is played from that state (N(s, a)),
how many times that node is reached (N(s)) and the average

reward (Q(s, a)) obtained after applying a move a in the
state s. On each iteration, or play-out, actions are simulated
from the root until either the end of the game or a maximum
simulation depth is reached. Figure 2 shows the four steps of
each iteration.

Fig. 2: MCTS algorithm steps.

When the algorithm starts, the tree is formed only by the
root node, which represents the current state of the game. In
the first stage, Tree selection, the algorithm navigates through
the tree until it reaches a node that is not fully expanded
(this represents one of the tree’s children that has never been
explored). On each one of these selections, MCTS balances
between exploration (actions that lead to less explored states)
and exploitation (choosing the action with the best estimated
reward). This is known as the MCTS tree policy, and one of
the typical ways this is performed in MCTS is by using Upper
Confidence Bounds (UCB1):



a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
(1)

The balance between exploration and exploitation can be
tempered by modifying C. Higher values of C give added
weight to the second term of the UCB1 Equation 1, giving
preference to those actions that have been explored less, at
the expense of taking actions with the highest average reward
Q(s, a). A commonly used value is

√
2, as it balances both

facets of the search when the rewards are normalized between
0 and 1.

In the second phase, Expansion, a new node is added to the
tree and the third stage, Monte Carlo simulation, is started.
Random actions, either uniformly or biased, are taken up to
the end of the play-out, where the state is analyzed and given
a score or reward. This is known as the MCTS default policy
(and a roll-out is defined as the sequence of actions taken
in the Monte Carlo simulation step). In the final phase, Back
propagation, the reward is back propagated through all visited
nodes up to the root, updating the stored statistics N(s, a),
N(s) and Q(s, a).

One of the main advantages of MCTS is that it is considered
to be an anytime algorithm. This means that the algorithm may
stop at any number of iterations and provide a reasonable,
valid, next action to take. This makes MCTS a particularly
good choice for real-time games, where the time budget to
decide the next move is severely limited.

Once all iterations have been performed, MCTS returns
the next action the agent must take, usually according to the
statistics stored in the root node. Examples of these policies
include taking the action chosen more often (a for the highest
N(s, a)), the one that provides a highest average reward
(Q(s, a)), or simply to apply Equation 1 at the root node.

A. SampleMCTS controller

The vanilla MCTS algorithm features in the GVGAI frame-
work as a sample controller. For this controller, the maximum
depth of the tree is 10 actions, C =

√
2 and the score of each

state is calculated as a function of the game score, normalized
between the minimum and maximum scores ever seen during
the play-outs. In case the game is won or lost in a given state,
the reward is a large positive or negative number, respectively.

B. Analysis

Although detailed results of the sample controller are re-
ported later in Section VI, it is important to analyze first why
this controller only achieves a 21.6% victory rate.

Initially, the obvious reason for this low rate of success is
that the algorithm has no game specific information to bias
the roll-outs, and the rewards depend only on the score and
outcome of the game. Additionally, due to the real-time nature
of the framework, roll-outs are limited in depth and therefore
the vast majority of the play-outs do not reach an end game
state, preventing the algorithm from finding winning states.
This is, however, a problem that is not possible to avoid: play-
out depth is always going to be limited, and the Monte Carlo

simulations cannot use any game specific information to bias
the actions taken in this domain.

There is another important problem that MCTS faces contin-
uously when playing general video-games: in its vanilla form,
MCTS has no way of reusing past information from events that
provided some score gain in the past, even during the same
game. Imagine that in the game Butterflies (see Table I), the
avatar has successfully captured some butterflies in any area of
the level. Here, MCTS learned that certain actions (that caused
the avatar to collide with a butterfly) provided a boost in the
score, indirectly learning that colliding with butterflies was a
good thing to do. However, these learnt facts are not used
again to drive the agent to capture other butterflies that are
beyond the horizon reachable by MCTS during the roll-outs.

