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Abstract

Deep Learning is the state-of-the-art of Artificial Intelligence. Companies around
the world put this technology to practical use. Accordingly, this work pretends to
investigate the benefits of its use in agriculture in combination with unmanned aerial
vehicles.
The report introduces Deep Learning by giving its definition and the inspiration
behind this technology. Further, its functioning was studied to gain an understand-
ing of how it is applied to real-world tasks and what variations of Deep Learning
exist. Accordingly, the suitable Deep Learning algorithm and its implementation
was selected to fulfill the objectives of this project.
The report proceeds with explaining the computer code that was written to utilize
an already existing implementation and the problems that were encountered.
Finally, the discussion of the accomplished results is presented along with the con-
clusions of the entire project and comments on future works.
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Resumen

Deep Learning es el estado del arte de la Inteligencia Artificial. Empresas de todo
el mundo ponen esta tecnología en práctica. Por consiguiente, este trabajo pretende
investigar los beneficios de su uso en agricultura en combinación con vehículos aéreos
no tripulados.
El informe presenta Deep Learning dando su definición y la inspiración detras de esta
tecnología. Además, se estudió su funcionamiento para comprender cómo se aplica
a las tareas del mundo real y qué variaciones existen de su arquitectura. En conse-
cuencia, se seleccionó el algoritmo de Deep Learning adecuado y su implementación
para cumplir con los objetivos de este proyecto.
El informe continúa con la explicación del código de ordenador que se escribió para
utilizar una implementación ya existente y los problemas que se encontraron.
Finalmente, se presenta la discusión de los resultados obtenidos junto con las con-
clusiones de todo el proyecto y comentarios sobre trabajos futuros.

5





Contents

1 Introduction 7
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Aim of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Scope of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Overview of the manuscript . . . . . . . . . . . . . . . . . . . 9
1.5 Project deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 State of the Art 11
2.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Training a perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Limitations of Deep Learning . . . . . . . . . . . . . . . . . . 18

2.3 Types and examples of use of ANNs . . . . . . . . . . . . . . . . . . . 20
2.3.1 Feedforward Neural Network . . . . . . . . . . . . . . . . . . . 21
2.3.2 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . 23

2.4 Convolutional neural network . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Architecture of a CNN . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Convolution and pooling calculation . . . . . . . . . . . . . . . 28
2.4.3 Layers of CNN . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.4 Variations of CNN architecture . . . . . . . . . . . . . . . . . 32

2.4.4.1 R-CNN . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.4.2 Fast R-CNN . . . . . . . . . . . . . . . . . . . . . . 33
2.4.4.3 Faster R-CNN and Mask R-CNN . . . . . . . . . . . 34

2.5 Drones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.1 Drones in agriculture . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.2 Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Alternative to UAV and Deep Learning . . . . . . . . . . . . . . . . . 38

3 Data Preparation and Programming Mask R-CNN 39
3.1 Dataset preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Image acquisition and drone usage . . . . . . . . . . . . . . . 39
3.1.2 Experiment configuration . . . . . . . . . . . . . . . . . . . . 41

3.1.2.1 Potato growth . . . . . . . . . . . . . . . . . . . . . 41
3.1.3 Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.4 Dataset split . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

i



Contents Contents

3.2 Implementation of Mask R-CNN . . . . . . . . . . . . . . . . . . . . . 46
3.2.1 Python script . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Results 55
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Training evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Mask examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Conclusions and Future work 63
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography 65

ii



List of Figures

2.1 Difference between AI, ML and DL [11] . . . . . . . . . . . . . . . . . 11
2.2 Basic similarities of artificial and biological neuron[13] . . . . . . . . 12
2.3 How Deep Learning is improved with more data [12] . . . . . . . . . . 13
2.4 Perceptron [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Non-linear functions(I) [18] . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Non-linear functions(II) [18] . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Non-linear functions(III) [18] . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 Gradient descent curve [21] . . . . . . . . . . . . . . . . . . . . . . . . 17
2.9 Example of gradient calculation [22] . . . . . . . . . . . . . . . . . . 18
2.10 Effect of the learning rate [23] . . . . . . . . . . . . . . . . . . . . . . 18
2.11 Example of a local minimum and saddle point [23] . . . . . . . . . . . 19
2.12 Classifications of fitting problems [27] . . . . . . . . . . . . . . . . . 20
2.13 Classification of NN [29] . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.14 Feedforward Neural Network [29] . . . . . . . . . . . . . . . . . . . . 22
2.15 Examples of RNN [33, 34] . . . . . . . . . . . . . . . . . . . . . . . . 23
2.16 Convolutional product . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.17 Structure of CNN [45] . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.18 Complexity of object characterization in image segmentation [44] . . . 27
2.19 CNNs: Localization vs Generalization [44] . . . . . . . . . . . . . . . 27
2.20 Structure of VG16 Convolutional Neural Network [47] . . . . . . . . 28
2.21 Example of padding [48] . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.22 Example of pooling operation using s = 2 [16] . . . . . . . . . . . . . 30
2.23 Convolutional layer [49] . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.24 R-CNN algorithm [50] . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.25 Example of recursive steps in the selective search algorithm [50] . . . 33
2.26 Structure of the Fast-RCNN network . . . . . . . . . . . . . . . . . . 34
2.27 Sliding a window over the feature map in an RPN network [53] . . . . 35
2.28 Image of infrared radiation emitted by crops [60] . . . . . . . . . . . . 37

3.1 UAV pictures of various crop fields . . . . . . . . . . . . . . . . . . . 40
3.2 Terrestrial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Programmed mission . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Different growth stages of potato [67] . . . . . . . . . . . . . . . . . . 42
3.5 Samples of the acquired dataset (I) . . . . . . . . . . . . . . . . . . . 44
3.6 Samples of the acquired dataset (II) . . . . . . . . . . . . . . . . . . . 44
3.7 Labels created in LabelMe . . . . . . . . . . . . . . . . . . . . . . . . 45

1



List of Figures List of Figures

4.1 Loss plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Final confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Overall confusion matrix precision for different epochs . . . . . . . . 58
4.4 Inference examples in the early stages of the training . . . . . . . . . 59
4.5 Inference at Epoch 120 . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6 Comparison between the real masks and final inference . . . . . . . . 60

2



Nomenclature

AESA Agencia Estatal de Seguridad Area

AI Artificial Intelligence

ANN Neural Network

BGD Batch Gradient Descent

CNN Convolutional Neural Network

CPU Central Processing Unit

DL Deep Learning

DL Deep Learning

EASA European Aviation Safety Agency

FNN Feedforward Neural Network

GPU Graphics Processing Unit

IoT Internet of Things

ML Machine Learning

ML Machine Learning

MSE Mean Square Error

NN Neural Network

R-CNN Region Based Convolutional Neural Network

RAM Random Access Memory

ReLU Rectified Linear Unit

RoI Region of Interest

3



Nomenclature Nomenclature

RPN Region Proposal Network

SGD Stochastic Gradient Descent

SOA State of the Art

TLU Threshold Logic Unit

TPU Tensor Processing Unit

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

VRAM Video Random Access Memory

4



Documents

1. Report

2. Budget

5





1 Introduction

1.1 Background

The human population continues to grow and according to some estimates it will
increase by 25% by 2050 [1]. This in turn will require an increase in the global
production of various crops. Nonetheless, due to global warming and the consequent
rise of temperatures, greater production rates will pose a considerable challenge for
humanity, since the amount of arable lands will be decreased.

The number of agricultural products can be raised by either using more arable
land or speeding up the process of the agricultural cycle. The latter is generally
preferred since it addresses these problems more efficiently at a relatively low cost.
For instance, one solution is to implement a network of small computing devices
such as IoT [2] capable of providing the most recent and extensive information
about the state of a crop. However, another solution, and perhaps a simpler one, is
to take photographs from UAVs and analyze the land by means of image processing
techniques based on artificial networks.

A drone is capable of doing regular flights above pre-established waypoints and
taking images of the agricultural areas, covering a considerable amount of land in a
short period of time thus reducing, or even eliminating, the necessity of farmers to
move in order to inspect the different areas. Moreover, artificial neural networks can
help to extract image features and classify different parts of the land in a matter of
seconds and giving, for instance, the answer about whether the crops of a certain
planted area have reached their maturity or require some treatment.

1.2 Aim of the project

This work aims to combine drone technology and Artificial Intelligence and show
their efficiency to analyze crop land. Taking the work developed by [3] as a reference,
this study analyses the growth process of potato harvest by means of AI-based image
processing techniques.

The goal is to build a neural network model the detect the position of plants in the
image and determine its growth stage maturity.
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1.3 Scope of the project Introduction

1.3 Scope of the project

The tasks required to fulfill the purpose of this project are mostly of either technical
or practical nature. Some of the major ones in this list are:

1. Study of the Deep Learning related SOA. As many neural network mod-
els exists, certain specification considerations must be taken into account to
choose which suits best for the problem at hand. For example, in Feedforward
Neural Networks (FNN), the training stage is developed sequentially from the
input layers to the output. They are used in simple classification tasks and
speech recognition of small datasets and, therefore, they run faster. On the
other hand, the Convolutional Neural Network structure (CNN) use filterbanks
to images, and seems more suited for this work.

2. UAV considerations. Hardware and necessary flight settings related to the
acquisition of images are considered briefly to provide insight to the reader
about its programming.

3. Configuration of Neural Network (NN). For this project, the Mask R-
CNN (Mask region-based Convolutional Neural Network) has been used. This
model combines several CNN architectures with image processing mechanisms
which are not implemented from scratch. The python library provided by
Matterport [4] has been used to develop the necessary scripts. These include
the 1) the training phase script; 2) the inference script; and 3) the Accuracy
estimation script. The first script is used to train the network to recognize
potato crops in different growth stages. The second and third will serve to
assess its performance.

4. Data Engineering tasks. Acquired images have been labeled using the
Labelme software package [5]. To this goal, three mask classes representing
the different growth stages of potato plants have been set: pat1, pat2 and
pat3. A total of 303 images were obtained from different positions, both from
land and aerial pictures. They have been used to construct three datasets:
training (75% of the images), validation (10%) and test (15%).

