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Abstract

A computational cognitive neuroscience model is proposed, which models episodic

memory based on the mammalian brain. A computational neural architecture in-

stantiates the proposed model and is tested on a particular task of distal reward

learning. Categorical Neural Semantic Theory informs the architecture design. To

experiment upon the computational brain model, embodiment and an environment

in which the embodiment exists are simulated. This simulated environment realizes

the Morris Water Maze task, a well established biological experimental test of distal

reward learning. The embodied neural architecture is treated as a virtual rat and

the environment it acts in as a virtual water tank. Performance levels of the neu-

ral architectures are evaluated through analysis of embodied behavior in the distal

reward learning task. Comparison is made to biological rat experimental data, as

well as comparison to other published models. In addition, differences in perfor-

mance are compared between the normal and categorically informed versions of the

architecture.
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Chapter 1

Introduction

1.1 Motivation

In cognitive neuroscience, at the boundary between neurophysiology and behavior,

there lies one of the great unknown regions in the space of modern scientific knowl-

edge. The human brain contains roughly 1011 neurons and 1014 synapses [3]. The

magnitude of human behavior is much harder to quantify than are neurons and

synapses to count, but can be appreciated by considering the distance from heights

of intellectual accomplishment to depths of under-achievement; from compassionate

humanitarian service to patriotic nationalism to material self-centeredness; between

every emotion written about in every novel and all the facets of human behavior wit-

nessed through history. The behaviors alone would require uncountably numerous

terms to describe, and the possible mappings from neuro-structure to behavior are

combinatorially larger. All of that behavior and more is a product of the embodied

human nervous system by way of evolution and development in its environment. A

challenge still unsolved is to understand the mapping from the functioning of all

those neurons and synapses to those numerous behaviors. Neurophysiology, cogni-

tive psychology, computational neuroscience, and brain imaging will all play a role

in unraveling this challenge. The contribution of this interdisciplinary dissertation is

1



Chapter 1. Introduction

a new neuroscience based computational model of a “cognitive” system. It is posited

that a biophysically motivated neural architecture which models episodic memory en-

abling aspects of the cortical-hippocampal system from mammalian brains will have

the capacity, when embodied in an agent, to exhibit distal reward behavior. This

model links the form of the developed neural architecture to the function of distal

reward behavior. Furthermore, a nascent mathematical theory of neural structure

and function is employed during the design process and its effects on behavioral

performance are assessed.

1.2 Overview

The following section gives a high level description of the research question and

approach. First, a statement of the problem being addressed is given. Then, potential

methods for addressing the problem are described. Next, an overview of the approach

used in this dissertation is provided. Finally, an outline of the rest of the dissertation

appears.

1.2.1 Problem Statement

At the highest level, the problem addressed by this dissertation is to study the

transformation between neural form and embodied behavior. Distal reward learning

is the function that is investigated to study form to function mapping. Distal reward

learning is the process by which an animal associates a reward in the present with

past behaviors that lead up to that reward.. The Background chapter provides an in

depth look at distal reward learning but a short introduction is given here to provide

context for the initial introduction of subsequent topics which address or involve

distal reward learning.

In the context of biological organisms, distal reward problems require animals to

learn to correct previous decisions from future rewards. That is, from the reference
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frame of the rewards the decisions are previous, from the reference frame of the

decisions the rewards are future. The term distal refers to temporal distance between

action and reward. Pushing a button to receive a reward is not a distal reward task

if reward for a correct button push occurs immediately. Navigation is in general a

distal reward task, specifically if the navigational goal is not observable from locations

where navigation decisions must be made. One of the challenges for a neural system

to perform distal reward learning is that the neural activations which were responsible

for attaining reward may be gone by the time the reward occurs.

1.2.2 Proposed Architecture

This section presents a high level view of a new computational neural architecture

which will be used in the experimental section of this work. The Background chapter

will present research results from the literature, and link these to the proposed com-

putational neural architecture. To set the context for the upcoming discussion, an

introduction to the architecture is given below. The Apparatus chapter will describe

the architecture in full detail.

Described at a high level, the architecture operates by chaining expected reward

maximizing actions through time and space. The temporal aspect of chaining, one

location in time followed by another, enables distal reward learning. The spatial

aspect of chaining, one location in space followed by another, enables navigation.

Together, the enabled behavior is performance of a distal reward navigation task.

Expected reward level is defined in the context of reaching a goal in the environment

in which an architecture is embodied. The only inputs on which the architecture can

base its expected reward maximizing decisions are the sensory inputs of the simulated

embodiment.

Sequences of sensory input patterns are bound together as memories or experience

episodes. Note that we use the term “bound” in the sense of a set of activations

being bound into the neural substrate, i.e. a memory formed. Expected reward

3
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levels are encoded with the memories of experienced sensory episodes. For instance,

an episode which includes reaching the goal will have the highest expected reward

level. It is expected that if the same episode is experienced again, the same reward

will be experienced again. Hence, if learned memories indicate that reward has in

the past immediately followed a known series of actions performed from the current

location, expected reward will be at the highest level for recall of that series of

actions. An alternate series of actions, that did not have reward attainment bound

in an associated memory, might have zero expected reward. Chaining begins when

an episode is experienced which results in observation of the beginning of an episode

which leads to reward. The episode once removed from the episode which leads to

reward has a proportionately lower expected reward than the episode leading directly

to reward. Through this discounting strategy, given a choice among action sequences,

one will be picked which leads more directly to the reward. Thus a form of optimal

behavior can occur which provides the embodied agent with a competitive advantage

in expending less energy reaching reward as compared to a less direct strategy. This

process addresses the distal reward problem by circumventing the need to assign

reward credit back through a temporal sequence after the reward has been received.

Instead, reward credit propagates through the sequence as it forms.

1.2.3 Dissertation Research Elements

As part of the Overview, some notable elements of this research are introduced here.

Starting with the first experiments performed for this research [4], and continuing

through to the final theoretically driven architectural modification, the Categorical

Neural Semantics Theory, based in category theory, was employed for the insight

it provides into structure based study of neural architectures. Episodic memory is

studied and computationally modeled as a method to address the distal reward prob-

lem. Neuroscience and cognitive psychology were extensively surveyed to provide a

foundation for the synthesis of the new architecture. The neuroscience and cognitive
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psychology literature were examined for insight into episodic memory and a brain

area called hippocampus which support episodic memory function. Computational

embodiment is another notable element of this research, it provides a perceptual

basis for inputs to neural architectures.

Category theory, as the mathematical discipline concerned with mathematical

structure, informs this research by adding rigor to the analysis and construction of

neural structure. Category theory motivates a fundamental design change to reflect

a certain type of categorical structure that we hypothesize will improve embodied

performance.

As distal reward behavior involves temporal processing of neural information,

and episodic memory involves the encoding of events through time, episodic memory

based behavior is a natural avenue of research when the goal is to understand distal

reward behavior. Hippocampus is a biological brain structure for which evidence is

reviewed of strong involvement in episodic memory based behavior. Hippocampus

is located at the edge of cortex where almost all sensory cortices converge. This

convergence as well as other high degrees of connectivity position hippocampus for

a central role in behavior related to episodic memory and distal reward. As such,

knowledge of hippocampus form and function is pursued in order to develop the

architecture.

Computational embodiment is a key characteristic of this research. Stand-alone,

non-embodied experiments provide input to this dissertation research, but the fi-

nal experimental test is embodied behavior. Embodiment is key because it gives

the neural architecture semantic meaning through perceptual grounding . Dreyfus

presents an argument for embodiment as a necessity of general artificial intelligence

[2]. General artificial intelligence is also known as strong AI and is the ability to

perform any intellectual task as well or better than a human. This dissertation does

not claim to address general artificial intelligence, but by conducting experiments in

simulated full embodiment, we operate in the same context which gave rise to human
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intelligence.

1.2.4 Document Structure

This dissertation document is structured as Introduction, Background, Apparatus,

Approach, Results, Discussion, Summary and Conclusion, with the last chapter cov-

ering potential future work. The Background chapter will give neuro-anatomical,

physiological, and psychological motivation and knowledge which pertain to distal

reward behavior. The Background will also introduce the Categorical Neural Se-

mantic Theory and review other models from the literature which are comparable to

what was develop for this dissertation research. The Apparatus chapter will describe

the details of the neural architectures which will be employed for experimentation.

As well, the Apparatus chapter will detail the implementation details by which a

neural architecture is embodied, and the implementation details by which an envi-

ronment is simulated for the embodiment. The Approach chapter then describes

the experiments which will be performed and the experimental parameters which

will be applied. The Results chapter provides data produced by carrying out the

experiments described in Approach. The Discussion chapter analyzes the results in

the context of the dissertation objectives. The Discussion also compares and con-

trasts the results obtained here with the results of other comparable models. The

Summary and Conclusion chapter will finish this dissertation, providing an overview

of the objectives, experiments carried out to accomplish those objectives, results,

and conclusions following from those results. The Conclusion also lays out the sci-

entific contribution produced through this research. Following the Conclusion, the

Future Work chapter extrapolates follow on endeavors that would be valuable further

extensions to this research.

This chapter has introduced the research undertaken for this dissertation. The

introduction included motivation for why this research was performed, a statement

of the problem being addressed, an overview of the research elements, then an outline
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of the rest of this document. The next chapter provides background material upon

which further chapters will build.
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Background

This research focuses on distal reward learning and behavior. Episodic memory is a

class of biological neural memory and recall function that is critical to distal reward

behavior. Episodic memory is the memory of event sequences, including people,

places, things, etc. This chapter provides information about the anatomy, physi-

ology, and psychology of the mammalian brain as is pertinent to episodic memory

and distal reward behavior. It also discusses category theory, the Categorical Neu-

ral Semantic Theory (CNST), and constituent neural submodules that were used in

design of the architectures. The chapter concludes with a description and demon-

stration of the temporal semantic representation scheme used in the architecture.

Neural anatomy and physiology are examined in the context of episodic memory, for

which the links to distal reward behavior are made. The neural submodules model

neural networks that exhibit unsupervised learning behavior. A theory of temporal

semantic representation provides a foundation upon which to build episodic memory

utilizing neural processes.
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2.1 Distal Reward

2.1.1 Characterization

Distal reward describes a class of behavior that requires associating sensory observa-

tions, motor actions, and rewards through time. Learning these associations involves

reinforcement of neuronal activity due to the experienced reward [5] [6] [7] [8] [9].

Often, the reward comes some time after reward-predicting sensory observations or

reward-triggering actions. This creates an explanatory conundrum known in the be-

havioral literature as the distal reward problem [6] and in the reinforcement learning

literature as the credit assignment problem[10] [11] [12] [13] [9] [14]. Any number of

sensory observations and actions might proceed the reward. In order to learn and

be able to attain reward, the agent must assign credit to those preceding actions

which participated in the attainment of reward. An animal’s neural system must

determine which out of all possible neural activation patterns are responsible for

the reward. Moreover, the responsible patterns may not even be present in current

neural activations when the reward arrives.

Associating observations, actions, and rewards through time differs from learning

problems that involve instantaneous decisions which can be thought of as sense-react

behavior. Problem solving through time requires a form of temporal reasoning. Some

simple organisms sense a chemical gradient that signals food and react by exhibit-

ing motive response up the concentration gradient. Biological examples of motive

response in reaction to chemical concentration gradient, known as chemotaxis, are

observed in slime mold [15] and Escherichia coli [16]. These forms of reward seeking

behavior are a function only of the instantaneous changes in observation indicating

the direction of the reward. Behaviors similar to chemotaxis can be observed in

higher order animals. A simple experiment might train a rat that if a certain button

is stepped upon when a certain tone is heard, there will occur a food reward. Or,

that given a choice between square and round doors, reward will lie through the
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round door. These sort of behaviors are of the simple sense-react type. For example,

a subject optically (or otherwise) senses the two doors, then reacts as experience has

taught will immediately result in reward given the current sensory input.

Distal reward behaviors are more complex. Solving a distal reward problem

requires behavior that will not result in immediate reward, but will result in reward

later. Immediate cues, at the time of action, do not tell an agent a priori what action

might lead to reward. Take a door with keypad lock for instance. You might know

that reward lies behind the locked door, and that some combination of key presses

will disengage the lock. If we let each key press be a discrete event in time and let

there be an unknown number of digits in the combination, then this can be modeled

as a distal reward problem. Let the first lock combination digit be a 7. Just pressing

the 7 key accomplishes nothing. Let the next and final combination digit be a 9.

Again, just pressing the 9 accomplished nothing. In order to solve this unlocking

problem, a subject must press 7 then 9 in temporal sequence. Temporal reasoning

is inherently distinct from and more complex than simply sensing and immediately

reacting.

In order to solve a distal reward problem , eposidic memories that encode tem-

poral sequences, or some functional equivalent, is required to link actions with tem-

porally distant consequences. The Morris Water Maze [15] task is a particular distal

reward problem where the agent cannot sense the reward, but must perform a se-

quence of behaviors that will, over time, lead to the hidden reward.

Dopamine is a neurotransmitter strongly implicated in the formation of memo-

ries for episodes which occur in a context of reward. Nitz, Kargo, and Fleischer [17]

present an experiment which links dopamine signaling with distal reward behavior.

Nitz et al. uses two sample sets of biological rats, one normal and one with genetic

knockout of a particular dopamine receptor type. The rats perform a distal reward

maze task consisting of three left/right decisions in succession. The dopamine re-

ceptor deficient rats exhibit impaired decision making at the choice points that are
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temporally distal to the reward. This result leads to consideration of dopaminergic

action as an important component of distal reward behavior.

2.1.2 Other Distal Reward Models

Other published distal reward behavior models are introduced in this section. These

models will be revisited in the Summary and Conclusion chapter. A number of

concepts occur through several of the reviewed models as well as this dissertation

research. Before continuing with discussion of the comparable models, we set context

by highlighting embodiment and cortical hypercolumns, a couple of those common

concepts.

One of the characteristics of experimental design seen in many of the reviewed

papers is partial embodiment. For our purposes, a full embodiment would entail

system input from sensory observation of an environment, processing of that input

then action which alters the environment, followed by re-sensing of the now changed

environment. Additionally, a fully embodied system must internalize the observa-

tion to action loop. For instance, if nodes inside the system are arranged in a two

dimensional grid and activated to represent the system’s location in two dimensional

space, this is not a full embodiment. In order to activate the grid nodes, some exter-

nal processing had to take place and determine where the system was located then

push this information to the appropriate grid node. An embodied system is implic-

itly self-contained, therefore when external processing is required for operation of a

system we do not consider that system fully embodied.

A second concept seen in several of the reviewed papers is cortical hypercolumns.

A cortical hypercolumn is a group of neurons in the neocortex physically arranged in

a column perpendicular to the cortical surface, where the neurons in a hypercolumn

have nearly identical receptive fields. The receptive field of a neuron is the region

of space in which sensory observations will create a stimulus to the neuron. Hyper-

columns can be subdivided into minicolumns, where neurons within a minicolumn
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encode similar features. Minicolumns subdivide the feature space to which a given

hypercolumn is sensitive. For instance, consider hypercolumns within visual cortex

which responds to stimuli within a small portion of the visual field. Minicolumns

of those hypercolumns respond to particular line orientations within the particular

portion of the visual field [18].

The other distal reward models are described in a common form. First the model

is introduced. Then, the treatment of embodiment is discussed. Then, a summary

description of the model is provided as adapted from published articles. Finally,

model operation and experimental results are described, again as adapted from the

authors’ publications.

2.1.2.1 Izhikevich

Izhikevich [19] presents a spike-timing-dependent plasticity based model. Equations

2.1 and 2.2 describe the learning model for synaptic weights. The state of each

synapse is modeled using two phenomenological variables: synaptic strength/weight,

s, and activation of an enzyme important for plasticity, c. Extracellular concentration

of the neurotransmitter dopamine is represented by d and d(t) is the Dirac delta

function that step-increases the variable c. Firings of pre- and postsynaptic neurons,

occurring at times tpre/post, respectively, change c by the amount STDP (τ). τ =

tpost − tpre is the interspike interval. τ decays to c = 0 exponentially with the time

constant τc = 1s. The decay rate controls the sensitivity of plasticity to delayed

reward. The following is a more detailed description of the Izhikevich model as

adapted from his 2007 paper [19].

ċ = −c/τc + STDP (τ)δ(t− tpre/post) (2.1)

ṡ = cd (2.2)
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2.1.2.1.1 Embodiment Izhikevich’s model is discussed here because it is com-

putational and exhibits distal reward behavior in experimentation. However, Izhike-

vich’s experimentation is in no way embodied.

2.1.2.1.2 Description Izhikevich’s model operates at the neuronal spike timing

level. This neuron spike level is two levels of detail closer to a molecular model than

our research. One level of detail spans from neural ensembles such as ART down

to individual neurons where action potential frequency is represented by activation

level. Action potentials being the actual chemical-electrical signal which propagate

through biological neurons. The next level of detail spans from activation level

representing action potential frequency down to the timing of firing of individual

action potentials. The timing of individual action potentials becomes important in

the Izhikevich model because of spike timing dependent plasticity (STDP) which is

the underlying learning mechanism by which the model operates. Note the distal

reward learning is the learning behavior exhibited. STDP is the learning mechanism

used to enable that learning behavior.

Given the inter-neuron dynamic described by equations 2.1 and 2.2, Izhikevich’s

simulations are carried out using networks that consist of 1000 randomly connected

spiking neuron models [20]. Of the networks’ 1000 neurons, 800 are excitatory neu-

rons with nominal spiking speed and 200 are inhibitory neurons with fast spiking

speed [21], representing layers 2 and 3 of a cortical minicolumn. Neurons are ran-

domly connected with 10% probability so that there are an average of 100 synapses

per neuron.

2.1.2.1.3 Operation and Results With the above described network, Izhike-

vich performs four experiments: Reinforcing a Synapse, Classical Conditioning,

Stimulus-Response Instrumental Conditioning, and Shift of Dopamine Response from

Non-Reward-Predicting Stimuli to Reward-Predicting Stimuli in Classical Condition-

ing. For the first experiment, Reinforcing a Synapse a synapse that connects two
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excitatory neurons is randomly chosen and that synapse’s synaptic strength is man-

ually set to zero (s = 0). The firing rate in the network is around 1 Hz, so every few

minutes the postsynaptic neuron fires by chance within 10 ms after the presynaptic

neuron. Every time such an event occurs a reward is delivered to the network in the

form of a spike of extracellular dopamine with a random delay between one and three

seconds. This experiment could be interpreted as the simplest form of instrumental

conditioning [9].

The second experiment, Classical(Pavlovian) Conditioning, consists of rewarding

a reward-predicting stimuli embedded into a continuous stream of a large number of

irrelevant but equally salient stimuli. To simulate the experiment, 100 random sets

(S1, S2, ..., S100) of 50 neurons each are chosen to represent 100 random stimuli. To

deliver a stimulus, say S1, all 50 neurons in the set S1 are stimulated with a 1-ms

pulse of superthreshold current. Next, a continuous input stream is formed consisting

of stimuli Sk (1 < k < 100) in the random order with a random interstimulus intervals

between 100 ms and 300 ms. S1 is treated as the reward predicting stimuli and the

other stimuli as distracters. For every occurrence of S1, a reward is delivered in the

form of the increase of extracellular dopamine with a random delay of up to 1 second.

The delay is large enough to allow many neurons in the network to fire a spike and to

allow a few irrelevant stimuli during the waiting period. Thus, the network receives

reward on average every 20 s caused by an unknown (to the network) firing pattern

embedded in a sea of random spikes and distractors.

In the third experiment, Stimulus-Response Instrumental Conditioning a typical

instrumental conditioning experiment is simulated. A network of 1000 cortical spik-

ing neurons are reinforced to produce an appropriate motor response to a stimulus.

First, a random group of 50 neurons are chosen, called S, that represents the in-

put stimulus to the network. Two random nonoverlapping groups of 50 excitatory

neurons each are chosen, called A and B, that give rise to 2 motor responses of the

network. To deliver the stimulus, a strong 1-ms pulse of current is injected into the
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neurons in S to make them fire. Their coincident firing typically evokes a few spikes in

the other neurons in the network. During a 20-ms time window after the stimulation,

the number of spikes fired by neurons in A and B are counted, denoted as |A| and

|B|, respectively. The network is considered to exhibit response A when |A| > |B|,

response B when |B| > |A|, and no response otherwise (e.g., when |B| = |A| = 0).

One might think of neurons in groups A and B as projecting to 2 motor areas that

innervate 2 antagonistic muscles; to produce a noticeable movement, one group has

to fire more spikes than the other group.