Furthermore, there is a second important problem: some
sprites in the game are never reached by the algorithm’s
simulations. Imagine the game of Zelda, where the avatar must
collect a key before exiting the level to win the game. If the
key is beyond the simulation horizon (in this case, if it is more
than 10 actions away), there is no incentive for the agent to
collect it. Note that, if we were programming an agent that
would only play this game, an obvious heuristic would be
to reduce the distance to the key. But in general video-game
playing there is no way to know (a priori) what sprites should
be targeted by the avatar in the first place.

The next section focuses on a proposed solution to these
problems, by providing the algorithm with a knowledge base,
and biasing the Monte Carlo simulations to maximize the
knowledge gain obtained during the play-outs.

V. KNOWLEDGE-BASED FAST EVOLUTIONARY MCTS

Several authors [1], [3] have evolved heuristics, in an offline
manner, to bias roll-outs in MCTS. More recently, Lucas et
al. [11] proposed an MCTS approach that uses evolution to
adapt to the environment and increase performance. In this
approach, a vector of weights w is evolved online to bias the
Monte Carlo simulations, using a fixed set of features extracted
for the current game state. This section proposes an extension
of this work, by first employing any number of features, and
then dynamically creating a knowledge base that is used to
better calculate the reward of a given state.

A. Fast Evolutionary MCTS

The idea behind Fast Evolutionary MCTS is to embed the
algorithm roll-outs within evolution. Every roll-out evaluates
a single individual of the evolutionary algorithm, providing
as fitness the reward calculated at the end of the roll-out. Its
pseudocode can be seen in Algorithm 1.

The call in line 4 retrieves the next individual, or weight
vector w, to evaluate, while its fitness is set in line 9. The
vector w is used to bias the roll-out (line 7), following the
next process: mapping from state space S to feature space F .
A number of N features are extracted on each state found
during the roll-out. Given a set of A available actions, the
relative strength of each action (ai) is calculated as a weighted
sum of feature values, as shown in Equation 2.



Algorithm 1 Fast Evolutionary MCTS Algorithm, from [11],
assuming one roll-out per fitness evaluation.

1: Input: v0 root state.
2: Output: weight vector w, action a
3: while within computational budget do
4: w = EVO.GETNEXT()
5: Initialize Statistics Object S
6: vl = TREEPOLICY(v0)
7: δ = DEFAULTPOLICY(s(vl), D(w))
8: UPDATESTATS(S, δ)
9: EVO.SETFITNESS(w, S)

10: return w = EVO.GETBEST()
11: return a = RECOMMEND(v0)

ai =

N∑
j=1

wij × fj (2)

The weights, initialized at every game step, are stored in a
matrix W , where each entry wij is the weighting of feature
j for action i. These relative action strengths are introduced
into a softmax function in order to calculate the probability of
selecting each action (see Equation 3). For more details about
this algorithm, the reader is referred to [11].

P (ai) =
e−ai∑A
j=1 e

−aj

(3)

In this research, the features extracted from each game state
are the euclidean distances to the closest NPC, resource, non-
static object and portal (as described in Section III-B).

Note that each one of these features may be composed of
more than one distance, as there might be more than one type
of NPC, resource, portal, etc. For instance, in the game Chase,
the first feature would return two distances: to the closest
scared and to the closest angry goat. The same amount of
features will not be available in every game step of the same
game, as there could be sprites that do not exist at some point
of the game: such as enemy NPCs that have not been spawned
yet, or depleted resources.

Therefore, the number N of features not only varies from
game to game, but also varies from game step to game step.
Fast Evolutionary MCTS must therefore be able to adapt the
weight vector according to the present number of features at
each step. While in the original Fast Evolutionary MCTS algo-
rithm the number of features was fixed, here the evolutionary
algorithm maps each feature to a particular position in the
genome, increasing the length of the individual every time a
new feature is discovered.

In this research, as in the original Fast Evolutionary MCTS
paper, the evolutionary algorithm used is a (1 + 1) Evolution
Strategy (ES). Albeit a simple choice, it produces good results.