In general, similar works using Mask-RCNN have shown good results [6, 7]. How-
ever, this work is set in the realm of UAVs using one for purposes of agricultural
management. The aforementioned drone, developed in [3], will be programmed to
loiter above certain agricultural waypoints to take pictures of the crops that will
later be used to train the neural network offline. It was constructed on the base of
a standard kit that consisted of a carbon fiber frame, 4 brushless JMT HYD 3508
motors, helices and a set of additional components [8]. The battery supplied 11.1 V
at 4200 mA which allowed the drone to fly stably for 20 minutes.
The hardware used for flight control is APM 2.8 that ran ArduPilot which is an open
source autopilot system. The flights were configured with Mission Planner program
[9].
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1.4 Motivation

For remote control, the Radiolink AT9S PRO transmitter of 9 channels with R9DS
receiver was utilized. Both functioning at 2.4 GHz radio band.
GoPro Hero 4 was used for taking pictures. It has a resolution of 12 MP and
accepts JPG images and MP4 videos. One of the considerable advantages of GoPro
cameras is that they have GitHub libraries which allow them to be controlled by
Python scripts [10]. Nonetheless, for this work, GoPro was connected to a phone
via mobile internet to control image acquisition process.
The performance of the trained network is assessed using: 1) loss plots, 2) confusion
matrices and 3) inference examples. The first demonstrated the progress of the
learning process, the second presented the quality of predictions for different classes
and the last showed how the network perceives different objects.

1.4 Motivation

This project is motivated by two main goals: 1) mitigation of the effects of climate
change, and 2) study of Deep Learning algorithms and UAV applications.
On the one hand, public awareness of climate change and the effects of human ac-
tivity are impacting global earth warming in unprecedented ways, and it’s no longer
doubtful that soon enough it will have a drastic effect on our lives. Engineers and
scientists around the world are trying to come up with new ways and technology to
slow the rate at which this is happening. Unfortunately, some engineering special-
ists can do only so much to help the cause, as engineering fields are not particularly
multidisciplinary, which is required to address this problem. Nonetheless, one of the
primary goals of this project is to attempt to show that even aerospace engineering
and machine learning, by using UAVs and Deep Learning, can help humanity to
adapt to the new reality of extreme weather conditions.
The second motivation of this project is to increase my knowledge in two subjects
that consistently gain popularity due to their promising potential for engineering
- artificial intelligence (AI) and UAVs. In my opinion, getting more familiar with
these two subjects is not only intriguing but also advantageous for any individual
looking for being in demand for many employers.

1.4.1 Overview of the manuscript

This section aims to provide the overview of this work. Chapter 2 presents the
state-of-the-art of Deep Learning. Its definition, functioning and applications are
discussed. Once the basics are explained, the chapter proceeds with selection of
the appropriate type of neural network and its implementation. Since the work is
also related to the UAV technology, its definition, legislation and relevance for this
project is also studied.
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1.5 Project deliverables Introduction

In Chapter 3, the process of acquiring the data, preparing it and writing the pro-
gramming script is discussed.
Chapter 4 presents the results and discusses them in depth. In particular, the loss
plots and confusion matrices are presented and studied to explain the evolution of
the project.
Finally, Chapter 5 concludes the work with relevant considerations and discusses
the future projects that could be done on the basis of this one.

1.5 Project deliverables

The project deliverables will consist of the report and the trained neural network
capable of detecting potatoes in various growth stages.
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2 State of the Art

2.1 Deep Learning

Deep Learning is a subfield of Machine Learning that works with artificial neu-
ral networks to solve computational tasks (Fig. 2.1). An ANN is inspired by
the operational behavior of a biological neuron which consists of a cell body that
generates electrical impulses conducted away through the axon. The dendrites are
tree-structures that receive the electrical impulses from other neurons which are
distributed along the network through specialized junctions called synapses (Fig.
2.2).

Figure 2.1: Difference between AI, ML and DL [11]

The word “deep” comes from the fact that neural networks are multilayered. Layers
are categorized into three main groups: input, output, and hidden layer. Each layer
is composed of single computational units, called perceptrons. The input and output
are the first and last layer, respectively. However the complexity of this learning
algorithm comes into play in the hidden layers where the knowledge is contained.
Starting from the input layer, the hidden layers are configured in such a way that
the output of each one is connected to the input of another forming a tree structure
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2.2 Training a perceptron State of the Art

(just as the dendrites) to perform more complex calculations. The relevance of each
neuron in this calculation is determined by the weight value, and the main goal of
the training process consists in finding the correct value of such weights so that the
network converged to the desired outputs. In addition, a neural network can have
one or multiple outputs whose nature, either analogical (real value), digital or a
matrix forming an image, may vary depending on the application at hand.

Therefore, Deep Learning is considered to be the most prominent attempt to recreate
human intelligence by some of the world-leading experts in the field of Artificial
Intelligence [12]. One of the reasons is the presence of several key similarities between
the mathematical and biological structures [13]. First, the nodes described above
are analogous to biological neurons in which they both act as highly connected
computational devices. Second, similar to the synaptic strengths of the biological
neurons, all the connections vary in importance and can be adapted to produce the
required results.

(a) A biological neuron (b) An artificial neuron

Figure 2.2: Basic similarities of artificial and biological neuron[13]

The second reason for the prominence of this technology lies in the constant advances
and improving of results that take place in many application fields of Deep Learning
[14]. Nowadays, people have the opportunity to store large amounts of data and
perform calculations much faster than in the previous century. As a consequence,
neural networks can be continuously trained in order to improve their performance.

2.2 Training a perceptron

Mathematically speaking, a perceptron is a TLU (Threshold Logic Unit) carrying
out the following operation:

y = g(
n∑

i=1
wixi + bi) (2.1)

12
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Figure 2.3: How Deep Learning is improved with more data [12]

where xi represents the inputs with weights wi applied to them which are then
summed up and passed to an activation function g(·) to obtain the output.
The parameter b in this expression represents the bias which is configured to fit best
for a dataset in a given application and simplify the process of learning [15]. A higher
bias suggests making many assumptions and allows faster learning convergences to
be obtained but makes the model less flexible and less precise.

Figure 2.4: Perceptron [16]

The activation function, on the other hand, is a non-linear density probability func-
tion, whose aim is to produce a value that can be separated into many different
sets (or classes). Non-linearity is necessary to solve complex, real-world tasks or,
otherwise, the outputs of each neuron are stacked into a simple linear regression,
making the neural network useless for many real problems.
In this sense, ANN can be thought of in terms of its biological counterpart. For
instance, the human eye retina receives light rays, the axons of ganglion cells then
emit electric signals that are being transferred to the neurons [17]. Then, other
neurons that are responsible for the recognition of objects in the image activate and
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allow objects to be recognized by a person. The way this is done in ANN is by
applying threshold to numbers, which is the activation function’s job.

Some of the most common activation functions are sigmoid, hyperbolic tangent, and
ReLU (Rectified Linear Unit).

Sigmoid:

f(x)= 1
1 + e−x

(2.2)

Hyperbolic tangent:

f(x) = ex − e−x

ex + e−x
(2.3)

Rectified linear unit:

f(x) = max(0, x) (2.4)

The sigmoid function (Fig. 2.5) produces a value between 0 and 1 and is common
in application models where a probability has to be measured [18], or for generating
discrete probabilistic values associated to the labels that represent different classes
in classification problems. For instance, a model prediction between a cat, a dog
and any other pet may be generated. The main requirement for the activation
function is that it must be differentiable to provide smooth gradient profiles to
avoid discontinuities (see section 2.2.2).

(a) Sigmoid function (b) Sigmoid function’s derivative

Figure 2.5: Non-linear functions(I) [18]

14



2.2 Training a perceptron

The hyperbolic tangent (Fig. 2.6) is a shifted version of the previous example that
gives values between -1 and 1 which is preferable in regression problems:

(a) Hyperbolic tangent function (b) Hyperbolic tangent’s function derivative

Figure 2.6: Non-linear functions(II) [18]

The ReLU function [2.4] in Fig. 2.7 will only activate the perceptron if the input
value is bigger than zero. This is one of the most utilized activation functions in data-
science as it allows for fast convergence of the backpropagation learning algorithm
since negative outputs are set to zero [19]. However, the weights and biases of some
neurons are not updated, which causes the problem of dead neurons to appear within
the structure. Hence, different variations of ReLU and other solutions are used to
solve this problem [20].

(a) ReLU function (b) ReLU function’s derivative

Figure 2.7: Non-linear functions(III) [18]
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2.2 Training a perceptron State of the Art

2.2.1 Backpropagation

In an architecture of many layers, the expression of a single perceptron [2.1] can be
generalized to a multi-layer network as:

fi (x; W) = g

b
(K)
0,i +

nK−1∑
j=1

g
(
zK−1,j × w

(K)
j,i

) (2.5)

The forward propagation is a step-by-step procedure necessary to the calculation of
[2.5] wherefi (x, W) is the actual prediction according to input x ∈ Rd , where d
represents the feature dimension of the input and K is the total number of layers.
The number of outputs i has nothing to do with the input dimension d, and zk,i =
b

(k)
0,i +∑nk−1

j=1 g
(
zk−1,j × w

(k)
j,i

)
is the output value of the i-est position in layer k, where

z0 = x.
The learning phase, however, develops in the reverse order with the goal of finding
the weights W that solve the application at hand. And, hence, the name backprop-
agation. This is a topic which has led many experts in the data science community
to provide different solutions to overcome the obvious computational limitations of
this optimization task.
For a network with the given input x, a loss function J (W) is used as a metric for
determining the deviation between the actual and predicted values. One possibility
for this metric is the MSE (Mean Square Error):

J (W) = 1
N

N∑
i=1
L

(
f

(
x(i); W

)
, y(i)

)
(2.6)

where L (x, y) = (x− y)2. That is, all outcomes from the samples in the training
are compared and averaged to obtain a value representing the discrepancy that can
be used by the NN to correct itself. For detection problems using binary classifiers,
it is preferable to use the cross entropy function:

L (x, y) = − (y × log x + (1− y)× log (1− x))

Therefore, to train the network it is necessary to find the values W that minimize
the cost function [2.6]. That is:

W∗ = arg min
w

1
N

N∑
i=1
L

(
f

(
x(i); W

)
, y(i)

)
= arg min

w
J (W)

However, this is a task that requires a lot of computational power, as computing
the gradient ∂J (W)

∂W = 0 to obtain the optimal W∗ becomes infeasible in almost all
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2.2 Training a perceptron

real applications. Therefore, some sort of a search algorithm is necessary. This is
the main principle behind the gradient descent method (Fig. 2.8).

Figure 2.8: Gradient descent curve [21]

The underlying idea of this process is to decrease the error with small updates of
each weight in the network. And the way these updates are determined is by taking
small steps in the direction opposite to the maximum ascent. The size of these
steps is determined by the learning rate, η. Therefore, the main steps of stochastic
gradient descent algorithm are as follows:

1. Weight initialization ∼ N (µ, σ2).

2. Repeat the next loop until convergence: ∂J (W)
∂W ≤ E,

3. Gradient calculations: ∂J (W)
∂W

4. Update of network weights: Wt ←Wt−1 − η × ∂J (W)
∂W

Each loop t of this process constitutes one pass (or epoch) of the whole training
algorithm. A common practice in step one is to configure the weights randomly
with a Normal distribution (0, σ2), whereas E is configured to a non-zero consistent
with the learning goal in order to avoid infinite loops. The third step is calculated
using the chain rule. Fig. 2.9 illustrates an example of how it is done in practice:

17



2.2 Training a perceptron State of the Art

Figure 2.9: Example of gradient calculation [22]

2.2.2 Limitations of Deep Learning

The update of weights is controlled by the learning rate η. The learning rate affects
the step size during the backpropagation (Fig. 2.10).

