360 research outputs found

    Structure-Based Bayesian Sparse Reconstruction

    Full text link
    Sparse signal reconstruction algorithms have attracted research attention due to their wide applications in various fields. In this paper, we present a simple Bayesian approach that utilizes the sparsity constraint and a priori statistical information (Gaussian or otherwise) to obtain near optimal estimates. In addition, we make use of the rich structure of the sensing matrix encountered in many signal processing applications to develop a fast sparse recovery algorithm. The computational complexity of the proposed algorithm is relatively low compared with the widely used convex relaxation methods as well as greedy matching pursuit techniques, especially at a low sparsity rate.Comment: 29 pages, 15 figures, accepted in IEEE Transactions on Signal Processing (July 2012

    Deterministic Construction of Binary, Bipolar and Ternary Compressed Sensing Matrices

    Full text link
    In this paper we establish the connection between the Orthogonal Optical Codes (OOC) and binary compressed sensing matrices. We also introduce deterministic bipolar m×nm\times n RIP fulfilling ±1\pm 1 matrices of order kk such that mO(k(log2n)log2klnlog2k)m\leq\mathcal{O}\big(k (\log_2 n)^{\frac{\log_2 k}{\ln \log_2 k}}\big). The columns of these matrices are binary BCH code vectors where the zeros are replaced by -1. Since the RIP is established by means of coherence, the simple greedy algorithms such as Matching Pursuit are able to recover the sparse solution from the noiseless samples. Due to the cyclic property of the BCH codes, we show that the FFT algorithm can be employed in the reconstruction methods to considerably reduce the computational complexity. In addition, we combine the binary and bipolar matrices to form ternary sensing matrices ({0,1,1}\{0,1,-1\} elements) that satisfy the RIP condition.Comment: The paper is accepted for publication in IEEE Transaction on Information Theor

    Empirical recovery performance of fourier-based deterministic compressed sensing

    Get PDF
    Compressed sensing is a novel technique where one can recover sparse signals from the undersampled measurements. Mathematically, measuring an N-dimensional signal..

    Compressive sensing based image processing and energy-efficient hardware implementation with application to MRI and JPG 2000

    Get PDF
    In the present age of technology, the buzzwords are low-power, energy-efficient and compact systems. This directly leads to the date processing and hardware techniques employed in the core of these devices. One of the most power-hungry and space-consuming schemes is that of image/video processing, due to its high quality requirements. In current design methodologies, a point has nearly been reached in which physical and physiological effects limit the ability to just encode data faster. These limits have led to research into methods to reduce the amount of acquired data without degrading image quality and increasing the energy consumption. Compressive sensing (CS) has emerged as an efficient signal compression and recovery technique, which can be used to efficiently reduce the data acquisition and processing. It exploits the sparsity of a signal in a transform domain to perform sampling and stable recovery. This is an alternative paradigm to conventional data processing and is robust in nature. Unlike the conventional methods, CS provides an information capturing paradigm with both sampling and compression. It permits signals to be sampled below the Nyquist rate, and still allowing optimal reconstruction of the signal. The required measurements are far less than those of conventional methods, and the process is non-adaptive, making the sampling process faster and universal. In this thesis, CS methods are applied to magnetic resonance imaging (MRI) and JPEG 2000, which are popularly used imaging techniques in clinical applications and image compression, respectively. Over the years, MRI has improved dramatically in both imaging quality and speed. This has further revolutionized the field of diagnostic medicine. However, imaging speed, which is essential to many MRI applications still remains a major challenge. The specific challenge addressed in this work is the use of non-Fourier based complex measurement-based data acquisition. This method provides the possibility of reconstructing high quality MRI data with minimal measurements, due to the high incoherence between the two chosen matrices. Similarly, JPEG2000, though providing a high compression, can be further improved upon by using compressive sampling. In addition, the image quality is also improved. Moreover, having a optimized JPEG 2000 architecture reduces the overall processing, and a faster computation when combined with CS. Considering the requirements, this thesis is presented in two parts. In the first part: (1) A complex Hadamard matrix (CHM) based 2D and 3D MRI data acquisition with recovery using a greedy algorithm is proposed. The CHM measurement matrix is shown to satisfy the necessary condition for CS, known as restricted isometry property (RIP). The sparse recovery is done using compressive sampling matching pursuit (CoSaMP); (2) An optimized matrix and modified CoSaMP is presented, which enhances the MRI performance when compared with the conventional sampling; (3) An energy-efficient, cost-efficient hardware design based on field programmable gate array (FPGA) is proposed, to provide a platform for low-cost MRI processing hardware. At every stage, the design is proven to be superior with other commonly used MRI-CS methods and is comparable with the conventional MRI sampling. In the second part, CS techniques are applied to image processing and is combined with JPEG 2000 coder. While CS can reduce the encoding time, the effect on the overall JPEG 2000 encoder is not very significant due to some complex JPEG 2000 algorithms. One problem encountered is the big-level operations in JPEG 2000 arithmetic encoding (AE), which is completely based on bit-level operations. In this work, this problem is tackled by proposing a two-symbol AE with an efficient FPGA based hardware design. Furthermore, this design is energy-efficient, fast and has lower complexity when compared to conventional JPEG 2000 encoding

    Structured Compressed Sensing Using Deterministic Sequences

    No full text
    The problem of estimating sparse signals based on incomplete set of noiseless or noisy measurements has been investigated for a long time from different perspec- tives. In this dissertation, after the review of the theory of compressed sensing (CS) and existing structured sensing matrices, a new class of convolutional sensing matri- ces based on deterministic sequences are developed in the first part. The proposed matrices can achieve a near optimal bound with O(K log(N)) measurements for non-uniform recovery. Not only are they able to approximate compressible signals in the time domain, but they can also recover sparse signals in the frequency and discrete cosine transform domain. The candidates of the deterministic sequences include maximum length sequence (or called m-sequence), Golay's complementary sequence and Legendre sequence etc., which will be investigated respectively. In the second part, Golay-paired Hadamard matrices are introduced as structured sensing matrices, which are constructed from the Hadamard matrix, followed by diagonal Golay sequences. The properties and performances are analyzed in the following. Their strong structures ensure special isometry properties, and make them be easier applicable to hardware potentially. Finally, we exploit novel CS principles successfully in a few real applications, including radar imaging and dis- tributed source coding. The performance and the effectiveness of each scenario are verified in both theory and simulations

    Degraded Visual Environment Tracker

    Get PDF
    Compressive Sensing (CS) has proven its ability to reduce the number of measurements required to reproduce images with similar quality to those reconstructed by observing the Shannon-Nyquest sampling criteria. By exploiting spatial redundancies, it was shown that CS can be used to denoise and enhance image quality. In this thesis we propose a method that incorporates an efficient use of CS to locate a specific object in zero-visibility environments. This method was developed after multiple implementations of dictionary learning, reconstruction, detection, and tracking algorithms in order to identify the shortcomings of existing techniques and enhance our results. We show that with the use of an over-complete dictionary of the target our technique can perceive the location of the target from hidden information in the scene. This thesis will summarize the previously implemented algorithms, detail the shortcomings evident in their outputs, explain our setups, and present quantified results to support its efficacy in the results section

    Coding of synthetic aperture radar data

    Get PDF
    corecore