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Abstract—We consider the problem of providing network pro-
tection that guarantees the maximum amount of time that flow
can be interrupted after a failure. This is in contrast to schemes
that offer no recovery time guarantees, such as IP rerouting,
or the prevalent local recovery scheme of Fast ReRoute, which
often over-provisions resources to meet recovery time constraints.
To meet these recovery time guarantees, we provide a novel
and flexible solution by partitioning the network into failure-
independent “recovery domains”, where within each domain, the
maximum amount of time to recover from a failure is guaranteed.

We show the recovery domain problem to be NP-Hard, and
develop an optimal solution in the form of an MILP for both
the case when backup capacity can and cannot be shared. This
provides protection with guaranteed recovery times using up to
45% less protection resources than local recovery. We demonstrate
that the network-wide optimal recovery domain solution can be
decomposed into a set of easier to solve subproblems. This allows
for the development of flexible and efficient solutions, including an
optimal algorithm using Lagrangian relaxation, which simulations
show to converge rapidly to an optimal solution. Additionally, an
algorithm is developed for when backup sharing is allowed. For
dynamic arrivals, this algorithm performs better than the solution
that tries to greedily optimize for each incoming demand.

I. INTRODUCTION

As the importance of time-sensitive internet traffic continues
to rise, there is an increasing need to offer network protection
that provides guarantees on the amount of time flow can be
disrupted after a failure. Examples of time-sensitive traffic
include voice-over-IP and video streaming, which would be
rendered unusable with high latency delays. Many networks
employ protection techniques that offer no recovery time guar-
antees whatsoever. Alternatively, networks typically provide
local recovery schemes, which reroute a connection at the point
of failure; such schemes typically over-provision resources to
meet time recovery constraints. In this paper, we a present novel
solution that provides guarantees on the maximum amount of
time that flow can be disrupted after a failure, which is both
flexible and efficient. We refer to these time guarantees as the
recovery time of the network.

Protection in the internet has traditionally been accomplished
using a real-time rerouting approach: after a link failure occurs,
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the network is updated with the new set of shortest paths
between node pairs, and then a new path is selected. This is
both slow (sometimes on the order of minutes) [1], and does
not necessarily guarantee that bandwidth will be available for
the new path [2, 3]. In the past decade, Multi-Protocol Label
Switching (MPLS) has been developed to support constraint
based routing, which allows connections to be made with
guarantees on parameters such as bandwidth, latency, and re-
covery time [4]. Because of its flexibility and traffic engineering
capabilities, MPLS has become the leading packet transport
network technology in backbone networks [5]. To handle these
fast recovery times, the Fast ReRoute (FRR) framework was
developed to be used within MPLS [6]. FRR is a local recovery
scheme where traffic is routed away from the node directly
preceding a fault, which is known as the point of local repair
(PLR), and reconnects with the original path at the merge point
(MP). Various implementations of local recovery have been
previously examined [7–11].

More recently, the new IETF standard for the MPLS Trans-
port Profile (MPLS-TP) Protection Framework calls for the
creation of “recovery domains” [12]. Recovery domains are
defined to be non-overlapping path segments, such that after a
failure within a segment, flow is restored using a back-up path
between the end-points of that segment. Moreover, recovery
domains connect to one another via their respective “reference”
end-points, forming an end-to-end protected flow. An example
is shown in Fig. 1: after the failure of an edge in the primary
path located within Recovery Domain 2, the recovery domain’s
upstream end-point redirects flow onto the backup path, which
then reconnects at that recovery domain’s downstream end-
point, bypassing the failure. The recovery domain model can
be used to provide recovery time guarantees.

Recovery
Domain 1

Recovery
Domain 2

Recovery
Domain 3

Fig. 1: End-to-end routing using recovery domains
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Fig. 2: Time guaranteed recovery examples

In local recovery, since each possible failure has its own
dedicated protection path, resources are often over-provisioned
beyond what is needed to meet recovery time guarantees.
Consider the example shown Fig. 2; the propagation delay for
each link is 10 ms, and switching delays are assumed to be
negligible. A flow needs to be found from v1 to v5 such that the
maximum time that the flow can be disripted after a failure is 50
ms, which is the typical recovery time for MPLS networks [1].
A primary path is already allocated on the solid lines from v1
to v5. A solution to FRR local recovery is to use all of the links
above the primary path: after a link failure in the primary path, a
fault notification is sent to the immediate upstream node of that
failed link, and the flow is then switched to an alternate path
from that node back towards the destination. This protection
scheme requires 7 edges to be used for backup.

Now consider an alternative protection routing using the
recovery domain model. Two recovery domains are created by
using the links below the primary path as the backup paths: one
recovery domain between nodes v1 and v3, and one between v3
and v5. If link {v2, v3} fails, it would take up to 20 ms for the
fault notification to propagate to v1, and then 20 ms for the data
that was switched to the protection route to reconnect with the
primary path at node v3. The other recovery domain will have
a similar recovery time after a failure. In this example, only 4
additional links are needed to meet protection guarantees when
using recovery domains, as opposed to the 7 needed for FRR.

Previous work has examined providing differentiated reliabil-
ity for connections, including maximum recovery times. These
papers build off of the segment protection framework [13],
where segments of a primary path are individually protected,
but can overlap by any number of edges. Various heuristics
have been considered for segment protection with recovery
time considerations [14–16], and an integer linear program
(ILP) was presented in [17]. In contrast, recovery domains
simplify recovery by separating a flow into disjoint protection
regions, where each region guarantees protection for the flow
between its end-points. This flow partitioning approach allows
the network to be decomposed into a set of individual recovery
domains, simplifying capacity allocation and flow control.
To the best of our knowledge, the guaranteed recovery time
problem using recovery domains has not yet been examined.

Our novel formulation to provide Guaranteed Recovery
Times using Recovery Domains (GRT-RD) allows for a general
and efficient set of solutions and algorithms. We first present
a model of the problem in Section II. We then show in
Section III that the recovery domain problem is NP-Hard,
and formulate the optimal solution using an MILP. In Section

IV, we decompose the end-to-end recovery domain problem
into more tractable subproblems, which allows us to more
easily construct a solution for the end-to-end problem. This
allows for the development of flexible and efficient solutions,
including an optimal algorithm using Lagrangian relaxation,
which simulations show to converge rapidly to an optimal
solution. In Section V, an algorithm is developed for the case
when backup sharing is allowed.