B. Knowledge-based Fast Evolutionary MCTS

Now that there is a procedure in place to guide the roll-
outs, the next step is to define a score function that provides

solutions to the problems analyzed at the end of Section IV-B.
Note that this score function is also the one that defines the
fitness for the evolved weight vector w, and ultimately will
affect how the roll-outs are to be biased.

In this domain, we define the concept knowledge base as
the combination of two factors: curiosity plus experience.
The former refers to discovering the effects of colliding with
other sprites, while the latter allows the agent to reward those
events that provided a score gain. Each piece of knowledge
corresponds to one event that, as defined in Section IV-B,
represents the collision of the avatar - or a sprite produced by
the avatar - with another sprite. Specifically, the knowledge
base contemplates only the types of sprites used to extract
the features (NPC, resource, non-static object and portal).
Each one of these knowledge items maintains the following
statistics:
• Zi: number of occurrences of the event i.
• xi: average of the score change, calculated as the differ-

ence between the game score before and after the event
took place. It is important to note that an event does
not contain information about the proper score change,
this needs to be inferred by the controller. As multiple
simultaneous events can trigger a score change, the larger
the value of Zi, the more reliable xi will be.

These statistics are updated every time MCTS makes a move
in a roll-out. When each roll-out finishes, the following three
values are calculated in the final state:
• Score change ∆R: the difference of the game score

between the score value at the beginning and at the end
of the play-out.

• Knowledge change ∆Z =
∑N

i=1 ∆(Ki): a measure of
curiosity that values the change of all Zi in the knowledge
base, for each knowledge item i. ∆(Ki) is calculated as
shown in Equation 4, where Zi0 is the value of Zi at the
beginning of the play-out and ZiF is the value of Zi at
the end of the roll-out.

∆(Ki) =

{
ZiF : Zi0 = 0
ZiF

Zi0
− 1 : Otherwise

(4)

Essentially, ∆Z will be higher when the roll-outs produce
more events. Events that have been rarely seen before will
provide higher values, rewarding knowledge gathering
from events less triggered in the past.

• Distance change ∆D =
∑N

i=1 ∆(Di): a measure of
change in distance to each sprite of type i. Equation 5
defines the value of ∆(Di), where Di0 is the distance
to the closest sprite of type i at the beginning of the
play-out, and DiF is the same distance at the end of the
roll-out.

∆(Di) =


1− DiF

Di0
: Zi0 = 0 OR
Di0 > 0 and xi > 0

0 : Otherwise
(5)

Here, ∆D will be higher if the avatar, in the course of the
roll-out, has reduced the distance from unknown sprites



(again, measuring curiosity), or from those that provided
a score boost in the past (experience).

Once these three values have been calculated, the final score
for the game state reached at the end of the roll-out is obtained
as in Equation 6. Essentially, the reward will be the score
difference ∆R, unless ∆R = 0. If this happens, none of the
actions during the roll-out were able to change the score of
the game, and the reward refers to the other two components.
The values of α = 0.66 and β = 0.33 have been determined
empirically for this research.

Reward =

{
∆R : ∆R 6= 0

α×∆Z + β ×∆D : Otherwise
(6)

To summarize, the new score function prioritizes the actions
that lead to a score gain in the MCTS iterations. However, if
there is no score gain, more reward will be given to the actions
that provide more information to the knowledge base, or that
will get the avatar closer to sprites that, by colliding with them
in the past, seemed to produce a positive score change.

VI. EXPERIMENTS

The experimental work of this paper has been performed
on the 10 games explained in Table I. There are five different
levels for each one of the games, with variations on the
location of the sprites and, sometimes, with slightly different
behaviours of the NPC sprites. The complete set of games and
levels can be downloaded from the competition website [15].
Each one of the levels is played 5 times, giving a total of
250 games played for each configuration tested. Four different
algorithms have been explored in the experiments:
• Vanilla MCTS: the sample MCTS controller from the

competition, as explained in Section IV-A.
• Fast-Evo MCTS: Fast Evolutionary MCTS, as per Lucas

et al. [11], using dynamic adaptation of the number of
features, as explained in Section V-A.