Izhikevich’s final experiment, Shift of Dopamine Response from Non-Reward-

Predicting Stimuli to Reward-Predicting Stimuli in Classical Conditioning, repro-

duces the basic phenomenology of shifting the release of dopamine in response to

non-reward-predicting stimuli to an earlier reward-predicting stimulus. The details

of this experiment can be read in the Solving the Distal Reward Problem through

Linkage of STDP and Dopamine Signaling paper [19]. Considering results from

the above described experiments. Izhikevich’s conclusion is that modeled form of

dopamine modulation of STDP provides an elegant solution to the distal reward/-

credit assignment problem.

2.1.2.2 Samsonovich and Ascoli

The Samsonovich and Ascoli [22] model reproduces spatial pathfinding, nonspatial

problem solving, and episodic memory retrieval behaviors using a computational

hippocampal model.

2.1.2.2.1 Embodiment In the context of their spatial task, the Samsonovich

and Ascoli model is not fully embodied. Rather, internal model nodes are directly

set to a unique activation pattern for each small neighborhood in the environment. In

order for internal nodes to be repeatably set based on external location, sensors and

processing must exist and occur external to the agent. A full embodiment contains all
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environmental sensors, information processing, and resulting agent actuation within

the agent itself.

2.1.2.2.2 Description Just as do the computational hippocampus models of this

dissertation research, the Samsonovich model makes explicit use of θ rhythm phase

changes observed in biological hippocampal neuron activation [23] [24]. Samsonovich

et al. theorize that the function of phase changes is to explore possible directions

of motion, where as this dissertation research theorizes that theta rhythm phase

change is the mechanism which allows for alternation between bottom-up and top-

down processing. While theta rhythm plays an explicit role in the Samsonovich and

Ascoli model, it is only an implicit enabling mechanism in the dissertation model.

The following is a more detailed description of the Samsonovich and Ascoli model

adapted from their 2005 paper [22].

2.1.2.2.3 Operation Samsonovich and Ascoli presuppose that, during explo-

ration, the environment is navigated randomly, but extensively. Each visit to a

particular location results in a strong activation of the corresponding CA3 and CA1

model units. At various arbitrary moments during exploration, corresponding to the

occurrence of sharp waves, the system pauses, and the current location is taken as

a potential future goal. At this point, the activity mode changes with reactivation

of recently active CA3 place cells, with a firing rate proportional to the recency of

their last strong activation. In addition, CA1 cells representing the current location

are also reactivated (Buzsaki 1989). As a result, CA3 place cells become associated

with the selected CA1 cell whose place field represents a potential future goal. The

strength of the associations in this model is proportional to the recency of a place-cell

firing during exploration as described by Equation 2.3.

W new
ij = max{W old

ij ,
1

t− tj
} (2.3)
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The efficacy (weight) of the synaptic connection from CA3 unit j to CA1 unit i

is Wij , t is the current moment of time, and tj is the time stamp of the last visit to

the location associated with the unit j during the running session. Initial conditions

for weight vectors W s are arbitrary small values below 1/Lmax, where Lmax is the

maximal (allowed) trajectory length that can be associated with the goal during

the training session. Reciprocal connections weights are set to a constant (Wii =

2). At the conclusion of an associative learning event, the system resumes random

exploration of the environment until another arbitrary potential goal is selected.

Then the associative process repeats.

Through random exploration until a preselected goal is reached, the CA3 model

units acquire weighted connections to the CA1 representation of the goal. At this

point, the network of place cells encode information sufficient for finding a short

path to this goal location, starting from any location within the environment. This

is accomplished by a simple algorithm; at each location, several randomly generated

possible local moves are generated, and the move that produces the strongest ex-

citation of the place cell associated with the goal is selected and performed. This

process is repeated until the goal is reached.

2.1.2.2.4 Results Samsonovich and Ascoli show successful navigation results

with their model. An average ratio of 60:1 for the length of the path leading to goal

before and after learning is provided as a summary statistic of navigation. Their

model is also shown to perform a non-navigation task that demonstrates a memory

indexing function of the same model which was shown to provide navigation func-

tion. They state that their results “provide a substantial ground for a theoretical

unification of the two best known hippocampal functions, suggesting that (1) the

pathfinding function of the hippocampus, in addition to its associative and mem-

ory indexing functions, may be vital for retrieval of certain episodic memories, and

(2) the hippocampal spatial navigation function could be a precursor of its memory
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function.” [22]

2.1.2.3 McKinstry et al.

McKinstry et al. [1] model neural behavior that accounts for sensory integration over

time. Their methods do not model episodic memory, nor hippocampal function, but

their model is comparable to this dissertation research in that it addresses temporal

requirements to enable embodied performance.

2.1.2.3.1 Embodiment McKinstry et al. perform a physical embodiment of

their model with the Darwin IX mobile robotic platform. Positive aspects of a phys-

ical embodiment include sensory observations and environmental feedback to actions

which occurs in a world with exactly the same physical laws in which biological neu-

ral systems are embodied. For instance, changes in perspective due to movement are

not simulated to float precision in a microprocessor, rather in a physical embodiment

perspective changes are a natural consequence of location change. Negative aspects

of a physical embodiment include the potential for numerous confounding factors.

For instance, some qualities of motor feedback may be due to lose tolerances in a

gearbox. It may be interesting that a given neural system can accommodate motor

artifacts due to gear tolerance. However, whatever adaptations occur to make that

accommodation, they are not reflecting neurophysically inspired behavior. That is,

theoretical insights from experimental results can be confounded by mundane phys-

ical effects. The following is a more detailed description of the McKinstry model as

adapted from their 2008 paper [1].

The embodied Darwin IX agent was a circular wheeled mobile robotic platform

with a vision system and circumferential distance sensors. The Darwin IX was aug-

mented by a whisker array on each side. The whisker array supplied input to the

simulated nervous system. Also, the whisker array supported innate avoidance and

wall-following behaviors.
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2.1.2.3.2 Description Darwin IXs default behavior was to move forward at a

speed of about 8 cm/s in a straight line. Darwin IX also had an innate wall-following

capability based on signals from the whisker array. The whisker array consisted of

a column component and a row component. An innate freezing/avoidance response

was triggered in Darwin IX upon detection of a simulated foot-shock by a downward

pointing infra-red sensor that measured changes in reflectivity of floor surface. Con-

struction paper of the same color as the floor but more reflective, was placed upon

the floor in locations to trigger this innate avoidance response. This freezing/avoid-

ance response consisted of stopping for about 4 s followed by a turn away from the

foot-shock simulating stimuli. The signal from the infra-red sensor resulted in a

neuromodulatory alteration of synaptic strength in the simulated nervous system.

Darwin IX’s neurons were simulated by a mean firing rate model. Each neuronal

unit represented the average activity of approximately 100 neurons over 100 ms. Sev-

enteen neural areas, 1101 neuronal units, and about 8400 synaptic connections made

up the Darwin IXs simulated nervous system. Each simulation cycle took roughly

100 ms of real time. During each simulation cycle every neuronal unit and plas-

tic synapse was updated once. Darwin IX contained neural areas analogous to the

somatosensory pathway in the rat brain, specifically the ventromedial nuclei of the

thalamus, and primary and secondary somatosensory areas. By the modeled con-

nectivity, a deflection of a particular sequence of Darwin IXs whiskers would create

a spatiotemporal pattern of simulated neural activity. Such a dynamic sequence was

comparable to that observed in the rat brain [25].

2.1.2.3.3 Operation In the McKinstry et al. experiments, two models were

described that respond to real-world stimuli by maintaining sensory observation sig-

nals across temporal delays using two different mechanisms modeled on biological

nervous systems. One strategy was through delays in neuronal responses such that

spatiotemporal stimuli were mapped into activity patterns. The delayed neural re-
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sponse strategy converted artificial whisker signals into patterns of activity that

facilitated texture discrimination. The other model strategy was to delay synaptic

plasticity such that a sensory observation was associated with a temporally previous

signal. The delayed plasticity strategy allowed visuomotor stimuli to predict future

collisions and resulted in preemptive motor actions.

2.1.2.3.4 Results After learning, Darwin IX’s visual responses predicted future

collisions and enabled the embodied agent to exhibit smooth movement down the

middle of the pathways marked by cones. The three different test courses had turns of

varying degree. Successful navigation required a combination of braking and turning

of the proper magnitude at the proper time, see Figure 2.1. The delay eligibility

trace learning rule was successful across all three course with a four second delay.

Longer and shorter delays were used in experimentation, but did not perform well.

McKinstry et al. observe that biological systems cannot afford to store all signals

indefinitely. Thus a recurring theme in neuroscience is how the nervous system

maintains and integrates relevant signals across different timescales. In their paper,

they described two real world embodied models that maintain observed input across

temporal delays using two different mechanisms modeled on mechanisms found in

biological nervous system. They show experimentally that the embodied model of

these biological systems exhibits successful behavior.

2.1.2.4 Dolle et al.

Dolle et al. [26] investigated competition between parallel memory systems through

modeling of different navigation strategies. The Dolle experiments used a simulated

Morris water maze. The two modeled memory systems were labeled “taxon expert”

and “planning expert.” For the taxon expert, a form of sensory input was simulated

in that for a population of sensory cells, activation of a particular cell indicated the

presence of the platform in a particular direction.
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Figure 2.1: McKinstry results figure [1]. Training and testing the device on different
curved courses. The mean motor error from five subjects is shown in the plots. A.
Learning curves during training on the gradual turn, sharp turn, and middle turn
courses. BD. Motor errors were significantly lower in the test group, which had access
to only visual cues, than in the control or “no learning” groups on the Gradual course
(B), Middle course (C), and Sharp course (D). * denotes p < 0.01 Wilcoxon Rank
Sum test.

2.1.2.4.1 Embodiment The taxon sensory input was a form of vision which

could only see the platform, and which exhibited winner take all output in that

only one vision node was active to indicate the closest match for platform direction.

The planning expert used direct stimulation of modeled hippocampal cells, as seen

in the [27] model. The planning expert memory system was not embodied in that
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it received no sensory input. The taxon expert had a limited embodiment in that

platform sensors provided observation of one part of the environment, and that part

of the environment logically was modified due to action by the embodied system.

2.1.2.4.2 Description For the taxon navigation system, visual input was en-

coded in a population of 100 Sensory Cells (SC) in which an active cell i indicated

the presence of the platform landmark in direction i. Motor response to the vi-

sual stimulus was encoded by 36 Action Cells (AC), so that one action coded for a

direction every 2π/36 radians. Learning was performed by a Q-learning algorithm

adaptation. A Gaussian update rule allowed ACs near the winning cell to also update

their weights.

2.1.2.4.3 Operation The planning navigation system started by learning a topo-

logical representation of the environment during pretraining sessions then used this

representation to place the goal location within that representation and plan an op-

timal path towards it during the goal planning phase. The map took as input the

activity of a population of place cells. This population was provided by a hippocam-

pus model simulating the enthorinal cortex (EC) and the dentate gyrus (DG). EC

modeling was based on grid cells, which are receptive to specific spatial orientation.

The grid cells activation were appended to a vector of 100 neural modeling units that

represented visual inputs from landmarks outside the maze. EC cells were then fed

to the DG, which trained place cells by means of Hebbian learning. Then sparse ac-

tivation was obtained through use of a filter function that only kept a few cells active

and set the others to zero. The planning system then normalized final DG activation

and processed it to build the nodes of the planning graph. For the planning graph,

a pool of 100 nodes was connected to the DG at random synaptic weights, and the

same sparse learning used in the DG was replicated during the map building phase.

The firing rate of a PG node j was computed as in Equation 2.4.

22



Chapter 2. Background

rPj = fj(
∑

iWDG,PG
ij DGi, s

PG) (2.4)

WDG,PG
ij is the synaptic weight linking the DG place cell i to the planning graph

node j and fj(x, s
PG) is the same non-linear function as in the DG, returning a

sparse encoding of x, with a sparseness level of sPG. The synaptic weights were

learned following a Hebbian rule described by Equation 2.5.

∆WDG,PG
i,j = αDG,PGrPj (DGi −WDG,PG

i,j ) (2.5)

The direction of movement required to move from the location encoded by node

i to the location encoded by node j was stored as the link weight between the nodes.

Goal planning began when the goal position was found, at that time the closest

node was set to a reward value. Then, using the planning graph, an optimal path to

the goal was determined by a bio-inspired activation-diffusion mechanism based on

Dijkstras algorithm for finding the shortest path between two nodes in a graph.

2.1.2.4.4 Results A theory of parallel control systems in the rat brain was mod-

eled in the Dolle et al. work. The existed preceding computational models of naviga-

tion that rely on similar learning methods such as reinforcement learning for different

navigation strategies [28] [29] [30]. In these previous models, strategy selection was

usually carried out through a non-adaptive mechanism [31] [32]. The implemen-

tation of adaptive selection among different learning modes (including topological

representations) was a characteristic feature of the Dolle et al. research.

Dolle et al. experimentally demonstrated the ability of their model to select

navigation strategies in two simulation experiments. They note that interaction

among several spatial memory systems may improve the performance of animals.

This improvement may come through speeding learning by cooperation among dif-

ferent strategies, or competitive processes that prevent the application of sub-optimal
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strategies. The also note that design of robots for a wide range of behavioral tasks

may be enabled by better understanding these interactions through computational

modeling.

2.1.2.5 Weber and Triesch

Weber and Triesch [33] developed a reinforcement learning based model for goal

directed feature learning. A characteristic of their model was that it received sensory

input which was modified by model actions.

2.1.2.5.1 Embodiment The Weber and Triesch embodiment was limited in a

different way that the Dolle et al. model. While the Dolle embodiment was limited by

only sensing one element in the environment, the Weber and Treisch model operated

with an overhead perspective in a non-real world space, as well as non-deterministic

simulated macro level physics in the environment. The environment consisted of

several two pixel length bars on a two dimensional surface. When the model system

took a movement action in a given direction, the sensory observation of the blocks

translated appropriately in space. The characteristic of the environment space which

was non-real world was that when a bar left one side of the agent’s perception due

to embodied action, it entered the opposite side. This was an embodiment with

sensory input equivalent to an agent navigating on a torus while looking down at the

“floor” through a tube. The non-deterministic portion of the simulated environment

physics was that for any given embodied movement, there was a 20% chance that

each bar would fail to translate in response to the movement. So, the elements

of the environment were usually modified according to the agent’s actions, but not

always. Out of several bars in the environment, one particular bar was the reward

feature. Reward was given when the reward feature was located in a certain percieved

location.
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2.1.2.5.2 Description The Weber and Triesch model consisted of input, hidden,

and output layers. The input layer recieved a sensory vector I. The hidden layer

learned features of the input and encoded a winner-take-all state vector s, i.e. only

one hidden layer unit was active at a time. The output layer held winner-take-all

vector a, that represented the currently selected action. The model’s neural network

was feedforward with full connectivity between adjacent layers.

2.1.2.5.3 Operation Each trial lasted until reward was found, which resulted in

r = 1, with r = 0 until reward was found. The agent was placed at a new random

position at the beginning of each trial. The learning algorithm was similar to SARSA

[13]. In step 0, an action was performed and new sensor values I were incident upon

the input layer. In step 1, the hidden layer activations updated according to the

feature weightsW between the input and hidden layer along with the winner-take-all

mechanism. In steps 2 and 3, an action was selected using the weights Q between the

hidden and output layer. Step 4 computed the value v′ of the new state based on the

next possible actions and the potential weights Q that would be used corresponding

to each next possible action. In step 5 the prediction error δ was computed between

the time-discounted current value and the earlier value v, the reward r was also

considered. In step 6, the action layer weights Q updated through a δ-modulated

Hebbian rule with state s and action a as pre- and post-synaptic values. The feature

layer weights were also updated by a δ-modulated Hebbian rule, with pre-synaptic

activations I and post-synaptic activations s.

2.1.2.5.4 Results Weber and Triesch’s results show the learning progress of their

reinforcement learning based system. An actor behaving at random averages 50 steps

before finding the reward. After 100,000 iterations the network finds reward in five

steps on average.
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2.1.2.6 Martinet et al.

Martinet et al. [27] described a model which simulated physical maze traversal. The

Martinet model was implemented in a simulated robotic platform. The neural model

employed was based on cortical hypercolumns and minicolumns.

2.1.2.6.1 Embodiment Embodiment is limited in that the model receives direct

neural stimulation from external environmental analysis as opposed to relying solely

on sensory input.

2.1.2.6.2 Description and Operation In the Martinet et al. model, the neural

system was organized into hypercolumns and the hypercolumns were organized in

minicolumns. An unsupervised learning scheme made the activity of each minicol-

umn selective to a specific state-action pair (s, a) ∈ S×A. A given action a ∈ A rep-

resented the allocentric motion direction of the agent when it performed a movement

that transitioned between two locations s, s′ ∈ S. By effect of the learning algorithm,

minicolumns that were selective for the same spatial location s ∈ S were grouped

to form a hypercolumn. This is a divergence from biological neural networks where

minicolumns are physically located in hypercolumns. Given the described learning,

hypercolumns consisted of a set of minicolumns that were incrementally recruited

to encode all the state-action pairs (s, a1...N) ∈ S × A experienced by the agent at

location s. All minicolumns in a hypercolumn competed with each other during

navigation planning to locally infer the most appropriate goal-directed action.

Minicolumns of the model were made up of two computational units, one rep-

resented supragranular layer (SL) neurons and the other represented infragranular

layer (IL) neurons. Mean firing activity of a population of cortical neurons in cor-

tical layers II-III, and V-VI, respectively were simulated by the activation of SL

and IL nodes. Each minicolumn received three different sets of afferent connections:

hippocampal inputs, collateral afferents, and motivation dependent signals. Hip-
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pocampal inputs encoding spatial location connected to IL neurons through plastic

connections with synaptic efficacy determined by the weight distribution wh. Collat-

eral afferents from adjacent cortical columns connected to SL and IL neurons. These

lateral connections underwent incremental learning and were used to encode environ-

ment topology which in turn was used in the activation diffusion planning method.

The final columnar input was to SL neurones which received motivation-dependent

signals.

2.1.2.6.3 Results Experimentation was divided into three phases with different

maze configurations used for each phase. Initially, the agents planned maze navi-

gation in the absense of both block A and B. The results showed that the model

learned to select the shortest goal-directed pathway P1 significantly more frequently

than the alternative trajectories P2, P3 (ANOVA, F2,297 = 168.249, p < 0.0001).

During the next training phase (consisting of 156 trials), a block was introduced

at location A, which forced the agents to update their topological maps dynami-

cally, and to plan a detour to the goal. Results reported for equivalent biological

experiments provide strong evidence of a preference for the shortest detour path

P2. Correspondingly, in the Marinet et. al simulations (Fig. 3B) a significantly

larger number of transits through P2 compared to P3 were observed (ANOVA,

F1,198 = 383.068, p < 0.0001).

In the last training phase, block A was removed a new block added at location B.

This phase was designed to test the “insight” hypothesis. The “insight” hypothesis

suggests that after an agent learns path P1 and later encounters unexpected block

B, the agent will go through the longer but effective path P3 as opposed to the

apparently shorter but now blocked path P3. In biological results from the same

experiment using rats [34], Tolman and Honzik concluded that rats were able to

inhibit the previously learned behavior of selection path P2 after a failure of path

P1. Similar to rats, the Martinet et al. agents exhibited a statiscally significant
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preference for P3 compared to P2 (ANOVA, F1,198 = 130.15, p < 0.0001).

Finally, Marinet et al. compared the action selection policy of learning agents

with the theoretical behavior of randomly behaving agents. The results indicate

a significantly better performance of learning agents compared to random agents

(ANOVA, F1,196 = 7.4432, p < 0.01).

2.2 Episodic Memory

As discussed in Chapter 1, episodic memory is central to the neural architecutre

developed in this work to study distal reward. In mammals, the hippocampus has

been shown to be a key structure in the formation of episodic memories. The utility

of episodic memory in this work is to bind temporal episodes of sensory experience

with episodes of proprioceptive (motor sensors) encoding of our agent’s movement.

This subsection reviews neuroscientific literature describing both episodic memory

and the hippocampus. The review of episodic memory begins with a more psycho-

logical examination of memory to narrow down the behavioral qualities of episodic

memory, and then transitions to examining evidence for neurophysiological correlates

of episodic memory.

Episodic memory encodes temporal sequences of sensory information. More

specifically, the neural mechanism for what we label “memory” encodes activations

that can be reconstructed as temporal sequences of perceived sensory information.

That is to say, neural memory is not a video record of experiences, but rather a tem-

poral series of neural activations that upon recall is reconstructed into a “video”-like

perceived memory. The term “video” is used loosely, as it is a completely subjec-

tive opinion as to how closely a particular animal’s memory recall resembles video

playback.