II. MODEL AND PROBLEM DESCRIPTION

In this paper, solutions to the problem of Guaranteed Recov-
ery Time using Recovery Domains (GRT-RD) are developed
and analyzed. The objective is to provide a primary and
protection path for each demand, such that the amount of
time flow is disrupted after a failure is guaranteed to be no
greater than some maximum value. In order to meet these
recovery time guarantees, we separate an end-to-end flow into
“recovery domains”, where within each recovery domain, the
maximum time to recover from a failure cannot exceed a given
value. We borrow the definition of recovery domains from
[12]: “A recovery domain is defined between two recovery
reference end-points which are located at the edges of the
recovery domain... To guarantee protection in all situations,
a dedicated recovery entity should be pre-provisioned using
disjoint resources in the recovery domain, in order to protect
against a failure of a working entity.”

Adding the constraint for time guaranteed recovery, we
implement GRT-RD as follows: an end-to-end recovery domain
routing is a set of recovery domains connecting at their respec-
tive end-points such that they form a path from the source
to the destination, and that the maximum amount of time a
flow can be disrupted after any single-link failure is guaranteed.
An example was shown in Fig. 1. We implement guaranteed
protection within a recovery domain using the 1+1 protection
scheme, which provides an edge-disjoint backup path for each
primary path, and guarantees the full flow to be available at all
times after any single-link failure [18, 19].

The following network model is used for the remainder of
the paper. A graph G has a set of vertices V and edges E.
We assume a single-link failure model. An end-to-end recovery
domain routing will comprise of a set of recovery domains,
connected via their reference end-nodes, which form an end-
to-end flow from a source to its destination. The maximum
recovery time T will be the maximum time data flow can be
interrupted: after a link failure of the primary path in some
recovery domain, the length of time for the primary flow
to be rerouted from the upstream reference end-node to the
downstream reference end-node cannot exceed the maximum
recovery time of T . This includes the time for fault detection,
switching delays, and the time necessary for the flow to reach
the end-point of the recovery domain. For ease of exposition,
we assume that the link traversal times include all the various
switching and detection delays.

Consider the recovery domain in Fig. 3, with link traversal
times (in ms) as labeled. After a failure occurs on link {j, d},
the failure will be seen at j in at most 10 ms, and then it will
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Fig. 3: Recovery domain example

take another 10 ms for that information to reach s. The primary
flow will take an additional 20 ms to reach d through i, which
gives a total recovery time of 40 ms. Hence, for a recovery
domain, the maximum recovery time will be the sum of all
the link traversal times within that domain (which includes
switching and detection delays).

III. A MINIMUM-COST FORMULATION

This section investigates minimum-cost allocations to find a
routing that offers protection after a failure with a guaranteed
recovery time by using recovery domains (GRT-RD). Each edge
{i, j} will have an associated cost cij and link traversal time
tij . The set of link costs and traversal times will be labeled C
and T , respectively. We begin by demonstrating that finding a
minimum-cost end-to-end routing using recovery domains with
recovery time guarantees is NP-Hard. Subsequently, in Section
III-A a mixed integer linear program (MILP) is formulated to
find a minimum-cost solution to the end-to-end recovery do-
main problem with recovery time guarantees. In Section III-B,
GRT-RD is compared to the common MPLS local recovery
scheme of Fast ReRoute (FRR).

We first show that solving for an individual recovery domain
with a guaranteed recovery time is NP-hard. Afterwards, the
end-to-end problem is shown to be NP-hard as well.

Theorem 1. Finding the minimum-cost allocation for a pair
of disjoint paths between nodes k and l such that the sum of
the link traversals across the two paths does not exceed some
maximum time T is NP-hard.

Proof: We reduce the NP-hard Constrained Shortest Path
(CSP) problem [20] to ours. In CSP, each edge {i, j} has two
associated values: cij and tij . In our case cij is the cost of
the edge, and tij is the link traversal time. If xij is a binary
flow variable for edge {i, j}, then the objective is to find a
path from k to l that minimizes

∑
{i,j}∈E cijxij , such that∑

{i,j}∈E tijxij ≤ T . To find a minimum-cost solution to CSP
by solving GRT-RD with a maximum recovery time of T , add
a path between k and l with a total traversal time of zero and
a cost of −(

∑
{i,j}∈E |cij | + 1). A minimum-cost solution to

GRT-RD, if it exists, will always use this path as one of the two
disjoint paths, and the other path will be the solution for CSP
from k to l with a maximum traversal time of T . In addition,
we note that our problem is clearly in NP.

Next, we show that finding an end-to-end routing using
recovery domains that guarantees the maximum length of flow
interruption is NP-hard by using a similar proof to Theorem
1. An end-to-end recovery domain routing can have a series
of recovery domains in sequence, each guaranteeing recovery
time for its respective flow.

Theorem 2. Finding the minimum-cost allocation for a protec-
tion routing between nodes s and d that guarantees a maximum
recovery time of T by using end-to-end recovery domains is
NP-hard.

Proof: We add a path between s and d with a total traversal
time of zero and a cost of−(

∑
{i,j}∈E |cij |+1). Any minimum-

cost solution to the end-to-end GRT-RD will use this negative
cost path if a constrained shortest path (CSP) from s to d exists
with maximum traversal time of T . Hence, if the minimum-cost
solution to the end-to-end problem uses this negative cost path,
then the CSP problem has also been solved. If the negative cost
path is not used, there exists no solution to CSP on the given
network. In addition, we note our problem is clearly in NP.

A. MILP to find a Minimum-Cost Solution

Since finding a minimum-cost solution for the guaranteed
recovery time problem using recovery domains is NP-hard,
in this section a mixed integer linear program (MILP) is
developed to solve for the minimum-cost solution. Two versions
are developed: one for when backup capacity sharing is not
allowed, and one when it is. Backup capacity can be shared
between two demands if their primary path edges are disjoint
under a single-link failure model. If a failure occurs, and the
two primary paths are disjoint, then at most one demand can
fail. Hence, at most one demand will need backup protection
at a time, and the two demands can share backup protection
resources. Due to space constraints, only the MILP for the
non-sharing case is presented here. The formulation for when
protection sharing is allowed can be found in Appendix A.

