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ABSTRACT

Compressive Sensing (CS) has proven its ability to reduce the number of mea-
surements required to reproduce images with similar quality to those reconstructed
by observing the Shannon-Nyquist sampling criteria. By exploiting spatial redun-
dancies, it was shown that CS can be used to denoise and enhance image quality. In
this thesis we propose a method that incorporates an efficient use of CS to locate a
specific object in zero-visibility environments. This method was developed after mul-
tiple implementations of dictionary learning, reconstruction, detection, and tracking
algorithms in order to identify the shortcomings of existing techniques and enhance
our results. We show that with the use of an over-complete dictionary of the tar-
get our technique can perceive the location of the target from hidden information in
the scene. This thesis will summarize the previously implemented algorithms, detail
the shortcomings evident in their outputs, explain our setups, and present quantified

results to support its efficacy in the results section.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation
Lau and Woodward [1] detailed a method for seeing through obscurants in a
severe degraded visual environment (DVE). The method allows for the extraction of
hidden information from the raw sensor data via computational imaging technologies.
These authors begin by presenting an image that to the human eye represents a zero-
visibility view of an target captured by a sensor through dense obscurants. The
authors then show that it is possible to recover the hidden visual information of the
object and display its visual cues to aircraft pilots to aid in landing and maneuvering.
Lau and Woodward [1] used an iterative dictionary trained on the current location
and view of the object and predicted its position in subsequent frames. This thesis
expands that initial investigation by examining the effects of additional information
regarding the shape of the object as well as the location in the extraction of target
position. In addition to the shape investigation, results showing the effects of shape-
based window size selection are also presented.
1.2 Contributions of This Study

The major contributions of this study are as follows:
e Extension and improvements to CS based tracking algorithms
e Quantification of the effects on shape and noise type on CS-based tracking
e [llustration of the effects of pristine vs iterative dictionary construction.

1.3 Notation

We define some basic notation used throughout this thesis to eliminate confusion.

e Bolded lower case letters (x, y, etc) are used exclusively for vectors.



1.4

Double bars around a vector with an subscript p (ex. |[|x]|,) indicate the lp

norm of the vector x. [|x||, = ¢/, |z:|?

Matrices are denoted with upper-case, bold letter (®, etc).

®* indicates the Hermitian transpose of ®.

&' indicates the pseudo-inverse of ® such that &' = (&*®) ' &*.
T¢ indicates the compliment of set 7.

We use the subscript notation |7 to show that a vector or matrix is being
restricted to only certain elements or columns. For example, x| indicates the
vector x is restricted only the elements given in T. ®c indicates that the

matrix ® is restricted to the columns contained in 7.

Basic Terminologies
Sampling Theorems: Sampling is a fundamental way to represent and re-
cover continuous signals (analog domain) in the field of signal processing. The
Sampling theorem connects continuous signals and discrete signals by estab-
lishing guidelines connecting signal content, sample rates, and reconstruction

error.

Shannon-Nyquist Sampling Theorem: This theorem is named after Harry
Nyquist and Claude Shannon to honor them for their contribution to the field
of signal processing. Simply put, the theorem states that in order to obtain
all relevant information in a signal, the sampling rate must be at least 2 times
the bandwidth of the signal. For instance, if a simple sinusoid has the highest
frequency as 50 Hz, then to capture all the relevant information, the Nyquist

rate states that it must be sampled at at least 100 Hz.

Mathematically, if a function z(¢) contains no frequencies higher than B hertz,

it is completely determined by giving its ordinates at a series of points spaced



(e)

ﬁ seconds apart [35]. For a given sample rate fs, perfect reconstruction is
guaranteed possible for a band limit B < % Hence, any sampling rate that is

larger than 2B samples/second is said to be sufficient.

Meanwhile, it is noteworthy to remark here that perfect reconstruction may still
be possible when the sample-rate criterion defined above is not satisfied using
for example, compressed sensing or when other constraints on the signal are

known.

Signal: The description of signal(s) presented here copies heavily from Bara-
niuk [43]. Consider a real-valued, finite-length, one-dimensional, discrete-time
signal «, which we view as an N x 1 column vector in RY with elements
z[n],n=1,2,--- , N. Any signal in R can be represented in terms of a basis of
N x 1 vectors {¥,;}Y . Forming the N x N basis matrix ¥ := [¥|Wy| - - - [¥y]

by stacking the vectors {W;}._, as columns, we can express any signal  as
N
m:Zsi\II or x=WVYx (1.1)
i=1
where s is the NV x 1 column vector of weighting coefficients s; = (@, ¥;) = U] z.

Clearly,  and s are equivalent representations of the same signal, with x in

the time domain and s in the ¥ domain.

Signal processing: Signal processing concerns the analysis, synthesis, and
modification of signals, which are broadly defined by Priemer [8] as functions
conveying "information about the behavior or attributes of some phenomenon”,
such as sound, images, and biological measurements [10]. For example, signal
processing techniques are used to improve signal transmission fidelity, storage
efficiency, and subjective quality, and to emphasize or detect components of

interest in a measured signal [6].

Compressible Signals: If the sorted components of a signal decay rapidly



obeying power law, then these signals are called compressible signals. A power
law in statistics is a functional relationship between two quantities, where a
relative change in one quantity results in a proportional relative change in the
other quantity, independent of the initial size of those quantities: one quantity
varies as a power of another. For instance, considering the area of a square in
terms of the length of its side, if the length is doubled, the area is multiplied
by a factor of four [36]. Meanwhile, there are several variants of power law, one
variant is a power law with an exponential cutoff. This is simply a power law

multiplied by an exponential function [38]:

f(x) o< %" (1.2)

Matroid: A matroid is a mathematical structure that generalizes the notion
of linear independence from vector spaces to arbitrary sets. If an optimization
problem has the structure of a matroid, then the appropriate greedy algorithm

will solve it optimally [28].