• KB MCTS: Knowledge-based (KB) MCTS as explained
in Section V-B, but employing uniformly random roll-
outs in the Simulation phase of MCTS (i.e., no Fast
Evolution is used to guide the Monte Carlo simulations).

• KB Fast-Evo MCTS: Knowledge-based Fast Evolution-
ary MCTS, as explained in Section V-B, using both
knowledge base and evolution to bias the roll-outs.

The experiments can be analyzed by considering two mea-
sures: the percentage of victories achieved and the score
earned. As in the competition, it is considered that the former
value takes precedence over the rankings (it is more relevant
to win the game than to lose it with a higher score). Also,
comparing the percentage of victories across all games is
more representative than comparing scores, as each game has
a completely different score system. However, it is interesting
to compare scores on a game by game basis.

According to the total average of victories, KB Fast-Evo
MCTS leads the comparison with 49.2% ± 3.2 of games
won. The other MCTS versions all obtained similar victory
rates in the range 20% to 25%. This difference shows that

adding both the knowledge base and evolution to bias the roll-
outs provides a strong advantage to MCTS, but adding each
one of these features separately does not impact the vanilla
MCTS algorithm significantly. Regarding the scores, KB Fast-
Evo MCTS also leads on the average points achieved, with
13.5±1.2 points, against the other algorithms (with results all
ranging between 9 and 11 points). Nevertheless, as mentioned
before, this particular result must be treated with care as
different games vary in their score system. It is therefore more
relevant to compare scores on a game by game basis.

Table II shows the average victories and scores obtained in
every game. In most games, KB Fast-Evo MCTS shows a better
performance than Vanilla MCTS in both percentage of victories
and scores achieved. In some cases, like in Boulderdash, the
increase in victory percentage is obtained when adding the
knowledge base system, while in others, as in Zelda, it is
the evolution feature that gives this boost. On average in
most cases, and also in some specific games such Missile
Commmand and Chase, it is both evolution and the knowledge
base that cause the improvement. Special mention must be
made of Aliens, Butterflies and Chase, in which the KB Fast-
Evo MCTS algorithm achieved a very high rate of victories.
Similarly, Aliens, Chase and Missile Command show a relevant
improvement in average score.

KB Fast-Evo MCTS fails, however, to provide good results
in certain games, where little (as in Sokoban and Boulderdash)
or no improvement at all (like in Survive Zombies and Frogs) is
observed compared with Vanilla MCTS. The reasons are varied
as to why this algorithm does not achieve the results it did in
other games. Clearly, one is the fact that the distances between
sprites are euclidean, not considering obstacles. Shortest dis-
tances (i.e. using A*) would positively affect the performance
of the algorithm. This is, however, not trivial: path-finding
requires the definition of a navigable space. In the GVGAI
framework this can be inferred as empty spaces in most games,
but in others (particularly in Boulderdash), the avatar moves by
digging through dirt, creating new paths with each movement
(but dirt itself is not an obstacle).

Nevertheless, not all problems can be attributed to how the
distances are calculated. For instance, in Sokoban, where boxes
are to be pushed, it is extremely important to consider where
the box is pushed from. However, the algorithm considers
collisions as non-directional events. It could be possible to
include this information (which collisions happened from what
direction) in the model, but this would be an unnecessary
division for other games, where it is not relevant. Actually,
it would increase the number of features considered, causing
a higher computational cost for their calculation and a larger
search space for the evolutionary algorithm.