Solving for an end-to-end protection routing between nodes
s and d using recovery domains relies on the following ob-
servations: each pair of nodes in the network is a potential
recovery domain, and an end-to-end recovery domain routing
will be some subset of these recovery domains. Additionally,
in an end-to-end recovery domain routing, recovery domains
connect only via their reference end-points, and each recovery
domain consists of a pair of edge-disjoint paths. Hence, an
end-to-end recovery domain routing is, in fact, a pair of edge-
disjoint paths between s and d (potentially connected at certain
nodes). Using these observations, the MILP is structured as
such: a pair of disjoint paths is found from s to d, where each
edge from that pair of disjoint paths is associated with exactly
one recovery domain. Additionally, any active recovery domain
(i.e., part of the solution) must itself consist of a pair of disjoint
paths between the end-nodes of that recovery domain, and the
sum of the link traversal times of that recovery domain may not
exceed the maximum recovery time. Without loss of generality,
a unit demand between s and d is assumed.

The following values are given:
• G = (V,E) is the graph with a set of vertices and edges
• s is the source and d is the destination
• cij is the cost of link {i, j}
• tij is the traversal time for link {i, j}
• T is the maximum recovery time

The following variables will be solved for:
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• xij is 1 if flow is assigned on link {i, j}, and 0 otherwise
• Rkl is 1 if the recovery domain with end nodes k and l is

active (part of the solution), 0 otherwise
• rklij is 1 if link {i, j} is in recovery domain (k, l), 0

otherwise

The objective is to minimize the total cost of allocating
capacity for an end-to-end routing between s and d using
recovery domains such that the maximum recovery time of T
is not exceeded.

minimize
∑
{i,j}∈E

cijxij (1)

Subject to the following constraints:

• Find two edge-disjoint paths between the source and
destination. Since xij is strictly 0 or 1, routing two units
between s and d will result in two edge-disjoint paths.

∑
{i,j}∈E

xij −
∑
{j,i}∈E

xji =


2 if i = s

−2 if i = d

0 otherwise
, ∀i ∈ V

(2)

• If an edge has allocation, it belongs to exactly one recovery
domain. ∑

(k,l)∈(V,V )

rklij = xij , ∀{i, j} ∈ E (3)

• Mark active recovery domains
– If any edge in a recovery domain is active, then that

recovery domain is marked as active.∑
{i,j}∈E

rklij ≤ |E| ·Rkl, ∀(k, l) ∈ (V, V ) (4)

– If no edge in a recovery domain is active, then that
recovery domain is marked as not active.∑

{i,j}∈E

rklij ≥ Rkl, ∀(k, l) ∈ (V, V ) (5)

• For each active recovery domain, find two edge-disjoint
paths between its respective end-nodes k and l.

∑
{i,j}∈E

rklij −
∑
{j,i}∈E

rklji =


2Rkl if i = k

−2Rkl if i = l

0 otherwise
,

∀i ∈ V, (k, l) ∈ (V, V ) (6)

• The sum of the traversed time delays of the edges in
a given recovery domain cannot exceed the maximum
recovery time.∑

{i,j}∈E

rklij tij ≤ T, (k, l) ∈ (V, V ) (7)
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Fig. 3: Capacity cost vs. q for dynamic arrivals

protect for the failure of another edge, then that edge’s backup capacity can be shared. This model can be extended to
partial protection by guaranteeing that any particular demand has its partial flow requirement met after a failure.

For the case of one-at-a-time routing, previous works offer heuristics to jointly optimize the primary and backup path
for each incoming demand, as was done in both [2] and [3]. We instead choose a simple strategy of using the shortest
path for the primary. Our simulations show that using the shortest path for the primary route actually performs better
than jointly optimizing the primary and backup paths for each incoming demand; the reason this occurs is discussed
at the end of the section. We call our algorithm Dynamic Shared Partial Protection (DSPP).

We compare, via simulation, DSPP to 1 + 1, 1 + q and the LP, each of which jointly optimizes the primary and
backup paths for each incoming demand. Demands arrive dynamically and are served one-at-a-time in the order of
their arrival. Performance of the strategies is compared using the NSFNET topology (Fig. 2) with 100 random unit
demands The protection requirement, q, for each demand is a truncated normal distribution with a standard deviation
 = 1

2 . The mean of q is varied between 0 and 1 for each iteration.
The costs to route the demand and protection capacity are plotted in Fig. 3 as a function of the expected value of

q. It is seen that the partial protection scheme offers significant savings over 1 + 1 routing over a wide range of q,
with the LP achieving even greater gains than 1+ q protection because of its use of flow bifurcation. With dynamic
arrivals, we find that DSPP performs better than the schemes that jointly optimize the primary and backup paths. This
can be explained by observing that the algorithm takes the simple strategy of the shortest path as the primary for each
connection, as opposed to jointly optimizing the primary and backup routes, which may take a longer primary path
to take advantage of backup sharing. The longer path makes it potentially more difficult for future demands to find
disjoint primary routes, lowering their ability to share protection resources. While other works have focused on finding
heuristics to jointly optimize the primary and backup paths for each incoming demand, it appears a better approach is
to simply take the shortest path for the primary route.

4. Conclusion

In this paper, a novel protection scheme to provide shared partial protection for a multi-commodity setting was in-
troduced. A reduced complexity algorithm (DSPP) was developed, and for dynamic arrivals, DSPP actually performs
better than jointly optimizing the primary and backup paths for each incoming demand.
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B. Simulation Results for GRT-RD

The minimum-cost solution found by the MILP for the
guaranteed recovery time problem using recovery domains is
compared to the common MPLS local recovery scheme of
Fast ReRoute (FRR). The simulations were run using both the
NSFNET and Lata ‘X’ topologies (Fig. 4) with 100 random
unit demands. Each link’s traversal time was set to be the
propagation delay of that link, plus a 3 ms switching delay.
Two versions of the network were tested: one with all unit
costs, and one with random integer link costs of uniform
distribution between 1 and 5. Both the non-sharing and sharing
cases were tested. A dynamic model for routing demands was
used: connections are serviced in the order of their arrival
(in this case, the 100 demands were randomly ordered), and
once a connection is routed, it can no longer be changed. The
maximum recovery time was set to the MPLS standard of 50
ms [1]. Fast ReRoute (FRR) is implemented using an MILP,
which can be found in Appendix B.