Sparsity: Sparsity is a common term in compressed sensing. Sparsity is the
inherent property of those signals for which, the whole of the information con-
tained in the signal can be represented only with the help of few significant
components, as compared to the total length of the signal. A signal can have
sparse/compressible representation either in the original domain or in some
other transform domain. Representative transforms are the Fourier transform,
cosine transform, wavelet transform, etc. In this thesis, we will focus on signals
that have a sparse representation, where « is a linear combination of just K
basis vectors, with K < N. That is, only K of the s; in equation (1.1) are
nonzero and (N — K) are zero. A few examples of representative signals with

sparse representations in certain domains are as follows:

— Natural images which have sparse representations in the wavelet domain



— Speech signals can be represented by fewer components using Fourier trans-

form

— Better models for medical images can be obtained through use of the Radon

transform

. Mathematically, a sparse collection of data has a small number of non-zero
values in some domain. If the data is such that only a few non-zero values con-
tain sufficient magnitude to represent meaningful data it can also be classified
as compressible. Sparsity is motivated by the fact that many natural and man-
made signals are compressible in the sense that there exists a basis W where the

representation (1.1) has just a few large coefficients and many small coefficients.

Compressive/compressed sensing generally refers to techniques/methods de-
signed to obtain the few non-zero coefficients directly in the sparse domain
and thus avoid the processing and hardware overhead associated with tradi-
tional signal capture and subsequent domain transformation. The inefficiencies
associated with the acquisition of sparse signals using traditional methods can

be summarized as follows:

— Native domain sampling using Nyquist-criterion results in too many sam-
ples when compared to the actual information content of the signal. This is
especially true for applications such as tracking where perfect reconstruc-
tion of the target is not required and only a few features of the target are

necessary to identify it’s current target location.

— Compression of the Nyquist sampled signal is completed by computing the
necessary transform coefficients for all the samples, retaining only larger
coefficients and discarding the smaller ones for storage/transmission pur-

poses.

(h) DFT Matrix: A DFT matrix is an expression of a discrete Fourier transform
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(DFT) as a transformation matrix, which can be applied to a signal through
matrix multiplication. For instance, an N-point DFT is expressed as the mul-
tiplication X = W |, where x is the original input signal, W is the N-by-N

square DFT matrix, and X is the DFT of the signal.

(i) Kalman Filtering: The filter is named after Rudolf E. Kalman, one of the pri-
mary developers of its theory. Kalman filtering, also known as linear quadratic
estimation (LQE), is an algorithm that uses a series of measurements observed
over time, containing statistical noise and other inaccuracies, and produces es-
timates of unknown variables that tend to be more accurate than those based
on a single measurement alone, by estimating a joint probability distribution

over the variables for each time frame [30].

(j) Tracking: Tracking is the problem of generating an inference about the motion
of an object given a sequence of images [48]. Analogies of "tracking” includes
a spy "following” you, a missile "targeting” a ship, a detective "spotting” the

suspects, and a typical car chase scene in a Hollywood movie [48].

(k) Feature Descriptor: A feature descriptor is a representation of an image or
an image patch that simplifies the image by extracting useful information and

throwing away extraneous information.

1.5 Theses Outline

The rest of the thesis is presented as follows: A summary explanation of tradi-
tional and compressed signal acquisition is presented. This is followed by an overview
of the algorithmic implementations used to obtain the initial target tracking and
reconstruction results. A detailed synopsis of the algorithmic changes and motiva-
tion behind their inclusion is presented next. The next section contains the results

of the thesis along with a discussion of their relevant interpretations. The thesis is



then concluded with some appropriate conclusions and avenues for future research

directions.



CHAPTER 2

SIGNAL (DATA) ACQUISITION METHOD

Two types of signal acquisition (traditional and compressive sensing) are described in
this chapter.The traditional methods can be classified into the two distinct categories
of Shannon/Nyquist Sampling and the more modern Compression Approach. Due
to the relevance of this thesis, more detail will be provided on the Compression
Approach.
2.1 Traditional Approach
2.1.1 Shannon/Nyquist Sampling

The most common traditional methods of image and signal reconstruction from
measured data follow the Shannon/Nyquist sampling theorem (defined above). The
procedure for data acquisition, transmission and reception using Nyquist sampling is
presented in Figure 1.

Input Signal Yy
X

2

x

Figure 1: Traditional Data Acquisition. Copied from [47]

According to Fornasier and Rauhut [22], this principle is integral to the oper-
ation of most devices of current technology. Operations such as analog to digital

conversion, medical imaging, or audio and video electronics all rely on the Nyquist



criteria to ensure proper signal discretization and reconstruction. However, the ma-
jor disadvantage of Nyquist sampling criteria is that in many important applications,
the prescribed rate is so high that the resultant discretized data actually has more
samples than is needed to complete a particular task. Due to cost and physical limita-
tions in emerging areas such as smart cities and distributed or smart sensor networks,
the data acquisition and processing of signals in application using Nyquist sampling

continues to be a concern.

2.1.2 Compression Approach

To address the difficulties and challenges of using Nyquist sampling especially
when dealing with high-dimensional data, scholars have suggested another method
of signal acquisition known as compressible sampling. The purpose of which is to
obtain the most succinct representation of the original signal while also achieving an
acceptable level of distortion in the data. Transform coding, one of the most popular
techniques for signal compression, typically dedicates on finding a basis or frame that
provides sparse or compressible representations for signals [23]. Sparse representation,
in particular, is a common way to sparsify a signal by transforming the signal to the
orthonormal basis (e.g. Wavelet basis).

Both sparse and compressible signals can be represented with high fidelity by pre-
serving only the values and locations of the largest coefficients of the signal. Mallat
[42] reports that compressible signals are well approximated by K-sparse represen-
tations (the basis of transform coding). For instance, natural images tend to be
compressible in the discrete cosine transform (DCT) and wavelet bases [42] on which
the JPEG [25], and JPEG2000 [26] compression standards are based [43].