In biological organisms, memory is used to make plans for future actions. Likewise

the artificial neural architecture will use memory to guide future actions. Biological
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existence involves interaction between retrospective memory and prospective memory

[35]. Retrospective memory is the capacity for recollection of general knowledge

and history of previous actions and their outcomes. Prospective memory is the

application of knowledge and history in directing ongoing decisions and behavior..

To help illuminate architectural decisions, experimental evidence on the cognitive

and neural mechanisms of recollection is outlined, and then retrospective memory

results from experimental studies in cognitive science is considered. As mentioned

above, one of the major neurophysiological structures involved in memory is the

hippocampus, see Figure 2.2, and therefore the following subsection starts the review

win an examination of the hippocampus.

2.3 Neuroscience and Cognitive Psychology Back-

ground on Hippocampus

The hippocampus is a neurophysiological structure involved in memory. Experi-

mental and observational data suggests specific cognitive and neural information

processing behaviors for which hippocampus is responsible or at least necessarily

involved. By necessarily involved, we mean necessary for a function, but without

assuming sufficiency for that function. Much of the information known about the

function of hippocampus results from lesion studies. That is, what functions does an

organism loose when all or part of the hippocampus is damaged or removed. Many

of the following studies involve accidental or experimental lesioning.

The following references to research about hippocampal function are ordered into

subsections. The first subsection addresses evidence for hippocampal function in

humans, it cites accidental lesion cases. The second subsection cites studies that

refine hippocampal function by conducting behavioral experiments on animals. The

third subsection focuses in on studies that involve episodic memory, in particular the

temporal aspect of episodic memory.
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Figure 2.2: Modified from a scan of a plate of “Posterior and inferior cornua of left
lateral ventricle exposed from the side” in Gray’s Anatomy.

2.3.1 Human Cases

Some cases of mild hypoxia (lack of oxygen to the brain) result in damage largely con-

fined to the hippocampus. An analysis of recognition memory performance showed

that this localized hippocampal damage caused a severe decrease in recollection per-

formance, while other memory measures remained normal [36]. Specifically, famil-

iarity performance was not hindered by hippocampal damage. The result from this

research that is most pertinent to this dissertation is that hippocampus plays a par-

ticular role in recollection.

Decreased recollection performance with retained familiarity performance was

also reported in a case of meningitis causing relatively localized hippocampal atrophy
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[37]. The observed involvement of hippocampus in recollection memory tasks as

differentiated from familiarity memory tasks suggests that hippocampus is involved

in detailed sensory memory activity, while some simple sensory familiarity matches

are possible without hippocampal involvement. Hippocampus is explored further to

determine what features and characteristics are important for an episodic memory

model which will perform a distal reward task.

In a study on the coding properties of hippocampal neurons in humans, Ekstrom

et al. [38] recorded neural activations in subjects as they played a taxi driver game,

searching for passengers picked up and dropped off at various locations in a virtual

reality town. They observed that many of these cells fired selectively associated with

specific combinations of a place and the view of a particular scene or a particular

goal. These and other studies indicate that, in rats, monkey, and humans, a preva-

lent property of hippocampal firing patterns involves the representation of unique

associations of stimuli, their significance, specific behaviors, and the places where

these events occur [39].

2.3.2 Animal Evidence for Hippocampal Function

The preceding studies involved human subjects, a much greater amount of exper-

imental work exists using other animal subjects and is considered next. Several

studies have shown that damage limited to the hippocampus results in deficits in

memory formation for the context or location where items were once experienced

[40]. In one recent study, rats were initially exposed to two objects in particular

places in one of two environmental chambers [41]. In subsequent recognition testing,

the place of the object or the context was changed. Normal rats increased their

exploration of objects that were moved to new places or put in novel contexts. By

contrast, rats with hippocampal damage failed to recognize objects when either the

place or context was changed [42].

Several investigators have argued that animals are indeed capable of remembering
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the temporal as well as spatial context in which specific stimuli are experienced [43]

[44]. To further explore these aspects of episodic memory, Eichenbaum developed a

task that assesses memory for events from a series of events that each involve the

combination of an odor (i.e. what), the place in which it was experienced (i.e. where),

and the order in which the presentations occurred (i.e. when) [45]. On each of a

series of events, rats sampled an odor in a unique place along the periphery of a large

open field. Then, memory for when those events occurred was tested by presenting a

choice between an arbitrarily selected pair of the odor cups in their original locations.

Normal rats initially employed their memory of the places of presented cups and

approached the location of the earlier experience. Then they confirmed the presence

of the correct odor in that location. Animals with selective hippocampal damage fail

on both aspects of this task even though their memory for independent features of

location and odor items was intact. These findings indicate that the hippocampus

is critical for effectively combining focus, context, and temporal qualities of each

experience to compose the retrieved memory.

2.3.3 Episodic Memory Experiments

Episodes are represented as sequences of sensory observations. Embodied agents live

their lives through experience. The initial construction of perceived reality is a form

of episodic buffer that contains a representation of the stream of sensory observations

as they just occurred [46]. Tulving [47] distinguished episodic memory as organized in

the temporal dimension, and contrasted this scheme with a conceptual organization

of semantic memory. Tulving argued that the central organizing feature of episodic

memory is that “one event precedes, co-occurs, or follows another.” This is similar to

Aristotle’s [48] characterization of vivid recall: “Acts of recollection, as they occur in

experience, are due to the fact that one thought has by nature another that succeeds

it in regular order.” These characterizations emphasize the temporal organization

of episodic memories. The temporal semantic representation theory, which will be
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presented later, is motivated by these insights. It will represent episodic memory

as recency gradient encoded sequences of generalizations of neural activations. The

neural activations hold semantic information because they are grounded through

connection to the sensory input of an embodied system.

The order of events within human memory depends on hippocampal function.

In a study using a design similar to the Tulving study, Hopkins and Kesner [49]

found that patients with hypoxic brain injury involving shrinkage of the hippocampus

are impaired in memory for the order of a series of 6 words, pictures, or spatial

locations. These patients were, however, also impaired in recognition of the items,

making difficult an unambiguous interpretation of a deficit in the order of the events

independent of memory for the events. More recently, Spiers et al. [50] reported

a selective deficit in order memory independent of item memory in a patient with

selective hippocampal damage due to perinatal transient anoxia [51]. In this study,

the patient explored a virtual reality town in which objects were received from virtual

characters. Recognition of the familiar objects was intact, memory for the order in

which the objects were received was severely impaired, as was memory for where the

objects were received. Also, Downes et al. [52] reported that patients with medial

temporal lobe damage that included bilateral hippocampal damage were impaired

in memory for the order of presentation of words for which recognition of the items

was equivalent. Also, evidence from the deferred imitation task, where subjects are

required to remember an action sequence, indicate a critical role for the hippocampus

[53] [54]. Thus, humans with hippocampal damage are impaired in memory for the

order of events in unique episodes even in cases where recognition memory is intact.

This provides evidence that hippocampus is necessary for neural representation of

temporal order.

Studies on animals also show that the representation of memories by the hip-

pocampus incorporates not only items that must be remembered, but also the events

that precede and follow. For example, Honey et al. [55] provided a simple demon-
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stration of the importance of temporal order in hippocampal processing, reporting

that hippocampal lesions disrupted animals’ normal orienting response when a pair

of stimuli are presented in the opposite order of previous exposures. The specific

role of the hippocampus in remembering the order of a series of events in unique

experiences has been explored using a behavioral protocol that assesses memory for

episodes composed of a unique sequence of olfactory stimuli [56] [57]. Memory for

the sequential order of odor events was compared with recognition of the odors in

the list independent of memory for their order. On each trial rats were presented

with a series of five odors, selected randomly from a large pool of common household

scents. Memory for each series was subsequently probed using a choice test where the

animal was reinforced for selecting the earlier of two of the odors that had appeared

in the series. In later sessions it was also tested whether the rats could identify the

odors in the list independent of their order, by rewarding the selection of a novel

odor against one that had appeared in the series. Normal rats performed both tasks

well. Rats with hippocampal lesions could recognize items that had appeared in the

series but were severely impaired in judging their sequential order.

A common observation across many different behavioral protocols is that differ-

ent hippocampal neurons become activated during every event that composes each

experience. I.e. a list of neurons becomes activated in sequence as a list of events

occur which compose an experience. This hippocampal neuron activation behavior

is observed during simple behaviors such as foraging for food [57] as well as learning

related behaviors directed at relevant stimuli that have to be remembered in stud-

ies that involve classical conditioning, discrimination learning, and non-matching or

matching to sample tasks to tests and a variety of maze tasks [58] [59]. In each of these

paradigms, animals are repeatedly presented with specific stimuli and rewards, and

execute appropriate cognitive judgments and conditioned behaviors. Corresponding

to each of these regular events, many hippocampal cells show time-locked activa-

tions associated with each sequential event. Also, as described above, many of these
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cells show specificities corresponding to particular combinations of stimuli, behav-

iors, and the spatial location of the event. Thus, hippocampal population activity

can be characterized as a sequence of firings representing the step-by-step events in

each behavioral episode.

This section has provided many examples in the biological literature to demon-

strate hippocampal function particularly as it pertains to episodic memory. The

computational neural architecture of this dissertation research was designed with

guidance from biological hippocampal form based on the preceding evidence that

biological hippocampus enables episodic memory based behavior. An extended liter-

ature search on experiments involving biological hippocampus is found in Appendix

C.1.

2.4 Dopaminergic Subsystem

In the human brain, the mesocorticolimbic system houses the dopaminergic neurons,

in which originates reward signals that synapse on many other brain areas. Dopamin-

ergic signals are expected reward indicators. If an unexpected reward occurs, the

dopaminergic neurons fire at an increased rate. If an expected reward does not hap-

pen, the dopaminergic neurons fire at a decreased rate. If no reward is expected,

and none occurs, the dopaminergic neurons fire at a tetanic default rate [60]. For

purposes of the neural architecture, we utilize a functional model whose input will

detect the presence of a reward, finding the submersed platform for example, and

whose outputs control learning and recall in other architectural components.
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2.5 Experimental Results of Computational Cor-

tical Hippocampal Model

Results of a standalone computational cortical hippocampal model are presented in

appendix D.4. This model was developed along with the embodied neural architec-

ture described in this dissertation, with some coevolution as each effort informed the

other. The conclusion from the computational cortical hippocampal model results

was that behavior was observed in the model which was measured to correspond with

behavior published in the literature for human subjects [61]. This provides evidence

that the computational cortical hippocampal model is an accurate representation

of biological hippocampus. Some principles from the computational hippocampal

model are present in the embodied architecture of this dissertation. Specifically, the

scheme of creating a key pattern then binding that key pattern as part of the for-

mation of episodic memories is carried over to the embodied architecture from the

stand alone hippocampal model. The method by which the embodied architecture

does this will be detailed later.

Favorable results provided confidence in the cortical hippocampal model and

provided incentive for shared principles with the embodied model. The standalone

model was only partially embodied. The standalone model has sensory input, but

there existed no feedback to the environment, i.e. motor output which alters the

environment.

2.6 Category Theory

Category theory is the mathematical discipline that is concerned with mathematical

structure. It is used in this dissertation to assist in both architectural analysis and

design. In analysis, category theory is used as a tool that suggests functional prop-

erties based on particular neural structures. It allows the definition of a framework

36



Chapter 2. Background

for the estimate of structure based concept capacity of a neural system. In design,

category theory is used to modify the dynamics of constituent neural modules in the

architecture to enhance system performance.

In the development of a categorical basis for this research, three investigations

are performed. The first two investigations are detailed in Appendix A and the third

in Appendix E. The first categorical investigation builds on the work of Healy and

Caudell [62] by applying category theory to implemented artificial neural networks.

Investigation one is where this research begins to examine how category theory might

be useful in the analysis of neural architectures. The basic strategy is to measure

categorical capacity in some simple neural networks. Using definitions for concept

representation developed in [62], categorical capacity is a measure of how many dis-

tinct concepts can be encoded by a particular neural structure. For this investigation,

a distinct concept is defined as a unique structure of neurally represented categor-

ical objects that represent concept categorical objects. To this end, commutative

diagrams are measured as they are a basic unit of structure in category theory.

The second investigation builds upon the first by developing a theoretical frame-

work for categorical concept capacity. Whereas the applied artificial neural network

investigation was limited to small neural networks, the theoretical investigation is

extended to any size network of the topology considered. Commutative diagrams are

again the basic unit of representing a distinct neural encoding of information from

the environment.

In investigation three, categorical limits are investigated as an improvement to

ART. This is advantageous to the embodied architecture in that ART is used as

a module of self-organizing neural sub-structure modeling biological cortical hyper-

columns. An improvement in the performance of ART can be reasonably expected

to improve the behavior based performance of an embodied neural architecture using

ART.

As a design tool, category theory is used to modify the dynamics of constituent
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neural modules in the architecture. Category theory is used in a similar manner as

calculus might be used to treat physical systems. Just as calculus would be useful

in developing new forms for jet airplanes, category theory has proven useful in the

design of neural structure. Calculus is useful in designing a jet, but it does not of

itself tell one how a jet should be made. However, with a proper framework linking

the math of calculus to the physical world, one could verify that certain designs are

capable of certain tasks. E.g., it could be verified that a certain wing design would

provide a certain amount of lift. Furthermore, the wing design might be usefully

constrained from the outset by proper calculus based considerations. Just as with

other forms of mathematics, there is generally more than one valid way to make a

mathematical representation with category theory. In calculus, the volume of a cylin-

der can be calculated as a series of discs integrated along the length of the cylinder,

or as a series of rectangles integrated through the width of the cylinder, or as a series

of tubes integrated through the radius of the cylinder. Any of those mathematical

representations of the volume of a cylinder are correct (given appropriate parameters

for a certain cylinder). There is not “one right way” to mathematically represent

the volume of a cylinder. Likewise, there is not “one right way” to mathematically

represent a series of events as observed through sensors. As long as a representation

is valid within the mathematic framework being employed, it is a correct representa-

tion. A contribution of this research is the empirical demonstration of a method for

informing neural design with category theory such that category theory has descrip-

tive power for the neural design. An introduction to category theory can be found

in Appendix A.

As mentioned earlier, the computational neural architecture of this dissertation

used ART modules as functional building blocks analogous to pattern classifying bio-

logical neural submodules such as cortical hypercolumns. The next section describes

ART, a real valued variation of ART called fuzzy ART, and a supervised learning

version called LAPART.
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2.7 ART, fuzzy ART, and fuzzy LAPART

ART is a well established self-organizing neural network for classifying input activa-

tion patterns. The interested reader can find a wealth of literature on ART details,

performance, neurophysical plausibility, and stability [63] [64] [65] [66] [67]. The fol-

lowing provides a brief description of ART, then introduces Fuzzy ART, LAPART

– a combination of two ART systems, and finally Fuzzy LAPART. These networks

play a critical role in the embodied architecture developed in this work.

2.7.1 ART

ART1 is an unsupervised learning system that operates on binary input vectors. The

basic components of ART1 are an F0 input layer, an F1 internal layer, an F2 output

layer, a vigilance node, and synaptic weight sets between each F2 node and all F1

nodes. An ART system is illustrated in Figure 2.3, label withM F1 nodes and N F2

nodes. A single F2 output node will classify a given input. At any given time, there

is only one active F2 output node due to a winner-take-all lateral inhibition network

between all F2 nodes. Each F2 output node is fully connected to all F1 nodes,

where F1 nodes have one-to-one connections with the F0 input nodes. Activations

propagated from the input to the F1 layer are unmodified except for normalization

if necessary. For an ART1 implementation where inputs are already normalized, the

F1 layer gets a copy of the input. The connections between all F1 nodes to each

F2 node are weighted and represent the categorization templates which encode a

generalization of all inputs that a given F2 output node will classify.

wj(n+ 1) = β(I ∩ wj(n)) + (1− β)wj(n) (2.6)

|I ∩ wj|

|I|
≥ ρ (2.7)
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Figure 2.3: ART neural architecture

|I ∩ wj |

|α + wj|
(2.8)

Equation 2.6 shows how ART1 updates each weighted connection wj between

F1 and F2. ∩ is the logical AND operator. This update performs learning of

classification templates. ART1 applies Equation 2.6 only to the connections incident

upon the one winning F2 node. That F2 node is a single winner-take-all selection

via the ART1 choice algorithm which selects the node that maximizes Equation 2.8,

where I is the input vector as present in the F1 layer of nodes, wj is the weight vector

which comprises the classification template linking the jth F2 node to each F1 node,

and α is generally set to a very small positive value such as 1−5. Equation 2.7 is

also applied, where ρ is the vigilance parameter which controls how much difference

there can be between a winning F2 node template and the input I. A new F2 node

is added when no template T for an existing F2 node satisfies Equation 2.7. New

templates, which accompany new nodes, have weighted connection values of 1. Since

the new template is automatically the winning template, when no existing template
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meets vigilance for a given input, the new template of all ones will instantly be eroded

part or all the way to the input vector, depending upon the value of the learning

parameter β in Equation 2.6. β = 1.0 is considered “fast learning” and results in the

new template being updated to match the current input vector. Should that template

win for a subsequent input vector, the weights would erode for any weight vector

elements which are greater in value than the corresponding input vector element.

Note that wj(n+ 1) indicates the template weight vector for the next timestep, and

wj(n) is the template weight vector for the current timestep.

A useful analytical feature of ART is that, given compliment coded inputs, pat-

tern classes are encoded as rectangular hyperboxes of dimensionality equal to half

the dimensionality of the complement coded input. As each F2 output node is re-

cruited, due to no template link to an already recruited F2 node meeting the vigilance

test, the template weights with fast learning will be adjusted to a point hyperbox

at the point of the current input vector. As subsequent inputs resonate with that

same template, the hyperbox erodes outward and its perimeter grows. The vigilance

parameter restricts how large the hyperbox perimeter may become.

As a consequence of the operation of the vigilance parameter ρ, lower vigilance

results is a more general classifier and higher vigilance results in a more specific

classifier. In terms of the complement coded input hyperbox visualization, a lower

vigilance results in larger hyperboxes. Therefore a lower vigilance results is each

class encompassing a larger region of input space. Conversely, a higher vigilance

results in smaller hyperboxes which each cover a smaller region of input space. It

can also be observed that for a fixed input set, lower vigilance will generally result

in fewer templates formed while higher vigilance will result in increased template

proliferation.
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2.7.2 Fuzzy ART

Fuzzy ART is a self-organizing neural network that autonomously creates codes for

clusters of real valued input patterns [64]. See Figure 2.4. For this network, pattern

components are normalized to the [0, 1] interval. The F2 layer is a winner-takes-all

layer producing a sparse coded output for the best matching cluster. The granularity

of the clustering is controlled by a vigilance factor ρ bounded to (0, 1] that controls the

level of generalization performed by this network. If ρ is close to unity, the number

of F2 layer clusters (nodes) rapidly increases during training, essentially memorizing

each individual input pattern. Conversely, if its value is near zero the number of

F2 clusters increases very slowly during training, creating a system that greatly

generalizes the input patterns, lumping many input patterns into a small number

of clusters. Each cluster’s prototype is encoded internally as a real valued synaptic

weight pattern referred to as a template, signified as Tk in the figure. Learning in

Fuzzy ART uses a specialized form of the Hebbian learning rule [68] to adapt the

winning F2 node’s template in either in a fast and slow learning modes. The former

is used in this study.

The “Input System” shown in the figure is responsible for pattern preprocessing.

For this study, the Input System complement codes the input pattern. Complement

coding utilizes an on-response (stimulus) and off-response (one minus stimulus) en-

coding. For example, if s = (s1, s2) is a stimulus pattern, then its complement

encoding is (s1, s2, 1 − s1, 1 − s2). The first two pattern components are the on-

response while the second two are the off-response. If the dimensionality of the

original stimulus s is d, the complement encoded input pattern has dimensionality

2d. The use of complement coding allows the template weight patterns to be inter-

preted geometrically as d-dimensional hyperboxes, and improves weight convergence

during learning.
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F0

F1

F2

Tk

k

Input System        

Figure 2.4: Fuzzy ART subnetwork, including an Input System responsible for com-
plement coding of the input patterns. The network includes three layers, F0, F1,
and F2, the latter being winner-takes-all. The neural circuitry labeled ρ controls
the granularity of pattern clustering during learning. A top-down template Tk is
illustrated as an open triangle for winning F2 node k.

wj(n+ 1) = β(I ∧ wj(n)) + (1− β)wj(n) (2.9)

|I ∧ w|

|I|
≥ ρ (2.10)

|I ∩ wj |

|α + wj|
(2.11)

Equations 2.9 2.10 2.11 describe Fuzzy ART, where variable designations are as

previously given for ART1. To enable handling of real valued inputs, fuzzy ART uses

the fuzzy AND operator ∧ instead of the logical AND operator ∩ as seen in ART1.