Figure 2.10: Effect of the learning rate [23]

On the one hand, if η is too small, the step is not big enough to overcome local
minima which results in the precision reduction. Moreover, if there are many saddle
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2.2 Training a perceptron

points, the convergence will take longer times [23]. Both of these problems are
represented in Fig. 2.11.

Figure 2.11: Example of a local minimum and saddle point [23]

A solution to this is to use adaptive learning rates, when the parameter is no longer
fixed and can become larger or smaller during the training phase depending on the
situation. This solution is implemented in such methods as ADAM, AdaDelta and
AdaGrad [24, 25, 26].

In addition, calculating the gradient in step 3 can be a very computationally exten-
sive task not feasible for real life applications. Some approaches do not use all the
data points of the training set for this step. Using less data points has the effect of
reducing the processing time at the cost of obtaining rough estimates of the gradient
in each epoch. For example, SGD (Stochastic Gradient Descent) picks a data point
of the training set randomly to compute the gradient, and then changes the data
point in the next epoch. Whereas BGD (Batch Gradient Descent) picks a small set
of data points and calculates the gradient as the average of all single SGDs of this
batch.

BGD allows to converge to the target much quicker because the gradient compu-
tation is more accurate, and one can expect better gradient updates using large
learning rates. In addition, thanks to the advent of GPUs, another approach known
as mini-batch permits the parallelization of BGD computation and increases the
speed significantly.

Another limitation has to do with gradient calculations. If the gradient approaches
zero in some neurons, weights may stop being updated (see subsection 2.2). This
happens because of the activation function derivative present in the chain rule. On
the other hand, large gradients force the model to be very unstable and precision
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results show a random behavior each time the model is trained and evaluated in the
inference stage.

Lastly, underfitting and overfitting are problems that are related to the number of
epochs t used during the training stage (Fig. 2.12). Underfitting occurs when the
model is not trained sufficiently. In here, t is too small and the network does not
have the capacity to fully learn the data, which gives many incorrect predictions.
This issue also occurs when the dataset is not representative enough of the problem
to be solved. On the other side, when the model is trained beyond necessity (t
too big) overfitting occurs. In this case, the problem is that the model loses its
capacity of generalizing the problem, making it more sensitive to possible variance
noise present in the input data.

Figure 2.12: Classifications of fitting problems [27]

In general, deep neural networks require large amounts of data to learn and achieve
acceptable precision.

2.3 Types and examples of use of ANNs

There is a multitude of types of neural networks [28] whose detailed explanation
goes beyond this work. Fig. 2.13 presents a small overview of the majority of
them. Nevertheless, some are worth discussing because they lie at the core of the
technologies that increasingly influence our day-to-day life
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(a) Classification of ANN(I) (b) Classification of ANN(II)

Figure 2.13: Classification of NN [29]

2.3.1 Feedforward Neural Network

FNNs (Feedforward Neural Networks) were the first to be tested in tasks of the
computer vision field, speech recognition and machine translations among others,
because they are relatively easy to train. Besides, every state-of-the-art NN today
implements at least some part of the feedforward architecture.
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Figure 2.14: Feedforward Neural Network [29]

FNNs have shown certain utility in processing biomedical data for the early predic-
tion of cancer diseases. One of the variations of FNN is trained to make an early
prediction of cancer diseases. A massive amount of numerical data is produced by
the healthcare system every day. By taking advantage of that data, the doctors and
scientists managed to decrease the cancer death rate by 19% between 1999 and 2017
[30]. This dropdown is attributed to the faster prognoses due to the availability of
big amounts of data. According to [30], neural networks can accelerate the process
of prognosis. The author details the process of training a LogSLFN(Logistic single-
hidden layer feedforward neural network). Two standard techniques of classifying
cancer were used to determine the correct weights: (a) the use of ribonucleic acid
sequencing for distinguishing cancer types, and (b) METAVIR score (the amount of
scarring and inflammation in the liver biopsy and the rate of fibrosis). The results
were equivalent to the state-of-the-art ML techniques and have big potential for
increasing the performance.
Artificial intelligence is found in the building construction industry where FNNs are
used to analyze the dynamic structure of skyscrapers [31]. In [31], Huile et al propose
a methodological framework for VBI (Vehicle-Bridge Integration) system dynamic
response prediction using an FNN and a variation of recurrent neural network. In
this application, obtaining the dynamic responses between the vehicle and the track
is crucial for assessing the structural and running stability. The study demonstrated
that, although the track irregularities and high noise levels can have negative effect
on the results, with proper training, the framework can provide accurate predictions
and be put to practice in high-speed railways.
Lastly, FNNs can be applied in astronautics. Zheng et al [32] propose a novel way
of solving the Tschauner-Hempel equations. These equations describe a spacecraft’s
motion relative to another spacecraft in an elliptical orbit. This problem does not
have an analytical solution and was previously solved only by computationally ex-
pensive numerical means. As a result, the existing methods could not be employed
in real-time applications. However, the authors of this study claim that a trained
neural network is capable of dramatically reducing the computational time. Ac-
cording to their results, the new solution performs much better with certain typical
problems such as close-range rendezvous and formation flying.
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2.3.2 Recurrent Neural Network

Recurrent neural networks (RNN) are considered to be the most promising variation
of DL algorithms. Unlike FNNs, information does not flow in one direction only.
The output of some neurons in the network is not fed only to the neurons in the next
layer but also to some of its other parts (Fig. 2.15). Additionally, the output of each
neuron may also depend on its previous outputs, which is ideal for the development
of sequential time systems. This feature makes RNNs responsive to real-time events,
i.e., it can be very useful for speech recognition tasks, self-driving cars (SDC), natural
language processing (NLP), and electronic hardware design among others.

(a) (b)

Figure 2.15: Examples of RNN [33, 34]

Today people already possess smart artificial assistants such as Siri, Alexa, Cortana,
and others that are capable of correctly interpreting human speech. Nonetheless,
even though they are capable of giving impressive results being based on traditional
NLP algorithms, these assistants still leave room for improvement. More and more
experts regard deep neural networks as the future of speech processing. Even now,
Amazon scientists are applying DL to improve customers’ experience with Alexa [35].
In [36], the scientists used a variation of RNN - Bidirectional Gated Recurrent Unit
(BiGRU). As a result, the authors managed to improve the quality, intelligibility,
and word error rates by 35.52%, 18.79%, and 19.13%, respectively.
Recurrent networks find applications in energy engineering. The efficiency and safety
of lithium-ion batteries can be improved by accurate estimation of the state of charge
(SOC) and capacity. Most of the present estimation methods leave a lot to be de-
sired in terms of cost and efficiency. Notwithstanding, data-based estimation has
great prospects. The Chinese researchers in [37] propose to train a neural network
on the battery aging datasets to solve this problem. They have used several archi-
tectures - the long short-term memory (LSTM) and gated recurrent unit (GRU),
mentioned previously. The obtained results showed higher accuracy than those of
the traditional methods.
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Technical diagnosis is another task that can be improved with RNNs. The pho-
tovoltaic systems are often affected by different kinds of faults that reduce their
performance. The existing methods are overly expensive, which reduces their appli-
cability. However, the scientists found a way to reduce the expenses and improve
the monitoring process [38]. The research consisted of training a neural network
with LSTM and GRU that would be capable of determining up to 6 types of faults.
The data used for the training consisted of the produced voltage, current, irradiance
of the PV system, and others. The result demonstrated that, unlike the state-of-
the-art methods, the neural network was not only capable of determining the fact
of fault but also its severity.
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2.4 Convolutional neural network

Previous network architectures only allow to process the input data in the form of
real numbers. But for processing images, some changes have to be made. In this
sense, Convolutional Neural Network (CNN) is the most suitable type of network
for this application. In CNN, perceptrons are replaced by convolutional RGB mask
filters. Hence, the new weights of this architecture are array numbers of rectangular
matrices.

During the training process, the filterbanks are modified to highlight particular
features which are later used in the detection process. This behavior makes CNN
especially useful for self-driving cars. For instance, Tesla’s autopilot is based on
convolutional neural networks and it’s already capable of driving autonomously in
cities [39].

Other examples of usage include face detection [40], accurate medical image-based
diagnoses [41], and drug prediction [42]. Whenever there is a need to do image
analysis, provided there are enough samples, deep convolutional neural networks
are the best candidates for the task.

An image is simply a three-dimensional tensor, where each slice corresponds to a
channel in the RGB structure (red, blue or green). Accordingly, each value represents
the light intensity in one of those colors. The intensity and the color of each pixel
is obtained by summing three channel numbers in each position. A high-definition
image can contain a total of 1920 ∗ 1080 ∗ 3 = 6220800 data points. In connection
with that, CNNs require computational units of intensive data processing such as
GPU.

2.4.1 Architecture of a CNN

The process of feature extraction is done by the cascading convolution, threshold
and maxpooling operations. The convolution is a well known operation in computer
vision which updates each pixel in the image with a weighted sum of its neighbors
by means of a kernel filter [43].
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(a) Element-wise multiplication [16] (b) Result of the convolution [44]

Figure 2.16: Convolutional product

Depending on the values of the 2D filter/kernel, this process can discover vertical
and horizontal edges, tone degradation and colors of different contrast and light
settings.

Figure 2.17: Structure of CNN [45]

To understand the utility of convolutions, the four situations in Fig. 2.18 can be
assumed. To find the objects in the image, the analysis should characterize variations
by color, texture scale and enclosure localization. Spoons, dishes and glasses on the
table in Fig. 2.18 have different scales, while the cats in Fig. 2.18 are distinguished
by color but not by the size or scale. On the other hand, the chameleon in Fig. 2.18
is distinguished by the texture but not by color. And finally, detecting the car in
Fig. 2.18 requires the usage of general features since the parts of the car such as
wheels or windscreen belong to the car but don’t have the same color, texture or
shape profile. Therefore, taking into account such situations can be challenging and
Artificial Intelligence is necessary to address object classification in images.
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Figure 2.18: Complexity of object characterization in image segmentation [44]

The idea behind CNNs is that such knowledge can be learned by properly config-
urating the values of filterbanks. In this sense, the first layers are responsible for
capturing single structures, such as vertical and horizontal lines, curves and irregular
shapes (Fig. 2.19). An operation called maxpooling reduces the size of the image
in the subsequent stage (see subsection 2.4.2). This causes the network to lose the
ability to retain localized features but gains in image generalization. In this manner,
combining the feature matrices from different layers, complex structures such as the
shape of a house, a car, a crop field, and other object types can be learned from
images.