Transform coding plays a central role in data acquisition systems like digital
cameras where the number of samples is high but the signals are compressible. In
this framework, we acquire the full N-sample signal x; compute the complete set of

transform coefficients {s;} via s = ¥Tx; locate the K largest coefficients and discard



the (N — K) smallest coefficients; and encode the K values and locations of the
largest coefficients [43]. Unfortunately, the sample-then-compress framework suffers

from some inherent inefficiencies [43]: We enumerate the process below:

1. We must start with a potentially large number of samples N even if the ultimate

desired K is small.

2. The encoder must compute all of the N transform coefficients {s;}, even though

it will discard all but K of them.
3. The encoder faces the overhead of encoding the locations of the large coefficients.

Overall, since typical signals have some compressible structure, the process of massive
data acquisition followed by compression is extremely wasteful.
2.2 Compressive Sensing

Recall that the Nyquist-Shannon sampling theorem requires a certain minimum
number of samples be obtained in order to perfectly capture an arbitrary band-limited
signal. However, a great reduction in the required number of stored measurements is
possible if the signal is sparse in a known basis. Thus, the Nyquist-Shannon theorem
represents a sufficient condition but not a necessary condition for perfect reconstruc-
tion since signal sparsity or compresssibility implies signal recovery could be obtained
from far fewer saved data points.

To address this, Candes, Romberg, Tao, Donoho in 2006 ([3], [4], [5]) proposed
compressive sensing (CS); sometimes referred to as compressed sensing, compressive
sampling, or sparse sampling by some authors and researchers. CS as a method
of signal reconstruction which uses far fewer samples for signal acquisition. Thus,
CS provides a stricter sampling condition when the signal is known to be sparse or
compressible. The fundamental idea behind CS is, instead of first sampling the data
at a high rate and then compressing the sampled data, directly sense the data in a

compressed form at a lower sampling rate.
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This sampling scheme relies heavily on the following conditions: (1) the sparsity
of the signals (2) incoherence. These two conditions are discussed in section (2.3).

Meanwhile, there are three main problems with the use of CS:
e sparse representation,
e measurement matrix construction, and
e reconstruction algorithm.

The pictorial representation of CS data acquisition is presented in Figure 2. Basically,

Input signal Compressed b Y
e —®| Transmit/Store
= sensing

Receive y —® Reconstruct e o

Figure 2: Compressive sensing data acquisition. Copied from[47]

CS is used for the acquisition of signals which are either sparse or compressible in
either the original domain or in some transform domain (like Fourier, sine). To
recover the sample, there are two distinct approaches and each has its own set of
drawbacks. One approach is random and the other is deterministic. Examples of the
random method of signal and image recovery are those which make use of Gaussian
and Bernoulli random matrices; these have been investigated by several authors in
the past. In fact, it is the first approach employed for image recovery. Although it
enjoys sound theoretical backing [18], it suffers the disadvantage that it is complex

and requires large storage during its implementation [19].
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Meanwhile, a number of methods have been suggested by several scholars to
address the shortcomings of the random method describe above. Some of these meth-
ods developed and applied a deterministic matrix for the measurement strategies.
For instance, chirp sequences [20], Kerdock and Delsarte-Goethals codes [12], dual
BCH codes [13] and second order Reed-Muller codes [14]. Other techniques for de-
terministic construction, based on finite fields, representation theory, and character
sequences, can be found in ([17], [15], [16]). The deterministic matrices can guarantee
reconstruction performance that is empirically reliable, with fast processing and low

complexity.

2.2.1 Basic Math Behind CS Acquisition Model

In this section, we present the basic math behind CS signal acquisition and note
that in our presentation, we draw heavily from Baraniuk [43].

In real a world setting, theoretical calculations require that N measurements of
the signal of interest be obtained to satisfy traditional reconstruction requirements.
However, in practice (perhaps due to cost, computational consideration, and diffi-
culty in dealing with the population) we can only take M measurements (M < N).

Basically, for the mathematical setup of CS, the following components are required:

e Signal: Let « be N x 1 dimensional signal of interest (vector representing our
original signal) with & = Zf\il x; and assuming the sparsity @ = Wb where b is

sparse.

e Sensing Matrix: Let ® be M x N matrix with (M < N), ® is usually defined
as the sensing matrix. The job of the matrix ® is to ensure passage from x to
y either through a random measurements or transformations, and sometimes

by the combination of the two.

e Output: Let y (M x 1) be vector of our output values i.e., a vector denoting

12



the measurements taken. That is

y =Pz (2.1)

As stated earlier, CS is a more general signal acquisition technique that condenses
the signal directly into a compressed representation without going through the inter-
mediate stage of taking N samples. Consider the more general linear measurement
process that computes M < N inner products between & and a collection of vectors
{gbj}j]\il as in y; = (x, ¢;). Stacking the measurements y; into the M x 1 vector y
and the measurement vectors qb;fp as rows into an M x N matrix ® and substituting

in (1.1), we can write
y=dx
=®WPs
= 0Os (2.2)
where ® = ®W is an M x N matrix. The pictorial description of (2.2) is presented

in Figure 3.

_fT\IT

[ B W R

-]
T T TT] OO

K-sparse

() (b)

Figure 3: (a) Compressive sensing measurement process with (random Gaussian)
measurement matrix ® and discrete cosine transform (DCT) matrix W. The coeffi-
cient vector s is sparse with K = 4. (b) Measurement process in terms of the matrix
product ® = ®W¥ with the four columns corresponding to nonzero s; highlighted.
The measurement vector y is a linear combination of these four columns. Copied
from [43]

Usually in equation (2.1), some known, unknown, and some assumed values are

required for operation. For instance, the M x N sensing matrix ® and the output

13



vector y are assumed known, however, x is unknown. The assumption here is that

vector @ is sparse. The question then is how to determine or figure out what x is?

This is where CS recovery methods comes in.

Understanding the orthonormal bases in CS

In this section, we present two orthonormal bases (or orthobases) which are critical

for CS.