Guaranteed recovery time using recovery domains (GRT-
RD) is compared to Fast ReRoute (FRR) for the cases when
protection resources can and cannot be shared. The additional
cost of spare resources1 needed to meet protection constraints
for the two schemes are compared, with the percent savings of
GRT-RD over FRR being shown in Table I.

No Sharing Sharing
Edge Costs NSFNET Lata ‘X’ NSFNET Lata ‘X’

Random 30% 27% 38% 45%
Deterministic 32% 35% 40% 36%

TABLE I: Percent savings of spare resources of GRT-RD over FRR

As can be seen from Table I, significant savings in the cost of
protection resources over the MPLS local recovery scheme of
Fast ReRoute are achieved when using GRT-RD. The savings
for the case without backup sharing with random edge costs
was 30% for NSFNET and 27% for Lata ’X’; with unit edge
costs, the savings were 32% and 35% for NSFNET and Lata
’X’, respectively. When backup sharing is allowed, the savings
were larger: with random edge costs, the savings were 38%
for NSFNET and 45% for Lata ’X’, and with unit edge cost,
40% and 36%. Further discussion of why backup sharing is
more flexible for recovery domain routing (and hence, larger
potential savings over other protection schemes) can be found
in in Section V. Overall, GRT-RD offers significant savings in
cost over FRR, while providing the same level of resiliency.

1Spare resources is the capacity needed beyond that of the shortest path
routing to meet protection guarantees.
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IV. EFFICIENT ALGORITHMS FOR GUARANTEED
RECOVERY TIMES USING RECOVERY DOMAINS

In the previous section, an MILP was presented to find a
minimum-cost solution for GRT-RD, which is not generally
computationally efficient. In this section, efficient and flexible
algorithms are presented to solve GRT-RD. A gradient algo-
rithm is developed that converges rapidly to an optimal solution,
and polynomial time heuristics are developed that offer bounds
on their solution with respect to the optimal time and cost.
In Section IV-A, we demonstrate how finding the optimal
solution to the end-to-end recovery domain problem can be
solved by decomposing the problem into a set of more tractable
and easier to solve individual recovery domain problems. In
Section IV-B, a gradient algorithm using Lagrangian relaxation
is developed, which simulations show converges rapidly to an
optimal solution. In Section IV-C, polynomial timed heuristics
that offer bounds with respect to the optimal solution are
presented. The different algorithms developed are compared to
the optimal solution found by the MILP in Section IV-D. Since
it is NP-hard to simply determine if a feasible solution exists
for the guaranteed protection problem when backup sharing is
used [19], we first consider the case without backup sharing.
Recovery domain routing that guarantees recovery times with
the use of backup capacity sharing is examined in Section V.

A. Decomposing the End-to-End Recovery Domain Problem
An optimal end-to-end recovery domain routing requires

optimizing across the set of possible recovery domains such
that a flow from the source to destination is found where the
maximum amount of time the flow can be interrupted after
a failure is guaranteed. Each individual recovery domain is
wholly responsible for protecting against a failure between
its respective end-points, and for ensuring that recovery time
guarantees are met. This requirement not only allows for easier
rerouting after a failure, but, as we demonstrate, allows the end-
to-end problem to be simplified by considering only the more
tractable individual recovery domains.

The key observation that allows flexibility for finding a
solution is that each pair of nodes in the network marks the
end-points of a potential recovery domain. Since an end-to-end
recovery domain routing will be a series of recovery domains
connected via their end-points, the optimal solution will the
lowest cost subset of individual recovery domains that form a
flow from the source to the destination. We note that there are
O(|V |2) potential recovery domains in a network.

Consider the network G in Fig. 5a, with link traversal times
as labeled (in ms), and unit cost links. We wish to find a
minimum-cost recovery domain routing from node s to d, with
a maximum recovery time of 50 ms. For each pair of nodes in
the network, a minimum-cost recovery domain is found. A new
network GR is constructed with the same set of nodes as the
original network G, and with an edge being placed between any
two nodes i and j if there exists a recovery domain between
those nodes that meets recovery time guarantees. The cost of
all the edges that comprise the recovery domain between nodes
i and j is the cost of edge {i, j} in GR.
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Fig. 5: Decomposing G into its individual recovery domains

The graph transformation GR is shown in Fig. 5b. An edge
between a pair of nodes represents a recovery domain between
those same two nodes in G that meets recovery time guarantees.
For example, edge {s, a} in GR has a cost of 3, and is a
recovery domain consisting of the following edge in G: {s, a},
{s, b}, and {b, a}. It is easy to verify that for this example,
each link in GR has a cost of 3. A shortest path is found in
GR from the source s to the destination d, where each edge
of that path represents a recovery domain that is used in the
optimal end-to-end recovery domain solution. The shortest path
from s to d in GR is {s, b} and {b, d}, which represents the
recovery domains in G between s and b (consisting of the edges
{s, a}, {a, b}, and {s, b} in G), and b and d (consisting of the
edges {b, c}, {c, d}, and {b, d} in G).

This algorithm is labeled end_to_end_RD. We note that
this approach does not preclude two recovery domains from
sharing edges between them, but the essence of recovery do-
main routing is preserved: the end-nodes of a recovery domain
maintain full responsibility for protecting against a failure for
the primary flow contained within it, and for guaranteeing that
the amount of time that flow can be interrupted does not exceed
the maximum allowed. This allows us to now focus on solving
the individual recovery domain problem, i.e., for a given a pair
of nodes, finding the shortest-pair of disjoint paths between
those nodes that meet time constraints. With such an algorithm
at hand, one can use the above approach to solve for the end-to-
end recovery domain routing with guaranteed recovery times.