Figure 2.19: CNNs: Localization vs Generalization [44]

Typically, filters have a 3 × 3 size in all layers [46]. With each passing layer the
number of filters increases to cover the feature spectrum of an image.

VGG16 (Fig. 2.20) is a standard structure widely used in the computer vision field.
It is composed of 13 convolutional layers combined with 13 max-pooling layers and
3 fully-connected layers of perceptrons with a classical ANN structure. Since the

27



2.4 Convolutional neural network State of the Art

parameters can be adjusted only in convolutional and full-connected layers, the
number of layers with tunable parameters is 16. Hence, the name VGG16. The
number of filters in the first block is 64, then this number is doubled in the later
blocks until it reaches 512. This model is finished by two fully-connected hidden
layers and one output layer. Both fully connected layers have 4096 neurons. The
output layer consists of 1000 neurons. So, in principle, the CNN is able to assign
up to 1000 different classes.

Figure 2.20: Structure of VG16 Convolutional Neural Network [47]

2.4.2 Convolution and pooling calculation

In some applications, computing the convolution requires preparing the image and
configuring some parameters to move the filter along the image.

The border pixels of the image are affected by convolution calculations since the
area of the kernel filter does not entirely overlap with the image in those regions. To
minimize this problem, habitually the size of the image is increased with new pixels
with artificial values. This operation is known as padding and consists in adding
zeros along the contour if the image border. The degree of padding is determined
by the padding parameter p. That is, p = 1 represents one loop of zeros along the
image contour (Fig. 2.21). On the other hand, the stride specifies the number of
pixel shifts used by the filter to move and convolve along the image area. In the
example of Fig. 2.16a the stride is set to s = 1.
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Figure 2.21: Example of padding [48]

An image can be seen as a tensor of dimension I ∈ Rnh×nw×nd of height nh and
width nh and depth nd. Colored images have nd=3 corresponding to each of the
RGB channels. The filter kernel, however, is a square matrix of the same depth
F ∈ Rf×f×3 where the side length is an odd number (generally f = 3 in CNNs).

With these definitions, the convolution at coordinate position (x, y) is obtained as:

C(I, F )x,y =
nh∑
i=1

nw∑
j=1

nd∑
k=1

Fi,j,kIx+i−1,y+1−1,k (2.7)

This produces a two-dimensional tensor with dimensions:

DC = (
⌊

nh + 2p− f

s
+1

⌋
,

⌊
nw + 2p− f

s
+1

⌋
) (2.8)

where ⌊a⌋denotes floor function of a.

The pooling operation, on the other hand, is a subsampling process that reduces
the image to height nx and width ny keeping the depth nc intact. To do this, first
the image must be divided into subareas of size (ndx, ndy) to calculate the pixel that
represents each subarea. For this reason, ndx and ndy must be multiples of nx and
ny, respectively (Fig. 2.22). One possibility is to use the average value of all pixels
in a subarea:

ϕavg (I)x,y,c =
 1

ndx × ndy

ndx∑
i=1

ndy∑
j=1

Ix+i−1,y+j−1,c

 (2.9)

Another solution is to simply use the cell of maximum intensity:
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ϕmax(I)x,y,c = max(Ii,j,c) (2.10)

where i ∈ [1, ..., ndx) and j ∈ [1, ..., ndy).

Figure 2.22: Example of pooling operation using s = 2 [16]

In this sense, some authors believe that using strides s > 1 convolution products is
more beneficial than using pooling to obtain good generative models [46].

2.4.3 Layers of CNN

As explained above, a CNN iterates convolution/maxpooling operations to obtain
feature maps of different size and scale representations. More precisely, each layer
may consists of the following:

• A convolutional layer followed by an activation function g(·)
• A pooling layer
• A fully connected ANN layer comprised of multiple perceptrons (see 2.2.1)

For a single layer λ, the parameters are defined as follows:
• I [λ−1] is the feature input of size (n[λ−1]

h , n[λ−1]
w , n[λ−1]

c ),where I [0] is the original
image

• p[λ] is the padding
• s[λ] is the stride
• ϕ[λ] is the activation function
• F (n) is the filter(kernel) of size DF = (f [λ−1], f [λ−1], n[λ−1]

c ), where ∀n ∈ [1, 2, ..., n[l]
c ]
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• b[λ]
n is the bias of nth convolution

• a[λ] is the output of size (n[λ]
h , n[λ]

w , n[λ]
c )

• x and y are the positions in the output, where x ∈ [1, 2, ..., n
[λ]
h ] and y ∈

[1, 2, ..., n[λ]
w ]

With these definitions, the convolution/activation operation at layer λ is computed
as:

C(I, F (n))x,y = ϕ[λ](
n

[λ−1]
h∑
i=1

n
[λ−1]
w∑
j=1

n
[λ−1]
d∑
k=1

F
(n)
i,j,kI

[λ−1]
x+i−1,y+j−1,k + b[λ]

n ) (2.11)

Thus, the feature map of each layer is a tensor of the form:

a[λ] = [ϕ[λ](C(I [λ−1], F (1))); ϕ[λ](C(I [λ−1], F (2))); ...; ϕ(C(I [λ−1], F (n[λ]
c )))] (2.12)

The dimensions of I [λ] are the following:

D(I [λ]) = (n[λ]
h , n[λ]

w , n[λ]
c ) (2.13)

The height and width are similar to equation [2.8]:

n
[λ]
h/w =

n
[λ−1]
h/w + 2p[λ] − f [λ]

s[λ] +1
 (2.14)

Where n[λ]
c is equal to the number of filters applied in layer λ− 1 (Fig. 2.23).

Figure 2.23: Convolutional layer [49]

After convolving the image with the kernel filter, the CNN uses one of the pooling
functions ϕ described above:
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P (a[λ−1]) = ϕ[λ](a[λ−1]) (2.15)

Where ϕ is the pooling function and the dimensions are the same as in the previous
layer with the only exception that n[λ]

c = n[λ−1]
c .

Typically, the pooling is applied with a stride of 2 in 2 × 2 patches. The average
pooling produces a smooth downsampled image. Meanwhile, the max pooling is
convenient for detecting sharp features, which is the reason it is more commonly
used.
The output layers of a CNN are made of a classical ANN structure of three hidden
layers (see subsection 2.2.1). However, the network has to make the corresponding
transition from the three-dimensional structure. Firstly, the tensor of layer λ− 1 is
flattened into a one-dimensional vector with the following dimensions:

D(a[λ−1]) = (n[λ−1]
h ×n[λ−1]

w × n
[λ−1]
d , 1) (2.16)

Consequently, the following calculation is performed:

z
[λ∗]
i =

nλ∗−1∑
j=1

w
[λ∗]
i,j a

[λ∗−1]
j + b

[λ∗]
i → a

[λ∗]
i = ϕ[λ∗](z[λ∗]

i ) (2.17)

where λ∗ denotes a one-dimensional layer, z
[λ∗]
i is the weighted sum of the inputs

of the i-th perceptron in layerλ∗, nλ∗−1 is the number of perceptron outputs of the
precedent layer, and w

[λ∗]
i,j the weights between the node i in the layer λ and the

node j in the layer λ− 1.

2.4.4 Variations of CNN architecture

2.4.4.1 R-CNN

CNNs represent a good starting point for the feature extraction and characterization
of images. But their behavior is much different from human perception. As explained
previously, there is a trade-off between the image generalization and object location
associated to the depth of the layers. Another limitation is that changing the spatial
location of the objects in images may adversely affect the predictions.
For detecting and classifying several objects in the image, R-CNN (Region-based
Convolutional Neural Networks) are generally used (Fig. 2.24) [50].
These networks work with the concept of RoI (Regions-of-Interest), which are frames
that the network marks as potentially likely to contain an object. They are calcu-
lated within the image using an algorithm called selective search. Each frame is also
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known as a bounding box. The core idea consists in training the network on images
that contain bounding boxes.

Figure 2.24: R-CNN algorithm [50]

The method starts by proposing and extracting 2000 RoIs of different sizes and
locations. Starting with the initial segmentation, the goal of the selective search
is to perform subsegmentations recursively combining similar regions (in term of
object structures) (Fig. 2.25).

Figure 2.25: Example of recursive steps in the selective search algorithm [50]

Each proposed region is then warped to a fixed size, and passed through a CNN to
determine the feature maps of each RoI. The ANN architecture at the output layers
is preceded by a class predictor and a regressor. The class predictor is an SVM
classifier (Support Vector Machine) which predicts the scores for each of the classes,
whereas the regressor has four real-valued outputs: the x and y coordinates of the
bounding boxes’ leftmost upper point, their height and width.

2.4.4.2 Fast R-CNN

Basic R-CNN is very slow at training because the network has to learn the parame-
ters from 2000 feature maps corresponding to each one of the RoIs, which makes its
application infeasible in practice [51]. Fast R-CNN (Fig. 2.26) is the first attempt
to increase the computational efficiency of R-CNN.
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Figure 2.26: Structure of the Fast-RCNN network

In Fast R-CNN, the image is processed with several convolutional and max pooling
layers to produce a feature map. Afterwards, selective search generates a number of
object proposals from the feature map, each of which is warped into a fixed-length
feature vector. Every feature vector is then fed into a sequence of fully connected
layers that finally give two output layers: one that presents the probability estimates
for every detected object instance and the values denoting its bounding box.

2.4.4.3 Faster R-CNN and Mask R-CNN

Both R-CNN and Fast R-CNN use selective search to produce region proposals. In
Fast R-CNN, this process generally takes about two seconds per image, which is
considerably better compared to R-CNN. However, the real-life applications require
even shorter processing times.
In addition, the selective search algorithm does not have the ability to detect objects
within regions since it simply combines the pixels into regions based on the low-level
features that they form [52]. Faster R-CNN uses Region Proposal Network (RPN)
instead of selective search [53]. The idea behind RPN is to provide a mechanism for
learning the detection of objects.
In Faster R-CNN, the feature map is obtained by several convolutional and pooling
layers, as in the previous implementations. Subsequently, the map is divided into
windows each of which is fed to the RPN. RPN maps each window to a lower-
dimensional feature and passes it to two fully connected layers that generate k anchor
boxes of different shape and sizes for each window (Fig. 2.27). For every anchor
the RPN predicts two things: the probability of the anchor containing an object
(regardless of the class the object belongs to), and the bounding box for adjusting
the anchor to fit the object.
In this sense, only the anchors of positive detections, with non-repeated objects, are
then passed to the input of the RoI-pooling layer, which has the same functionality
as in the Fast R-CNN architecture. This also applies to the fully-connected ANN
output layer which is responsible for predicting the class of selected objects and the
bounding box location in the original image.
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As a result of this upgrade, Fast R-CNN the speed of object prediction has increased
by 10 times in relation to Fast-RCNN.