A strength of Fuzzy ART, and ART1 is guaranteed stable category learning. If

the input vector is complement coded, that is for each input element i there exists an
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input element j where j = 1− i, then one-pass learning will result such that no new

output nodes are recruited or addition learning occurs on subsequent presentations

of any input [65]. %

2.7.3 LAPART

LAPART is a supervised learning technique that makes use of ART [69] [70]. LA-

PART consists of a laterally coupled pair of ART1 neural networks. As a supervised

learning technique, LAPART learns to associate pairs of input activation patterns.

Associations are stored as connection weights between F2 output layers of the two

ART modules which comprise a LAPART. In LAPART, the individual ARTs operate

according to standard ART rules [63], and their association is governed by a logical

design principle from formal semantic analysis performed by Healy [71] [72].

The coupling of ART1 systems is accomplished according to two basic rules. The

first rule; an active F2 node in one ART1 system will trigger a rule inferring an

active F2 node in the other ART1. The second rule; the other ART1 network may

veto the prediction if it does not match existing learned data.

An improved version of LAPART, known as LAPART2 [70], is used in the ar-

tificial neural architectures of this research. LAPART2 operates identically to LA-

PART1 except for in the case of an input pair which pairing is not represented by

the existing A → B connections between F2 layer nodes. In other words, LAPART2

modifies the behavior of LAPART when an incorrect prediction of ART-B is made

based on the input to ART-A. With either form of LAPART, this violation of the

A → B prediction prompts a lateral reset. The behavior of LAPART2 is that in the

case of a lateral reset, a new F2 node is recruited in ART-A to encode the current

input. Then, the appropriate F2 node is activated in the usual fashion on ART-B

and a, now correct, inference connection if formed between the new node in ART-A

and the correct (possibly new) node in ART-B. This LAPART2 lateral reset behav-

ior, along with the existing LAPART operation, results in a proven 2-pass supervised
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learning system [70].

2.7.4 Fuzzy LAPART

The next component to discuss is LAPART that is used by the larger neural architec-

ture to associate temporal sequences with visual sensory patterns. The LAPART-1

network architecture is based upon the lateral coupling of two ART-1 subnetworks,

referred to as A and B (Figure 2.5), which perform unsupervised classification of bi-

nary input patterns [2]. The interconnections between the two subnetworks, labeled

M in the figure, force an interaction of the respective classifications performed by

the ART-1 subnetworks on their inputs. This modifies their unsupervised learning

properties to allow the learning of inference relationships or associations between

the learned pattern classes representing their input domains. This can be thought

of as supervised learning, or supervised classification. Fuzzy LAPART replaces the

ART-1’s with Fuzzy ART’s. The two vigilance parameters A-ρ and B-ρ control the

granularity of these associations.

r A
AF0

AF1

AF2

Tk

k

BF0

BF1

BF2

Tj

j

r B

A B

M

IA 
Input System

IB
Input System

LAPART

Figure 2.5: Fuzzy LAPART Subnetwork. The small solid black triangles in the
M associative weight matrix represent non-zero synaptic weights learned through a
Hebbian process referred to as lateral priming connections. The horizontal connection
from B to A resets the A-side ART if the B-side ART rejects a postulated association.
See [2] for a complete discuss of this network.
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2.8 Temporal Episodes

As mentioned previously, the functionality of episodic memory in used in this study

of distal reward learning. This section builds the foundation for the temporal episode

encoding method used in the distal reward architecture. A practical introduction is

given for the implemented technique. Then, a literature search provides context.

Then, the encoding of temporal episodes in artificial neural architectures is treated

in more detail and illustrated with an example.

2.8.1 Temporal Integrator

The temporal integrator TI subnetwork shown in Figure 2.6 is a layer of temporal

integration nodes. It assumes sparse input codes, that is, at most one of its nodes will

have unit level input at any given time. When a node in the TI subnetwork receives a

unit level signal, it rapidly integrates to its maximum value in one time step. When

a TI node receives a zero level input, its output decays with an exponential time

constant. When its output reaches a minimum noise threshold level, it drops to zero.

Each TI neuron may be thought of as an RC circuit with different rise and fall time

constants. As the result of a temporal sequence of unitary sparse inputs, a unique

recency gradient of activations will form across the TI layer, coding the order of

input firing - the most recent input will have the largest TI layer activation, with

the time reverse order having decreasing values. The TI network can be reset to set

all integrator nodes to zero.

2.8.2 Temporal Sequence Learning

The temporal sequence learning network is constructed from two Fuzzy ARTs (S &

L) and one Temporal Integrator (TI) subnetwork as illustrated in Figure 2.7 [73].

The dynamics of this network are as follows. Normalized real-valued input patterns

are introduced to the input of the S Fuzzy ART to simulate a temporal sequence of
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k

TI

t

Figure 2.6: Temporal Integrator subnetwork. Note that the thermometer bars in the
figure graphically represent an example of recency gradient encoded by the layer.

events. The S Fuzzy ART performs a classification of each pattern as it appears, each

one resulting in the activation of an S-F2 node to which the network assigns to the

pattern. (Note that references to Fuzzy ART internal layers will follow the notation

of X-Y where X is the network’s label and Y is a structure or layer in the module.)

The S-F2 output of the S Fuzzy ART are directed as input into the TI layer, over

time creating a recency gradient across its nodes. Following the presentation of the

input pattern to S, the current real-valued recency gradient is directed to the input of

the upper L Fuzzy ART that performs its classification. The classification processing

of the S and L Fuzzy ARTS results in a collection of learned template patterns based

on their respective input sequences. Through this hierarchical process, the sparse

(winner-take-all) L-F2 outputs encode temporal sequences of S input patterns. The

two ART units’ vigilance parameters S-ρ and L-ρ control the granularity of their

respective codes. As an option, the TI can be reset following an L Fuzzy ART

recruitment of a new L-F2 node.

This network may recall temporal sequences through a top-down process illus-

trated in Figure 2.7 as reciprocal arrows. The top-down recall process is described

in greater detail later in this document in section 2.8.4. During recall mode, an L-

F2 node is activated by higher-level circuitry, reading out its template TLh into TI.
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Using circuitry not shown in this figure, the TI activates the S-F2 layer in the same

temporal order as it was produced, reading out a sequence of templates TSk into the

S-F1 layer [74]. This “movie” of templates constitutes a short-term episodic recall.

Figure 2.7: Temporal Sequence Learning Subnetwork. The lower Fuzzy ART is
labeled S (short time scale) while the upper one is labeled L (long time scale).
Layers with in these are referenced in the text as, for example, L-F2 or S-F0.

2.8.3 Background of Artificial Neural Temporal Methods

Vila [75] makes the case that time is ubiquitous in any activity requiring intelligence.

While there are useful problems that can be solved without considering time, see any
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number of static recognition or synthesis tasks, Vila gives several good examples of

time dependent tasks: medical diagnosis [76] and explanation, planning, industrial

process supervision, and natural language understanding [77] to name a few. Ad-

ditional tasks that require the encoding of time include speech recognition [78] and

synthesis, and time series prediction [79]. Some architectures [80] even transform

a static problem into a time varying problem. Overall, the inclusion of a temporal

aspect yields a sequence learning problem of which there are four fundamental types:

sequence prediction, sequence generation, sequence recognition, and sequential deci-

sion making [81].

A research question then is, how can time be incorporated into the functional-

ity of a neural network? One approach is to explicitly encode the entire desired

temporal sequence as a single input. NETtalk [82] attempted to use such a spatial

representation to convert words into their representative phenomes. However, such a

spatial approach is problematic in several ways. First, it is not biologically plausible

as brains do not buffer an entire sequence before processing the signals in any way.

And secondly it requires a large enough input field to encode the entire sequence

[83].

Alternatively, time may be incorporated in an implicit manner such that it is

interleaved within the processing of the network. The addition of a memory compo-

nent transforms the output of a neural network into a function of time [84]. While

the synaptic weight values of a neural net inherently give the network a form of

long term memory, they have a shortcoming in that they can only encode a single

state of information about a gives set of neurons as opposed to a sequence of activa-

tions across time. Short-term memory modules allow neural activation values to be

amassed across common episodic timescales. The buffering of prior node activation

values produces a temporal representation ability within the network.

One possible approach for encoding activation sequences through time to enable

temporal processing of data are time-delay neural networks (TDNN). Waibel, Hinton,
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and Lang first described TDNN while attempting to classify sound spectographs [85].

A TDNN is a feedfoward network which utilizes time-delay units to replicate hidden

layer and output layer neurons across time. A related approach is the tapped delay

line [86], which can be considered as a TDNN with the time-delays all found on

the input layer. The TDNN concept is best suited for classification of symmetric

temporal patterns of fixed feature dimension [84].

A more generalized approach utilizing feedfoward networks and time-delays is

the time lagged feedfoward network (TLFN). There are two categories of TLFNs,

focused and distributed. The focused variant consists of an array of temporal delay

filters serving as inputs to the desired neural network. The universal myopic map-

ping theorem developed by Sandberg and Xu mathematically proves the existence of

a TLFN which can approximate any shift-invariant myopic dynamic map [87]. Fur-

thermore, this architecture can be applied to arbitrary neural networks with known

learning rules. Alternatively, the distributed variant overcomes the time-invariant

restriction of focused TLFNs, which is a constraint of the universal myopic mapping

theorem. The distributed approach employs a finite-duration impulse response (FIR)

filter as opposed to simple linear filters. Furthermore, as a tradeoff for alleviating

the time-invariance requirement, the distributed approach requires more complex

learning rules such as the temporal-back-propagation algorithm [84].

Another approach to neural network temporal processing is through recurrent

networks which implement feedback loops as a means of temporal buffering [88] [89].

Jordan networks, [90] also known as sequential nets, are one such approach by which

the output layer loops back to state unit modules which buffer the feedback and

pass these values into the hidden layer. Similarly, an Elman network offers feedback

which is buffered through state units; however the recurrence occurs between the

hidden layer and the state unit layer directly. For both architectures, the back-

propagation algorithm works by treating the state unit layer as extra inputs to the

hidden layer. An extension to the back-propagation algorithm for recurrent neural
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networks is known as back-propagation through time (BPTT). The BPTT approach

is to unfold the recurrent network by duplicating the recurrent components as many

times as necessary so that an equivalent feedforward network exists and the standard

back-propagation algorithm may be applied [91].

A critique which may be applied to the aforementioned temporal neural network

models is that they are primarily supervised off-line learners. Off-line learning mod-

els require that any time a new sequence is to be learned the entire system must

be retrained. Furthermore, the laborious training time required to reach stability

is compounded by the temporal aspect in the sense that training data cannot be

randomly ordered every epoch to quicken the process, or if so there would be no

temporal meaning associated with the training sequences. Alternatively, Bradski

et al. [92] have developed a class of dynamically defined working memory neural

network models called sustained temporal order recurrent (STORE) models. These

models encode the temporal order of arbitrary sequences of items. The STORE class

of models has progressed incorporating additional features in the later variants. The

simplest one-level variation, STORE 0, is “adequate for working memory coding and

recall, provided that input durations are restricted” [92]. Expanding upon this capa-

bility, the two-level model STORE 1, “encodes temporal order for input sequences

whose items are not repeated” [92]. Various modifications may be applied to alter

the performance of STORE 1. One particular modification is the incorporation of a

decay term in STORE 2 which “adds a parametric degree of freedom to the control

of relative sizes of working memory representation” [92]. And finally, STORE 3, “ex-

tends system capabilities by allowing both repeated and non-repeated item sequences

to be encoded and recalled” [92]. Incorporating the STORE working memory model

into a larger model, Bradski et al. created an ARTSTORE model by cascading an

invariant processor, an ART2 module, a STORE model, an ART2 module, and an

Outstar network [93]. Although the STORE class of models has similar properties

to our architecture, in general it is computationally more complicated. As will be
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described in more detail in the next section, our approach requires a single level

whereas the STORE approach typically requires three. This simplification can be

significant when incorporating the temporal block into a large complex architecture

which may employ hundreds of temporal modules. As follows, we present our unsu-

pervised online learning architecture for temporal semantic encoding in combination

with ART modules.

An additional example of an on-line temporal learner can be found in the work

of Willams and Zipser [94]. In that example though, non-local connections and sig-

nificant computation are required. In the following, an unsupervised online method

for temporal semantic encoding is encoded. Our method introduces a computation-

ally slight addition to the non-temporal system, and requires only additional local

connections. The constraint to local connections allows this method to modularly

model functional subsections as found in biological cortex [95].

In addition to the above considerations, this method is notable in that it can

plausibly encode temporal sequences of arbitrary scale. Methods that rely on delay

lines or recurrent connections would need arbitrarily long delays or arbitrarily many

recurrent connections to encode time at arbitrary scales.

The following details a method to perform a structure preserving map of ob-

served temporal episodes into artificial neural tissue. Sensory input is received as

a continuous temporal series, but memory is encoded as a parallel spatial distribu-

tion of synaptic weights. This investigation develops the concept of adding temporal

integration between layers of ART units. We begin with each architecture layer com-

posed of a single ART module. An array of temporal integration units follows the

ART module. If we consider an input vector as a vector of temporal data streams,

i.e. input values varying through time, then the output of the temporal integrator

module is a vector of values that reflect the recency of input values at each position.

A temporal series of sensory signals that forms input to the first ART layer is encoded

into a temporal series of output vectors. By virtue of winner-take-all competition at
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the output layer of ART, these output vectors have only one active element. A series

of distinct ART output vectors is temporally integrated into a pattern of activations

that, in conjunction with the stored ART templates, represents the original series

of sensory inputs. This pattern, output by the temporal integration array, can be

stored in an ART module at the next layer. By using multiple ART modules at each

level and multiple levels, this scheme can form arbitrarily detailed and distributed

representations of episodic inputs.

The method of the experimentation upon a temporal episode architecture com-

ponent is to encode temporal semantic data as a recency gradient of classifications.

ART is used as the classifier that creates an active output on a certain F2 node

for any given input vector. Each element in the output vector of ART F2 nodes is

connected to the input of a leaky temporal integrator. It is important that the inte-

grator be leaky, otherwise the output would continually increase over time (assuming

continual input greater than zero), eventually saturating. A general leaky integrator

is modeled as Equation 2.12.

dy

dx
= −ay + x (2.12)

y(n+ 1) = (1− a)y(n) + x(n) (2.13)

A discretized (using Euler’s method with an arbitrary sample period of one time

unit) version of the leaky integrator is implemented in Equation 2.13. 1 − a is the

decay constant. In both equations, x is the input and y is the output.

A comprehensive example of this method’s operation is provided next. The fol-

lowing example assumes three arbitrary sensory input vectors. For the example,

let these sensory inputs create a grounded, stand-alone, example. However, if the

sequence of inputs over time were internal cortical activation patterns, the example
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Figure 2.8: ART with temporal integrator. Each F2 node has a temporal integration
element attached.

could be describing an additional functional level of cortex, i.e. internal cortical

activations instead of external sensory activations.

Let there be three distinct sensory input activation vectors A, B, C that form a

temporal semantic sequence which will be encoded. Inputs feed into an ART module

(see Figure 2.8). Each input results in a different active node output on the ART. By

placing a leaky temporal integrator on each ART output node, a temporal sequence

of inputs is encoded as a single real valued vector. The integrated vector is a recency

gradient, where the order of element amplitudes (from low to high) represents the

order of occurrence of the input vectors (from oldest to most recent). As mentioned,

the value of a given integrator output node will decrease over time. As a result, the

farther in the past a given input was observed, the smaller a value the corresponding

integrator output will have (until at some small activation level, the integrator output

is lost in the noise of the system).

If the first input pattern is 0110, let a corresponding output of the ART be

[1 0 0], considering only the first three output nodes for simplicity. The temporal

integration array initializes to [0 0 0] and upon receiving the first ART module output,

becomes [1 0 0]. At the second timestep, the ART module gets input B and outputs

[0 1 0]. The temporal integration array decays down to [0.707 0 0] then receives the

timestep two ART module output to result in the temporal integration array output
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Temporal Integrator Values ART Input ART Output TInt Output
Time 0 0 0 0 0 0 0
Time 1 A 1 0 0 1.0 0 0

Decay 1-¿2 0 0 0 0.707 0 0
Time 2 B 0 1 0 0.707 1.0 0

Decay 2-¿3 0 0 0 0.5 0.707 0
Time 3 C 0 0 1 0.5 0.707 1.0

Table 2.1: Temporal integrator module operation illustration

of [0.707 1.0 0]. At the third timestep, the ART module receives input C and gives

output [0 0 1]. The temporal integration array decays down to [0.5 0.707 0] then,

with the new input of the ART output, becomes [0.5 0.707 1.0]. This process is

captured in Table 2.1.

Finally then, the temporal input sequence A, B, C is encoded at a single point

in time as the vector [0.5 0.707 1.0]. To the level of detail that the ART categories

have generalized afferent input vectors, [0.5 0.707 1.0] encodes both the temporal and

semantic information of the input sequence. The temporal information is the order

of the input sequence. The semantic information is, in this case, sensory activations

that we labeled A, B, and C. Note that the semantic information is only preserved

through the connectivity of the temporal integration array to the ART module and

through the templates in the ART module.

Extending the architecture, the vector [0.5 0.707 1.0] can now be encoded by a

level 2 ART, see Figure 2.9, to uniquely represent the sequence A, B, C. Similarly,

B, A, C would result in a level 2 ART representation of [0.707 0.5 1.0], given that

the outputs of level 1 ART were [0 1 0], [1 0 0], [0 0 1] in sequence.

Given that the level 2 ART representations are unique (to the level of precision

determined by the ART operational parameters), a top-down recall operation can

recover the original sequence A, B, C from the level 2 ART encoding of [0.5 0.707 1.0].

For example, the temporal integrator output of [0.5 0.707 1.0] may result in the

activation of the first F2 output on level 2 ART. Then, given an augmented ART with
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Figure 2.9: ART with temporal integrator followed by ART. This architecture ele-
ment creates classification of temporal sequences of classifications of neural activation
patterns.

top-down recall ability, as well as a playback mechanism for the temporal integrator,

subsequent top level stimulation of the the first F2 node on the level 2 ART will

result in the sequence A, B, C being played back at the system input level.

To enable the use of this temporal integration mechanism, ART is supplemented

by specifying a top-down behavior. When an F2 node is stimulated from above,

it plays down the associated template’s activation levels to the ART input layer.

Template activation level adjustment is where all memory storage in ART occurs,

so playback of a given template represents recall of one memory component at the

scale of that ART unit.

To enable recall, the bottom-up temporal integration scheme is supplemented

with a top-down behavior. As the output of a temporal integrator array is a pattern

encoding the order of input activation, recall of that gradient should play back the
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temporal integrator inputs in the observed order. When top down signal propagation

places a pattern on the temporal integrator array from above, the array will first

activate the input corresponding to the lowest value in the pattern, then the next

lowest, and so on. This behavior will play back the input activations in their original

order. As a manner of implementation, it can be imagined the top-down stimulation

of the temporal integrator array sets a threshold for each element of the array. The

integrators then start integrating up from zero and fire the associated input node

when their internal value reaches the threshold. The lowest threshold will be reached

first, which is correct because it represents the input that occurred farthest in the

past, the input which has decayed farthest, and therefore the input that should be

played back first.

2.8.4 Top-Down Recall

Recall played a central part in the operation of embodied neural agent, so before

embodied experimentation it was confirmed that the recall mechanism functioned as

desired. Figure 2.10 shows the sequence of simulated foveal input data. The first

level ART forms templates to represent the input visual data symbols. The tem-

poral integrator forms spatially encoded patterns to represent sequences of symbols

observed by the first layer ART as passed on by the first layer ART’s F2 node activa-

tion. The second layer ART forms templates that represent the patterns output by

the first layer temporal integrator array that represent temporal sequences of input

symbols. In this case, the timescales are such that the second layer ART captures

temporal integrator patterns corresponding to three input timesteps. Figure 2.11

shows the recall of one such sequence.