B. Optimal Algorithm

In this section, an optimal algorithm using a Lagrangian
relaxation is presented. The individual recovery domain prob-
lem is first formulated as an MILP, where we wish to find a
minimum-cost pair of disjoint paths between a source s and
destination d that have some maximum total link traversal
time. The MILP is formulated as such: the objective is to find
a routing of minimum cost, such that two units of flow are
routed between the end-nodes s and d, with flow variables xij
being binary, and the total link traversal time not exceeding
the maximum recovery time of T . Since an edge will have
strictly a flow of 0 or 1, two paths between s and d cannot
overlap; hence, a minimum-cost pair of disjoint paths will be
found subject to the time constraints. We refer to this as the
constrained shortest-pair of disjoint paths problem.

minimize
∑
{i,j}∈E

cijxij (8)



6

∑
{i,j}∈E

xij −
∑
{j,i}∈E

xji =


2 if i = s

−2 if i = d

0 o.w.
, ∀i ∈ V (9)

∑
{i,j}∈E

tijxij ≤ T (10)

xij ∈ {0, 1}, ∀{i, j} ∈ E (11)

The Lagrangian dual is obtained by relaxing the maximum
recovery time constraint (Constraint 10), and placing it into the
objective:

L(µ) = min
∑
{i,j}∈E

cijxij + µ

( ∑
{i,,j}∈E

tijxij − T
)

= min
∑
{i,j}∈E

xij(cij + µtij)− µT (12)

For a fixed value of µ, the cost of edge {i, j} becomes cij+
µtij . The recovery domain problem now becomes a minimum-
cost flow problem, which is defined as finding a flow of lowest
cost between a source and destination in a network that has both
edge costs and edge capacities [20]. An important characteristic
of minimum-cost flows is when given strictly integer inputs
(edge costs and capacities), then the solution will always be a
set of integer flows [20]; the flow variables no longer need to be
constrained to integer values in order to ensure that flows are
strictly integer. Hence, by relaxing the binary flow variables
xij , we can write the Lagrangian dual as a linear program,
which becomes polynomial time solvable [21].

∑
{i,j}∈E

xij −
∑
{j,i}∈E

xji =


2 if s = i

−2 if t = i

0 o.w.
, ∀i ∈ V

0 ≤ xij ≤ 1, ∀{i, j} ∈ E

For a fixed value of µ, the Lagrangian relaxation simply
becomes finding the shortest-pair of disjoint paths with respect
to the edge costs cij + µtij , ∀{i, j} ∈ E. The shortest-
pair of disjoint paths can be found in polynomial time using
Suurballe’s algorithm [22].

To solve the Langrangian relaxation, we wish to find L∗ =
L(µ∗) = maxµ≥0 L(µ). The constrained shortest-pair of dis-
joint paths has similarities to the constrained shortest path
(CSP) problem, for which Lagrangian relaxation techniques
have been considered [23–26]. In [24], a geometric approach
is proposed for solving the Lagrangian relaxation for CSP.
While not considered beyond a single constrained path, we
demonstrate that the geometric approach can be extended to
the constrained shortest-pair disjoint pair of paths problem.
L(µ) can be rewritten as L(µ, x) = f(x) + µg(x), where
f(x) =

∑
{i,j}∈E cijxij and g(x) =

∑
{i,j}∈E tijxij − T .

Each path becomes a line in L − µ geometric space, where
g(x) is the slope of the line, and f(x) is the L axis crossing
point. Furthermore, since g(x) =

∑
{i,j}∈E tijxij−T , the paths

associated with g(x) ≤ 0 meets time requirements, where f(x)
is the cost of those disjoint paths.

L

μμ*

L*

Fig. 6: Pair of disjoint paths mapped to lines in L− µ space

We see that the mapping to a geometric space is in fact not
specific to CSP; any discrete optimization problem that takes
the form L(µ, x) = f(x) + µg(x) can be represented as a line
in L−µ space. In our case, each pair of disjoint paths becomes
a line in L−µ space, and the lower envelope of lines gives the
optimal value for µ∗. A visualization is shown in Fig. 6 [26].

Since any discrete optimization problem taking the form
of L(µ, x) = f(x) + µg(x) can be represented in geometric
space, including the constrained shortest-pair of disjoint paths,
a similar method for finding the optimal µ∗ as in [24] can
be applied. The key is being able to solve for the optimal
discrete variable assignments x for a fixed µ in polynomial
time. In the case of constrained shortest-pair of disjoint paths,
Suurballe’s algorithm [22] can be used, as previously discussed.
The algorithm to find the dual optimal solution is labeled
rd_dual_opt, and is presented in Algorithm 1.

Algorithm 1 µ∗ = rd_dual_opt(s, d, T, V,E,C, T )
1: Begin with two pairs of disjoint paths from s to d: L(0) is

the shortest pair without consideration to time, and L(∞)
is the shortest time pair, without consideration to cost.

2: The intersection point is the first guess for µ (call this
µ′). L(µ′) is the new upper bound on the dual-optimal
solution. Any intersection point will be defined by two
lines: one with g(x1) ≤ 0 and the other g(x2) > 0.
Since g(x) =

∑
{i,j}∈E tijxij − T , the disjoint paths

associated with g(x1) ≤ 0 meets the time requirements.
3: Solve for the shortest-pair of disjoints paths with edge costs
cij+µ

′tij , ∀{i, j} ∈ E. This will give a new pair of disjoint
paths x”, with some value for f(x′′) and g(x′′).

4: If f(x′′) + µ′g(x′′) = L(µ′), then the optimal value for µ
has been found.

