27 research outputs found

    Proof theoretic criteria for logical constancy

    Get PDF
    Logic concerns inference, and some inferences can be distinguished from others by their holding as a matter of logic itself, rather than say empirical factors. These inferences are known as logical consequences and have a special status due to the strong level of confidence they inspire. Given this importance, this dissertation investigates a method of separating the logical from the non-logical. The method used is based on proof theory, and builds on the work of Prawitz, Dummett and Read. Requirements for logicality are developed based on a literature review of common philosophical use of the term, with the key factors being formality, and the absolute generality / topic neutrality of interpretations of logical constants. These requirements are used to generate natural deduction criteria for logical constancy, resulting in the classification of certain predicates, truth functional propositional operators, first order quantifiers, second order quantifiers in sound and complete formal systems using Henkin semantics, and modal operators from the systems K and S5 as logical constants. Semantic tableaux proof systems are also investigated, resulting in the production of semantic tableaux-based criteria for logicality

    Frontiers of Conditional Logic

    Full text link
    Conditional logics were originally developed for the purpose of modeling intuitively correct modes of reasoning involving conditional—especially counterfactual—expressions in natural language. While the debate over the logic of conditionals is as old as propositional logic, it was the development of worlds semantics for modal logic in the past century that catalyzed the rapid maturation of the field. Moreover, like modal logic, conditional logic has subsequently found a wide array of uses, from the traditional (e.g. counterfactuals) to the exotic (e.g. conditional obligation). Despite the close connections between conditional and modal logic, both the technical development and philosophical exploitation of the latter has outstripped that of the former, with the result that noticeable lacunae exist in the literature on conditional logic. My dissertation addresses a number of these underdeveloped frontiers, producing new technical insights and philosophical applications. I contribute to the solution of a problem posed by Priest of finding sound and complete labeled tableaux for systems of conditional logic from Lewis\u27 V-family. To develop these tableaux, I draw on previous work on labeled tableaux for modal and conditional logic; errors and shortcomings in recent work on this problem are identified and corrected. While modal logic has by now been thoroughly studied in non-classical contexts, e.g. intuitionistic and relevant logic, the literature on conditional logic is still overwhelmingly classical. Another contribution of my dissertation is a thorough analysis of intuitionistic conditional logic, in which I utilize both algebraic and worlds semantics, and investigate how several novel embedding results might shed light on the philosophical interpretation of both intuitionistic logic and conditional logic extensions thereof. My dissertation examines deontic and connexive conditional logic as well as the underappreciated history of connexive notions in the analysis of conditional obligation. The possibility of interpreting deontic modal logics in such systems (via embedding results) serves as an important theoretical guide. A philosophically motivated proscription on impossible obligations is shown to correspond to, and justify, certain (weak) connexive theses. Finally, I contribute to the intensifying debate over counterpossibles, counterfactuals with impossible antecedents, and take—in contrast to Lewis and Williamson—a non-vacuous line. Thus, in my view, a counterpossible like If there had been a counterexample to the law of the excluded middle, Brouwer would not have been vindicated is false, not (vacuously) true, although it has an impossible antecedent. I exploit impossible (non-normal) worlds—originally developed to model non-normal modal logics—to provide non-vacuous semantics for counterpossibles. I buttress the case for non-vacuous semantics by making recourse to both novel technical results and theoretical considerations

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions

    Tractable depth-bounded approximations to some propositional logics. Towards more realistic models of logical agents.

    Get PDF
    The depth-bounded approach seeks to provide realistic models of reasoners. Recognizing that most useful logics are idealizations in that they are either undecidable or likely to be intractable, the approach accounts for how they can be approximated in practice by resource-bounded agents. The approach has been applied to Classical Propositional Logic (CPL), yielding a hierarchy of tractable depth-bounded approximations to that logic, which in turn has been based on a KE/KI system. This Thesis shows that the approach can be naturally extended to useful nonclassical logics such as First-Degree Entailment (FDE), the Logic of Paradox (LP), Strong Kleene Logic (K3 ) and Intuitionistic Propositional Logic (IPL). To do this, we introduce a KE/KI-style system for each of those logics such that: is formulated via signed formulae, consist of linear operational rules and branching structural rule(s), can be used as a direct-proof and a refutation method, and is interesting independently of the approach in that it has an exponential speed-up on its tableau system counterpart. The latter given that we introduce a new class of examples which we prove to be hard for all tableau systems sharing the V/& rules with the classical one, but easy for their analogous KE-style systems. Then we focus on showing that each of our KE/KI-style systems naturally yields a hierarchy of tractable depth-bounded approximations to the respective logic, in terms of the maximum number of allowed nested applications of the branching rule(s). The rule(s) express(es) a generalized rule of bivalence, is (are) essentially cut rule(s) and govern(s) the manipulation of virtual information, which is information that an agent does not hold but she temporarily assumes as if she held it. Intuitively, the more virtual information needs to be invoked via the branching rule(s), the harder the inference is for the agent. So, the nested application the branching rule(s) provides a sensible measure of inferential depth. We also show that each hierarchy approximating FDE, LP, and K3 , admits of a 5-valued non-deterministic semantics; whereas, paving the way for a semantical characterization of the hierarchy approximating IPL, we provide a 3-valued non-deterministic semantics for the full logic that fixes the meaning of the connectives without appealing to “structural” conditions. Moreover, we show a super-polynomial lower bound for the strongest possible version of clausal tableaux on the well-known class of “truly fat” expressions (which are easy for KE), settling a problem left open in the literature. Further, we investigate a hierarchy of tractable depth-bounded approximations to CPL based only on KE. Finally, we propose a refinement of the p-simulation relation which is adequate to establish positive results about the superiority of a system over another with respect to proof-search

    Prior and the “Logic of the Word of God”

    Get PDF

    Dispelling the Freudian Specter: A.N. Prior's Discussion of Religion in 1943

    Get PDF

    Letters between Mary and Arthur Prior in 1954: Topics on Metaphysics and Time

    Get PDF

    The Metaphysics of Time:Themes from Prior

    Get PDF
    corecore