Figure 2.27: Sliding a window over the feature map in an RPN network [53]

Mask R-CNN is the last advancement of the computer vision technology [54]. It
is the natural extension of Faster R-CNN since the underlying architecture is the
same. The main advantage of Mask R-CNN consists in its ability to provide masks
for each object on top of the classification and bounding box.

Image segmentation can be presented in two main types: semantic and instance
segmentation. Semantic segmentation classifies multiple objects of the same cate-
gory as one object, i.e., they are highlighted in the image with one color and name.
Meanwhile, instance segmentation is a more complicated task. The latter classifies
each object in an image as a separate instance, simultaneously not differentiating
those that fall under the same category. The goal of Mask R-CNN is to implement
this technology, where each pixel is assigned a category.

Additionally, Mask R-CNN is capable of pixel-to-pixel alignment between input
and output due to using RoIAlign layer instead of RoIPool as in Fast R-CNN and
Faster R-CNN. RoIPool lacked in high pixel accuracy since it operated on a grid
of sub-windows that didn’t precisely fit on RoIs. Although, it didn’t affect the
overall classification precision, it was unfit for instance segmentation. As a result,
the researchers devised RoIAlign that is capable to create a more accurate grid of
windows on the image, and, as a consequence, achieve pixel accuracy.

In conclusion, Mask R-CNN is the state-of-the-art of computer vision that is capable
of correctly detecting objects in images in a short period of time. Thus, it was
decided to employ this technology for the purpose of this project.
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2.5 Drones

Drone is an aerial vehicle with no pilot, crew or passengers on board controlled re-
motely or through a predetermined mission program. Also referred to as Unmanned
Aerial Vehicle (UAV), drones are part of Unmanned Aerial System (UAS) that also
include the team managing flight controls and the connection equipment. If the
flight control is carried out through a remote controller, this is a case of Remotely
Piloted Aerial System (RPAS). Whereas, if the mission has already been installed
in the hardware, it is an Autonomous Operation (AO) [55].
Drones are used for multiple purposes that, among others, include recreational,
surveillance, military, competitive and agricultural. Their application in agricul-
ture is of particular interest for this project and, perhaps, the most beneficial for
humanity.

2.5.1 Drones in agriculture

Agricultural UAVs can monitor crop fields, plant seeds, and spray fertilizers and
pesticides. Until recently such tasks were developed by expensive heavy machinery
(airplanes and cars) that require considerable funds for the fuel. In this sense, UAV
technology has been an important breakthrough in this field since it has reduced
the cost of these tasks and has streamlined the involved processes. Accordingly, the
use of UAVs in agriculture is gaining popularity every year.
As an example, in 2019 Switzerland has become the first European nation to employ
UAVs for spraying operations even though this activity was banned in European
Union in 2009 [56]. Now, up to 60 vineyards of Aargau, Zurich and Thurgau use
this technology.
Drones can fly at low speeds which is ideal for precision farming [57]. The term
refers to a management approach based on real-time observations of crops. It allows
the farmers to achieve higher crop yields while reducing the costs. Moreover, some
experts argue that drones can perform certain tasks 5 times faster than the heavy
machinery, while reducing working hours for farmers, contributing to the quality of
crop yields and minimizing environmental impact [57]. According to [58] the use of
UAVs in the agriculture sector includes:

1. Soil and field analysis: While flying over fields, UAV can get three-dimensional
image maps from video cameras, and use image computer analysis to deter-
mine, for example, irregularities in the crop field or its water needs.

2. Planting: By adding customized mechanical elements, UAVs can carry pods
with seeds and nutrients that can be thrown away from the air to sow the
ground.

3. Crop spraying: By employing lasers and ultrasonic sensors UAVs can adapt
its height to the ideal distance for spraying the chemicals or water the plants.
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4. Monitoring: Vast crop fields require monitoring for ensuring the yields. Pre-
viously, farmers used expensive methods based on the analysis of images ob-
tained either by a satellite or manned aircraft. Both approaches have consider-
able drawbacks. For instance, satellite images are expensive. However, drones
can provide high-altitude images in real-time and at a reduced cost [59].

5. Thermal imaging: Drones can capture infrared radiation emitted by the
crops to identify problems caused by climate changes, weeds, pests and dis-
eases, improper irrigation and others [60]. An example of such an image is
represented in Fig. 2.28.

Figure 2.28: Image of infrared radiation emitted by crops [60]

Today, UAV images are combined with image analysis using Machine Learning tech-
niques. In [61], UAS performs an agricultural mapping in Dubai by means of neural
networks used for image vision analysis. More precisely, Pytorch is used to train a
neural network to identify ghaf trees and date palms. The results showed that this
method can efficiently provide up-to-date quality data.

2.5.2 Regulation

UAV flights are regulated in Spain by both EASA (European Aviation Safety Agency)
and AESA (Agencia Estatal de Seguridad Area) [62, 63]. EASA is in charge of es-
tablishing the main flight regulations for UAVs for the 31 members of the European
Union, while AESA ensures compliance with these regulations in Spain.
Currently, there are two main regulation documents of reference written by the
EASA that set these rules in Europe - Execution Regulation (UE) 2019/945 and
Execution Regulation (UE) 2019/947. The first specifies the following
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1. Types of UAVs whose design, production, and maintaining are subject to cer-
tification

2. Requisites for design and fabrication of UAVs
3. Rules for UAV operators
4. Commercialization rules

The second is related to the degrees and expertise of the pilots required to manage
UAVs in the different sectors. In addition, it defines the following categories:

• Free: Low risk, no authorization or declaration necessary.
• Specific: Medium risk, a declaration or authorization is necessary in standard

scenarios.
• Certified: High risk, regulated in a way similar to traditional manned avia-

tion.

2.6 Alternative to UAV and Deep Learning

As mentioned in the first chapter, another solution for monitoring the crop fields can
be an IoT system similar to the one developed in [2]. A “smart platform” comprised
of a single sensor node, a gateway, a server application and a web page would be able
to provide the most recent data about the state of crops and actuate the irrigation
valves, thus completely eliminating the necessity for people to be transported to the
crops during the monitoring process. In addition, the platform would help to detect
other problems such as pests and bad weather conditions.
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3 Data Preparation and
Programming Mask R-CNN

3.1 Dataset preparation

Neural networks are some of the most data-intensive classification models used in the
field of ML. They are part of supervised ML algorithms that, in general, require big
amounts of data for the training and estimating the precision accuracy with reduced
variance. Furthermore, the learning does not stop when the model is applied in
practice and new data obtained in real tests is used to improve the results. As such,
preparing the data is a key point in the development of supervised ML algorithms.

Creating the necessary dataset required a study of the potato crop to understand
when exactly to take pictures. This process also involved a thorough familiarization
with the functioning and programming of the employed UAV to avoid any kind of
damage to the drone or other objects. Taking pictures was a continuous process that
required certain planning. Furthermore, every data sample utilized in the training
had to go through the process of labeling and separation into different datasets.

3.1.1 Image acquisition and drone usage

The challenge of this work consisted in training a neural network to analyze UAV
images of crop fields, detect the crops present on them and determine their growth
stage. Accordingly, photographs had to be taken with the help of a UAV in different
conditions and growth stages of the plant. To achieve a proper generalization of
the model, the dataset had to consist of photo samples from a wide variety of
positions, including different heights, light conditions, and in different days to catch
the features of the various growth stages.
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(a) Wheat crops [64] (b) Soybean crops [65]

Figure 3.1: UAV pictures of various crop fields

However, there was an issue that had to do with flight regulations. Flying UAVs
and taking pictures of private crop fields, similar to the ones in Fig. 3.1, is illegal
without permission. After several attempts to find support from farmers willing to
contribute to the goal, in the end it was only possible to take photographs of potato
plants in a small orchard located on the outskirts of Vilanova i la Geltrú. More
precisely, in La Collada, a north-west neighborhood area in Vilanova (Fig. 3.2).

(a) Collada neighborhood (b) Crop field

Figure 3.2: Terrestrial conditions

In addition, this site presents certain difficulties not only due to the small cultivated
area or weather flight conditions, but also to the surroundings. With many small
landowners and a highway nearby the task was complicated even further. There-
fore, the use of the UAV has been kept to a minimum by performing fewer short
duration flights with a maximum height of 3m, complementing aerial photographs
with pictures occasionally taken with a phone camera.
Assuming these limitations, flights were configured with the Mission Planner open-
source software with a total of 7 waypoints, that established the take-off, landing
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and various points for taking images. Mission planner can act as a ground control
station for planes, copters, rovers and a wide variety of radio-controlled vehicles
[9]. The waypoints are point references in terms of GPS coordinates to which aerial
maneuvers can be assigned. Maneuvers such as taking-off, landing and loiter among
others. It also allows to control the gimball to focus the camera on a certain part
of the crop field.
Initially, a total of 5 flights have been conceived. However, due to the time and
weather limitations, only three were carried out. In each flight the aircraft takes off
at WP1 and the controller adjusts the gimball to focus the camera on WP2 (Fig.
3.3). Afterwards, the aircraft moves to WP3 where it enters the loiter mode. The
loiter time has been configured between 15 seconds a 2 minutes for different flights.
The same is repeated for WP4, WP5 and WP6. After the loiter time of WP6 has
ended, the aircraft moves to WP7 where it lands. This mission was sent from a
computer to the ArduPilot controller through the USB connection.
The video camera model is a GoPro Hero 4, which can be controlled from a mobile
phone or any other hardware. It is easy to immediately download the files from the
camera to later use them for training the Mask R-CNN. In this case, the mobile
phone was connected to the GoPro via wireless WiFi connection and the pictures
were taken at different moments with different zoom and aspect ratio options [66].

Figure 3.3: Programmed mission

3.1.2 Experiment configuration

3.1.2.1 Potato growth

Class labels are set according to the different growth stages of the potato plant.
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Figure 3.4: Different growth stages of potato [67]

The potato plant has a relatively short life, going from 80 to 150 days since sowing
to maturity, with differences among species. Its stages are often described in terms
of tuberization and tuber development (Fig. 3.4). The tuber cycle is characterized
by a period of initiation and growth, followed by a dormant period and finally the
shoots sprouting in the next vegetative generation [67, 68].

After planting a potato, the growth initiation, preceded by the dormancy, is accom-
panied with substantial increases in cellular metabolism. This stage finishes with
shoots appearing from the eyes of the primary tuber until they start appearing on
the surface. During the growth, all vegetative parts (leaves, branches, and stolons)
are formed. These two stages last from 30 to 70 days depending on several factors
among which are: planting date, temperature soil and other environmental factors
such as age of tubers and particular characteristics of crop conditions.