Another interesting case to analyze is Frogs. In this game,
the avatar usually struggles with crossing the road. This road
is typically composed of three lanes with many trucks that kill
the agent when contacting with it. Therefore, the road needs
to be crossed quickly, and most of the roll-outs are unable to
achieve this without colliding with a truck. The consequence
of this is that most of the feedback retrieved suggests that



Percentage Victories Average Score

Game Vanila
MCTS

Fast-Evo
MCTS KB MCTS KB Fast-Evo

MCTS
Vanila
MCTS

Fast-Evo
MCTS KB MCTS KB Fast-Evo

MCTS
Aliens 8.0 ± 5.4 4.0 ± 3.9 4.0 ± 3.9 100.0 ± 0.0 36.72 ± 0.9 38.4 ± 0.8 37.56 ± 1.0 54.92 ± 1.6

Boulderdash 0.0 ± 0.0 4.0 ± 3.9 28.0 ± 9.0 16.0 ± 7.3 9.96 ± 1.0 12.16 ± 1.2 17.28 ± 1.7 16.44 ± 1.8
Butterflies 88.0 ± 6.5 96.0 ± 3.9 80.0 ± 8.0 100.0 ± 0.0 27.84 ± 2.8 31.36 ± 3.4 31.04 ± 3.4 28.96 ± 2.8

Chase 12.0 ± 6.5 12.0 ± 6.5 0.0 ± 0.0 92.0 ± 5.4 4.04 ± 0.6 4.8 ± 0.6 3.56 ± 0.7 9.28 ± 0.5
Frogs 24.0 ± 8.5 16.0 ± 7.3 8.0 ± 5.4 20.0 ± 8.0 -0.88 ± 0.3 -1.04 ± 0.2 -1.2 ± 0.2 -0.68 ± 0.2

Missile Command 20.0 ± 8.0 20.0 ± 8.0 20.0 ± 8.0 56.0 ± 9.9 -1.44 ± 0.3 -1.44 ± 0.3 -1.28 ± 0.3 3.24 ± 1.3
Portals 12.0 ± 6.5 28.0 ± 9.0 16.0 ± 7.3 28.0 ± 9.0 0.12 ± 0.06 0.28 ± 0.09 0.16 ± 0.07 0.28 ± 0.09

Sokoban 0.0 ± 0.0 0.0 ± 0.0 4.0 ± 3.9 8.0 ± 5.4 0.16 ± 0.1 0.32 ± 0.1 0.7 ± 0.2 0.6 ± 0.1
Survive Zombies 44.0 ± 9.9 36.0 ± 9.6 52.0 ± 10.0 44.0 ± 9.9 13.28 ± 2.3 14.32 ± 2.4 18.56 ± 3.1 21.36 ± 3.3

Zelda 8.0 ± 5.4 20.0 ± 8.0 8.0 ± 5.4 28.0 ± 9.0 0.08 ± 0.3 0.6 ± 0.3 0.8 ± 0.3 0.6 ± 0.3
Overall 21.6 ± 2.6 23.6 ± 2.7 22.0 ± 2.6 49.2 ± 3.2 9.0 ± 0.9 10.0 ± 1.0 10.7 ± 1.0 13.5 ± 1.2

TABLE II: Percentage of victories and scores from each game. The results in bold are the best from each game. Each value
corresponds to the average result obtained by playing that particular game 25 times.

the action that moves the avatar into the first lane will most
likely cause the player to lose the game. A typical behaviour
observed in this game is the agent moving parallel to the road
without ever crossing it, trying to find gaps to cross, but too
“scared” to actually try it.

VII. CONCLUSIONS

This paper explored the performance and problems of a
vanilla Monte Carlo Tree Search (MCTS) algorithm in the
field of General Video Game Playing (GVGP). Several mod-
ifications to the algorithm have been implemented in order
to overcome the problems, such as rewarding the discovery
of new sprites, augmenting the knowledge of other elements
in the game, and using past experience to ultimately guide
the MCTS roll-outs. Results show a significant improvement
in performance, both in percentage of victories and scores
achieved. These improvements work better in some games than
in others, and reasons for this have also been suggested.

This work presages multiple future extensions, such as
the implementation of a general path-finding algorithm for
better distance measurements, or experimenting with different
algorithms to bias roll-outs. This study features a (1 + 1)
Evolution Strategy to guide the Monte Carlo simulations, but
more involved evolutionary techniques will be explored, as
well as other approaches like gradient descent methods.

