173 research outputs found

    Fast converging robust beamforming for downlink massive MIMO systems in heterogenous networks

    Get PDF
    Massive multiple-input multiple-output (MIMO) is an emerging technology, which is an enabler for future broadband wireless networks that support high speed connection of densely populated areas. Application of massive MIMO at the macrocell base stations in heterogeneous networks (HetNets) offers an increase in throughput without increasing the bandwidth, but with reduced power consumption. This research investigated the optimisation problem of signal-to-interference-plus-noise ratio (SINR) balancing for macrocell users in a typical HetNet scenario with massive MIMO at the base station. The aim was to present an efficient beamforming solution that would enhance inter-tier interference mitigation in heterogeneous networks. The system model considered the case of perfect channel state information (CSI) acquisition at the transmitter, as well as the case of imperfect CSI at the transmitter. A fast converging beamforming solution, which is applicable to both channel models, is presented. The proposed beamforming solution method applies the matrix stuffing technique and the alternative direction method of multipliers, in a two-stage fashion, to give a modestly accurate and efficient solution. In the first stage, the original optimisation problem is transformed into standard second-order conic program (SOCP) form using the Smith form reformulation and applying the matrix stuffing technique for fast transformation. The second stage uses the alternative direction method of multipliers to solve the SOCP-based optimisation problem. Simulations to evaluate the SINR performance of the proposed solution method were carried out with supporting software-based simulations using relevant MATLAB toolboxes. The simulation results of a typical single cell in a HetNet show that the proposed solution gives performance with modest accuracy, while converging in an efficient manner, compared to optimal solutions achieved by state-of-the-art modelling languages and interior-point solvers. This is particularly for cases when the number of antennas at the base station increases to large values, for both models of perfect CSI and imperfect CSI. This makes the solution method attractive for practical implementation in heterogeneous networks with large scale antenna arrays at the macrocell base station.Dissertation (MEng)--University of Pretoria, 2018.Electrical, Electronic and Computer EngineeringMEngUnrestricte

    Transition technologies towards 6G networks

    Full text link
    [EN] The sixth generation (6G) mobile systems will create new markets, services, and industries making possible a plethora of new opportunities and solutions. Commercially successful rollouts will involve scaling enabling technologies, such as cloud radio access networks, virtualization, and artificial intelligence. This paper addresses the principal technologies in the transition towards next generation mobile networks. The convergence of 6G key-performance indicators along with evaluation methodologies and use cases are also addressed. Free-space optics, Terahertz systems, photonic integrated circuits, softwarization, massive multiple-input multiple-output signaling, and multi-core fibers, are among the technologies identified and discussed. Finally, some of these technologies are showcased in an experimental demonstration of a mobile fronthaul system based on millimeter 5G NR OFDM signaling compliant with 3GPP Rel. 15. The signals are generated by a bespoke 5G baseband unit and transmitted through both a 10 km prototype multi-core fiber and 4 m wireless V-band link using a pair of directional 60 GHz antennas with 10 degrees beamwidth. Results shown that the 5G and beyond fronthaul system can successfully transmit signals with both wide bandwidth (up to 800 MHz) and fully centralized signal processing. As a result, this system can support large capacity and accommodate several simultaneous users as a key candidate for next generation mobile networks. Thus, these technologies will be needed for fully integrated, heterogeneous solutions to benefit from hardware commoditization and softwarization. They will ensure the ultimate user experience, while also anticipating the quality-of-service demands that future applications and services will put on 6G networks.This work was partially funded by the blueSPACE and 5G-PHOS 5G-PPP phase 2 projects, which have received funding from the European Union's Horizon 2020 programme under Grant Agreements Number 762055 and 761989. D. PerezGalacho acknowledges the funding of the Spanish Science Ministry through the Juan de la Cierva programme.Raddo, TR.; Rommel, S.; Cimoli, B.; Vagionas, C.; Pérez-Galacho, D.; Pikasis, E.; Grivas, E.... (2021). Transition technologies towards 6G networks. EURASIP Journal on Wireless Communications and Networking. 2021(1):1-22. https://doi.org/10.1186/s13638-021-01973-91222021

    Secrecy Energy Efficiency in Wireless Powered Heterogeneous Networks: A Distributed ADMM Approach

    Get PDF
    OAPA This paper investigates the physical layer security in heterogeneous networks (HetNets) supported by simultaneous wireless information and power transfer (SWIPT). We first consider a two-tier HetNet composed of a macrocell and several femtocells, where the macrocell base station (BS) serves multiple users in the presence of a malicious eavesdropper, while each femtocell BS serves a couple of Internet-of-things (IoT) users. With regard to the energy constraint of IoT users, SWIPT is performed at the femtocell BSs, and IoT users accomplish the reception of information and energy in a time-switching (TS) manner, where information secrecy is to be protected. To enhance the secrecy performance, we inject artificial noise (AN) into the transmit beam at both macrocell and femtocell BSs, and for the sake of achieving green communications, we formulate the problem of maximizing secrecy energy efficiency while considering the fairness in a cross-tier multi-cell coordinated beamforming (MCBF) design. To handle this resulting nonconvex max-min fractional program problem, we propose an iterative algorithm by applying successive convex approximation method. Then, we further develop a decentralized solution based on alternative direction multiplier method (ADMM), which reduces the overhead of information exchange among coordinated BSs and achieves good approximation performance. Finally, simulation results demonstrate the performance of the proposed AN-aided cross-tier MCBF design and verify the validity of distributed ADMM-based approach

    A survey on hybrid beamforming techniques in 5G : architecture and system model perspectives

    Get PDF
    The increasing wireless data traffic demands have driven the need to explore suitable spectrum regions for meeting the projected requirements. In the light of this, millimeter wave (mmWave) communication has received considerable attention from the research community. Typically, in fifth generation (5G) wireless networks, mmWave massive multiple-input multiple-output (MIMO) communications is realized by the hybrid transceivers which combine high dimensional analog phase shifters and power amplifiers with lower-dimensional digital signal processing units. This hybrid beamforming design reduces the cost and power consumption which is aligned with an energy-efficient design vision of 5G. In this paper, we track the progress in hybrid beamforming for massive MIMO communications in the context of system models of the hybrid transceivers' structures, the digital and analog beamforming matrices with the possible antenna configuration scenarios and the hybrid beamforming in heterogeneous wireless networks. We extend the scope of the discussion by including resource management issues in hybrid beamforming. We explore the suitability of hybrid beamforming methods, both, existing and proposed till first quarter of 2017, and identify the exciting future challenges in this domain
    corecore