146 research outputs found

    Adaptive scaling of cluster boundaries for large-scale social media data clustering

    Get PDF
    The large scale and complex nature of social media data raises the need to scale clustering techniques to big data and make them capable of automatically identifying data clusters with few empirical settings. In this paper, we present our investigation and three algorithms based on the fuzzy adaptive resonance theory (Fuzzy ART) that have linear computational complexity, use a single parameter, i.e., the vigilance parameter to identify data clusters, and are robust to modest parameter settings. The contribution of this paper lies in two aspects. First, we theoretically demonstrate how complement coding, commonly known as a normalization method, changes the clustering mechanism of Fuzzy ART, and discover the vigilance region (VR) that essentially determines how a cluster in the Fuzzy ART system recognizes similar patterns in the feature space. The VR gives an intrinsic interpretation of the clustering mechanism and limitations of Fuzzy ART. Second, we introduce the idea of allowing different clusters in the Fuzzy ART system to have different vigilance levels in order to meet the diverse nature of the pattern distribution of social media data. To this end, we propose three vigilance adaptation methods, namely, the activation maximization (AM) rule, the confliction minimization (CM) rule, and the hybrid integration (HI) rule. With an initial vigilance value, the resulting clustering algorithms, namely, the AM-ART, CM-ART, and HI-ART, can automatically adapt the vigilance values of all clusters during the learning epochs in order to produce better cluster boundaries. Experiments on four social media data sets show that AM-ART, CM-ART, and HI-ART are more robust than Fuzzy ART to the initial vigilance value, and they usually achieve better or comparable performance and much faster speed than the state-of-the-art clustering algorithms that also do not require a predefined number of clusters

    Adaptive Resonance Theory (ART) for social media analytics

    Get PDF
    This chapter presents the ART-based clustering algorithms for social media analytics in detail. Sections 3.1 and 3.2 introduce Fuzzy ART and its clustering mechanisms, respectively, which provides a deep understanding of the base model that is used and extended for handling the social media clustering challenges. Important concepts such as vigilance region (VR) and its properties are explained and proven. Subsequently, Sects. 3.3-3.7 illustrate five types of ART adaptive resonance theory variants, each of which addresses the challenges in one social media analytical scenario, including automated parameter adaptation, user preference incorporation, short text clustering, heterogeneous data co-clustering and online streaming data indexing. The content of this chapter is several prior studies, including Probabilistic ART [15

    Efficient Mapping of Neural Network Models on a Class of Parallel Architectures.

    Get PDF
    This dissertation develops a formal and systematic methodology for efficient mapping of several contemporary artificial neural network (ANN) models on k-ary n-cube parallel architectures (KNC\u27s). We apply the general mapping to several important ANN models including feedforward ANN\u27s trained with backpropagation algorithm, radial basis function networks, cascade correlation learning, and adaptive resonance theory networks. Our approach utilizes a parallel task graph representing concurrent operations of the ANN model during training. The mapping of the ANN is performed in two steps. First, the parallel task graph of the ANN is mapped to a virtual KNC of compatible dimensionality. This involves decomposing each operation into its atomic tasks. Second, the dimensionality of the virtual KNC architecture is recursively reduced through a sequence of transformations until a desired metric is optimized. We refer to this process as folding the virtual architecture. The optimization criteria we consider in this dissertation are defined in terms of the iteration time of the algorithm on the folded architecture. If necessary, the mapping scheme may utilize a subset of the processors of a given KNC architecture if it results in the most efficient simulation. A unique feature of our mapping is that it systematically selects an appropriate degree of parallelism leading to a highly efficient realization of the ANN model on KNC architectures. A novel feature of our work is its ability to efficiently map unit-allocating ANN\u27s. These networks possess a dynamic structure which grows during training. We present a highly efficient scheme for simulating such networks on existing KNC parallel architectures. We assume an upper bound on size of the neural network We perform the folding such that the iteration time of the largest network is minimized. We show that our mapping leads to near-optimal simulation of smaller instances of the neural network. In addition, based on our mapping no data migration or task rescheduling is needed as the size of network grows

    A new class of neural architectures to model episodic memory : computational studies of distal reward learning

    Get PDF
    A computational cognitive neuroscience model is proposed, which models episodic memory based on the mammalian brain. A computational neural architecture instantiates the proposed model and is tested on a particular task of distal reward learning. Categorical Neural Semantic Theory informs the architecture design. To experiment upon the computational brain model, embodiment and an environment in which the embodiment exists are simulated. This simulated environment realizes the Morris Water Maze task, a well established biological experimental test of distal reward learning. The embodied neural architecture is treated as a virtual rat and the environment it acts in as a virtual water tank. Performance levels of the neural architectures are evaluated through analysis of embodied behavior in the distal reward learning task. Comparison is made to biological rat experimental data, as well as comparison to other published models. In addition, differences in performance are compared between the normal and categorically informed versions of the architecture

    Perturbated Gradients Updating within Unit Space for Deep Learning

    Full text link
    In deep learning, optimization plays a vital role. By focusing on image classification, this work investigates the pros and cons of the widely used optimizers, and proposes a new optimizer: Perturbated Unit Gradient Descent (PUGD) algorithm with extending normalized gradient operation in tensor within perturbation to update in unit space. Via a set of experiments and analyses, we show that PUGD is locally bounded updating, which means the updating from time to time is controlled. On the other hand, PUGD can push models to a flat minimum, where the error remains approximately constant, not only because of the nature of avoiding stationary points in gradient normalization but also by scanning sharpness in the unit ball. From a series of rigorous experiments, PUGD helps models to gain a state-of-the-art Top-1 accuracy in Tiny ImageNet and competitive performances in CIFAR- {10, 100}. We open-source our code at link: https://github.com/hanktseng131415go/PUGD

    Implementation of Adaptive Critic-Based Neurocontrollers for Turbogenerators in a Multimachine Power System

    Get PDF
    This paper presents the design and practical hardware implementation of optimal neurocontrollers that replace the conventional automatic voltage regulator (AVR) and the turbine governor of turbogenerators on multimachine power systems. The neurocontroller design uses a powerful technique of the adaptive critic design (ACD) family called dual heuristic programming (DHP). The DHP neurocontroller\u27s training and testing are implemented on the Innovative Integration M67 card consisting of the TMS320C6701 processor. The measured results show that the DHP neurocontrollers are robust and their performance does not degrade unlike the conventional controllers even when a power system stabilizer (PSS) is included, for changes in system operating conditions and configurations. This paper also shows that it is possible to design and implement optimal neurocontrollers for multiple turbogenerators in real time, without having to do continually online training of the neural networks, thus avoiding risks of instability

    Managing crops from UAV images with data processing and Deep Learning techniques

    Get PDF
    Deep Learning is the state-of-the-art of Artificial Intelligence. Companies around the world put this technology to practical use. Accordingly, this work pretends to investigate the benefits of its use in agriculture in combination with unmanned aerial vehicles. The report introduces Deep Learning by giving its definition and the inspiration behind this technology. Further, its functioning was studied to gain an understanding of how it is applied to real-world tasks and what variations of Deep Learning exist. Accordingly, the suitable Deep Learning algorithm and its implementation was selected to fulfill the objectives of this project. The report proceeds with explaining the computer code that was written to utilize an already existing implementation and the problems that were encountered. Finally, the discussion of the accomplished results is presented along with the conclusions of the entire project and comments on future works

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN
    • …
    corecore