Approximately 30 to 60 days after planting the seed, the tuber formation begins.
The tubers appear from lateral underground shoots developing at the base of the
main stem kept underground, which turn into stolons due to diagravitropical growth.
When conditions are favorable for tuber initiation, the elongation of stolons stops
and cells located in the pith and cortex of the apical region first enlarge and then
divide longitudinally. The combination of these processes results in swelling of the
subapical part of the stolon.

During the enlargement of stolons of the third stage, tubers become the major sink
for the potato plant, storing massive amounts of carbohydrates (mainly starch) and
also significant amounts of protein. Their overall metabolic activity decreases and
they behave as storage sinks until the plant saturation is reached. At this point, the
plant leaves turn yellow and then fall. Photosynthesis and tuber growth slows, and
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vines eventually die. The dry matter content of the tuber reaches a maximum and
the tuber skin sets. This is when the potatoes can be harvested.

3.1.3 Labeling

Taking into account how stages develop in this plant, it seems reasonable to set five
different classes:

1. Sprout development (pat1)

2. Vegetative growth (pat2)

3. Tuber initiation (pat3)

4. Tuber bulking (pat4)

5. Maturation (pat 5)

Fig. 3.5 and 3.6 show aerial and ground pictures obtained during different stages of
the potato growth which have been labeled accordingly, so that Mask-RCNN can be
trained. Separate crops can easily be identified by the human eye in the first three
stages. The first stage lacks visible signs of growth, whereas the second and third
differ in height and the amount of branches and leaves. The fourth is the highest
of all with occasional flowers on top typical of the bulking stage. Finally, the fifth
shows clear signs of maturation since the branches loose their rigidity.

It is clear that potato crop fields in stage 4 are too thick with leaves to detect
separate crops (Sub-Fig. 3.6a). Likewise, in stage 5 the crops are too wilted to be
identified separately as well (Sub-Fig.3.6b). Thus, such pictures only seem useful
for evaluating the stage of growth of entire fields or rows of crops.
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(a) First example of stages 1, 2 and 3 (b) Second example of stages 1, 2 and 3

Figure 3.5: Samples of the acquired dataset (I)

(a) Stage 4 (b) Stage 5

Figure 3.6: Samples of the acquired dataset (II)

Fig. 3.7 shows an example of picture labeling with plants from stages 2 and 3. Label-
ing is a crucial part of supervised ML. The models learn by comparing the predicted
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masks with those created manually. For manual labeling of picture samples, the
open source software Labelme from GitHub was used [5]. Labelme is an interactive
tool that allows polygons to be created and assigned to a group class. When this is
done, a json file containing the list with the pointed shapes, the coordinate points
of their masks and the category they belong to is created for each one of the images.
Accordingly, each instance has a list of hand-picked “points” that surround each
object. Fig. 3.7 is created by using the data from a json file in a Python script,
presented in subsection 3.2.1. This is a monotonous and laborious task needed so
that Mask R-CNN could learn to recognize potato crops.

Figure 3.7: Labels created in LabelMe

Before the labels are made, the peculiarities of the potato growth had to be identified
from the image to correctly interpret the stage of each crop. Ideally, this is a task
that should be carried out by expert potato farmers. However, the complexity of
the project would be unnecessarily increased along with its economic cost. For this
reason, estimating potato growth is subject to bias and error as shown in the results
(see chapter 4).

3.1.4 Dataset split

Generally, supervised learning requires the data to be split into two categories [69]:
1. Train dataset used for determining the convolutional filters, and weights,

and biases of the different output layers.
2. Test dataset used during the inference stage to estimate the model accuracy.

Using all samples for both the training and test would lead to very optimistic de-
tections because the model losses generalization while training on the same dataset.
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To converge to the true accuracy, the samples in the training must be different to
the test set.
Thus, 80/20% set splits are generally used to emulate a real experiment. In gen-
eral, the true estimated accuracy is much lower to that estimated from the training
set, because the model needs to learn from new samples. This is the reason why
supervised learning requires huge datasets. When large datasets are not available,
test-split leads to wrong estimates and other approaches such as k-fold cross valida-
tion should be used instead [70].
Additionally, the model needs a way of knowing whether it is “doing good“ during
the training stage and modify the training process or even stopping it when it’s
not the case. To avoid the latter, it is important to detect situations when the
model starts to loose accuracy on the test dataset. When that happens, the recent
calculated weights should be omitted and the learning rate η modified to calculate
new weights. In ML this process is referred too as “regularization”.
To provide regularization, a third set, known as validation is prepared from the
input data. When splitting a dataset, a common approach is to use 75% (training),
15% (test) and 10% (validation). During the training, the network estimates intra-
accuracies and decides whether to continue with the current updated weights or
change the learning rate η. Thus, for this work a 75/15/10 split is used, which
resulted in 150 images for the training dataset, 30 for test and 20 for validation.
The images were taken in different resolutions some of which are 1920×1080 and
1280×960. It should also be noted that for the reasons discussed in subsection 4.5,
not all the obtained images were utilized for the training.

3.2 Implementation of Mask R-CNN

Due to the big amounts of data necessary to learn different patterns, supervised
learning employs considerable computational resources and processing power. The
CPU hardware does not suit the required tasks since a simple ALU (Arithmetical
Logic Unit) structure is not capable of configuring millions of parameters in a rel-
atively short period of time. Instead, GPUs (Graphics Processing Unit) are used
for performing such computations tasks. Very briefly, GPUs can parallelize batch
processes of CNNs and complete numerous tasks simultaneously. In that regard,
the convolutional products do not depend on each other and the feature maps can
be obtained much faster.
GPUs contain thousands of CUDA processors that require large amounts of VRAM
(Video Random Access Memory) during the training. This hardware is expensive
and can easily cost more than several thousands of dollars [71], a price which is out
of reach for this project.
Another possibility is to use cloud-base alternatives existing today worldwide. Com-
panies such as Google, Microsoft and Amazon provide web-based frameworks to train
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Deep Learning models either for free under certain restrictions or for fees providing
better batch services, memory and GPU capacity.
The notebook environment developed by Google known as Colab allows to create
Linux-based virtual machines, which can be configured to work with remote CPUs,
GPUs or TPUs. Both GPUs and TPUs meet the hardware requirements for training
Mask R-CNN. Colab servers also provide 12GB of RAM (Random Access Memory)
to write Python code in a Jupyter-like interface. Considering all the above-given
features, it was decided to use Colab for training the Mask R-CNN model.
However, this decision was limited in availability. Although the GPU environment
can be used for free, depending on the utilized resources, Colab can limit the execu-
tion time of Python scripts up to several hours, which is clearly insufficient to train
the models. In addition, the option of upgrading to Collab premium paying a fee of
10$/month is not available in Spain since September of 2021.

3.2.1 Python script

As mentioned previously, the used python script is an implementation of Mask R-
CNN Python 3, Keras and TensorFlow [4]. It was written in multiple code cells
in Colab that successively run one after another. Accordingly, each cell will be
commented to understand the training process.
The script starts with mounting a directory in Google Drive. It is required for saving
the progress and accessing the logs and data samples. Once executed, the script asks
for permission after which it is possible to upload the necessary files. This step is
represented by the next code box:

1 from goog le . co lab import dr ive
2 dr iv e . mount ( ’ / content / dr i v e / ’ )

Consequently, the folder with Mask R-CNN implementation has to be downloaded
from GitHub:

1 ! g i t c l one https : // github . com/akTwelve/Mask_RCNN
2 %cd Mask_RCNN/
3 ! pip3 i n s t a l l −r requ i rements . txt
4 %cd . . / . . /

With !git clone the script copies the “Mask R-CNN” folder in the GitHub page. The
akTwelve is simply a branch of the Matterport page that solves issues that come up
if Colab is used instead of a personal computer. The third line downloads some
of the necessary libraries such as NumPy, TensorFlow, ImgAug and others. Some
libraries such as os, sys, random, math, and others are predownloaded in any python
development environment.
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It is necessary to import the libraries used for the training and assign a name when
it is convenient:

1 import os
2 import sys
3 import random
4 import math
5 import re
6 import time
7 import numpy as np
8 import cv2
9 import matp lo t l i b

10 import matp lo t l i b . pyplot as p l t
11 import j s on
12 import imgaug

The configuration class that establishes the parameters necessary for the training is
imported along with other files that contain the required functions:

1 ROOT_DIR = os . path . abspath (
2 " / content / dr iv e /MyDrive/TFG/Mask_RCNN/ " )
3 sys . path . append (ROOT_DIR)
4 from mrcnn . c o n f i g import Config
5 from mrcnn import u t i l s
6 import mrcnn . model as mode l l ib
7 from mrcnn import v i s u a l i z e
8 from mrcnn . model import l og

The os.path.abspath() function determines the absolute path of the root directory of
the project, while sys.path.append() helps to find the local version of the library.

The os.path.join() function comes in useful for creating other directories such as
MODEL_DIR, that will contain model parameters, and COCO_MODEL_PATH
that will contain the pre-trained weights from the COCO dataset.

1 MODEL_DIR = os . path . j o i n (ROOT_DIR, " l o g s " )
2 COCO_MODEL_PATH = os . path . j o i n (
3 ROOT_DIR, " mask_rcnn_coco . h5 " )
4 i f not os . path . e x i s t s (COCO_MODEL_PATH) :
5 u t i l s . download_trained_weights (COCO_MODEL_PATH)

These COCO weights will be used only once - in the beginning, before any training
has started.

The dataset directory is established on Drive in which the data is kept in a split
manner described previously:
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1 DATA_DIR = " / content / dr iv e /MyDrive/TFG/FOTOS/LabelMe_JSON"
2 DATASET_TRAIN_DIR = os . path . j o i n (DATA_DIR, " t r a i n " )
3 DATASET_VAL_DIR = os . path . j o i n (DATA_DIR, " va l " )
4 DATASET_TEST_DIR = os . path . j o i n (DATA_DIR, " t e s t " )

Next, the configuration is set in the PotatoConfig class, which is a child class of the
Config:

1 class PotatoConf ig ( Config ) :
2 NAME = " potatos "
3 IMAGES_PER_GPU = 1
4 NUM_CLASSES = 1 + 3
5 STEPS_PER_EPOCH = 70
6 DETECTION_MIN_CONFIDENCE = 0.9
7 USE_MINI_MASK = False
8 IMAGE_SHAPE = [1024 , 1024 , 3 ]
9 LEARNING_RATE = 0.0005

10
11 c o n f i g = PotatoConf ig ( )

The Config class has many parameters. Nonetheless, the ones that were overridden
above have the most importance. To better understand some of them, the following
definitions should be considered:

• Batch size - the number of samples that is fed to the neural network after
which it updates the weights and biases.