GVGP, with the absence of game-dependent heuristics, has
proven to be a challenging and fascinating problem. It re-
produces current open challenges in Reinforcement Learning,
such as the absence of meaningful rewards (as explained for
Frogs, in Section VI). We hope that this research, and also
the new General Video Game Competition [15], helps to shed
some light on a problem that is still unresolved, and also to
bring more researchers to this topic.

ACKNOWLEDGMENT

This work was supported by EPSRC grant EP/H048588/1.

REFERENCES

[1] Atif Alhejali and Simon M. Lucas. Using Genetic Programming to
Evolve Heuristics for a Monte Carlo Tree Search Ms Pac-Man Agent.
In Proceedings of the Conference on Computational Intelligence and
Games (CIG), pages 65–72, 2013.

[2] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling.
The Arcade Learning Environment: An Evaluation Platform for General
Agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.

[3] Amit Benbassat and Moshe Sipper. EvoMCTS: Enhancing MCTS-
based Players Through Genetic Programming. In Proceedings of the
Conference on Computational Intelligence and Games (CIG), pages 57–
64, 2013.

[4] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A
Survey of Monte Carlo Tree Search Methods. IEEE Transactions on
Computational Intelligence and AI in Games, 4:1:1–43, 2012.

[5] Hilmar Finnsson and Yngvi Björnsson. Simulation-based Approach to
General Game Playing. In Proceedings of the 23rd National Conference
on Artificial Intelligence, pages 259–264, 2008.

[6] Hilmar Finnsson and Yngvi Björnsson. CADIA-Player: A Simulation-
Based General Game Player. IEEE Transactions on Computational
Intelligence and AI in Games, 1:1–12, 2009.

[7] Marc Gendron-Bellemare, Joel Veness, and Michael Bowling. Investi-
gating Contingency Awareness using Atari 2600 Games. In Proceedings
of the Twenty-Sixth Conference on Artificial Intelligence (AAAI), pages
864–871, 2012.

[8] Michael Genesereth, Nathaniel Love, and Barney Pell. General Game
Playing: Overview of the AAAI Competition. AI Magazine, 26:62–72,
2005.

[9] Matthew Hausknecht, Joel Lehman, Risto Miikkulainen, and Peter
Stone. A Neuroevolution Approach to General Atari Game Playing.
IEEE Transactions on Computational Intelligence and AI in Games,
DOI:10.1109/TCIAIG.2013.2294713:1–18, 2013.

[10] John Levine, Clare B. Congdon, Michal Bı́da, Marc Ebner, Graham
Kendall, Simon Lucas, Risto Miikkulainen, Tom Schaul, and Tommy
Thompson. General Video Game Playing. Dagstuhl Follow-up, 6:1–7,
2013.

[11] Simon M. Lucas, Spyridon Samothrakis, and Diego Perez. Fast Evo-
lutionary Adaptation for Monte Carlo Tree Search. In Proceedings of
EvoGames, page to appear, 2014.

[12] Jean Méhat and Tristan Cazenave. A Parallel General Game Player. KI
- Knstliche Intelligenz, 25:43–47, 2011.

[13] Maximilian M¨ller, Marius Thomas Schneider, Martin Wegner, and
Torsten Schaub. Centurio, a General Game Player: Parallel, Java- and
ASP-based. KI - Knstliche Intelligenz, 25:17–24, 2011.

[14] Yavar Naddaf. Game-Independent AI Agents for Playing Atari 2600
Console Games. Master’s thesis, University of Alberta, 2010.

[15] Diego Perez, Spyridon Samothrakis, Julian Togelius, Tom Schaul, and
Simon Lucas. The General Video Game AI Competition, 2014.
www.gvgai.net.

[16] Tom Schaul. A Video Game Description Language for Model-based
or Interactive Learning. In Proceedings of the IEEE Conference on
Computational Intelligence in Games, pages 193–200, 2013.

[17] Shiven Sharma, Ziad Kobti, and Scott Goodwin. Knowledge Generation
for Improving Simulations in UCT for General Game Playing. In
Proceedings of the 21st Australasian Joint Conference on Artificial
Intelligence: Advances in Artificial Intelligence, pages 49–55, 2008.