(a)

Representation basis: Re-emphasizing the importance of signal sparsity, we note
that the signal must be sparse in order to perform compressed sensing. The
representation basis denoted ¥ is the mathematical way of getting the signal
into a sparse domain. Assume a native time domain application. In some cases,
W can be as simple as an identity matrix with dimension /. However, in specific
situations, the time-domain signal may be sparse in a different domain (e.g., the
frequency domain). Thus, ¥ will be the basis which transforms a time-domain
signal into the frequency domain, i.e. the discrete Fourier transform (DFT)
matrix. According to Candes & Wakin [2], there are many possibilities for
V. and picking the right one is dependent on the application at hand. For
frequency-sparse signals, the DFT is applicable and for 2-D images, one of the

many Wavelet transform bases may be applicable.

Sensing basis: The second orthornormal basis for CS is known as the sensing
basis and it is usually denoted by ¢. ¢ represents the domain from which we
extract values from the signal. For instance, it may be as simple as the matrix
of random Gaussian entries and sometimes may be spikes. Usually, spikes is

employed to obtain a smaller (compressed) amount of data.

14



2.2.2 Noisy CS
Sparse signal recovery in the presence of noise has been intensively investigated
in many recent literature treatments because real-world devices are subject to at least

a small amount of noise [44]|. The noisy measurement is represented as
Uu=Y+z
=®xr+z (2.3)

where the measurements are corrupted by z, which is the additive white Gaussian
noise of zero mean and variance o?.
2.3 Necessary and Sufficient Conditions for Perfect Recovery
2.3.1 Restricted Isometry Property

The restricted isometry property (RIP) of a compressed sensing matrix is an
important necessary condition to guarantee the sparse signal recovery [40]. This

condition is given as
|©z||>
[edlP

where k is the sparsity of vector s,  is a vector having the same k-nonzero entries

(1—1065) <

< (1+4s) (2.4)

as s and 0, > 0 is known as RIP constant [43].

A sensing matrix © satisfies the restricted isometry property (RIP) if d5 is not
too close to 1 [40]. The RIP is a very restrictive condition and the currently known
measurement matrices obeying the RIP with near-optimal number of measurements

fall into two categories according to [41]:

(a) Random matrices such as Gaussian or Bernoulli matrices with the entries of

Gaussian or Bernoulli distribution,

(b) Random partial Fourier matrix or Hadamard transform matrix are obtained by
choosing K rows uniformly at random from a normalized N x N Fourier or

Hadamard transform matrices.
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Due to the storage limitations of random matrices, in some applications, deterministic
sensing matrices have been applied in literature. For instance, [19] demonstrated an
approach on deterministic sensing matrix on © to ensure that © is nearly-isometric
with high probability regarding s-sparse signals on a uniform distribution.

The condition in (2.4) states that matrix @ must preserve the distance between
two k-sparse vectors. However, a sufficient condition for a robust solution is that
matrix ® must satisfy the relation given in (2.4) for an arbitrary k-sparse vector x.
One of the limitations of the above condition is that it is difficult to calculate 9, thus,
another simpler condition which guarantees stable solution is proposed. This new

condition is known as incoherence (see, [11]).

2.3.2 Incoherent Sampling
This is an alternative approach to ensure that the measurement matrix is stable.

Following from (2.1), let (@, ¥) be a pair of orthonormal bases of RY.
(a) ® = (¢;) is used for sensing: A is a subset of rows of ®*
(b) W = (1) is used to sparsely represent x: x = Wb, and b is assumed sparse.

Definition: The coherence between ® and W is

w(®,9) = VN max |(¢;, )] (2.5)

1<k,j<N

If u(®,¥) = C a constant, then ® and ¥ are called incoherent. A classical example
of incoherent sampling is as follows: if W is identity (e,g., signal is sparse in canoni-
cal/Kroneker basis) and @ is discrete Fourier basis, the Kronecker and Fourier bases
are incoherent because u(®, ¥) =1
2.4 Strategies for CS Acquisition Model

Several strategies and procedures have been proposed in the literature to ensure
that the CS reconstruction is properly conducted. The main requirement of CS for

proper reconstruction is that the measurements must be taken randomly. In this
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section, we briefly discuss three operating principles/techniques of signal acquisition
that have been proposed in the literature to satisfy this requirement. Meanwhile, we

would like to note that this section benefits and draws heavily from Rani et al., [49].

1. Random Demodulator (RD): the random demodulator (RD), also referred
to as analog information converter (AIC) was proposed by [53], is a compressive
sampler used to sample signals at a rate below the Nyquist. It is an efficient
wideband signal sampler. The details of this method as described in a compre-

hensive review by [49] is as follows:

e The input signal xz(t) is first multiplied with a pseudorandom sequence
consisting of +/ — 1s, known as chipping sequence p.(t). This is equivalent
to the convolution in frequency domain and results in spreading the signal

frequency to low frequency regions.

e The next stage is an integrator, serving as a low pass filter (LPF), which
is used to obtain a unique frequency signature of signal in lower frequency
region.

e In the next stage, two unique frequency signatures are obtained from the
RD for two different frequency signals and the highest frequency of the
signal so obtained lies in lower frequency region (and hence can be sampled
using a low rate ADC to obtain vector of digital measurements). These

fewer compressive measurements can then easily be stored or transmitted.

e The unique frequency signature is the information about the original signal
that is contained in random measurements and helps in reconstructing the

original signal back from compressive measurements.

2. Random Filtering: This technique, proposed by [46] is applicable for com-
pressible, continuous and streaming signals. The input signal x, is acquired by

performing convolution with a random-tap finite impulse response (FIR) filter

17



2.5

h. The first stage is then followed by downsampling the filtered signal by a fac-
tor of [n/m] to obtain compressive measurements y, this is shown in Fig.7 of of
[49]. The filter taps are random and can be obtained from random distributions
like Gaussian distribution A/(0, 1) with zero mean and variance one, Bernoulli

distribution of +/ — 1s.