Note that the recalled sequence is not an exact copy of the input sequence. The

plus and diamond symbols have been aliased to a common symbol. This aliasing

occurs because in the input to template matching used by ART, the plus and diamond

symbols are sufficiently close for classification to the same F2 template. An easy
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Figure 2.10: Memory and recall input sequence.

parallel can be drawn in human memory formation. To the non-expert, transient

observation of either a grey Toyota Corolla or a grey Honda Accord is likely to form an

aliased memory of “grey import sedan.” In ART, the vigilance parameter determines

how close two inputs must be to be classified into the same template. The vigilance

parameter was set arbitrarily at 0.8, in a range of 0 to 1, for the experiment. In our

architectures, the vigilance parameter of the ART units is an independent variable

that can be used to tune the performance of the network. One of the trade offs

inherent in tuning with the vigilance parameter is memory space versus precision,

greater vigilance will form a greater number of more precise templates. Memory

space in our model is analogous to cortical tissue. We will be able to tune a part,

or all, of our model for more precise memory formation, but only at the expense of

using up more of a limited resource.

58



Chapter 2. Background

Figure 2.11: A sample memory and recall output sequence.

Background has now been provided for the methods that will be implemented

to test the theories put forth as embodied artificial neural architectures. The next

chapter, Apparatus, describes the neural architecture which is built and placed into

a simulated embodiment.
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Apparatus: Embodied

Environment and Neural

Architecture

This chapter describes the virtual apparatus which enabled the experimentation

described in following chapters. The chapter begins with a description of the neural

simulator which is used to run experiments, followed by a description of the real

morris water maze apparatus upon which the virtual water maze is based. Then

begins the descriptions of virtual components. The simulated rat agents’s body is

described, followed by the computational neural architecture which comprises the

simulated brain. Lastly described is the simulated environment in which the rat

agent computationally embodied.

3.1 Neural Simulator

eLoom [96] is an open source software tool that allows users, through the use of a

specification language, to construct and execute a C language program that simu-

lates arbitrarily connected, hierarchically organized neural networks and associated
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simulation behaviors. The specification language supports five component types:

modules, nodes, node arrays, directed connections, and directed connection arrays.

Nodes and connections may be grouped into arrays or modules, and modules may

contain other modules. All components have user-specified simulation functions and

data storage.

The eLoom parser takes as input the specification file and constructs a system

composed of efficient C language data structures for the designated network com-

ponents, each containing function callbacks. The function schedulers may be ap-

plication dependent and therefore may require customization by the user. Upon

completion of a simulation, eLoom has the capability to regenerate the network’s

specification file (useful for self-modifying neural networks) and to save an engram

of all network components’ states. This allows a simulation to be continued from

the point it stops. Each Flatworld agent has an independent eLoom-specified neural

system that can access all agent sensors and actuate all agent motor functions. The

code for each agent runs in a separate thread, allowing for efficient execution on

modern multicore computer architectures.

3.2 Morris Water Maze

The Morris water maze is one of the most widely used tasks in behavioral neuroscience

for studying the psychological processes and neural mechanisms of spatial learning

and memory [97]. The physical Morris water maze task consists of placing rats into

a large circular pool of water from which they can escape onto a hidden platform.

The platform is hidden by virtue of being just under the surface of the water, where

the water is opaque due to addition of powdered milk or some other substance. As

such, the platform offers no visual cues to guide escape behavior. While rats could

theoretically escape by swimming randomly or in unsystematic search paths within

the pool, in practice normal rats learn to swim directly toward the platform from an
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arbitrary starting position at the edge of the pool [98].

The following section describes the neural architecture which incorporates the

embodied hippocampal model. This system is the one which will be implemented in

a simulated embodiment. The embodied hippocampus incorporates the neurophys-

ically based design scheme from the stand-alone hippocampus with architectural

changes to support sensory-motor episodic memory moderated by the dopaminergic

system.

3.3 Embodiment

This section describes the computationally embodied neural architecture. The com-

putational model and simulated environment was produced using the network speci-

fication and simulation package eLoom [96]. In the first subsection, the treatment of

motor output for the embodied agent is described. Then the link between behavior

and perception is discussed, followed by the link between motor output and sensory

input. The dopaminergic subsystem, which modulates episodic memory binding

based on reward and expected reward observation, is covered next. Finally, the total

architecture and its operation is described.

3.3.1 Embodied Agent and Flatworld

Flatworld [96] is a general-purpose two-dimensional agent-based modeling tool for

the training and testing of one or more agents. The 2D world is populated with

geometrical objects, with which an agent may interact. The agents and objects have

physical properties such as shape, color, food value or potential energy, position and

velocity, and mass. An agent has a round body with visual and contact sensors as

illustrated in Figure 3.1.

In the simulations, agents have sensors, both internal and external, and actua-

tors. Sensors include artificial eyes, skin contact sensors, and muscle actuator states.
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Actuators include artificial muscles for movement within the world (forward- back-

wards, left-right, change in heading). Light signal strength diminishes with distance,

similar to the real world. Finally, each agent has a controller that reads sensor

data, both internal and external, and produces control outputs to its actuators. The

control of agents may be individually customized through the use of “personality”

parameters. In this study, the controller is the neural architecture.

fovea

skin

Figure 3.1: A representation of an agent in Flatworld.

3.3.2 Neural Architecture

The complete neural architecture is described in this section. It is composed of a small

number of subnetwork components including Fuzzy ART [64], Fuzzy LAPART [69]

[99], Temporal Integrators [73], gating logic, and sensors/actuators commensurate

with those of the agent described above. Fuzzy ART, Fuzzy LAPART, temporal

episode encoding methods, and the dopaminergic system were introduced in the

Background chapter. The following describes how these subnetworks interconnect

and interact to form the distal reward neural architecture.

Figure 3.2 illustrates the overall distal reward architecture that is composed of

the previously described subnetworks. The agent has a visual sensor composed of

an array of color brightness detectors, proprioceptive sensors that measure motor

activity, touch sensors that detect contact with objects in the world, and finally
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Figure 3.2: The complete neural architecture. The boxes along the bottom represent
sensors and actuators available to the agent. The Visual sequence learning track
(V ) is on the left while the Proprioceptive sequence learning track (P ) is in the
middle. The LAPART (L) system performs associative memory functions. A simple
dopaminergic system (D) provides reward dependent control of the architecture.
Finally, the Default Motor Plan (M) component generates random-walk motor plans
for exploratory behaviors. The pentagons labeled S1 and S2 are circuits that switch
one or the other input bundle through to their outputs as follows: If the input
indicated by the solid arrow is active, then it is directed to the output, otherwise,
the open arrow input is directed to the output. The circle with a cross is a gating
circuit that controls the bidirectional flow of signals.

motor actuators that direct the speed and direction of the agent in the world. The

neural architecture is divided into five major components: 1) V , the visual temporal

sequence component, 2) P , the proprioceptive temporal sequence component, 3) L,

the Fuzzy LAPART association component, 4) D, the dopaminergic component, and

5) M , the default motor plans component. The latter component generates random
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walk motor commands in the absence of a learned motor plan recall. These compo-

nents are interconnected with connection bundles, some of which are modulated by

switch or gate circuits. A switch circuit directs one or the other input bundle to its

output, while a gate may block the bundle with a single control connection.

X
N-2

X
N-1

X
N

Reward

Figure 3.3: An example of the agent moving between way-points to arrive at the
reward platform. Either a learned or a default motor plan moves the agent from one
way-point to another.

How does this architecture learn to find its target through distal reward learning

processes? To answer this, we will use the Morris Water Maze as an example scenario.

In the first learning trial, Trial 1, the agent begins its existence at a release point

in the tank and, having learned nothing at this point, it executes a default motor

plan that causes exploratory behavior. See the lower right-hand portion of Figure

3.2. Referring to Figure 3.3, in Trial 1, the release and reward locations are XN−1

and XN respectively. During the movement between these two points, the V and

P components are actively capturing perceptual sequences encoded as V L-F2 and

PL-F2 node activations. (Note that references to Fuzzy ART internal layers within
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major components will follow the notation of CX-Fn where C is the component

label, X is the label of a Fuzzy ART internal to that component, and Fn is one of

its layers.) When the agent ultimately encounters the hidden platform at location

XN , the touch sensor signals the D component of the presence of a reward in the

environment. The D component is designed to activate two possible processes: 1)

retrospective learning [100], and 2) prospective action. Retrospective learning is the

process of learning from the past, while prospective action is the process or planning

for the future. In this case, the agent has encountered the reward for the first time

and therefore the D component enables only the retrospective learning process.

The Trial 1 retrospective learning process is graphically illustrated in Figure 3.4.

This form of learning occurs in the L (LAPART) component of the architecture with

support from the D component. Due to D component activation, the V component

undergoes episodic recall using the V L-F2 node active at the time of the reward.

This recall would, if allowed to completely unfold, play back a temporal sequence of

visual templates in the V S-F1 layer, learned from the sequence of visual perceptions

experienced during the motion from XN−1 to XN . For the purposes of learning a

distal reward, only the first (oldest) visual template is recalled and forwarded to the

A-side of the L component through switch S1 (right center of Figure 3.2). In parallel

with this, the D component gates the PL-F2 node active at the time of the reward

into the B-side of the L component. This node codes the proprioceptive perceptions

experienced during the motion from XN−1 to XN . The A and B-side Fuzzy ARTs in

the L component perform their self-organizing classifications, and if a lateral reset

does not occur, a lateral priming connection is learned between LA-F2 and LB-F2.

That is, a strong synaptic weight is learned in the L-M association matrix creating a

priming between the winning LA-F2 and LB-F2 nodes. This creates an association

between the A template representing the visual scene at location XN−1 and the

proprioceptive plan representing the motion from there to the reward at location

XN .
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Figure 3.4: Illustration of retrospective learning, when a reward is detected at po-
sition XN . A priming connection is learned between the oldest V S-F2 template
captured near position XN−1 and the PL-F2 template that encodes the current
proprioceptive sensory sequence generated by default motor plan exploration. This
priming occurs within the L component. In the future, the location that resonates
with this V S-F2 template will provide a “pseudo” reward for all previous proprio-
ceptive sensory sequences leading to that location. See Figure 3.3.

For the second trial, Trial 2, we assume that the agent is released at location

XN−2, illustrated in Figure 3.3, and having learned nothing about this new location;

it again executes a default motor plan that causes exploratory behavior. In this

example, we assume the default motion moves the agent to location XN−1. Note

that when the D component is not active, raw visual patterns are simultaneously

directed to the A-side of the L component through the S1 switch as well as to the

V component. If at some point during motion a visual input pattern resonates with

an existing LA-F2 template, then two actions will occur, illustrated in Figure 3.5.

First, the D component is activated through the connection from the LA-F2

layer, signaling that the agent is at a familiar visual location previously associated

with a rewarding experience. We refer to this as detecting a “pseudo” reward in
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the sense that the agent is aroused as if an actual reward has occurred because it

now “knows” how to get to the reward from this location. This leads to a new

retrospective learning process as describe in Trial 1, creating an association between

the a template representing the visual scene at location XN−2 and the proprioceptive

plan representing the motion from there to location XN−1. See the left half of Figure

3.5 for an illustration of this process. Upon completion of retrospective learning, the

D component becomes inactive.

Second, through an association learned in Trial 1, the active LA-F2 node resonant

with the current visual input pattern at XN−1 will laterally prime the B-side of the

L component. This will cause the B-side Fuzzy ART in LAPART to the read out the

associated PL-F2 node that encoded the proprioceptive sequence for motion from

XN−1 and XN . This information is directed through the gate to into the PL-F2 layer

of the P component, initiating an episodic recall of the proprioceptive sequence. See

the right half of Figure 3.5 for an illustration of this process. During this recall,

PS-F2 templates are activated in the learned sequence priming the PS-F1 layer

with time varying proprioceptive signals. Finally, these signals are directed to the

motor actuators through switch S2, blocking the default motor plans.

A unique aspect of this approach is the use of proprioceptive recall to replay

motor function, reminiscent of Common Coding Theory [101] [102]. As the recall

occurs, PS-F2 templates are channeled to motor actuators in the same sequence as

they were learned, thus reproducing the motion from location XN−1 to XN . This

assumes that for every actuator there exists a proprioceptive sensor and that sensors

are appropriately scale to the stimulus. At the end of the recall, the agent will find

itself at the reward. By recursive application of Trial 2 notions with multiple agent

release locations and orientations, the architecture will begin to tessellate the water

tank space with pseudo-reward locations, creating chains of proprioceptive sequences

to move to the reward location.
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Figure 3.5: Illustration of both retrospective learning and prospective action that
occurs when the agent arrives at a distal “pseudo” reward position XN−1. At this
point, the agent learns the association of the oldest V S-template with the current
PL-template proprioceptive sensory sequence.

3.3.3 Architecture Parameters

Several selectable parameters influence the computational architecture behavior.

These parameters include:

• ART module vigilance parameter.

• Temporal semantic representation time constant of integration.

• Angle of visual sensory arc.

The computational neural architecture contains numerous ART modules, each

module with a potentially unique vigilance value. A large amount of study could

be devoted to characterizing embodied behavior under different combinations of vig-

ilance values. In the greater context, only the vigilance values which results in

approximately optimal behavior are interesting. Recall that vigilance values control

the generalization level of output classes. It can be assumed that biological neu-

ral ensembles performing classification function, such as simple cortical cells, have
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approximately optimized their level of generalization through some form of feed-

back. This occurs outside the context of experiments performed with biological rats.

Likewise, while the optimization of generalization level has occurred for the compu-

tational architectures, it is outside the context of behavioral experiments and is not

empirically reported on.

Temporal semantic representations in the computational model are formed as

temporally integrated recency gradients of classifications of neural activations. These

neural activations are perceptually grounded in sensory semantic information. The

time constant of discrete integration is a model parameter which controls how quickly

each component instant in a temporal memory decays away. Too quick of a decay

would remove the temporal aspect of the temporal semantic representation because

all neural activation history would decay below noise at the first step. Too slow of a

decay would result in poor chaining of expected reward cued motor paths. It is the

chaining of expected reward observations which allows a computational rat to form

navigation skills that generalize across the physical space of the tank. With only

a single long motor path, the rat might perform very well at reaching the platform

from a single release point. However, one of the behavioral task is a transfer learning

generalization task, when training occurs from one release point and testing from

another. Performance would be expected to be very poor in the transfer learning

task if temporal decay were too slow.

Through simulated embodiment, visual cortex is activated due to environmental

cues. Afferent visual stimuli are centered in the direction that the computational rat

is facing. Biological rats have a vision field of roughly 210 degrees. Detailed modeling

of biological visual input would be fairly complex. While moving in the morris water

maze tank, rats constantly rotate their heads back and forth. As a result, it can be

assumed that their sensory cortex integrates visual input from nearly 360 degrees

around the rat. Not all of this environment will be sensed to the same resolution

though, the foveal region at the center of the retinal sensor field has a higher density.
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The general consequence of this higher foveal density is that whatever the eye is

looking at will be seen in more detail. Based on this information, an implementation

decision was made that environmental information would be present in the sensory

cortex in a high resolution form for stimuli straight ahead of the rat and in a low

resolution form from stimuli all around the rat. The angle which is considered straight

ahead is configurable. In the embodied model, it is fifteen degrees on each side of

center, or thirty degrees of total arc .

3.3.4 Expected Reward Visualization

Figure 3.6 is a visualization of sensory observations bound to expected reward.

Colored arrows mark location and orientation of sensory observations that have been

chained back, through experience, to reward. To form the visualization, a rat model

was embodied in simulation to build up sensory memories and bind them to expected

reward. These reward bindings were then probed for a match to the sensory stimuli

that a rat would observe from each point in a grid superimposed on the simulated

environment. At each point, observations were considered in two degree increments

of orientation. An arrow is drawn at points and orientations where a match is found

with the rat model’s bound memory. The color of the arrow indicates expected

reward level. Red arrows indicate higher expected reward, and proceeding down

through the spectrum, blue arrows indicate low expected reward. Figure 3.7 provides

a close-up view of the visualization.

As one might expect, given the above description of expected reward binding,

bound locations that are close to the platform have high expected reward. These

near platform locations are likely one motor path segment away from the platform

and actual reward.

In Figure 3.6, we see red arrows in the bottom left portion of the tank, far

from the platform. We hypothesize that these formed as a sensory alias of the

reasonable red arrows near the platform. The term sensory alias is used here in the
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Figure 3.6: This figure visualizes the expected reward content of episodic memo-
ries bound in the embodied computational hippocampus. Arrows represent bound
episodic memories with a corresponding expected reward level. Red arrows indi-
cate high expected reward and blue arrows low. New episodic memories are bound
when observations linked to expected reward occur. During exploration if the com-
putational rat were to become located at the tail of an existing arrow, new arrow
formation would occur.

sense of a discrete sample sensor which causes aliasing between frequencies which

are greater than half the sampling frequency. When we probe the model’s memory

for matches to sensory stimuli with bound expected reward, matches can occur for

locations that were never actually bound to memory. The lower left portion of the

tank simply appears to the rat model as similar to some portion that is near the
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Figure 3.7: Zoomed expected reward visualization.

platform. Behaviorally, this might lead to apparent confusion if the rat model tries

to follow a false memory.

In Figure 3.7, we see some red arrows that are oriented tangential to the platform.

These arrows appear to indicate that non-optimal paths might be taken. The model

does not purport to solve the distal reward problem optimally though. It is generally

reasonable to suggest that if the rat is very near the platform, movement in any

number of orientation can still lead to reward in fairly short order. Also, consider

that as the rat can not see the platform, there is very little difference between the

sensory stimuli from being just north of the platform, where a south-west arrow

points directly to reward, and the sensory stimuli from being just around the corner,

to the west, of the platform where a south-west arrow now appears to be in error.

The general trend of the visualized arrows is the most interesting result.

The expected reward visualization provides good evidence that the model works

as intended. Behavior experimentation in the next section will provide further evi-

dence that the embodied neural architecture behavior corresponds with the behavior
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of embodied biological neural architectures, i.e. real rats.

3.3.5 Model Assumptions

Several assumptions have been made in the design of the computational neural ar-

chitecture. Each assumption is explained in more detail in a paragraph after the list.

The assumptions include:

• Resolution of the simulated environment is sufficient for experimental tasks.

• A two dimensional environment is sufficient to demonstrate distal reward learn-

ing.

An example of resolution of the simulated environment is the number of data

points used to represent an object. A fully realistic simulation would need at least

as many data points for a simulated object as there would be atoms in a real object.

On the sensing side, a fully realistic simulation would use as many visual sensor

elements as there are receptive cells in a corresponding retina. Computational load

generated by the neural model constrains resolution. If unbounded computation were

available, then sensor density equivalent to biological retinas could be implemented.

As computation is of course bounded, the implemented sensory density is lower than

the biology. This is compensated for by a simpler simulated environment as compared

to the real world environment experienced by biology. It is asserted that so long as

the modeled sensor density is sufficient to resolve between different features present

in a given environment, then the attached neural system is receiving sufficient input

resolution to function. A lack of successful distal reward behavior might indicate

that input resolution is insufficient. Successful distal reward behavior will indicate

that all elements of the computational neural system are at least sufficient. This

same line of reasoning applies to other computational considerations, such as the

maximum number of classification types allowed in ART modules. In these other

cases, successful behavior will again validate simulation resolution assumptions.
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It is assumed that biological rats have visual cortical functions which are capable

of distinguishing between proximal and distal features in the environment. In large

part, the biological ability to distinguish between proximal and distal objects is

based on sensory input from a three dimensional world. Because the experiment

simulations occur in a two dimensional world, exact neural processing equivalents

would not function. Based on the assumption the distal and proximal object are

differentiated between in visual cortex, that distinction is made implicitly in the

model and separate cortical information streams are incident upon the input regions

of hippocampus. These separate information streams are implemented as multiple

one-dimensional features vectors from the observed environment. If this assumption

is wrong, then the implementation should have been a single one-dimensional feature

vector. Neuroscience literature provides many examples of distinct feature types

extracted throughout sensory cortex from the original raw sensory input [103] [104]

[105]. As such there exists evidence to support seperation of feature elements in

the embodied architecture, which is a necessary consequence of the two dimensional

environment.

3.4 Water Maze Environment

Figure 3.8 shows a visualization of the simulated water maze environment. The four

cardinal rat release points are illustrated.

The simulated environment exists in two dimensions. Environmental simulation

is performed through assuming a diffuse light source and then ray tracing visual

sensor input. Each visual sensor element returns an intensity value for the first

object to intersect a ray orgination from the sensor element. Objects are opaque,

and as the environment is two dimensional, there is no existence of a large relatively

distal item visible above a smaller relatively proximal item. The first item that the

ray encounters in a given direction is the only necessary input to the returned value.
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Figure 3.8: Illustration of water maze environment.

The sensed intensity value of an object is a function of the color of the object and

the distance from sensor to object.

