5,038 research outputs found

    Energy management in communication networks: a journey through modelling and optimization glasses

    Full text link
    The widespread proliferation of Internet and wireless applications has produced a significant increase of ICT energy footprint. As a response, in the last five years, significant efforts have been undertaken to include energy-awareness into network management. Several green networking frameworks have been proposed by carefully managing the network routing and the power state of network devices. Even though approaches proposed differ based on network technologies and sleep modes of nodes and interfaces, they all aim at tailoring the active network resources to the varying traffic needs in order to minimize energy consumption. From a modeling point of view, this has several commonalities with classical network design and routing problems, even if with different objectives and in a dynamic context. With most researchers focused on addressing the complex and crucial technological aspects of green networking schemes, there has been so far little attention on understanding the modeling similarities and differences of proposed solutions. This paper fills the gap surveying the literature with optimization modeling glasses, following a tutorial approach that guides through the different components of the models with a unified symbolism. A detailed classification of the previous work based on the modeling issues included is also proposed

    Survivable mesh-network design & optimization to support multiple QoP service classes

    Get PDF
    Every second, vast amounts of data are transferred over communication systems around the world, and as a result, the demands on optical infrastructures are extending beyond the traditional, ring-based architecture. The range of content and services available from the Internet is increasing, and network operations are constantly under pressure to expand their optical networks in order to keep pace with the ever increasing demand for higher speed and more reliable links

    Network protection with guaranteed recovery times using recovery domains

    Get PDF
    We consider the problem of providing network protection that guarantees the maximum amount of time that flow can be interrupted after a failure. This is in contrast to schemes that offer no recovery time guarantees, such as IP rerouting, or the prevalent local recovery scheme of Fast ReRoute, which often over-provisions resources to meet recovery time constraints. To meet these recovery time guarantees, we provide a novel and flexible solution by partitioning the network into failure-independent “recovery domains”, where within each domain, the maximum amount of time to recover from a failure is guaranteed. We show the recovery domain problem to be NP-Hard, and develop an optimal solution in the form of an MILP for both the case when backup capacity can and cannot be shared. This provides protection with guaranteed recovery times using up to 45% less protection resources than local recovery. We demonstrate that the network-wide optimal recovery domain solution can be decomposed into a set of easier to solve subproblems. This allows for the development of flexible and efficient solutions, including an optimal algorithm using Lagrangian relaxation, which simulations show to converge rapidly to an optimal solution. Additionally, an algorithm is developed for when backup sharing is allowed. For dynamic arrivals, this algorithm performs better than the solution that tries to greedily optimize for each incoming demand.National Science Foundation (U.S.) (NSF grant CNS-1017800)National Science Foundation (U.S.) (grant CNS-0830961)United States. Defense Threat Reduction Agency (grant HDTRA-09-1-005)United States. Defense Threat Reduction Agency (grant HDTRA1-07-1-0004)United States. Air Force (Air Force contract # FA8721-05-C-0002

    Protection and restoration algorithms for WDM optical networks

    Get PDF
    Currently, Wavelength Division Multiplexing (WDM) optical networks play a major role in supporting the outbreak in demand for high bandwidth networks driven by the Internet. It can be a catastrophe to millions of users if a single optical fiber is somehow cut off from the network, and there is no protection in the design of the logical topology for a restorative mechanism. Many protection and restoration algorithms are needed to prevent, reroute, and/or reconfigure the network from damages in such a situation. In the past few years, many works dealing with these issues have been reported. Those algorithms can be implemented in many ways with several different objective functions such as a minimization of protection path lengths, a minimization of restoration times, a maximization of restored bandwidths, etc. This thesis investigates, analyzes and compares the algorithms that are mainly aimed to guarantee or maximize the amount of remaining bandwidth still working over a damaged network. The parameters considered in this thesis are the routing computation and implementation mechanism, routing characteristics, recovering computation timing, network capacity assignment, and implementing layer. Performance analysis in terms of the restoration efficiency, the hop length, the percentage of bandwidth guaranteed, the network capacity utilization, and the blocking probability is conducted and evaluated

    SDN Testbed for Evaluation of Large Exo-Atmospheric EMP Attacks

    Get PDF
    Large-scale nuclear electromagnetic pulse (EMP) attacks and natural disasters can cause extensive network failures across wide geographic regions. Although operational networks are designed to handle most single or dual faults, recent efforts have also focused on more capable multi-failure disaster recovery schemes. Concurrently, advances in software-defined networking (SDN) technologies have delivered highly-adaptable frameworks for implementing new and improved service provisioning and recovery paradigms in real-world settings. Hence this study leverages these new innovations to develop a robust disaster recovery (counter-EMP) framework for large backbone networks. Detailed findings from an experimental testbed study are also presented
    corecore