Random Equivalent Sampling (RES): This is another technique which is
based on random sampling mechanism. This method is used to sample the
periodic high frequency analog signals at sub-Nyquist-rate. The use of CS re-
construction for the signals acquired using RES, was proposed by [50]. CS
reconstruction for RES achieves higher SNR while requiring fewer RES samples
compared to the traditional method. The block diagram of signal acquisition
using RES is shown in Fig.9 of [49]. RES samples the signal at random posi-
tions by dithering the phase of ADC sampling clock with the help of a variable
delay circuit implemented using the control module. A level-triggering circuit
is used to provide fixed reference trigger-pulses to the control module to align
the samples. The time-to-digital converter (TDC) circuitry is used to measure
the relative sample positions, which are required to generate the measurement
matrix using Whittaker-Shannon interpolation formula and the measurement
matrix so generated is used for applying the CS reconstruction on RES sam-

pled signal [49].

Reconstruction Approaches for CS

In this section, we discuss some of the reconstruction methods and or algorithms

employed in CS schemes. In particular, we shall focus on some convex optimization

and

greedy methods. These are required to find out the sparse estimation of the

original input signal from the compressive samples collected in some suitable frame

or dictionary. We note again that some of the descriptions in this section draw directly

from [49] with slight or no modifications.
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2.5.1 Convex Optimization Methods

(1)

Basis Pursuit: Basis Pursuit (BP) was proposed by [55]. It is a convex op-
timization problem, which searches for a solution having minimum ¢;-norm,

subject to the equality constraint given below
§=argmin||s|l;; subject to Os (2.6)
S
BP is used in CS to find the sparse approximation s of input signal z, in

dictionary or matrix ©, from compressive measurements y. BP can recover

faithfully only if, the measurements are noise-free [49].

Basis Pursuit Denoising: If the measurements are corrupted by noise, then
to suppress the noise, exact reconstruction is not desired. The denoising can
be achieved by relaxing the equality constraint in equation (2.6) to account for
measurement noise. The widely used formulations for robust data recovery from
noisy measurements are Dantzig selector, basis pursuit denoising (BPDN), total
variation (TV) minimization based denoising, etc. However, BPDN is here in

what follows:

BPDN is also introduced by [55], in the field of computational harmonics. It
is similar to the Least Absolute Shrinkage Selection operator (LASSO) method
suggested by Tibshirani [51]. To account for the noise in measurements, BPDN
poses the sparse estimation problem as an optimization problem given in equa-
tion (2.7). It shows that, BPDN searches for a solution having minimum /;-
norm subject to the relaxed condition on constraint. The quadratic inequality
constraint used by BPDN states that for the obtained solution, the squared

lo-norm of the error between y and ©s should be less than or equal to e.

~ . ) 1

S =argmin]||s||;; subject to §H(y —0s)|5< e (2.7)
where, /5, also known as euclidean norm, represents the length or size of a

vector [52]. Some algorithms solve BPDN in its Lagrangian form, which is an
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unconstrained optimization problem and can be rewritten as

—~ . 1

§ = argmin [lsll + S| (y — ©9)|3 (2.8)
Equations (2.7) and (2.8) are equivalent for certain value of A, which is unknown
a priori. The value of A balances between error and sparsity of solution. Popular

algorithms that have been used to solve (2.8) are primal-dual interior-point

method, fixed-point continuation, etc.

Solvers: Solvers are the techniques or methods required to obtain solutions to
the optimization problems described above. The BP problem in equation (2.7)
can be solved by linear programming algorithms like the simplex algorithm
which is also known as BP-simplex, and the interior-point algorithm with is
also known as BP-interior. Here, simplex can be defined as a convex polyhedron
formed by the set of all feasible solutions or points [55]. The algorithmic steps

of these solvers are described below [49]:

(a) Basis pursuit - simplex algorithm: The basic steps for solving the BP

problem using simplex algorithm is as described below:

(i) Initial basis selection: Initial bases are a set of n linearly indepen-
dent columns selected from a dictionary. Generally, the initial bases
are used to find the initial feasible solution. This solution corresponds
to one of vertices of the simplex.

(ii) Swapping: Swap one column in current basis with the column ex-
ternal to the basis that gives best improvement in objective function.
This is equivalent to jumping on the vertices of simplex or searching
the solution, in the direction of improving the objective function.

(iii) Repeat step (ii) until no further improvement is possible. At last, the

optimal solution is achieved.

(b) Basis pursuit - interior algorithm: The basic steps for solving the BP
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problem using interior-point algorithm are described below [49]:

(i) Initial solution: start from a non-sparse initial solution which is well

inside the interior of simplex.

(ii) Apply transformation that sparsifies the solution. This corresponds

to moving the solution inside the simplex in the direction of a vertex.

(iii) Repeat step (ii), until a solution having < n significant non-zero en-
tries, is reached. The result so obtained is a feasible solution and

corresponds to the vertex of simplex.

Apart from simplex and interior-point algorithms, the other popular algorithms for
solving convex optimization problems are fixed point continuation, gradient projection

for sparse representation, Bregman iteration algorithm, etc.

2.5.2 Greedy Methods

There are no watertight rules applicable to all computation problems as different
problems usually require different approaches. This is especially true for problem
requiring algorithm design as an integral part of their solution. This also holds true
for the ”Greedy Methods” employed as techniques to obtain system solutions. Black
[29] defines greedy algorithm as an algorithm that always takes the best immediate,
or local, solution while finding an answer. Greedy algorithms find the overall, or
globally, optimal solution for some optimization problems, but may find less-than-
optimal solutions for some instances of other problems [29].

Greedy algorithms have proven to be quite successful in some problems (e.g.,
Huffman encoding which is used to compress data); However in many problems (e.g.,
NP-complete cases), a greedy strategy does not produce an optimal solution. While
the greedy algorithms are quite efficient in terms of execution time, the choice of
how to make the local decisions in the algorithm may affect performance. Using a

purely random approach may seem natural, however, it causes slower performance
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when compared to heuristic methods.
To solve any problem using greedy algorithms, the following properties must be

satisfied:

(a) Greedy choice property: A global (overall) optimal solution can be reached

by choosing the optimal choice at each step.