There are three objects in the Morris water maze environment in addition to

the embodied agent; the tank, the room exterior, and the escape platform. The

tank is a circle in which the embodied agent is constrained to remain. The tank is

five hundred simulation distance units in diameter. The outer room is an iregular

polyhedron that is roughly square in shape with many facets on each wall, these
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facets make up the distal features of the experimental environment. The room is

fourteen hundred simulation distance units across. Biological Morris water maze

experiments are most often performed in a lab setting, where the distal features are

bookshelves, sinks, and other items in the lab. The facets of the simulated room

walls are functionally equivalent to the variety of visual cues which might be found

in a given lab setting. The final object is the escape platform and is not visible

to the agent. The escape platfrom is thirty simulation distance units across. The

computational rat is twenty simulation size units in size.

Biological rats undergoing the Morris water maze task have numerous sensory

cues available in addition to the visual and limited tactile cues that are simulated.

Almost any lab setting will have olfactory gradients stemming from sources such as

the rat cages. Auditory cues may exist such as forced air through a ventilation duct.

Internal inertial navigation senses are also present. Together, these cues present the

biological rat with a notably richer environment than the simulation provides. This

makes the simulated Morris water maze task more difficult than the real task because

there is less information present for differentiating locations in the simulation. For

the purposes of experimental design it was important to err on the side of less sensory

input as this places a greater burden on the learning system and results can not be

explained away as due to extra sensory input beyond what biology would have.

3.5 Architectural Addition of Categorical Limits

Using category theory, Healy and Caudell have shown that a standard ART architec-

ture (specifically ART1) can only partially represent the semantics of its input space

[67]. Specifically its architecture does not contain the necessary node and connection

structures that are required to unambiguously represent concepts. These important

categorical structures are limits and colimits, and this section summarizes changes

to ART which allow ART to represent categorical limits and colimits. More detail
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is found in Appendix B. In the categorical limits augmented architecture, all ART

units are replaced with the augmented version.

In category theory, a limit represents a unique property which all objects in a

collection map from. The dual notion, a colimit represents a unique property which

all objects in the collection map to. Notionally, the limit is a concept which a set

of concepts map from. For instance, a category made up of nodes representing a

collection of red items might have a limit node representing the concept red. This

“red” limit node would be a generalization of the nodes which map from it. Applied

to an embodied system, limits and colimits correspond to specificity and generaliza-

tion in semantic space as encoded by sensory observations. Designing a categorical

limit representation for the neural architecture enables generalizations to be encoded

from the sensory observation space. These observation space generalization concepts

correspond to semantic generalizations as mapped from observation by the particular

embodied system.

This ends the Apparatus chapter, which has described computational neural mod-

ules and architectures developed for this research. Having described the elements

with which experiments will be performed, the experiments themselves are described

in the next chapter.
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Approach

This chapter describes the experimental approach used to measure the performance

of the embodied neural architecture in a distal reward learning task.. Three main

types of computational experiments will be performed: 1) distal reward learning,

which quantifies the learned reward behavior in the virtual Morris Water Maze task,

2) persistence to goal, which., and 3) rapid transfer learning, which. Each of these

are well observed behaviors in biological rats. For each type of experiment, two con-

ditions will be compared: archirtectures with and without the categorically modified

ART modules. The Results chapter contains data for each of the three experiments

for the two conditions, then presents a stastical comparison of the two.

4.1 Distal Reward Learning

The first behavioral measure addresses learning with a static platform versus learning

with a platform that moves randomly at each release. Moving the platform at each

release creates an experimental setup where no learning is expected, or at least there

can be no learning to navigate directly to the platform, an embodied entity might

learn to become better at searching for novel platform positions and other such

tasks that could still be learning in the always changing environment. The random
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platform placement setup gives a baseline against which to compare the experimental

setup where learning is expected.

Part of the experimental design is to break the releases up into blocks, where

each release is the action of setting the rat in the water tank at a certain point

then allowing the rat to move freely. Each block consists of four releases, one from

the north release point, one from the south, one from the east, and one from the

west. The four releases in a block are chosen in random order without replacement.

Releasing from points in random order controls the experiment for bias that could

be introduced by a constant training order.

To mimic biological experimental design, multiple experiments are performed

with multiple computational rats. In biological Morris Water Maze experiments,

results are collected across a sampling of rats and then statistically analyzed for

evidence as to whether the sample results are likely to be indicative of behavior

in the full population. If an observed behavior is not statistically valid given the

sample size and variance across the sample, the results can only be said to represent

behavior of those specific rats. Statistical analysis is used here in a similar manner.

Without valid statistical analysis, a set of results can only provide evidence that the

artificial rat model is capable of producing a some number of good results. With valid

statistical analysis, it can be claimed that the sample results provide evidence that

the model itself exhibits an observed behavior. In more detail; given proper statistical

results, it can be stated that any size population of simulated rats produced by our

model is predicted to exhibit the same behavior as the sample set of simulated rats.

In biological rats, each rat is effectively unique due to an untold number of dif-

ferences in specific neural network layout and weights. These differences come about

in physiological development, and due to different environments. Environmental dif-

ferences are likely not large for laboratory rats, but none the less, one rat will be

in the first cage in the row and another rat will be in the second cage in the row.

Modern laboratory rats can be obtained with remarkable uniformity in genetically

80



Chapter 4. Approach

encoded information, but no two rats are going to be unique down to the last base

pair and synaptic weight. That assertion can be backed up by simply considering the

average rate of genetic transcription errors and the total number of base pairs in a

rat genome. There is an element of randomness in each individual rat’s genome, and

that would be expected to result in an element of randomness in each individual rat’s

neural structure. In regard to synaptic weights, two rats that were otherwise abso-

lutely identical could catch two slightly different concentrations of the same scent one

day and forever after have divergent synaptic values where the sensory activations

from those scents passed through cortex.

In the simulated rats, without design otherwise, the neural structure would be

identical between rats. The model parameter which is employed to model subtle

differences between rats is the random search path that is taken when no expected

reward stimulus is recognized. In the algorithm that governs a simulated rat’s neural

activations, and —through embodiment— behavior, there is a pseudo-random num-

ber generator that feeds into motor action. This pseudo-random number generator

can be seeded with an initialization value. A different series of pseudo-random num-

bers will be generated for each seed value. Each time the same initial seed value is

applied, the same series of numbers will be created. In this way a whole population

of pseudo-random series is obtained that can be repeated by applying the same seed

value. A different series of pseudo random numbers results in a different random

search path. A different random search path results in a different instance of neural

learning as different stimuli are encountered in different orders. This provides an

advantage over biological experiments in that an artificial rat can be trained on a

static platform location, then that rat can be compared to itself trained only with

random platform locations. This is a cleaner experimental design than is possible

with biology, but the nature of the statistical analysis reduces the results to a certain

sized sample set with a certain variance. Being able to train the same rat, without

other prior experience, with different scenarios does not actually help or hinder the
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scientific validity of the comparison.

In the context of the Morris Water Maze task, and biological or social science

experiments in general, the frequentest method of statistical hypothesis testing is a

pervasive standard. A falsifiable null hypothesis is tested using observed data. A

null hypothesis is tested by calculating how probable the observation of a set of data

is if the null hypothesis were true. This probability is called a p-value. The t-test

is the standard method of testing a null hypothesis between two groups. Analysis

of variance (ANOVA) is the standard method for extending the t-test to more than

two groups.

The null hypothesis for the first type of experiment, static platform versus random

platform placement, is that over repeated releases, a rat does not learn to navigate

more directly to a static platform location. In other words, the rat will not learn the

location of the platform. As described above, it is not just intended to show that the

computational neural model is capable of demonstrating rat like behavior but rather

that any artificial rat which is an embodiment of the computational neural model

is expected to demonstrate rat like behavior. Therefore a sample set of rats and an

appropriate statistical method is utilized.

The R code:

f i t <− aov (data$pl˜factor ( dtat$g )∗factor (data$tb )

+Error ( factor (data$r ) ) )

summary( f i t )

is used for the analysis performed. The form of the input data is displayed in Table

4.1. In the PathLngth column, the value is the sum pathlength that the first rat took

to the fixed platform location across the N, S, E, W release points. The rat number

and platform behavior are indicated by the Rat 1, Group 1 indicators in that first

row. There are 40 artificial rats, 20 in group 1 with the fixed platform location, and

20 in group 2 with the changing random platform location. TrlBlk indicates which

trial block the pathlength measurement is from.
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Rat Group TrlBlk PathLngth
1 1 1 438
1 1 2 382
1 1 3 642

...
20 1 100 384
21 2 1 302

...
40 2 100 406

Table 4.1: Form of input data for statistical analysis in R.

4.2 Persistence to Goal

The next behavior is persistence to goal. First, a rat learns to navigate to a given

platform location. Then that platform is removed. Persistence to goal behavior is

observed when the rat swims around the previous location of the platform, even

though the platform is no longer present.

Persistence to goal behavior is tested by training an artificial rat on a fixed

platform location. Training occurs by randomly selecting release points from the four

release locations without replacement, just as in the basic task, so that each trial

block includes having the rat trained once from each release point. Three more blocks

of releases are then performed with no platform present in the tank. The first three

blocks from training are used as the untrained performance measure. These first three

blocks show the rat still learning where the fixed platform is located. The untrained

rat should have no preference for persisting around the platform location because

the untrained rat has no knowledge of the platform location. The three untrained

blocks are compared against three blocks of the trained rat with no platform in the

tank. Therefore, the performance as measured by percentage of time spent within

the platform region of a rat with no training is compared to the performance as

measured by percentage of time within the platform region of a rat that learned to

navigate to an escape platform. For the ANOVA, the three untrained blocks are

group one and the three trained blocks are group two.
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The null hypothesis is that a trained rat will show no preference toward the

learned platform location compared to a rat which has not been trained on the

platform location. Preference toward the learned platform location is measured as

the percentage of release time that the rat spends within a given distance of the

location where the platform is or was during training. Percentages of release time in

proximity to the platform is calculated across the three blocks for each of the twenty

experiment rats for each of the two groups. This gives a vector of forty measurements

of observed persistence. The forty measurements are divided into two groups. Group

one is the persistence of untrained rats. Group two is the persistence of trained rats

with the platform removed. The p-value resulting from an analysis of variance of

the results gives the probability that the analyzed set of results could have been

generated if the null hypothesis were true.

4.3 Rapid Transfer Learning

The final empirically measured behavior is known as rapid learning or transfer learn-

ing. The rat learns to escape the water maze from one release point, and then is

released from a different point. The behavior being tested is whether the trained rat

will find the platform any quicker from the novel release point than a rat which has

never performed the Morris Water Maze task at all.

There are two groups of rats, those which are have never been released into a

tank, and those which have been released and learned to find the platform from one

release point. To account for possible bias from certain release point training-testing

combinations, all possible combinations are tested. I.e. a rat will learn to navigate to

the platform, with no prior experience, from each of the north, south, east, and west

release points. Taking advantage of the ability to have multiple copies of the same rat,

a rat which has only learned the north point is released from each of the east, south,

and west points to test transfer learning from north to east, north to south and north
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to west respectively. Likewise let the rat learn to escape from the east release point,

then release from the north, south, and west. Learn from south, then release from

west, north, and east. Learn from west, then release from north, east, and south.

In all cases pathlength to goal is measured. The first three blocks of learning are

recorded for the rats which have never been released in any experiment. These three

naive blocks give a baseline pathlength for unexperienced rats from the north, south,

east, and west. Comparison is made of the pathlength to goal for an unexperienced

rat released from the north to the pathlength for a rat which has learned to navigate

to goal from the other three directions, thereby getting three comparisons for each

initial release point. That makes four unexperienced measurements, each of which is

compared to three measurements from rats with prior experience for a total of twelve

comparisons per rat. This is repeated for a set of twenty sample computational rats.

Therefore, the performance as measured by pathlength of a rat with no training

from any release point is compared to the performance as measured by pathlength

of a rat with training from the wrong release point. By “training from the wrong

release point” it is meant that the rat has been trained from a different release point

to find the platform in the current tank, however the rat has not been trained from

the current release point therefore the rat only has learning from a “wrong” release

point and none from the tested release point. For the ANOVA, the three untrained

blocks are group one and the three trained blocks are group two.

The term “wrong” is used to unambiguously connote that transfer learning is

occurring from training on one release point to performance on learning to navigate

from a different release point. A positive result will be if this wrong training improves

performance.

This protocol results in sixteen subgroups. Four subgroups are the four cardinal

training release points. Then there are an additional four sets of three subgroups

for the three transfer test release points following each training release point. The

pathlength measures of the first three trial blocks of the four training release point
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subgroups forms group one. The pathlength measures of the first three trial blocks

for the twelve transfer subgroups forms groups two. These group one and two are

the same as described in the previous paragraph, just now explained in more detail.

The null hypothesis to test transfer learning is that learning to navigate to reward

from one release point will not improve the ability to navigate to reward from another

release point. For the analysis of variance, group one is comprised of the trials with

no prior experience. Pathlength is the dependent variable. Group and trial number

are the independent variables.

4.4 Comparison of Baseline to Limits Architec-

tures

The first two sections of the Results chapter will give results from the statistical

analysis of observed behavior from the baseline architecture and the categorical limit

architecture considered separately. The third section of the Results will present a

statistical analysis of the comparison of the two.

To analyze the baseline versus the limit architectures, the stationary platform

group from the baseline architecture analysis is labeled as group one for each ex-

periment. The stationary platform group from the categorical limit architecture is

labeled as group two. This new grouping compares the learning group from each

architecture. For each experiment type, the null hypothesis is that the group using

the categorical limits architecture will show no significant difference from the group

using the baseline architecture.

The treatment group from the Distal Reward Learning task was the group with

fixed platform location. Having a fixed platform, the treatment group had a chance

to exhibit the behavior of learning to repeatedly navigate to the platform. The other

group, with a platform location that changed at each release, never had a chance to

perform the learning behavior of interest. In the Persistence to Goal experiment, the
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treatment group was the group which learned to navigate to the platform, then had

the platform removed. In the Rapid Transfer Learning experiment, the treatment

group was the group which first learned to navigate to the platform from one release

point, then was released from a novel point.
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Results

This Results chapter presents data from representative samples from the set of all ex-

periments, and then statistical results for all experiments described in the Approach

chapter. In general a representative sample is to displayed from behavior data gen-

erated in the simulation of one of the twenty computational rats experimented upon.

Recall that each of the twenty rats is uniquely simulated based on its random num-

ber generation seed value. This seed value determines the random path that will be

taken in searching for the escape platform. Past the representative graphs, data for

many more individual rat experiments can be found in Appendix F.

Table 5.1 provides release coordinates in the simulated environment for the four

release point and for the escape platform. Direct distances from release point to

platform are calculated for reference when considering learned pathlengths in the re-

sults data. Note that for any experiment with a fixed platform location, the platform

is positioned at coordinates (100, 66). This location was chosen as being similar to

placement used in biological Morris water maze experiments. The coordinate system

origin is at the center of the tank. The platform is a 30 square with side length

30, the tank has diameter 500, and the rat has diameter 20. Rate movement speed

is 4 spatial units per timestep and pathlength is recorded in movement steps. As

such, distance to platform is normalized to movement step for comparison with path-
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Release Point X Coord. Y Coord. Distance to Normalized Distance
Platform to Platform

N 0 200 136 34
S 0 -200 253 62
E 200 0 89 22
W -200 0 276 69

Table 5.1: Release point coordinates and platform distance from release points. Nor-
malized distance is for comparison to data below.

Parameter Architecture Value
Module

ρ Hippocampal LAPART 0.94
ρ Sensory or Motor ART 0.999

Decay Constant Sensory or Motor TInt 0.65

Table 5.2: Architecture parameters used to produce reported results

length data. Distance to platform also subtracts off the rat radius and distance from

platform center to corner such that an optimal pathlength is calculated.

Orientation upon release is toward the center of the tank. In biological experi-

ments, rats are often oriented toward the wall upon release, however this orientation

is used to prevent the rat from “cheating” and beginning to observe its location

before release. The computational rats will never begin taking sensory input until

instructed to do so, therefore there is no need to orient toward the wall.

Further implementation parameters which are necessary for reproduction of these

results are the vigilance parameter ρ of the ART modules in the neural architecture

and the decay constant of the temporal integrator modules. These parameters are

reported in Table 5.2. These values are also available in the .spec file which pro-

vides the specifications to eLoom for a simulation run. These values were arrived at

through iterative computational experimentation.
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5.1 Baseline Architecture

5.1.1 Distal Reward Learning
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Figure 5.1: Graph of pathlength for each release for one experimental trial. Releases
cycle randomly between north, south, east, west release points chosen without re-
placement until all four locations have been chosen at which point all are place back
into the pool for the next selection. The graph shows behavior measuring data before
any numerical analysis.

Figure 5.1 shows a graph of pathlength vs. release number for each of the four

release points. Figure 5.2 shows sum pathlength by block. Recall that each block is

a random selection of release points chosen without replacement from north, south,

east, and west.

The progression of pathlengths from rat release to trial end given platform place-

ment at a new random location for each release is seen in Figure 5.3. Recall that a

trial can end either because the rat encounters the platform or because the rat has
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Figure 5.2: Graph of sum pathlength for each block of releases. At the N th block, the
rat will have been release from each point N times. The graph illustrates learning
averaged over all four release points.

been searching past a given amount of time. In biological rats, the time cutoff is to

prevent exhaustion and possible drowning. The cutoff is simulated at a pathlength

of 300 spatial units, which is equivalent to a fixed time as the simulated rat moved

at a constant speed. Block pathlengths for the same experiment are seen in Figure

5.4.

The simulated Morris water maze experiment was conducted for each of the popu-

lation of 20 computational rats as described in the preceding chapter. A one-way be-

tween subjects ANOVA was conducted to compare the effect of repeated training tri-

als on pathlength to reward in stationary platform and random location platform con-

ditions. Results were F (2, 38) = 17.002, p = 0.0001955,MeanSquared = 4089219,

η2 = 0.55.

Table 5.3 shows the sum pathlength over the last half of each experimental trial

for each computational rat. The last half pathlengths are summed to show the effect

of learning. The summation span of the last half was chosen arbitrarily, the last

third or last quarter would provide similar analytic result. While there is no explicit
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Figure 5.3: Graph of pathlength for each release with random platform location per
release.
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Figure 5.4: Graph of sum pathlength for each block of releases with random platform
location per release.
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Rat Random Platform Fixed Platform

0 21268 11986

1 18418 14872

2 23116 16626

3 17946 15496

4 23206 11218

5 20732 8266

6 18764 14590

7 20244 11906

8 20132 17560

9 21894 24598

10 21372 9766

11 20362 13720

12 17642 19078

13 23352 18848

14 18012 16436

15 19668 20270

16 20576 12478

17 19218 17484

18 17770 6356

19 21666 13924

Average 20268 14774

SD 1837 4339

Table 5.3: Comparison of sum pathlength for the last half of each experiment trial for
each computational rat, showing random platform sum pathlength vs. fixed platform
sum plathlength.

behavioral threshold between the first half of releases in a trial and the second half,

it is generally true that the last half behavior will demonstrate more learning than

the first half. Therefore it is expected to see the greatest effect of learning in the last

half behavior comparing random platform location versus a fixed platform location.

5.1.2 Persistence to Goal

The following graphs show representative data from computational rats performing

the persistence to goal task. The first graph shows data from an untrained rat that

has not yet learned to navigate to the platform. The second graph shows data from
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a trained rat that has learned to navigate to the platform, however the platform has

been removed so the rat continues to search until the release time limit is reached.
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Figure 5.5: Distance from platform location for untrained rat number 0.

Figure 5.5 shows a graph of distance from platform vs. time as the untrained rat

is attempting to find that platform. Figure 5.6 shows distance from the platform

for the same rat after training, but with no platform actually present in the tank.

By removing the platform, measurements can be taken as to how much time a rat

spends within a threshold distance of 60 spatial units from the center of the platform.

Recall that the platform is a 30 spatial unit square and the tank is 500 spatial units

in diameter. Given the area of platform relative to the tank, a naive estimate of time

spent near the platform for a randomly searching rat is 5.76%.

Table 5.4 shows the data used for the persistence to goal analysis. As described

in the Approach chapter, there are two groups of 20 computational rats each. Group

one is made up of trained rats and group two is untrained rats.
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Figure 5.6: Distance from previous platform location for trained rat number 0 with
no platform in tank.

The persistence to goal experiment was conducted using each of the population

of 20 computational rats as described in the Approach chapter. A one-way between

subjects ANOVA was conducted to compare percent of time spent within learned

platform region in trained and untrained agent conditions. Results were F (1, 38) =

156.49, p = 4.79× 10−15,MeanSquared = 4.6172, η2 = 0.56.