5: while f(x′′) + µ′g(x′′) 6= L(µ′) do
6: Add a new line f(x′′) + µ′g(x′′) in L− µ space.
7: The next estimate for µ′ is the new intersection point on

the lower envelope of the lines that gives the max L(µ′).
8: If f(x′′) + µ′g(x′′) = L(µ′), then the optimal value for

µ has been found.
9: end while

10: Return µ∗ = µ′. The pair of dual optimal paths x∗ at µ∗ that
meet time constraints are those associated with g(x∗) ≤ 0.
The algorithm concludes with an upper and lower bound
on solution. Since f(x∗) represents the cost for feasible
paths in the network that meet time constraints, it is an
upper bound on the optimal solution. The lower bound is
the dual-optimal value L(µ∗) = f(x∗) + µ∗g(x∗).
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The runtime for rd_dual_opt is not specified in [24], but
a binary search approach for solving the same problem was
presented in [26] with a polynomial runtime.

Since the original problem we are trying solve has integer
constraints (the flow variables), the dual optimal solution may
have a gap in cost between itself and the actual optimal solution,
which is known as a duality gap [21]. To close this gap, we
iterate through the k-shortest pair of disjoint paths with respect
to the dual-optimal edge costs cij+µ∗tij , ∀{i, j} ∈ E, closing
the gap with each iteration until the optimal solution is found.
The authors of [24] step through the k-shortest paths, using
an algorithm [27] that cannot be extended to the k-shortest
pair of disjoint paths. Instead, we use an alternate technique
proposed in [28], which finds the k best solutions for a discrete
optimization problem. The run time to find the kth best discrete
optimization solution is polynomial with respect to the time to
solve the discrete optimization problem, which for the case of
shortest-pair of disjoint paths is also polynomial [22]. Details
of the algorithm are omitted for brevity, and can be found in
[28]. We label the final algorithm, which closes the duality gap,
rd_opt; it is presented in Algorithm 2.

Algorithm 2 (P1, P2) = rd_opt(s, d, T, V,E,C, T )
1: Find the initial dual optimal solution:
µ∗ = rd_dual_opt(s, d, T, V,E,C, T )

2: Find the kth shortest pair of disjoint paths xk for each
k = 1, 2, ... with respect to the dual-optimal edge costs
cij + µ∗tij .
• For each k, L(µ∗, xk) is the new lower bound on

the optimal feasible solution, and is a non-decreasing
function with respect to k.

• An upper bound Uk is maintained: Uk = min1..kf(xk)
for all xk such that g(xk) ≤ 0 (which means that xk
is a solution that meets time constraints). Uk is a non-
increasing upper bound.

3: Continue until Uk ≤ L(µ∗, xk), at which point the optimal
solution has been found.
• Since we individually step through the shortest-pair of

dual-optimal disjoint paths, which are a lower bound
on the solution, until their cost is greater than the upper
bound, which is a feasible solution, the solution must
be optimal. Proof is shown in [24].

4: Return the pair of disjoint paths P1 and P2 associated with
the upper bound Uk, which meets time constraints.

Since the number of possible disjoint paths can be potentially
exponential with respect to the number of edges, the number of
iterations to close the duality gap is not necessarily polynomial
bounded. But, our simulations indicate that the number of
iterations to close the duality gap is in fact minimal: on average,
only 1.46 iterations are needed.

C. Polynomial Timed Heuristics

In this section, two algorithms are presented that run in
polynomial time to solve the guaranteed recovery time problem

using recovery domains. The first is a “fastest paths” algorithm,
where link costs are ignored, and paths are found with respect
to time only. This algorithm is the simplest to implement,
and is most useful when link costs are either not considered,
or are proportional to the link traversal times. The second is
a fully polynomial time approximation scheme (FPTAS) that
guarantees a solution to be within a factor of 1.5 of the optimal
cost and 1.5(1 + ε) of the maximum recovery time.

The fastest paths algorithm is straightforward to implement
using the shortest-pair of disjoint paths algorithm [22]. Instead
of finding a pair of disjoint paths of minimum-cost, a pair of
disjoint paths of minimum time are found. This algorithm is
called rd_fastest, and has the same complexity as finding
the shortest-pair of disjoint paths.

For the approximation scheme, we use an algorithm pre-
sented in [29]. In that work, the authors try to solve for
disjoint QoS (quality-of-service) paths, such that each path is
bounded by some time requirement D. They are not looking at
recovery times or recovery domains, but are instead interested
in ensuring that the end-to-end primary and backup paths do
not exceed some QoS specification. To solve their problem,
they relax each path’s individual time constraint and try to find
a pair of disjoint paths such that the sum of the link traversal
times for both paths does not exceed 2D. By replacing the time
requirement 2D with the maximum recovery time requirement
T , we can solve for a recovery domain with a bound on the
optimal cost and time. We label this approximation algorithm
rd_approx; details of the algorithm are omitted for brevity,
and can be found in [29].

D. Algorithm Simulations

In this section, the algorithms developed in the previous
sections for guaranteed recovery times using recovery domains
are compared to the end-to-end optimal solution found by the
MILP from Section III. A similar simulation to Section III-B
was run, using the Lata ‘X’ topology (Fig. 4b). Table II shows
the percent that each of the algorithms differed in total cost of
resources used over the minimum-cost solution found by the
MILP.

Protection Scheme Unit Edge Costs Random Edge Costs
rd_opt 0 0

rd_fastest 1% 6%
rd_approx 5% 2%

TABLE II: Difference for the algorithms from optimal

As expected, the optimal algorithm rd_opt did not differ
from the optimal solution found by the MILP. Additionally, the
average number of iterations needed to close the duality gap
was 1.46 over all simulated demands. Both the fastest paths
and approximation algorithm also performed close to optimal.
When edge costs were uniform, the fastest paths approach in
fact gave slightly better results. But when edge costs were
changed to be random, the approximation algorithm performed
better since it tries to optimize with respect to cost, and the
fastest paths algorithm does not.
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V. ALGORITHM WITH BACKUP CAPACITY SHARING

In the previous section, efficient algorithms that offer bounds
with respect to the optimal solution were presented without the
use of backup capacity sharing. These results are useful for a
basic understanding of the guaranteed recovery time problem
using recovery domains (GRT-RD), and for networks that do
not allow protection sharing. But many times, networks do
utilize backup sharing, and significant savings can often be
achieved. In this section, a time-efficient algorithm for GRT-
RD using backup capacity sharing is presented.