• Epoch - the process in which the neural network is going through the entire
dataset.

If there is a dataset of 50 samples (e.g., images) with a batch size of 10, it means
that after one epoch the model parameters (weights and biases) were updated 5
times. Consequently, the parameters can be defined:

• NAME: Required for definition for correctly loading the dataset.
• IMAGES_PER_GPU: Number of images to train with on each GPU. The

VRAM of the available GPU does not allow more than one image. Moreover,
since Colab only allows to use one GPU, this number is also equal to the batch
size.

• NUM_CLASSES: Number of classes defined during the labeling process. In
Mask R-CNN, each region is defined as either pertaining to the background
or to a user-defined class. Although there are more stage growths, for reasons
that were discussed previously, the amount of possible classes is set to three
plus one background.

• STEPS_PER_EPOCH: Number of images fed to the network. It can vary
across the training process since more images can be acquired with time.
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• DETECTION_MIN_CONFIDENCE: Defines the threshold for filtering out
low confidence boxes.

• USE_MINI_MASK: Used for controlling the memory load created by the
object instances, If enabled, the load is reduced. However, while testing, the
masks could be correctly represented only if the value was False.

• IMAGE_SHAPE: The Matterport implementation of R-CNN is trained on
squared images. If the fed images are not squared, they are padded with zeros
to make them squared.

• LEARNING_RATE: The README.MD file recommends to use a learning
rate less than 0.02. Accordingly, the final value used for this project has been
obtained after careful testing with the error function.

A new class called PotatoDataset is created. It inherits from utils.Dataset class and
defines new functions:

1 class PotatoDataset ( u t i l s . Dataset ) :
2 def load_dataset ( s e l f , dataset_dir ) :
3 s e l f . add_class ( ’ potatos ’ , 1 , ’ pat1 ’ )
4 s e l f . add_class ( ’ potatos ’ , 2 , ’ pat2 ’ )
5 s e l f . add_class ( ’ potatos ’ , 3 , ’ pat3 ’ )
6 for i , f i l ename in enumerate( os . l i s t d i r ( dataset_dir ) ) :
7 a n n o t a t i o n _ f i l e = os . path . j o i n ( dataset_dir ,
8 f i l ename . r e p l a c e ( ’ . jpg ’ , ’ . j s on ’ ) )
9 i f ’ . jpg ’ in f i l ename and os . path . i s f i l e ( a n n o t a t i o n _ f i l e ) :

10 s e l f . add_image ( ’ potatos ’ ,
11 image_id=i ,
12 path=os . path . j o i n ( dataset_dir , f i l ename ) ,
13 annotat ion=a n n o t a t i o n _ f i l e )

In the first place, the load_dataset() function adds the classes defined by the user
(lines 3-8). Then, the annotation_file that contains the masks is defined for each
image (lines 9-13). If the file that contains “.jpg” possesses the according annotation
file, the add_image function appends the information about the image into the
dataset (lines 10-13).

The next function is extract_masks():
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1
2 def extract_masks ( s e l f , f i l ename ) :
3 j s o n _ f i l e = os . path . j o i n ( f i l ename )
4 with open( j s o n _ f i l e ) as f :
5 img_anns = json . load ( f )
6 n_masks = 0
7 for anno in img_anns [ ’ shapes ’ ] :
8 i f anno [ ’ l a b e l ’ ]== ’ pat1 ’ or\
9 anno [ ’ l a b e l ’ ]== ’ pat2 ’ or\

10 anno [ ’ l a b e l ’ ]== ’ pat3 ’ or\
11 anno [ ’ l a b e l ’ ]== ’ pat4 ’ or\
12 anno [ ’ l a b e l ’ ]== ’ pat5 ’ :
13 n_masks+=1
14
15 masks = np . z e r o s ( [ img_anns [ ’ imageHeight ’ ] ,
16 img_anns [ ’ imageWidth ’ ] , n_masks ] ,
17 dtype=’ u int8 ’ )
18 c l a s s e s = [ ]
19 i =0
20 for anno in img_anns [ ’ shapes ’ ] :
21 i f anno [ ’ l a b e l ’ ]== ’ pat1 ’ or anno [ ’ l a b e l ’ ]== ’ pat2 ’ \
22 or anno [ ’ l a b e l ’ ]== ’ pat3 ’ or anno [ ’ l a b e l ’ ]== ’ pat4 ’ \
23 or anno [ ’ l a b e l ’ ]== ’ pat5 ’ :
24 i f anno [ ’ shape_type ’]== ’ polygon ’ :
25 mask = np . z e r o s ( [ img_anns [ ’ imageHeight ’ ] ,
26 img_anns [ ’ imageWidth ’ ] ] , dtype=np . u int8 )
27 cv2 . f i l l P o l y (mask , np . array ( [ anno [ ’ p o i n t s ’ ] ] ,
28 dtype=np . in t32 ) , 1)
29 masks [ : , : , i ]=mask
30 c l a s s e s . append ( s e l f . class_names . index ( anno [ ’ l a b e l ’ ] ) )
31 i+=1
32 return masks , c l a s s e s

The function calculates the amount of classes detected in the json file of an image
(lines 7-13). In lines 15 - 17, the zeros of NumPy is used to create a three-dimensional
matrix with the height and width of the image and the depth equal to the amount
object instances. Afterwards, the cv2.fillPolly function is used to fill the previously
created matrix with the masks’ point values (lines 25-29) and the append() to save
the masks’ classes.

The two remaining classes of PotatoDataset are load_mask() and image_reference():

1 def load_mask ( s e l f , image_id ) :
2 i n f o = s e l f . image_info [ image_id ]
3 path = i n f o [ ’ annotat ion ’ ]
4 masks , c l a s s e s = s e l f . extract_masks ( path )
5 return masks , np . asar ray ( c l a s s e s , dtype=’ in t32 ’ )
6 def image_reference ( s e l f , image_id ) :
7 i n f o = s e l f . image_info [ image_id ]
8 return i n f o [ ’ path ’ ]

The load_mask() loads the masks of a particular image while image_reference()
serves for obtaining the path to the image.

Once the PotatoDataset class has been created, the dataset directories can be pre-
pared:
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1 datase t_tra in = PotatoDataset ( )
2 datase t_tra in . load_dataset (DATASET_TRAIN_DIR)
3 datase t_tra in . prepare ( )
4
5 dataset_val = PotatoDataset ( )
6 dataset_val . load_dataset (DATASET_VAL_DIR)
7 dataset_val . prepare ( )
8
9 datase t_tes t = otatoDataset ( )

10 datase t_tes t . load_dataset (DATASET_TEST_DIR)
11 datase t_tes t . prepare ( )

The prepare() function prepares the data by defining certain parameters such as the
number of instance classes, their identification numbers, names, number of images
and others.

Once the configuration is set, the necessary classes are created and the dataset is
prepared, the model can be established:

1 model = mode l l ib .MaskRCNN(mode=" t r a i n i n g " , c o n f i g=con f ig , model_dir=MODEL_DIR)

Where the mode can be either “training or “inference”. Consequently, the model
can load the weights:

1 in i t_with = " l a s t "
2
3 i f in i t_with == " coco " :
4 model . load_weights (COCO_MODEL_PATH, by_name=True ,
5 exc lude =[ " mrcnn_class_logits " , " mrcnn_bbox_fc " ,
6 " mrcnn_bbox " , "mrcnn_mask" ] )
7 e l i f in i t_with == " l a s t " :
8 model . load_weights ( model . f i n d _ l a s t ( ) , by_name=True )

As mentioned previously, if the model is only starting to be developed for the first
time, the COCO pre-trained weights are used, in which case init_with should be
“coco”. Otherwise, if the training already has at least one fully completed epoch,
“init_with” should be “last”.

Finally, the training can start:

1 Potato_augmentation = imgaug . augmenters . Sometimes ( 0 . 5 ,
2 [ imgaug . augmenters . geometr ic . A f f i n e ( r o t a t e =( −360 ,360))])
3
4 model . t r a i n ( dataset_tra in , dataset_val ,
5 l ea rn ing_rate=c o n f i g .LEARNING_RATE,
6 epochs =150 ,
7 l a y e r s=’ heads ’ , augmentation = Potato_augmentation )
8 model . t r a i n ( dataset_tra in , dataset_val ,
9 l ea rn ing_rate=c o n f i g .LEARNING_RATE/10 ,

10 epochs =150 ,
11 l a y e r s=" a l l " )
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At the beginning, the dataset is augmented artificially by rotating the images (lines
1-2). The images are rotated around the center of the image, where 0.5 is used to
indicate how often it happens (once every two images, in this case) and (-360,360)
is the expected value range for rotation.
The model is trained with the train() function (lines 4 and 8). The first and second
argument are the training and validation directory respectively. The third is the
learning rate defined in config previously. The epochs, i.e., the total number of
images is the fourth. The “layers” argument indicates what layers are trained
exactly. The creators of this implementation recommend to start the process by
training only the randomly initialized layers (the ones that don’t have pre-trained
weights from COCO). Thus, the “heads” is passed as a parameter. Afterwards,
the training is happening at a smaller learning rate to fine tune all the layers.
Accordingly, “all” is passed as a parameter.
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4 Results

4.1 Overview

The CNN models obtained after multiple training epochs can be evaluated in sev-
eral ways: loss plots and confusion matrix. Accordingly, several loss plots will be
presented along with the confusion matrix for the final epoch. Additionally, the
evolution of the obtained model will be shown by performing the detection on sev-
eral images with parameters obtained in different epochs. To sum up, the obtained
results will be discussed.

4.2 Training evaluation

The Python scripts used in this work permit to keep track of the training stage by
storing the loss function parameters of the gradient descent. Unlike the classical
NN, the loss function of Mask R-CNN contains three parameters: classification loss
(Lclass), the bounding box loss (Lbox) and the mask loss (Lmask). The first two are
derived from the RPN class predictor and box regressor (see subsection 2.4.4.3).
Lclass represents the loss cost of detecting an object, whereas Lbox is calculated only
over detected objects and represents the difference offset between the box predicted
by Mask R-CNN and original box. Lmask is associated to the fully connected part of
the network and is computed as an average binary entropy loss obtained by applying
a pixel-per-pixel sigmoid with the k-th class associated to the original ground-truth
box.

