512 research outputs found

    Spatiotemporal Stacked Sequential Learning for Pedestrian Detection

    Full text link
    Pedestrian classifiers decide which image windows contain a pedestrian. In practice, such classifiers provide a relatively high response at neighbor windows overlapping a pedestrian, while the responses around potential false positives are expected to be lower. An analogous reasoning applies for image sequences. If there is a pedestrian located within a frame, the same pedestrian is expected to appear close to the same location in neighbor frames. Therefore, such a location has chances of receiving high classification scores during several frames, while false positives are expected to be more spurious. In this paper we propose to exploit such correlations for improving the accuracy of base pedestrian classifiers. In particular, we propose to use two-stage classifiers which not only rely on the image descriptors required by the base classifiers but also on the response of such base classifiers in a given spatiotemporal neighborhood. More specifically, we train pedestrian classifiers using a stacked sequential learning (SSL) paradigm. We use a new pedestrian dataset we have acquired from a car to evaluate our proposal at different frame rates. We also test on a well known dataset: Caltech. The obtained results show that our SSL proposal boosts detection accuracy significantly with a minimal impact on the computational cost. Interestingly, SSL improves more the accuracy at the most dangerous situations, i.e. when a pedestrian is close to the camera.Comment: 8 pages, 5 figure, 1 tabl

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    REAL TIME PEDESTRIAN DETECTION-BASED FASTER HOG/DPM AND DEEP LEARNING APPROACH

    Get PDF
    International audienceThe work presented aims to show the feasibility of scientific and technological concepts in embedded vision dedicated to the extraction of image characteristics allowing the detection and the recognition/localization of objects. Object and pedestrian detection are carried out by two methods: 1. Classical image processing approach, which are improved with Histogram Oriented Gradient (HOG) and Deformable Part Model (DPM) based detection and pattern recognition. We present how we have improved the HOG/DPM approach to make pedestrian detection as a real time task by reducing calculation time. The developed approach allows us not only a pedestrian detection but also calculates the distance between pedestrians and vehicle. 2. Pedestrian detection based Artificial Intelligence (AI) approaches such as Deep Learning (DL). This work has first been validated on a closed circuit and subsequently under real traffic conditions through mobile platforms (mobile robot, drone and vehicles). Several tests have been carried out in the city center of Rouen in order to validate the platform developed

    Vehicle Detection Based on Deep Dual-Vehicle Deformable Part Models

    Get PDF
    Vehicle detection plays an important role in safe driving assistance technology. Due to the high accuracy and good efficiency, the deformable part model is widely used in the field of vehicle detection. At present, the problem related to reduction of false positivity rate of partially obscured vehicles is very challenging in vehicle detection technology based on machine vision. In order to address the abovementioned issues, this paper proposes a deep vehicle detection algorithm based on the dual-vehicle deformable part model. The deep learning framework can be used for vehicle detection to solve the problem related to incomplete design and other issues. In this paper, the deep model is used for vehicle detection that consists of feature extraction, deformation processing, occlusion processing, and classifier training using the back propagation (BP) algorithm to enhance the potential synergistic interaction between various parts and to get more comprehensive vehicle characteristics. The experimental results have shown that proposed algorithm is superior to the existing detection algorithms in detection of partially shielded vehicles, and it ensures high detection efficiency while satisfying the real-time requirements of safe driving assistance technology

    Ten Years of Pedestrian Detection, What Have We Learned?

    Full text link
    Paper-by-paper results make it easy to miss the forest for the trees.We analyse the remarkable progress of the last decade by discussing the main ideas explored in the 40+ detectors currently present in the Caltech pedestrian detection benchmark. We observe that there exist three families of approaches, all currently reaching similar detection quality. Based on our analysis, we study the complementarity of the most promising ideas by combining multiple published strategies. This new decision forest detector achieves the current best known performance on the challenging Caltech-USA dataset.Comment: To appear in ECCV 2014 CVRSUAD workshop proceeding
    • …
    corecore