5.1.3 Rapid Transfer Learning

The following graphs show representative data from the rapid transfer learning ex-

periments. The graphs display pathlength traveled per release. A release ends either

when the rat finds the platform or the time limit is reached. The first graph is of a

computational rat being trained from the west release point. The second graph is of

the same rat being tested from the west release point after having been trained on

the north release point. Recall that the rapid transfer task is to, after having been

trained to navigate to the platform from a given release point, to then navigate to

the platform from a novel release point. The two graphs illustrate the transfered
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Rat Percent In Threshold

Untrained Trained

0 5.60 6.42

1 5.41 6.20

2 5.23 6.14

3 5.60 5.93

4 5.73 6.07

5 5.65 6.07

6 5.66 6.35

7 5.17 6.05

8 5.39 6.18

9 5.26 6.41

10 5.21 6.24

11 5.70 6.00

12 5.73 6.26

13 5.63 6.05

14 5.57 6.25

15 5.64 6.23

16 5.61 6.29

17 5.54 5.99

18 5.26 6.26

19 5.65 6.44

Table 5.4: Percent time spent within a threshold distance of the reward platform for
each computational rat, showing trained vs. untrained performance.

benefit that occurs when learning to navigate from the west release point in two con-

ditions. The first condition is an unexperienced condition with no prior training on

the navigation task in any form. The second condition is an experienced condition

with prior training on the navigation task in a different form (i.e. from a different

release point).

Figure 5.7 shows a graph of pathlength from release to trial end as the untrained

rat is attempting to find the platform after being released from the north release

point. Note that in contrast to the example graph given earlier, this example shows a

rat which is unable to successfully learn navigation over the course of the experiment.

Figure 5.8 shows pathlength per release for the same rat after having trained on the

north release point then in this experiment attempting to learn from the west release
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Figure 5.7: Pathlengths of releases during training for rat 0 from north release point.
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Figure 5.8: Pathlengths of releases during testing for rat 0 trained from north release
point followed by the west release point.
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Release Average Pathlength Standard Deviation

N 5786 2295

EN 5892 2115

SN 5075 2064

WN 5708 2528

E 2160 2174

NE 1481 1965

SE 1219 798

WE 1195 637

S 8102 2000

NS 6834 2571

ES 8290 2015

WS 6485 2540

W 7903 1368

NW 7266 1838

EW 7843 1443

SW 7019 1715

Table 5.5: Average pathlengths with standard deviation across rats for each release
and pair of releases.

point.

Table 5.5 shows average and standard deviation across all rats for the set of

pathlengths from each release or pair of releases. Single releases are without training.

Paired releases are without training before the pair, then training occurs from the

first release point, and then pathlengths are measures for the second release point.

The transfer learning experiment was conducted exhaustively for all combinations

of initial training release point and subsequent testing release point for each of the

population of 20 computational rats as described in the preceding chapter. A one-way

between subjects ANOVA was conducted to compare the effect of repeated training

trials on pathlength to reward in experienced and unexperienced agent conditions.

Results were F (1, 38) = 4.5102, p = 0.04026,MeanSquared = 2372651, η2 = 0.72.
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5.2 Categorical Limits Architecture

5.2.1 Distal Reward Learning

The following graphs show pathlengths from release to reward for an example com-

putational rat with the categorical limits augmentation. Random platform location

results are taken to be the same as for the baseline architecture under the assumption

that both architectures use the same default navigation (random search) behavior.

If no learning occurs for the random platform case, then the learning portion of the

architecture is irrelevant and it is only the learning portion of the architectures which

differ between baseline and categorical limit types.
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Figure 5.9: Graph of pathlength for each release for computational rat 4 learning to
navigate to a fixed platform.

Figure 5.9 shows a graph of pathlength vs. release number for each of the four

release points. Figure 5.10 shows sum pathlength by block. Recall that each block is
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Figure 5.10: Graph of sum pathlength for each block of releases for computational
rat 4. At the N th block, the rat will have been release from each point N times. The
graph illustrates learning averaged over all four release points.

a random selection of release points chosen without replacement from north, south,

east, and west.

The simulated Morris water maze experiment was conducted for each of the

population of 20 computational rats. A one-way between subjects ANOVA was

conducted to compare the effect of repeated training trials on pathlength to re-

ward in stationary platform and random location platform conditions. Results were

F (2, 38) = 5.2639, p = 0.02739,Mean Squared = 1788867, η2 = 0.53.

Table 5.6 shows the sum pathlength over the last half of each experimental trial

for each computational rat. As was done for the baseline architecture, the last half

pathlengths are summed to show the effect of learning.

5.2.2 Persistence to Goal

The following graphs show representative data from computational rats with the

categorical limit augmentation performing the persistence to goal task. The first
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Rat Random Platform Fixed Platform

0 21268 22688

1 18418 15730

2 23116 6024

3 17946 18862

4 23206 6444

5 20732 8000

6 18764 14546

7 20244 14866

8 20132 16745

9 21894 23642

10 21372 13974

11 20362 15364

12 17642 12616

13 23352 14218

14 18012 13222

15 19668 9362

16 20576 12982

17 19218 11522

18 17770 6162

19 21666 16086

Average 20268 13653

SD 1838 4904

Table 5.6: Comparison of sum pathlength for the last half of each experiment trial for
each computational rat, showing random platform sum pathlength vs. fixed platform
sum plathlength for the categorical limits augmented architecture.

graph shows data from an untrained rat that has not yet learned to navigate to

the platform. The second graph shows data from a trained rat that has learned to

navigate to the platform, however the platform has been removed so the rat continues

to search until the release time limit is reached.

Figure 5.11 shows a graph of distance from platform vs. time as the untrained rat

is attempting to find that platform. Figure 5.12 shows distance from the platform

for the same rat after training, but with no platform actually present in the tank.

By removing the platform, measurements can be taken as to how much time a rat

spends within a threshold distance of 60 spatial units from the center of the platform.

Recall that the platform is a 30 spatial unit square and the tank is 500 spatial units
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Figure 5.11: Distance from platform location for untrained rat number 0.
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Figure 5.12: Distance from previous platform location for trained rat number 0 with
no platform in tank.
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Rat Percent In Threshold

Untrained Trained

1 5.62 6.26

2 5.41 6.34

3 5.23 6.25

4 5.6 6.39

5 5.73 6.41

6 5.65 6.38

7 5.62 6.27

8 5.17 6.16

9 5.39 6.03

10 5.26 6.57

11 5.2 6.56

12 5.63 6.29

13 5.73 6.3

14 5.63 6.32

15 5.11 6.35

16 5.64 6.26

17 5.58 6.29

18 5.53 6.41

19 5.26 6.34

20 5.65 6.6

Table 5.7: Percent time spent within a threshold distance of the reward platform for
each computational rat, showing trained vs. untrained performance.

in diameter.

Table 5.7 shows the data used for the persistence to goal analysis. As described

in the Approach chapter, there are two groups of 20 computational rats each. Group

one is made up of trained rats and group two is untrained rats.

The persistence to goal experiment was conducted using each of the population

of 20 computational rats as described in the previous chapter. A one-way between

subjects ANOVA was conducted to compare percent of time spent within learned

platform region in trained and untrained agent conditions. Results were F (1, 38) =

243.26, p = 2.2× 10−16,MeanSquared = 7.3445, η2 = 0.57.
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5.2.3 Rapid Transfer Learning

The following graphs show representative data from the rapid transfer learning ex-

periments performed by computational rats with the categorical limits augmentation.

The graphs display pathlength traveled per release. A release ends either when the

rat finds the platform or the time limit is reached. The first graph is of a com-

putational rat being trained from the west release point. The second graph is of

the same rat being tested from the west release point after having been trained on

the north release point. Recall that the rapid transfer task is to, after having been

trained to navigate to the platform from a given release point, to then navigate to

the platform from a novel release point. The two graphs illustrate the transfered

benefit that occurs when learning to navigate from the west release point in two con-

ditions. The first condition is an unexperienced condition with no prior training on

the navigation task in any form. The second condition is an experienced condition

with prior training on the navigation task in a different form (i.e. from a different

release point).

Figure 5.13 shows a graph of pathlength from release to trial end as the untrained

rat is attempting to find the platform after being released from the north release

point. Note that in contrast to the example graph given earlier, this example shows a

rat which is unable to successfully learn navigation over the course of the experiment.

Figure 5.14 shows pathlength per release for the same rat after having trained on

the north release point then in this experiment attempting to learn from the west

release point.

Table 5.8 shows average and standard deviation across all rats for the set of

pathlengths from each release or pair of releases. Single releases are without training.

Paired releases are without training before the pair, then training occurs from the

first release point, and then pathlengths are measures for the second release point.

The transfer learning experiment was conducted exhaustively for all combinations

of initial training release point and subsequent testing release point for each of the
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Figure 5.13: Pathlengths of releases during training for rat 0 from the west release
point.
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Figure 5.14: Pathlengths of releases during testing for rat 0 trained from the north
release point followed by the west release point.
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Release Average Pathlength Standard Deviation

N 5882 2393

EN 5819 2174

SN 5492 2584

WN 4597 2327

E 2224 2302

NE 1486 1987

SE 1219 798

WE 1195 637

S 8124 2119

NS 7033 2702

ES 8453 2185

WS 6653 2513

W 7903 1368

NW 6914 2551

EW 6759 2622

SW 7182 1446

Table 5.8: Average pathlengths and standard deviation across rats for each release
and pair of releases.

population of 20 computational rats as described in the preceding chapter. A one-way

between subjects ANOVA was conducted to compare the effect of repeated training

trials on pathlength to reward in experienced and unexperienced agent conditions.

Results were F (1, 38) = 6.89, p = 0.01240,MeanSquared = 38354414, η2 = 0.71.

5.3 Comparison of Baseline to Limits Architec-

tures

5.3.1 Distal Reward Learning

Table 5.9 shows sum last half pathlength of the baseline and categorical limits ar-

chitectures. The data for each architecture represents the fixed platform case, where

learning can occur. As such, these results show the learning performance difference

between the architectures.
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Rat Baseline Limits

0 11986 22688

1 14872 15730

2 16626 6024

3 15496 18862

4 11218 6444

5 8266 8000

6 14590 14546

7 11906 14866

8 17560 16745

9 24598 23642

10 9766 13974

11 13720 15364

12 19078 12616

13 18848 14218

14 16436 13222

15 20270 9362

16 12478 12982

17 17484 11522

18 6356 6162

19 13924 16086

Average 14774 13653

SD 4339 4904

Table 5.9: Comparison of sum pathlength for the last half of each experiment trial for
each computational rat, showing fixed platform performance for each architecture.

A one-way between subjects ANOVA was conducted to compare the effect of

the baseline architecture to the categorical architecture on each of the three Morris

water maze tasks. Results of the ANOVA for the basic Morris water maze task treat-

ment groups in the non-categorical-limits augmentation versus the categorical lim-

its augmentation case were F (1, 38) = 1.0196, p = 0.319,MeanSquared = 468809,

η2 = 0.48.

5.3.2 Persistence to Goal

Table 5.10 shows the data used for the persistence to goal analysis. As described in

the Approach chapter, there are two groups of 20 computational rats each. Group one
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Rat Percent In Threshold

Baseline Limits

1 6.2602 6.4200

2 6.3436 6.2012

3 6.2483 6.1420

4 6.3911 5.9278

5 6.41 6.0653

6 6.3758 6.0745

7 6.2666 6.3509

8 6.1625 6.0455

9 6.0331 6.1788

10 6.5662 6.4098

11 6.5589 6.2417

12 6.2931 5.9966

13 6.2979 6.2630

14 6.3224 6.0493

15 6.3543 6.2483

16 6.2577 6.2268

17 6.2882 6.2883

18 6.4072 5.9900

19 6.3371 6.2597

20 6.6031 6.4367

Table 5.10: Percent time spent in vicinity of reward platform for each computational
rat, showing baseline vs. categorical limits architecture performance.

is made up of trained rats and group two is untrained rats. Results of the ANOVA for

the persistence to goal task were F (1, 38) = 10.730, p = 0.002254,MeanSquared =

0.21960, η2 = 0.49.

5.3.3 Rapid Transfer Learning

Table 5.11 shows the difference between average pathlengths between the baseline

and categorical limits architecture. ANOVA results for the rapid transfer learn-

ing task for 20 rats using the baseline architecture compared to those 20 rats us-

ing the categorical limits architecture were F (1, 285) = 8.6911, p = 0.003462,

MeanSquared = 38354414, η2 = 0.5.
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Release Baseline Limits

N 5786 5882

EN 5892 5819

SN 5075 5492

WN 5708 4597

E 2160 2224

NE 1481 1486

SE 1219 1219

WE 1195 1195

S 8102 8124

NS 6834 7033

ES 8290 8453

WS 6485 6653

W 7903 7903

NW 7266 6914

EW 7843 6759

SW 7019 7182

Table 5.11: Average pathlenths across all rats for each release condition for the
baseline and the categorical limits architecture.

Architecture

Baseline Limits Baseline vs. Limits

E
x
p
er
im

en
t

Distal Reward 0.0001955 0.02739 0.319

Persistence to Goal 4.79× 10−15 2.2× 10−16 0.002254

Rapid Transfer Learning 0.04026 0.01240 0.003462

Table 5.12: Summary of p-value for statistical analysis of computational experiment
results

5.4 Summary

This section provides Table 5.12, a summary table of results. The summary table

lists p-value for each experiment for each architecture.

This Results chapter has presented data and statistical analysis of embodied

architectures. Having now shown the quantitative measures, the next chapter will

give insight into implications of these measures.
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Discussion

In this chapter, the empirical analysis of the behavior of the embodied neural ar-

chitecture is discussed. First, statistical analysis of the basic embodied architecture

performing distal reward, persistence to goal, and rapid transfer learning tasks is

discussed. Then the statistical analysis of the categorical limits supporting embod-

ied architecture during the same task performance is considered. Following that,

the original architecture is compared to the limits architecture. Finally, results are

discussed in the context of behavior observed in biological rats.

6.1 Statistical Analysis of Baseline Architecture

Statistical Analysis is employed to provide evidence that observed behavior is not

a product of chance. Rather, the neural architecture itself is showing significant

learning of distal reward behavior.

6.1.1 Distal Reward Learning

Using analysis of variance (ANOVA) to test the statistical difference between the

data for the individual release pathlength for the individual rats between the static

platform group and the random platform location group yields a p-value of 0.0001955,
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indicating that there is a less than a 0.02 percent chance that the observed results

were observed in a system where the null hypothesis is valid. A p-value of 0.05 is

generally accepted as the cut off for statistical significance [106]. The null hypothesis

was that learning to a fixed platform location would be performed no better than

learning to a random platform location. Since there is effectively no learning to

a random platform location, were the null hypothesis true, it would mean that no

learning had occurred in the experiment. Table 5.3 in Section 5.1.1 shows sum

pathlenth over the last half of releases of the experiment for each rat. It is seen that

for most rats, sum pathlength for the releases making up the last half of each trial

is lower in the fixed platform case than the random platform case. The average over

all subjects was 14774 with fixed platform and 20268 with random platform. Shorter

pathlengths to the fixed platform indicate that the platform location was learned.

Based on a significant result against the null hypothesis, along with the data in

Table 5.3 which shows evidence of learning, it is concluded that embodiments of the

computational model will learn to navigate to a fixed platform.

6.1.2 Persistence to Goal

As shown in results section 5.1.2, the average percent time spent near reward for

untrained rats is 5.51. The average percent time spent near reward for trained rats

is 6.19. A p-value of 4.79x10−15 is observed for ANOVA between the two groups.

This indicates that for the two groups of twenty simulated rats observed, there is

a probability of 4.79x10−15 that the behavioral difference, as measured between the

two groups, could have occurred given a true null hypothesis. In this case, the null

hypothesis was that trained rats will spend an equal amount of time searching around

the location of reward in the water maze as will untrained rats. Therefore the trained

rats did, with statistical significance, spend more time swimming within the platform

region.

To see that the p-value makes sense, observe the underlying data displayed in
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Initial N E S W

N 5786 5892 5075 5708

E 2160 1481 1219 1195

S 8102 6834 8290 6485

W 7903 7266 7843 7019

Differences

N -106 711 78

E 679 941 965

S 1268 -188 1618

W 637 60 884

Table 6.1: Differences of pathlenths between naive release and releases with potential
transfer learning.

Table 5.10. PctInThresh records the percent of total tank time which the rat spent

within a constant distance from the center of the platform location. It can be ob-

served that there is no overlap between the fractions of time which the two popula-

tion samples spent in the platform region. On an absolute scale, there is not a large

magnitude in the difference between measured group behaviors, but the analysis of

variance allows us to none the less assign meaningful statistical significance to the

measures.

Therefore, it can be said that the embodied computational neural architecture

is capable of performing the persistence to goal behavior. This same persistence to

goal is observed in biological rats, as will be discussed in a later section.

6.1.3 Rapid Transfer Learning

Results section 5.1.3 reports the average across rats of the sum across releases for

each trial of the experiment. The top half of table 6.1 shows the same values in a

new format. The format of this table shows naive release points on the row headers

and potential transfer learning release points on the column headers. The bottom

half shows the difference in pathlength between naive releases and releases with

the potential for transfer learning. Naive releases occur with the computational rat

having not prior experience. Releases with the potential for transfer learning occur
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when a rat has previously been trained from a different release point. Across potential

transfer learning releases from the north release point, there is an average pathlength

difference of 228 from the naive values minus the potential transfer learning values.

For the east release point, the average difference was 862. The south difference was

899. The west difference was 527. These differences indicate that on average, transfer

learning occurred as a positive difference indicates that the transfer learning average

pathlengths were lower. A p-value of 0.04026 for the observed rapid transfer learning

behavior. Recall that the null hypothesis for rapid transfer learning is that given a

rat will be released from point X, a rat trained from some release point other than X

will show no increased performance as compared to a rat with no morris water tank

training at all. 0.04026 is the weakest p-value observed for the three experiments.

None the less, it is low enough to be considered statistically significant by most

criteria. The embodied neural architecture therefore demonstrates reasonably sound

rapid transfer learning behavior.

6.2 Statistical Analysis of Categorical Limit Ar-

chitecture

The categorical limit architecture is considered both by itself and in the context of

the architecture that does not implement categorical limits. The limit architecture

alone is discussed in this section. The limit architecture relative to the non-limit

architecture is discussed in the next section.

6.2.1 Distal Reward Learning

Using analysis of variance (ANOVA) to test the statistical difference between the

data for the individual release pathlength for the individual rats between the static

platform group and the random platform location group yields a p-value of 0.02739,
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indicating that there is a less than a 0.02 percent chance that the observed results

were observed in a system where the null hypothesis is valid. The null hypothesis was

that learning to a fixed platform location would be performed no better than learning

to a random platform location. Since there is effectively no learning to a random

platform location, were the null hypothesis true, it would mean that no learning had

occurred in the experiment. Table 5.6 in Section 5.2.1 shows sum pathlenth over the

last half of releases of the experiment for each rat. It is seen that for most rats, sum

pathlength for the releases making up the last half of each trial is lower in the fixed

platform case than the random platform case. The average over all subjects was

13653 with fixed platform and 20268 with random platform. Shorter pathlengths

to the fixed platform indicate that the platform location was learned. Based on a

significant result against the null hypothesis, along with the data in Table 5.6 which

shows evidence of learning, it is concluded that the categorical limits augmented

architecture is capable of learning to navigate to reward in the simulated Morris

water maze task.

6.2.2 Persistence to Goal

Results section 5.2.2 gives results showing statistical significance for the limits ar-

chitecture performing the persistence to goal task. The average percent time spent

near reward for untrained rats is 5.48. The average percent time spent near reward

for trained rats is 6.34. The p-value was 2.2 × 10−16. The null hypothesis was that

the untrained rats would spend an equal amount of time near the reward as would

the trained rats. As significant evidence was observed against the null hypothesis, it

is concluded that there was an effect given rat training and it can be observed that

the trained rats persisted in navigation to and around the location at which they

learned the reward platform to be found.
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Initial N E S W

N 5882 5819 5492 4597

E 2224 1486 1219 1195

S 8124 7033 8453 6653

W 7903 6914 6759 7182

Differences

N 63 390 1285

E 738 1005 1029

S 1091 -329 1471

W 989 1143 721

Table 6.2: Differences of pathlenths between naive release and releases with potential
transfer learning.

6.2.3 Rapid Transfer Learning

Results section 5.1.3 reports the average across rats of the sum across releases for

each trial of the experiment. The top half of table 6.1 shows the same values in a

new format. The format of this table shows naive release points on the row headers

and potential transfer learning release points on the column headers. The bottom

half shows the difference in pathlength between naive releases and releases with

the potential for transfer learning. Naive releases occur with the computational rat

having not prior experience. Releases with the potential for transfer learning occur

when a rat has previously been trained from a different release point. Across potential

transfer learning releases from the north release point, there is an average pathlength

difference of 579 from the naive values minus the potential transfer learning values.