(b) Optimal substructure: A problem has an optimal substructure if an opti-
mal solution to the entire problem contains the optimal solutions to the sub-

problems.

In other words, greedy algorithms work on problems for which it is true that, at ev-
ery step, there is a choice that is optimal for the problem up to that step, and after
the last step, the algorithm produces the optimal solution of the complete problem
[27]. The choice made at each step of the algorithmn must be feasible (must satisfy
the problem’s constraints), locally optimal (be the best local choice among all feasi-
ble choices available on that step), and irrevocable (meaning once made, it cannot
be changed on subsequent steps of the algorithm.) Essentially, Greedy Algorithms
solve combinatorial problems having the properties of a matroid. In general, greedy

algorithms have five components [31]:
(a) A candidate set, from which a solution is created

(b) A selection function, which chooses the best candidate to be added to the solu-

tion

(c) A feasibility function, that is used to determine if a candidate can be used to

contribute to a solution

(d) An objective function, which assigns a value to a solution, or a partial solution,

and
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(e) A solution function, which will indicate when we have discovered a complete

solution

2.6 Orthogonal Matching Pursuit Algorithm

This section describes an iterative greedy algorithm for signal recovery known
as the orthogonal matching pursuit (OMP). The algorithm was proposed/developed
in Tropp & Gilbert [34]. Tt is commonly used as an algorithm for recovery of sparse
signals due to its low complexity and simple implementation. The procedure of OMP
is defined in [34] as follows:

The input is a K X N measurement matrix, a K-dimensional measurement vector
y, and the sparsity level s. As for the output, we have an index set A containing s

elements and a signal estimate & € R™. The procedure for recovering signal through

OMP is as follows [54]:
(a) Initialize a residual vector ro = y = (yo,--- ,yr_1)" and A = ¢ at iteration
1= 0.
(b) At iteration i, compute f = Afr; = (fo,- - ,fN_l)T, find the peak of f, and

record its position as n; i.e., n; = arg max |ft].
t=0, ,N—1

(c) Update the index set A < AU {n;} and the submatrix A;; = [A;an,]. Note

that Ag is an empty matrix.
(d) Solve a least-square problem to obtain b; = arg mbin lly — Aizr1b]|o.
(e) Update the residual by 7,1 =y — A;11b.

(f) If i < s —1, then i < i+ 1 and repeat (b) - (e). If i = s — 1, stop the iteration.
The nonzero entry of Z is set by &,,, = b; for n; € A, where b; is the jth element

of bs—l-

Note that the measurement procedure in compressed sensing is summarized by y =

Ax, where y is a linear combination of s columns in A. In the reconstruction part,
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we have to determine which columns of A participated in this measurement and the
coefficients of these columns contributed in the measurement. The idea behind this
algorithm is to choose columns in a greedy fashion [39]. At each iteration, we choose
the column of A that is the most strongly correlated with the remaining part of
vector y. Then the coefficients of the chosen columns are calculated in a least-square
manner. Finally, we subtract off these columns’ contribution to y and iterate on
the residual. After s iterations, the algorithm will have identified the correct set of
columns together with their corresponding coefficients [54].
2.7 CoSaMP Based Recovery

This section introduces the Compressive Sampling Matching Pursuit (CoSaMP)
algorithm described in Needell & Tropp [45]. The algorithm is useful and general for
recovery of sparse signal or image. As input, the CoSaMP algorithm requires four

pieces of information:
1. A M x N measurement matrix ®
2. A M-dimensional measurement vector y
3. The sparsity level s of the approximation to be produced.
4. A halting criterion.

The algorithm is initialized with a trivial signal approximation, which means that
the initial residual equals the unknown target signal. During each iteration, CoSaMP

performs five major steps [45]:

e Identification. The algorithm forms a proxy of the residual from the current

samples and locates the largest components of the proxy.

e Support Merger. The new support set is united with the set of components

that appear in the current approximation.
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e Estimation. The algorithm solves a least-squares problem to approximate the

target signal on the merged set of components.

e Pruning. The algorithm produces a new approximation by retaining only the

largest entries in this least-squares signal approximation.

e Sample Update. The samples are updated so that they reflect the residual,

the part of the signal that has not been approximated

These steps are repeated until the hating criterion is triggered. The following table

lists the steps of the CoSaMP algorithm [45]:

1) Initialization:
a’ = 0 (x, is the estimate of a) at the k™ iteration

v = u (the current residual)

2) Loop until convergence

i) Form signal proxy or compute the current error:
y = ®*v.

ii) Compute the best 2s support set of the error (index set):
Q2 =y

iii) Merge the strongest support sets:
T = QJsupp(af1).

iv) Perform a Least-Squares Signal Estimation:
bjr = ®[;u, bre = 0.

v) Prune a* and compute v for next round:
a® = b,,

v =u— ®a’.

2.8 Kalman Filter Tracker
Generally Kalman filters refer to the set of algorithms that take advantage of a

series of measurements collected over time to produce an estimate of some unknown
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variable. They are often used for object tracking and find use in a wide range of
applications such as the Space Shuttle, the Patriot missile system, and the NY stock
exchange. They are especially convenient for objects in which the motion model is
known since they incorporate some extra information in order to estimate the next
object position more robustly. They can be used for general purpose single object

tracking assuming some constraints.

2.8.1 Tracking with Kalman Filter

Tracking problem applications can usually be broken down into two subproblems

(1) Acquisition/Detection: finding the object of interest (the target) for the first

time

(2) Tracking/Prediction: guessing where it’s going to be in the next frame Kalman

Filter

The Kalman filter is the optimal filter (in the least mean squared error sense) for

target track prediction.

2.8.2 Kalman Filter Algorithm

The algorithm works in a two-step process. In the prediction step, the Kalman
filter produces estimates of the current state variables, along with their uncertainties.
Once the outcome of the next measurement (necessarily corrupted with some amount
of error, including random noise) is observed, these estimates are updated using a
weighted average, with more weight being given to estimates with higher certainty.
The algorithm is recursive. It can run in real time, using only the present input
measurements and the previously calculated state and its uncertainty matrix; no
additional past information is required.