If two primary flows for two different demands are edge-
disjoint from one another, then under a single-link failure
model, at most one can be disrupted at any given point in
time. Since at most one demand will need to be restored after
a failure, two failure-disjoint flows can share backup capacity.
An interesting feature of recovery domain routing is that two
demands can share backup capacity even if their two primary
flows are not failure disjoint. Traditionally, in path protection
schemes, two paths can only share protection resources if their
primary paths are disjoint. However, in the recovery domain
setting, sharing can take place between two recovery domains,
so long as the primary segments in those recovery domains are
disjoint. Thus, end-to-end primary paths that are not entirely
disjoint may still share backup resources.

1
2 3

4

5

p1, p2 b1, b2

b1

b2

p1 

p2 

b1

b2

Fig. 7: Sharing protection resources in a recovery domain

An example of an end-to-end recovery domain routing for
two demands is shown in Fig. 7. Demand 1 is routed from
node 1 to node 4, and demand 2 is routed from node 1 to
node 5. The primary paths are labeled p1 and p2 for demands
1 and 2, respectively, and backup paths are labeled b1 and b2.
Two recovery domains are used for each demand: demand 1
uses recovery domains with the end-points of (1, 2), and (2, 4);
demand 2 uses recovery domains with the end-points of (1, 2),
and (2, 5). The two primary paths overlap in the first recovery
domain on the path segment between nodes 1 and 2; hence,
they cannot share protection resources within that domain, and
each demand has its own dedicated backup path. The primary
segments for the two recovery domains starting at node 2 and
going to their respective destinations are failure disjoint. Even
though the two primary paths overlap between nodes 1 and
2, the two demands can share protection resources for their
recovery domains after node 2. On the path segment between
nodes 2 and 3, only one unit of backup capacity allocation is
needed to protect against a failure for either demand’s primary
path in recovery domains (2, 4) or (2, 5).

Since a failure is local to a recovery domain, and the primary
flow outside of that recovery domain is not affected, a similar

approach can be used as was done previously for the algorithms
without backup capacity sharing: for every pair of nodes,
we find the recovery domain routing that guarantees recovery
time and utilizes backup capacity sharing. Then, an end-to-end
recovery domain routing is constructed from a subset of those
recovery domains using end_to_end_RD (Section IV-A).

Conflict sets are used to determine how much backup capac-
ity can be shared by each incoming demand [19]. A conflict
set indicates how much backup sharing is possible on an edge
by examining how much backup capacity it already has to
protect against any particular edge failure. If some edge has
more backup capacity already assigned to it than is needed to
protect against a particular edge failure, then those resources
can be used at no additional cost. For example, let some
edge {i, j} have one unit of backup capacity allocated to it
to protect against the failure of {k, l}, and with edge {i, j}
not being scheduled to protect against any other link failures.
Now consider some new connection with a primary flow that
uses some other edge {u, v}. Edges {k, l} and {u, v} can
never fail simultaneously under a single-link failure model;
thus, the new connection can use the backup capacity allocated
to {i, j} for protecting against the failure of {u, v} without
incurring additional cost. Further details of protection routing
using conflict sets can be found in [19].

We consider routing demands dynamically (one-at-a-time),
where once a connection is routed, it can no longer be changed;
this model is similar to those used in path protection schemes
[15, 19]. These path protection schemes offer heuristics to
jointly optimize the primary and backup path for each incoming
demand. We instead choose the simple strategy of using the
shortest path for the primary route. After the primary path is
found, the cost to use the remaining edges to protect that path
can be determined (i.e., find out if edges can utilize protection
resource sharing at no additional cost). If the maximum recov-
ery time is T , and the shortest path has traversal time ts, then
a backup path is a constrained shortest path (CSP) that has a
traversal time of at most (T − ts). To solve for the CSP, an
optimal solution can be found in pseudo-polynomial time [30];
if T is rational and polynomial bounded with respect to the
input parameters, the algorithm becomes polynomial. We label
this algorithm rd_sharing. Our simulations show that using
the shortest path for the primary route in fact performs better
than jointly optimizing the primary and backup paths for each
incoming demand.

To test the performance of rd_sharing, a similar sim-
ulation to Section III-B was run. The simulations were run
using both the NSFNET and Lata ‘X’ topologies (Fig. 4) with
75 random unit demands. Each link’s traversal time was set
to be the propagation delay of that link, plus a 3 ms switching
delay. Edges have random integer cost with uniform distribution
between 1 and 5, and the maximum recovery time is set to
the MPLS standard of 50 ms [1]. Three different schemes
were tested: the optimal recovery domain routing with sharing,
which jointly optimizes the primary and backup path for each
incoming demand (using the MILP from Appendix A), local
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Protection Scheme NSFNET Lata ‘X’
Local Recovery with Sharing 583 3459

Optimal Recovery with Sharing 351 2677
End-to-end rd_sharing 349 2605

TABLE III: Cost of allocation for different protection schemes

recovery (FRR) with sharing (found in Appendix B), and the
end-to-end rd_sharing algorithm developed in this section.
A dynamic model was used: connections are serviced in the
order of their arrival, and once a connection is routed, it can no
longer be changed. Table III shows the total cost of allocation
needed to route all 75 demands using the aforementioned
protection schemes.

As anticipated, the optimal recovery scheme performs better
than the local recovery scheme. Interestingly, the end-to-end
rd_sharing algorithm performs better than the supposed
optimal recovery with sharing. This can be explained by observ-
ing that the algorithm takes the simple strategy of the shortest
path as the primary for each connection. This is as opposed to
the optimal recovery scheme that jointly optimizes the primary
and backup routes for each incoming demand, which may take
a longer primary path to take advantage of backup sharing.
By greedily optimizing every incoming demand, the potentially
longer primary path makes it more difficult for future demands
to find failure disjoint routes, lowering their ability to share
protection resources, and thus increasing the overall cost.