The plots that characterize these losses are obtained with the help of the Tensor-
Board visualization kit that is a part of the TensorFlow library [72]. TensorBoard
is integrated within Google Colab, which is very convenient for the testing process.
The following code has been used to obtain the plots:

1 import t e n s o r f l o w . compat . v1 as t f
2 %load_ext tensorboard
3 s e s s = t f . S e s s i o n ( )
4 path_logs = " / content / d r i v e /MyDrive/TFG/Mask_RCNN/ l o g s / potatos20211126T2055 / "
5 f i l e _ w r i t e r = t f . summary . F i l eWr i t e r ( path_logs , s e s s . graph )
6 %tensorboard −− l o g d i r / content / d r i v e /MyDrive/TFG/Mask_RCNN/ l o g s / potatos20211126T2055 /
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4.3 Inference Results

In general, all three parameters have a decaying profile with discontinuities asso-
ciated to the minimization of the overall loss through gradient descent, which is
calculated as:

Ltotal = Lclass + Lbox + Lmask

If the loss suddenly starts to increase, it’s a sign that some parameters have to be
changed or the data have to be updated. The obtained plots are represented in Fig.
4.1:

(a) Bounding box loss plot (b) Class loss plot (c) Mask loss plot

Figure 4.1: Loss plots

As shown, the network learns the most in the range of 1 - 30 epochs. Next, the
loss reduction slows down reaching its minimal value around epoch 80. Finally, the
network starts to fluctuate gradually reaching its plateau loss value after the epoch
120. After the epoch 80, the loss starts to increase slightly. Although it might seem
as an indication to change something, the overall precision is still higher after the
epoch 120 as it will be seen in the confusion matrices. However, it’s hard to ignore
the fact that the network is learning poorly after the epoch 80. As a result, the
decision was taken to continue the training by adding more data samples as they
were acquired and a total of 137 epochs was completed in the end.

4.3 Inference

Inference is normally evaluated by computing the confusion matrix. Confusion ma-
trices present the most clear way to understand how well the network performs
assigning the different classes of the experiment. Inference is calculated by passing
the images from the test set and calculating the outputs. First, it is necessary to
create a new configuration for the model:

1 class I n f e r e n c e C o n f i g ( PotatoConf ig ) :
2 GPU_COUNT = 1
3 IMAGES_PER_GPU = 1
4 i n f e r e n c e _ c o n f i g = I n f e r e n c e C o n f i g ( )
5
6 model = mode l l ib .MaskRCNN(mode = " i n f e r e n c e " , c o n f i g = i n f e r e n c e _ c o n f i g , model_dir=MODEL_DIR)
7 model . load_weights ( model_path , by_name=True )
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4.3 Inference

The operating mode is “inference” because the model is now supposed to simply
detect object instances instead of performing forward and backpropagation. For
this step, the direction to the recently obtained model parameters is found with
model.find_last(). If there is a need to use the previously obtained parameters, the
model_path can be adjusted. Combining the above-given code with the script from
[73], the confusion matrix is obtained:

Figure 4.2: Final confusion matrix

Fig. 4.2 shows the accuracy results after 137 epochs of training. As mentioned
previously (see subsection 3.1.3), potatoes can be identified separately only in the
first three classes, which makes them the only classes that can be used during the
labeling process. Hence, classes B to D corresponds to these three stages of potato
growth. Class A is the background, which is not associated to any potato class.
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4.4 Mask examples Results

In the matrix, the rows correspond to the network predictions and columns corre-
spond to the true instance classes. The main diagonal in green specifies the correct
classifications of each class. As such, the first column (left) indicates background
areas which have been predicted to contain potatoes at some growth stage (from
B to D), whereas the first row (top) indicates the potato plants that have been
identified as the background. In a similar way, the cells not contained in the main
diagonal specify the mistakes made by the network. Global results are presented at
the bottom right corner of the matrix.

Fig. 4.3 shows that between epoch 40 and epoch 120, the model gained more than
10 % of precision. The last trained epoch in Fig. 4.2 shows 35.56 % of precision and
detects more object instances.

(a) Epoch 40 (b) Epoch 80 (c) Epoch 120

Figure 4.3: Overall confusion matrix precision for different epochs

4.4 Mask examples

Another way to illustrate the results consists in showing how the network predicts
masks over images. Fig. 4.4 shows the progression of Mask R-CNN detecting the
plants at epochs 40, 80, 120, and 137.
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4.4 Mask examples

(a) Epoch 40 (b) Epoch 80

Figure 4.4: Inference examples in the early stages of the training

It can be observed that the number of detected masks increases with training. At
epoch 40 (Fig. 4.4a) the model has not yet gained enough confidence to identify
any object, whereas at epoch 80 (Fig. 4.4b) it identified correctly some plants with
class pat2.

Figure 4.5: Inference at Epoch 120

By epoch 120 (Fig. 4.5) the model becomes significantly more confident in detecting
crops than in the early stages. There are less masks that contain several crops and
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4.4 Mask examples Results

the overall class precision has increased as well. It should also be noted that the
model does not confuse potato crops with other greenery.

(a) Epoch 137 (b) Real masks

Figure 4.6: Comparison between the real masks and final inference

By the end of the training the model is capable of detecting most of the plants in the
same image (Fig. 4.6). Although the accuracy could be higher, the model manages
to locate and predict multiple plants in the image despite the complexity of shapes
and the number of instances.

To perform the inferences, the configuration has to be adjusted as in the subsection
4.3. First, the real masks are obtained for an image:

1 image_id = 13
2 or ig ina l_image , image_meta , gt_class_id , gt_bbox , gt_mask =\
3 mode l l ib . load_image_gt ( dataset_test , i n f e r e n c e _ c o n f i g ,
4 image_id )
5
6 log ( " or ig ina l_image " , or ig ina l_image )
7 log ( " image_meta " , image_meta )
8 log ( " gt_class_id " , gt_class_id
9 log ( " gt_bbox " , gt_bbox )

10 log ( " gt_mask " , gt_mask )
11
12 v i s u a l i z e . d i s p l a y _ i n s t a n c e s ( or ig ina l_image , gt_bbox , gt_mask , gt_class_id ,
13 datase t_tra in . class_names , f i g s i z e =(8 , 8 ) )

Afterwards, the inference is launched with the method model.detect:
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4.5 Discussion

1 r e s u l t s = model . d e t e c t ( [ or ig ina l_image ] , verbose =1)
2
3 r = r e s u l t s [ 0 ]
4 v i s u a l i z e . d i s p l a y _ i n s t a n c e s ( or ig inal_image , r [ ’ r o i s ’ ] , r [ ’ masks ’ ] , r [ ’ c l a s s _ i d s ’ ] ,
5 dataset_val . class_names , r [ ’ s c o r e s ’ ] , ax=get_ax ( ) )
6 print ( r [ ’ c l a s s _ i d s ’ ] . shape )
7 print ( r [ " c l a s s _ i d s " ] )

The first index of the tuple results contain RoIs, masks, class_ids and scores for
each of the detected objects in the image.

4.5 Discussion

In general, the model shows a good prediction capability for tuber initiation (Stage
3), which accuracy is 83%. Unfortunately, the performance is worse with other
classes. There may be several reasons for this. Some may be due to the unforeseen
circumstances and the complexity of the conceived approach and objectives, and
others may be due to the lack of a correct planning attributed to little experience
of both the author and director of this work.
Collecting the data and preparing it correctly is crucial for obtaining higher model
precision. Crops had to be observed every week, perhaps even every day, to take
multiple pictures across the entire span of the project. In practice, the crop field
couldn’t be supervised and monitored often enough and the pictures were taken only
when the circumstances would allow it.
Additionally, the growth process is sporadic at the early stages. Some plants would
grow twice as fast as others, depending on earth, climate and watering conditions.
In connection with that, the time to take photos at the early stages (Stage I and
II) was missed, which may have conditioned the capability of the model to predict
these stages. As a result, the network was trained more on some instances classes
than others, as it has happened with class D.
The crops have complex shapes and irregularities when observed from close dis-
tances. The labels of certain crops would contain more than 40 points, which is
considerably more than what would be required for a crop field, a car or a per-
son. As a result, the model lacked confidence to identify crops correctly and instead
identified them as part of the background. Of the 135 object instances that were
present in the pictures, 64 were identified as background. Additionally, potato crops
in the stage of vegetative growth often look similar to those of the tuber initiation.
Sometimes the plant is in a period between the two stages, which makes it hard to
identify even for a farmer.
However, even the obtained dataset could demonstrate a considerably better perfor-
mance if it was not for the processing limitations. Although hundreds of images were
taken and labeled across the span of the project, training with them all at the same
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4.5 Discussion Results

time proved impossible due to Colab restrictions. First, 200 epochs were trained
across the span of several weeks with approximately 70 photographs per epoch per
GPU. The training could happen only for a couple hours a day before it would be
abruptly finished. The model showed good detection capabilities but the classes
were identified incorrectly in many cases. Consequently, it was decided to gather
more data, adjust the labels and start the training again. Unfortunately, during
the mid-December Google posed considerable restrictions to unpaid accounts. With
a paid subscription not being allowed in Spain, the training process was rendered
virtually impossible. There was no available computer with the necessary processing
power and RAM either. In consequence, the training stopped after the epoch 137.
Some networks are trained for hundreds of epochs with hundreds of steps per epoch
to obtain good results [74]. Moreover, the projects that employ region-based neural
networks typically do not require the detection of complex shapes as it was the case
in this project. These CNNs show exceptional results with detecting humans, cars,
fruits, nucleus in cells, and other simpler shapes. Given the complexity of the task
at hand, this project’s network required more training with more data per epoch.
However, even the obtained results show that the network is capable of recognizing
objects in an image more often than not. It improved its precision and confidence
continuously with more training epochs.
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5 Conclusions and Future work

5.1 Conclusions

In this project, the Deep Learning field was studied to assess its combined application
with UAVs in agriculture. The neural network, which is the underlying technology
of Deep Learning, was researched to understand the basis of its functioning and
potential for the world of technology. Accordingly, the most suitable type of neural
network and its implementation was selected to fulfill the desired objectives. The
implementation, data obtainment and its processing techniques were studied as well
to provide transparency as to how the neural network was trained. Additionally, the
field of UAV was briefly investigated as well to provide the context of its usage and
relevance for the project. A UAV designed for agricultural purposes was successfully
employed for taking the pictures that after going through a preparation process were
used to train the programmed neural network to be able to recognize different object
instances.
The objectives were not fulfilled entirely. The trained network showed impressive
results since it was capable of automatically detecting objects and classify them in
many cases. The results, however, could be considerably better with more avail-
able computational power and data samples. However, this project showed that
using Deep Learning and UAV together can potentially be of great benefit for the
agriculture and humanity.

5.2 Future work

This work could benefit greatly if there is a possibility to continue the training of
the obtained neural network. If it is clear that the model has reached high precision
in detecting potatoes and can no longer be improved, other crops could be used
for the training, which would allow the network to detect different kinds of crops
in different growth stages. Additionally, the detection could be done in real-time if
network could be implemented in the hardware of a drone. Thus, the agriculture
could acquire an UAV that would be able to fly over crop fields with different kinds
of crops on them, analyze the crops and send the acquired information to a server.
All done simultaneously.
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