Using a Kalman filter does not assume that the errors are Gaussian Kalman [9].
However, the filter yields the exact conditional probability estimate in the special

case that all errors are Gaussian.
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Mathematical Model of Tracking

The assumption for the general model of tracking includes the following:
e There are moving objects, which have an underlying state X
e There are measurements Y, some of which are functions of this state
e There is a clock

— at each tick, the state changes

— at each tick, we get a new observation
Meanwhile, the mathematical model of tracking involve three main steps, these are;

e Prediction: We have seen yq,--- ,y;_1, what state does this set of measure-
ments predict for the ith frame? To solve this problem, we need to obtain a

representation of Pr (X;|Yo =vyo, - ,Yi1 = Yi_1)-

e Data Association: Some of the measurements obtained from the ith frame
may tell us about the object’s state. Typically, we use Pr (X;|Yo = yo, -, Yii1 = Yi_1)

to identify these measurements.

e Correction: Now, after having y; - the relevant measurements - we need to

compute a representation Pr (X;|Yy =yo, -+ ,Y; = y;)

2.9 Histogram of Oriented Gradients (HOG) for Object Detection
One of the most popular, fast and efficient feature descriptor methods that can
be widely employed on several domains to characterize objects through their shapes
(especially in computer vision and image processing) is the Histograms of Oriented
Gradients (HOG). It was introduced by Dalal and Triggs [32] at the Computer Vision
and Pattern Recognition (CVPR) conference in 2005. The main purpose of HOG is

detection of an object. The technique counts occurrences of gradient orientation in
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localized portions of an image. This method is similar to that of edge orientation
histograms, scale-invariant feature transform (SIFT) descriptors, and shape contexts,
but differs in that it is computed on a dense grid of uniformly spaced cells and uses
overlapping local contrast normalization for improved accuracy.

As opposed to SIFT object recognition, HOG detection is a fairly simple to
understand dense feature extraction method for images . One of the main reasons
for this is that it uses a global features to describe an object rather than a collection
of local features. In other words, the entire object is represented by a single feature

vector as opposed to many feature vectors representing smaller parts of the object.

2.9.1 Procedure for HOG Feature Descriptor

The description of the procedure for HOG calculation draws heavily from the
article by Vocal Technology website [33].

The first step in HOG detection is to divide the source image into blocks (for
example 16 x 16 pixels). Each block is divided into small regions, called cells (for
example 8 x 8 pixels). Blocks usually overlap each other so that the same cell may be in
several blocks. For each pixel within the cell the vertical and horizontal gradients are
obtained. The simplest method to do that is to use 1-D Sobel vertical and horizontal

operators:
Gi(y,2) =Y (y,z +1)Y(y,x — 1) (2.9)
Gyly,z) =Y+ 1,2)Y(y—1,2) (2.10)
where Y (y, x) is the pixel intensity at coordinates x and y, G (y, x) is the horizontal

gradient, and G, (y, x) is the vertical gradient.

The magnitude and phase of the gradient are determined as:

Gy 2) =\ [Galy, )] + [Gy(y, 2)] (2.11)

0(y, r) = arctan [%} (2.12)

Next, the HOG is created for each cell. For the histogram, @) bins for the angle are
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chosen (for example @) = 9). Usually unsigned orientation is used, so angles below 0°
are increased by 180°.

Since different images may have different contrasts, contrast normalization can
be very useful. Dalal and Triggs [32] explored four different methods for block nor-
malization. Let v be the non-normalized vector containing all histograms in a given
block, ||v]|x be its k-norm for £ = 1,2 and s be some small constant (the exact value,

hopefully, is unimportant). Then the normalization factor can be one of the following

[37]:

(a) L2 Norm: f =

[[v]|3+s52

(b) L1 Norm: f = —*

lvlli+s

(c¢) L1 sqrt-norm: f =

_v
[olli+s

(d) L2-hys: L2-norm followed by clipping (limiting the maximum values of v to 0.2)

and renormalizing, as in [7]

A descriptor is assigned to each detector window. It consists of all the cell histograms
for each block in the detector window and can be used as information for object
recognition, training and testing. The data obtained from the descriptor may then
be passed on to the many possible existing methods used to classify objects such as

support vector machines, neural networks, etc.
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CHAPTER 3

APPROACH DEVELOPMENT AND EVALUATION

In order to reach the improved results of the approach demonstrated in this thesis,
multiple reconstruction algorithms and parameters were tested. This chapter will list
the tested strategies and report the results from the experiments conducted to study
the performance of each presented image reconstruction algorithm.
3.1 Simulation Study and Dataset

In order to normalize the attained results the same data set is used to compare
the performance of each approach included in this thesis. The data set consists of a
video containing 270 frames of a bouncing ball. The video was captured at a frame
rate of 30 frames per second (fps) with each frame size being 670 x 670 pixels.

The dictionary contains 270 samples of pristine shifted images of the target.
Patches of 8 pixels are extracted to train the dictionary. We test each approach by
adding high level white noise (Var= 1.2), salt and pepper with density of 0.8 , and

speckle noise with a variance of 0.8. Sample images are displayed in figure 4.

(@) (b) (©) (d)

Figure 4: Figure(a) shows the original image. Figure (b) shows the image after white
noise is added, with a PSNR of 6.92 dB, Figure (c) shows the noisy image when salt
and pepper is added with PSNR of 6.34 dB, Figure (d) shows the image when speckle
noise is added with a PSNR of 8.06

The Kalman tracker is included to predict the location of the object in the next

frame K;,, from information obtained from the current frame K;. The filter effectively
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sets the search area within the next frame. This step will help reduce calculation time
per frame since we are only reconstructing the search area instead of the entire scene.
The search location as well as the dictionary will be updated on a frame by frame
basis.