VI. CONCLUSION

In this paper, we examined the problem of providing net-
work protection with guaranteed recovery times using recovery
domains (GRT-RD). The network is partitioned into failure-
independent “recovery domains”, where within each domain,
the time to recover from a failure is guaranteed. To meet these
guarantees, we provide an optimal solution in the form of an
MILP. We demonstrate that the network-wide optimal solution
can be decomposed into a set of more tractable and easier to
solve subproblems. This allows for the development of flexible
and efficient solutions, including an optimal algorithm using
Lagrangian relaxation, which simulations show to converge
rapidly to an optimal solution. Low complexity heuristics are
developed for both with and without backup sharing. For
dynamic arrivals, the algorithm utilizing backup sharing and
using shortest paths performs better than the solution that
greedily tries to optimize for each incoming demand.

APPENDIX

A. Guaranteed Recovery Time using Recovery Domains with
Backup Capacity Sharing

The following values are given:
• V is the set of vertices, and E is the set of edges
• fsd is the amount of flow that need to be routed from s

to d, assumed to be integer
• cij is the cost of link {i, j}
• tij is the traversal time for link {i, j}
• T is the maximum recovery time

The following variables will be solved for:

• xstij is 1 if flow is assigned on link {i, j} or demand (s, t),
and 0 o.w.

• pstij,kl is 1 if protection flow is assigned on link {i, j} after
the failure of link {k, l} for demand (s, t), and 0 o.w.

• ystij,kl is 1 if spare capacity is assigned on on link {i, j}
for failure of link {k, l} for demand (s, t) , and 0 o.w.

• wij is total primary flow on link {i, j}, wij ≥ 0
• sij is total spare allocation on link {i, j}, sij ≥ 0
• Rsdkl is 1 if the recovery domain with end nodes k and l

for demand (s, d) is active (part of the solution), 0 o.w.
• rsdij,kl is 1 if link {i, j} is in recovery domain (k, l) for

demand (s, d), 0 o.w.
The objective is to:
• Minimize the cost of allocation over all links:

min
∑
{i,j}∈E

cij(wij + sij) (13)

Subject to the following constraints:
• Route primary traffic between s and d:

∑
{i,j}∈E

xsdij −
∑
{j,i}∈E

xsdji =


1 if i = s

−1 if i = d

0 o.w.
,

∀i ∈ V, ∀(s, d) ∈ (V, V ) (14)

• Route flow to protect after the failure of link {k, l}:∑
{i,j}∈E
{i,j}6={k,l}

psdij,kl −
∑
{j,i}∈E
{j,i}6={k,l}

psdji,kl =


1 if i = s

−1 if i = d

0 o.w.
,

∀i ∈ V, ∀{k, l} ∈ E, ∀(s, d) ∈ (V, V ) (15)

• Primary capacity on link {i, j} must meet all primary
flows before a link failure∑

(s,d)∈(V,V )

fsdxsdij ≤ wij , ∀{i, j} ∈ E (16)

• Primary and spare capacity on link {i, j}must be sufficient
for all protection flows after failure of link {k, l}:

psdij,kl ≤ xsdij + ysdij,kl,
∀{i,j}∈E, ∀{k,l}∈E
∀(s,d)∈(V,V ) (17)

• Spare capacity on link {i, j} satisfies all protection flows
after failure of link {k, l}:∑

(s,d)∈(V,V )

fsdysdij,kl ≤ sij ,
∀{i,j}∈E
∀{k,l}∈E (18)

• Mark active recovery domains
– If any edge in a recovery domain is active, then that

recovery domain is active∑
{i,j}∈E

rsdij,kl ≤ |E| ·Rsdkl ,
∀(k,l)∈(V,V )
∀(s,d)∈(V,V ) (19)

– If no edge in a recovery domain is active, then that
recovery domain is not active∑

{i,j}∈E

rsdij,kl ≥ Rsdkl ,
∀(k,l)∈(V,V )
∀(s,d)∈(V,V ) (20)



10

• For each active recovery domain, find two disjoint paths
between its respective end nodes k and l

∑
{i,j}∈E

rsdij,kl −
∑
{j,i}∈E

rsdji,kl =


2Rsdkl if i = k

−2Rsdkl if i = l

0 o.w.
,

∀i ∈ V, (k, l) ∈ (V, V ), ∀(s, d) ∈ (V, V ) (21)

• The sum of the traversed time delays of the edges in
a given recovery domain cannot exceed the maximum
recovery time∑

{i,j}∈E

rsdij,kltij ≤ T,
∀(k,l)∈(V,V )
∀(s,d)∈(V,V ) (22)

B. MILP for Optimal Local Recovery (Fast ReRoute)
The following is an MILP for optimal local recovery for a

single demand requiring unit flow. Sharing can be accomplished
by using similar techniques as the MILP for GRT-RD with
sharing, shown in Appendix A.
The following values are given:
• V is the set of vertices and E is the set of edges
• cij is the cost of link {i, j}
• (s, d) is the source and destination

The following variables will be solved for:
• xij is 1 if primary flow is assigned to link {i, j}, and 0

otherwise
• f ijkl is 1 flow is assigned to link {i, j} to protect after the

failure of link {k, l}, 0 otherwise
• sij is 1 if protection flow is assigned to link {i, j}, and 0

otherwise
The objective is to minimize the total cost of allocation:

minimize
∑
{i,j}∈E

cij(xij + sij) (23)

Subject to the following constraints:
• Route primary traffic to meet demand before a failure

∑
{i,j}∈E

xij −
∑
{j,i}∈E

xji =


1 if i = s

−1 if i = d

0 otherwise
, ∀i ∈ V (24)

• Route flow from point of local repair k to destination d
after the failure of link {k, l} if link {k, l} carried flow∑
j∈V
j 6=l

f ijkl −
∑
j∈V
j 6=l

f jikl = xkl, ∀{k, l} ∈ E (25)

∑
j∈V
j 6=k

f jdkd −
∑
j∈V
j 6=k

f tjkd = −xkd, ∀{k, d} ∈ E (26)

∑
{i,j}∈E
{k,l}6={i,j}
i 6=k∨d

f ijkl −
∑
{j,i}∈E
{k,l}6={j,i}
i6=k∨d

f jikl = 0, ∀i∈V
∀{k,l}∈E (27)

• Primary and spare capacity assigned on any link meets
flow requirements after the failure of link {k, l}

f ijkl ≤ xij + sij ,
∀{i,j}∈E
∀{k,l}∈E (28)
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