The simulation performance is evaluated by comparing the PSNR between the
original, noisy, and algorithmically reconstructed images. If the reconstruction scores
higher than the noisy image then the reconstruction approach is successful. The
remaining segments of this section will detail the changes implemented to improve
the performance of the tracker. The first section of this chapter will explain the
training of the SVM detector and the dataset used. The second and third sections
will contain the transitional approach tested to reach our final and optimal setup.

The algorithm is demonstrated in section 3.

3.1.1 SVM Detector

The SVM classifier is trained using a 1000 sample dataset consisting of translated
poses of the object of interest. The samples are divided into a training set using 80%
of the samples, and a test set using 20%. The trained model is tested with the test
set. accuracy = 86.1%, run time 1.42 seconds.
3.2 Basis Pursuit

In this approach, the ¢;-norm was used to reconstruct our noisy frames. As
mentioned in section 2.5.1, convex-optimization techniques do not perform well for
noisy images. Our test results confirm this statement. After calculating the ¢; norm
of the images in Figure 4, the reconstructions are shown in Figure 5. Even for a large
€, the process was not effective in reducing noise effects in the image. Due to the poor
performance, the object detector algorithm was not able to detect and objects in the
reconstructed scene for SNR of 5 dB or less.

This method was evaluated by measuring the error in the object location with

respect to the correct location (in pixels), and then subsequently comparing it to the
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Figure 5: Reconstruction using the ¢;-norm optimization technique. (a)shows the
original image. Figure (b) shows the reconstructed from image with Gaussian noise,
with a PSNR of 15.97 dB compared to the original frame, Figure (c) shows the
reconstruction when salt and pepper is added with PSNR of 15.51 dB, Figure (d)
shows the reconstruction when speckle noise is added with a PSNR of 17.84

performance of Normalized Cross Correlation. The error is plotted with respect to the
noise level SNR (in dB). The performance of BP degrades significantly for SNR, less
than 5.3 dB. While this approach shows a slight enhancement on the performance, the
performance still deteriorates around 5.3 dB. Figure 6 displays measured performance

of BP and compares it to NCC as a function of SNR.

200 —
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Figure 6: Comparison between BP and NCC (Normalized Cross Correlation)

3.3 OMP Using Sparse Representation

Since BP reconstruction did not show promising results in extreme conditions,
the next step was to try one of the greedy reconstruction methods. In this section,
we use OMP to reconstruct the frames. The following subsections will describe the

data set changes required to enhance reconstruction and detection of the object.
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3.3.1 Scene Based Dictionary

In this approach we applied OMP to reconstruct the noisy images. We used a

similar set of images to train the noiseless dictionary. We apply this algorithm to the

same noisy data and we compare the results in figure 7.
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Figure 8: Performance comparison between BP and OMP using a dictionary based
on the entire scene

As shown in figure 7, this approach attempts to recover the entire scene based
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on a prior knowledge. The detection algorithm was able to detect the target in some

cases with a small error.

3.3.2 Object Based Dictionary

Given that the goal is object detection and tracking, background scene recovery
is of reduced importance. Thus, the focus of the dictionary construction was switched
from total scene reconstruction to identification/detection enhancements necessary to
make only the target detectable. Therefore, the next step was to make the dictionary
highly dependent on the object. An object based dictionary was constructed based on
pristine shifted version of the target and then applied to the noisy images for target
identification. The result of this change produced enhanced results, a better tracking

accuracy in the results, and faster dictionary learning and reconstruction time.

Figure 9: Sample from recovered images a) Source image with S& P noise, b) is the
recovered image, c) is the noisy image with speckle noise and d) is the recovered
object
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Figure 10: Comparing performance of OMP, OMP with an objsect based dictionary,
and the DCS method implemented in [1]

There is a significant enhancement in performance between the two approaches
implemented in this chapter, and we see that this algorithm is able to recover objects
in SNR down to -5.8 dB.

This chapter summarized the methods implemented, and a comparison in perfor-
mance between all approaches. First, we used a video of a bouncing tennis ball, which
does not contain many features. The results were poor due to high dependencies in
the object and the background. Therefore, a different object had to be picked in
order to enhance the results. A soccer ball was the next choice since it had the black
pentagon, which served as additional target detail. The added features enhanced the
recovery as well as the detection immensely. We noticed a better object recovery when
the dictionary is based solely on the targeted object. The dictionary training requires
a set of parameters with a remarkable impact on both the computational time, and
the performance of the process such as sparsity, the number of atoms, and patch size.
Finding the appropriate set of parameters in order to find the best performing point
is mandatory, in order to keep the process quick but also maintain a reliable object
detection. These parameters depend on the kind of application in which Compressive

Sensing is used. Here, we set the patch size to be 3 x 3 and the dictionary had 50
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atoms in order to speed up the learning process.
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CHAPTER 4

CONCLUSION

4.1 Conclusion
This thesis has primarily focused on the application of compressive sensing theory
in object detection during degraded visual environments. The theory behind com-
pressive sensing is was summarized and shown to require the following two conditions

be met for successful implementation:

1. The measurement matrix ¢ needs to follow the restricted isometery property as

close as possible. meaning that measurement matrix should be incoherent.

2. The reconstruction algorithm needs to be adapted to the application /; mini-
mization, OMP and CoSaMP are discussed in this thesis. Only /; minimization
and OMP where implemented. We change the parameters to enhance the results

of each method.

We showed that /; minimization does not perform well under heavy noise, and
that OMP provides better results. It was also shown that the recovery of the object
can be enhanced by adding features to the object. For example, a tennis ball is
harder to recover than a soccer ball under the same circumstances since it has less
features. These added features will improve the detection and tracking processes as
well. It was also shown that it is possible to detect objects in severely degraded
visual environments or zero visibility using an off the shelf camera, rather than an
infrared or LIDAR. These results will help cut the costs of object detection in many
applications.

4.2 Future Work
This approach can be improved by allowing parallel computations, which will

reduce the processing time significantly. Applying background subtraction maybe
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useful in focusing the entire CS process on the target object. Further enhancements

can be done by testing other recovery techniques such as CoSaMP.
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