For the east release point, the average difference was 924. The south difference was

744. The west difference was 951. These differences indicate that on average, transfer

learning occurred as a positive difference indicates that the transfer learning average

pathlengths were lower. With a p-value of 0.0124, the categorical imits implementing

embodied architecture performs rapid transfer learning with statistical significance.

The results are reported in section 5.2.3.
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6.3 Comparison of Baseline Architecture to Cat-

egorical Limit Architecture

The prior two sections discussed the results of statistically analyzing observed behav-

ior for the baseline architecture and the categorical limit architecture. That is, each

architecture was analyzed by itself. This section discusses the original architecture

compared to the categorical limits architecture.

6.3.1 Distal Reward Learning

For the baseline architecture, the average over all subjects for sum pathlength over

experiment releases of the baseline architecture was 14774. For the categorical limits

architecture, the average over all subjects for sum pathlength over experiment re-

leases of the limits architecture was 13653. As reported in results section 5.3, p-value

for ANOVA of the baseline vs. limits architectures was 0.319. Even though the av-

erage second half pathlength is shorter for the limits architecture, we don’t conclude

that the ability to represent categorical limits makes a difference on the basic distal

reward learning task because the ANOVA p-value indicates too much variance in the

individual results to allow a conclusion on the architecture.

6.3.2 Persistence to Goal

For the baseline architecture, average percent time spent near the reward platform

for trained rats was 5.51. For the categorical limits architecture, the average was

5.48. As reported in results section 5.3, p-value for ANOVA of the baseline vs. limits

architectures was 0.002254. Given the p-value, even though the difference in average

is small, a significant effect between the architectures is concluded.
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N E S W Average Differences
N 0 169 -321 1206 264
E 59 0 64 64 47
S -178 -141 0 -147 -116
W 352 1083 -163 0 318

Table 6.3: Differences of differences of pathlenths between naive release and releases
with potential transfer learning of baseline architecture vs. categorical limits archi-
tecture.

6.3.3 Rapid Transfer Learning

Table 6.3 shows the difference between values reported in Table 6.1 and Table 6.2.

Those last two tables showed the occurrence of transfer learning in the two archi-

tectures. Table 6.3 shows the increase in average transfer learning from the baseline

architecture to the categorical limits architecture. In three out of four cases, there

was an average improvement in transfer learning for the categorical limits architec-

ture as compared to the baseline architecture.

Of the three Morris water maze tasks, rapid transfer learning is the task which

requires the greatest degree of generalization ability in order to perform well. In the

basic and persistence to goal tasks, the rat is attempting to perform a task for which

it was trained. In the rapid transfer learning task, the rat is attempting to perform a

task similar to a different task for which it was trained. E.g. the rat tries to navigate

to the platform from the north release point, after having been trained form only the

south release point. This task can be seen as a test of the generalization of navigation

in a given tank. Navigating to the platform in general is an abstraction of navigating

to the platform from a specific release point.

Given that limitsART is a modification to support generalization based on cate-

gorical limits, the rapid transfer learning task results for the basic architecture are

compared to the rapid transfer learning task results for the categorical limits support-

ing architecture. Results section 5.3 shows the results from an analysis of variance

on the non-limits versus the limits architectures. A p-value of 0.0124 is observed for
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the ANOVA with null hypothesis that the non-limits and limits architectures will

perform the same. Therefore, there is a statistically significant difference in behavior

between the non-limits and limits architectures.

To help characterize that difference in behavior, the p-values for the individual

non-limits and limits architecture based experiments are noted. The limits architec-

ture performance is more significant, meaning that the null hypothesis is even less

likely to have been falsified by chance. While the non-limits architecture is considered

significant with a p-value of 0.04026, a p-value of 0.01240 for the limits architecture

performance shows even lower chance that the measurement distribution might have

occurred at chance.

In addition to the increase in statistical significance of the limits architecture,

the beginning of this section shows that the average transfer learning performance

of the categorical limits architecture is increased as compared to the baseline archi-

tecture. Results section 5.3 shows the p-value for the direct per-rat comparison of

baseline versus limits architectures to be 0.003462. Therefore it is concluded that

the categorical limits architecture results in improved transfer learning performance.

6.4 Comparison to Biological Experiments

A publication by Hamilton, Akers, Weisend, and Sutherland [107] provides data for

biological rats performing the morris water maze task in general, and the persistence

to goal morris water task in specific. The experiment in the Hamilton et al. study,

which demonstrates persistence to goal behavior, began by training a sample set of

rats on each of four possible release points around the perimeter of the tank. Release

point order was selected randomly without replacement during each block of four

trials, just as seen in the simulated training for the experiments reported in this

dissertation. Rats were released near the wall of the pool and were retrieved from

the platform five seconds after mounting it. If a rat did not find the platform within
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sixty seconds, it was retrieved and placed on the platform for five seconds.

The experiment protocols exercised on the computational rats also retrieve rats

which do not find the platform after a period of time. However, simulation of the

placement of retrieved rats upon the platform is not performed. Doing so might

improve learning convergence time. However, the published protocol does not specify

whether retrieved rats are picked up and navigated to the platform oriented as if

they were swimming or if they are picked up, carried through an arbitrary path,

then deposited back on the platform. Given some uncertainty on how to perform the

retrieval and replacement upon the platform, retrieval is simply performed without

placement. Experimenting with platform placement after retrieval will be suggested

in the future work section.

After completion of the final training trial, a thirty second probe trial was con-

ducted with the platform removed. From the sample set of trained rate, half of the

animals for each combination of pool position and platform location were assigned to

either a Shift condition, where the pool was moved 75 cm (from the trained position

to the other pool position), or to a No Shift condition, in which the pool remained in

the trained position. This resulted in sixteen rats being tested in the Shift condition

and sixteen rats being tested in the No Shift condition.

Hamilton reports a statistically significant effect for decrease in latency to nav-

igate to the platform across trial blocks. As there is no meaningful way to label

simulated rat speed in the simulated embodiment, constant speed for our embodied

rat is assumed and therefore latency from release to platform is proportional to path-

length from release to platform. Pathlength is in fact what is measured. So, given an

equivalent experimental protocol between simulated and biological systems, signifi-

cant findings reported in section 5.1.1 and 5.2.1 correspond to behavior in biological

morris water maze experiments.
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6.4.1 Persistence to Goal

For his no platform probe trial, Hamilton finds that all 16 rats in the No Shift

condition navigated to the absolute spatial location of the platform during training.

Specifically, he finds a significant effect that rats spent more time in the region where

they were trained to discover the platform, when the platform was no longer present.

This is the same effect seen in section 5.1.2 and 5.2.2.

6.4.2 Rapid Transfer Learning

One of Morris’s [108] experiments demonstrated what he labeled “instantaneous

transfer.” Rats were repeatedly trained from a single fixed release location in the

Morris water maze task, and then exhibited better than untrained performance when

released from a different location. Results sections 5.1.3 and 5.2.3 display statistically

significant performance of the embodied non-limits and limits neural architectures,

respectively, on this same task. As discussed previously, the non-limits architecture

shows marginally significant performance. The architecture which supports cate-

gorical limits shows clear improvement over the non-limits architecture, and clear

statistically significant behavior on the simulated transfer task.

6.5 Comparison to Other Models

In this section results are compared to the other distal reward models introduced

in 2.1.2. Results are compared to highlight unique contributions of this dissertation

research in the context of similar research. It is shown that many of the comparable

models differ in their degree of embodiment from the dissertation model. These

models are based on a variety of theoretical underpinnings yet are often similar to

each other in that they leave incomplete on of the fundamental concepts that this

dissertation is built upon; this is embodiment.
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6.5.1 Izhikevich

Izhikevich models cortex at a high resolution, where the level of detail is a single

neuron. Izhikevich’s model is of the spiking neuron type. In this respect his model is

two levels of specificity deeper than ours. The first level of abstraction is from action

potential spike frequency to neural node activation. The second level of abstraction

is from individual neurons to functional sub-assemblies such as ART and temporal

integration arrays.

Despite the differences of the two models, they are both computational neural

models which display distal reward behavior. Izhikevich demonstrates distal reward

performance at the level of individual neurons by showing that a greater fraction of

neurons from within a network will fire in response to a particular stimulus. That

particular stimulus received a delayed reward in training, hence learning to respond

to that stimulus demonstrates distal reward learning. In contrast, this dissertation

research demonstrates distal reward performance at the embodied behavior level.

While distal reward learning at the level of sets or sub-assemblies of neurons is

necessary for distal reward learning behavior, unless embodied experiments are per-

formed there is no guarantee that a particular form of neural distal reward learning

will in fact result in embodied distal reward behavior. For instance, in the Izhike-

vich model, learning is evidenced through an increased proportion of neurons firing.

However, in order to activate a given behavior there might be one particular neuron

which needs to fire. Just because an increased proportion of neurons fires does not

mean that a particular neuron fires. Stated another way, the Izhikevich experiments

demonstrate that a particular scheme of neural learning can exhibit distal reward

learning. However, it has not been demonstrated that there is any possible way of

connecting the demonstrated neural circuitry such that an agent with this type of

neural circuitry would be able to exhibit distal reward learning behavior. The con-

trast with this dissertation research is that we consider embodied behavior to be the

goal.
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6.5.2 Samsonovich and Ascoli

A commonality of this dissertation research with the Samsonovich and Ascoli work is

that they both exhibit spatial demonstration of distal reward behavior. A constrast is

that the Samsonovich and Ascoli experiments do not embody the model in the sense

of having a neural sensory apparatus, though the models do have some embodied

qualities. The concepts of location and movement, which are present in the Sam-

sonovich and Ascoli model, are an important component of embodiment; however

there is no sensory input to the model. The model is informed of location through

direct stimulation of CA3 place cells. This direct location signal can be compared

to a sort of GPS (Global Positioning System) feed in that no neural processing is re-

quired to determine location. A level of disconnect, with neuro-physical motivation,

is established when this sort of direct neural stimulation is used. This need not be

considered a shortcoming of the Samsonovich and Ascoli work because they do not

seek to explore the representation of observed environments in neural architectures.

The contrast with this dissertation research is that such exploration is a component

of the embodied goal. One of the roles of embodied neural networks is internal rep-

resentation of the observed environment. One reason this internal representation is

important is because all learning is performed in the context of that internal rep-

resentation. An embodied neural network does not know that a bound memory is

germane to the current situation except that the current internal representation of

the observed environment is similar to a component of the memory. Because the

environmental representation is an integral part of embodied neural operation, this

dissertation research uses visual sensory activation by simulation of light reflected in

the environment.

Apart from the environmental representation difference, there is a similarity in

model operation, as well as a couple more differences of note. A similarity is that

both the embodied dissertation architecture and the Samsonovich and Ascoli model

start with random exploration which leads to reward discovery and path learning to
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that reward. A difference in the path learning is that the Samsonovich and Ascoli

model binds memories at various arbitrary times during exploration, where as we

bind a new memory whenever an existing memory component is experienced. The

advantage of binding memories only upon experience of an existing memory is that

each new memory has a context in which it exists relative to an existing memory.

I.e. each new memory extends a chain of memories which encode navigation to

the platform. In contrast, the Samsonovich and Ascoli method results in tangle

of memories which encode overlapping path segments, or may encode disjoint path

segments. Use of this tangle of memories will require further processing. Use of the

dissertation memories which each link up to another memory is a more simple matter

of letting each memory cue the subsequent memory.

A final enumerated difference is that the Samsonovich and Ascoli model chooses

movements by selection of the best direction from 10 random choices. In contrast,

the dissertation model chooses movement by selecting the best direction from all

possible directions. Selection among random possibilities would potentially result is

situations where a vastly better navigation choice is overlooked only because it did

not appear in the random options list.

6.5.3 McKinstry et al.

McKinstry et al. [1] do not explicitly model hippocampal form or distal reward

function. The Darwin IX model demonstrates temporal delay based ability or be-

havior through two model strategies. Temporal delay in neural circuitry is necessary

for temporal reward behavior because the temporal delay allows sensory observation

signals to persist in the neural system long enough to affect non immediate behavior.

In this sense, the Darwin IX models addressed similar concerns as this dissertation,

though McKinstry et al. did not extend their experiments to distal reward behavior.

The other comparison between this dissertation research and the McKinstry et

al. research is the embodiment method. The Darwin IX embodiment is without
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doubt complete because it is accomplished through a physical robot. Compared to

the dissertation embodiment, the physical embodiment has some qualities that are

more useful in generating experimental evidence for linking modeled neural structure

to behavior, while other qualities make the physical embodiment less useful. Phys-

ical embodiment results in environmental response to agent action that is as exact

as possible, i.e. it is based on natural physical consequence. On the less useful side,

non-ideal mechanical factors are present in the feedback chain from action to environ-

mental change to modified sensory input. Unintended lag caused by lose gears might

confound intentional lag programmed into the neural model. Exact reproduction of

experiments is also adversely affected by physical reality. A pebble may be rolled

over in a certain location in one trial with the pebble being deflected by the robot

wheel into another position that affects another trial in a different fashion. Another

possible experimental result confounding factor in robotic embodiment is the affect

of battery voltage on motor response. The embodiment method of this dissertation

leads to experiments which are exactly reproducible any number of times without

the slightest behavioral deviation that is not due to differences programmed by the

experimenter.

6.5.4 Dolle et al.

A strategy used in the Dolle et al. [26] model, and avoided in the dissertation model

is short-cutting elements of sensory perception. For instance, the Dolle et al. model

provides grid cell activations directly within the hippocampus as opposed to deriving

grid cell activation from sensory input. The Dolle et al. model uses sensory activa-

tions internally as well, but the direct grid cell activations are concatenated to the

sensed visual activations. As such, experimental evidence linking neural model form

to embodied behavior function is weaker in the context of biological neural systems.

Biological neural systems receive no direct neural activation from external analysis of

the environment, all neural activation is derived at some point from sensory activa-
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tion levels. Full simulated embodiment is one of the fundamental motivations of this

dissertation research, and is a differentiator for experiments such as from Dolle et al.

which provide some or all input as direct neural manipulation. A further differen-

tiator between this dissertation research and the Dolle et al. experiment is that the

Dolle et al. model uses a global planning method to determine a full path between

current state and goal state, where as the dissertation model performs incremental

decision making as sensory observations occur along segments of the path to reward.

6.5.5 Weber and Triesch

A main contrast between the Weber and Triesch [33] results and the dissertation

results is that the Weber and Triesch results can not be said to reflect upon a link

between neural form and embodied neural system function. Barriers to such a claim

are the small torus environment and the non-deterministic environment response to

agent action. Differentiators were pointed out between some of the previous models

and this dissertation model which involved the model itself. While the are also

differentiators between the dissertation model and the Weber and Triesch model,

the differentiator we point out now is the simulated experimental environment. By

simulating a realistic if simplified environment, this dissertation makes possible the

application of experimental results to the link between neural form and embodied

function, as well as comparison to distal reward learning as performed by biologically

embodied neural systems such as rats.

6.5.6 Martinet et al.

The Martinet et al. [27] model is another example of incomplete embodiment through

direct neural stimulation based on external environment analysis. Namely that ex-

ternal environment analysis is the identification of the embodied agent at a certain

location. Unless equipped with a neurally interfaced GPS (Global Positioning Sys-
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tem), biological neural systems lack this type of direct knowledge. Considered an-

other way, full embodiment would require that sensory observations originate from

the same environment in which actions are performed. With a simulated robotic

platform and direct place cell activation, action occurs in the simulated maze, but

there is no sensory observation. If there were said to be sensory observation, it

would be in an environment of discrete place cells, instead of the environment of

maze walls and floor where action takes place. The Martinet et al. experiments are

another published example of a high quality model that falls slightly short of full

embodiment. As discussed earlier, one motivation of this dissertation was to close

that gap in computational experimental practice.

This chapter has discussed in detail the experimental results of this dissertation.

The next chapter will summarize this program of research and make concluding

observations.
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Summary and Conclusion

The high level contribution of this dissertation is to increase the understanding of

neural mappings between form and function. Form was investigated through cate-

gory theory and study of neuroscientific literature pertaining to biological structures.

Function was investigated through study of episodic memory and development of a

temporal semantic representation theory. Understanding of the form function link

was increased through computational experiments which allowed the test that certain

neural forms would perform certain functions. Distal reward learning is the function

which was selected for investigation. Episodic memory is a class of memory which

is strongly implicated in distal reward learning. Hippocampus is an element of neu-

ral form which is linked through the biological literature with episodic memory and

therefore distal reward learning. An artificial neural architecture was engineered and

embodied in simulation. This embodied architecture is the engineered form which

this dissertation linked back to function through experimental evidence. Therefore,

understanding of the biological neural form function link between hippocampus and

distal reward learning was increased through demonstration of a constructed form

function link between computational hippocampal form and simulated embodied dis-

tal reward function. Through this process, evidence was generated to demonstrate

a nascent mathematical theory that links mathematical form, i.e. structure, with
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neural function. The mathematical form introduced was categorical limits, which

describe generalization, and the neural function was generalization in the distal re-

ward task. Again, the theoretical form function understanding was strengthened

through embodied experimentation in the same sense as the theoretical understand-

ing of aerodynamics is strengthened through an operational airplane. In addition

to the described form function links, this research theorizes, develops, and demon-

strates a method for motor control based upon cyclic bottom-up top-down neural

function. Furthermore, this research theorizes, develops, and demonstrates a navi-

gational technique using episodic memories of expected reward. The combination of

the motor control and navigational methods enabled a functional embodied agent.

The following paragraphs describe conclusions from this research which comprise

details from the high level contribution.

It was posited that a biophysically motivated neural architecture which models

episodic memory enabling aspects of the cortical-hippocampal system from mam-

malian brains will have the capacity, when embodied in an agent, to exhibit distal

reward behavior. Furthermore, the Categorical Neural Semantic Theory was to be

applied and directly suggest architectural changes to the system that increase per-

formance. In the preceding text, neurophysical motivation was presented and a

stand-alone cortical-hippocampal model was implemented. The stand alone cortical-

hippocampal model was experimented upon to provide evidence of behavioral cor-

respondence with its biological basis. That cortical-hippocampal model was refined

and incorporated into a computationally embodied artificial neural architecture. This

embodied architecture performed a well researched distal reward task which is exten-

sively documented in neuroscience literature. Numerical analysis demonstrated in a

statistically significant sense that the artificial neural architecture exhibited behav-

iors which are observed in the corresponding biological rat experiments. Category

theory was introduced and experimental investigations presented. An augmentation

was implemented which incorporated category theory derived theoretical advance-
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ments to the ART modules used in the embodied neural architecture. Statistical

analysis showed improved performance for the category theory motivated architec-

ture change. This improved performance was in a generalization task, which is

exactly the theoretical capability which the categorical improvement added to the

artificial neural architecture.

Through the example of this research, it can be concluded that category theory

has performance enhancing design input in regard to embodied neural structure. As

well, it has explanatory power for the analysis of neural structure in general. The use

of category theory was demonstrated through the initial categorical analysis of stand-

alone neural networks, then the demonstration of performance enhancement through

the addition of categorical limits to a computationally embodied neural architecture.

It can also be concluded that modeling episodic memory encoding structures from

biological brain is sufficient for embodied performance of a distal reward task. This

piece of knowledge contributes to computational synthetic neuroscience as well as to

the body of engineering theory which researchers interested in implementing related

systems can draw upon.

As a novel navigation scheme, binding and recall of proprioceptive temporal

episodes with environmental sensory temporal episodes has been demonstrated to

successfully form the basis of embodied locomotion. Stemming from experimental

validation of the theoretical navigation method, it can be concluded that the proposal

of a unified sensory motor system incorporating both top-down and bottom-up neu-

ral function was likewise validated. This scheme can be extended to more advanced

behaviors, and obviates the need for complex neural reverse kinematic processing,

with applications in both virtual and physical robotics, locomotion, and navigation.

A prediction follows from this motor control proprioceptive recall scheme. Biological

organisms which are denied sight during development never develop certain visual

brain structures such as striate cortex. It is predicted that organisms which are

denied movement during development will never develop certain brain structures in
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motor and premotor cortex. Furthermore, as a test of specific proprioceptive recall,

it is predicted that organisms which are denied movement of select joints during

development would never develop specific sections of motor cortex structure and the

accompanying capability.

Finally, it can be concluded that computational neuroscience has contributions

to make in investigation of the form function problem. This research is one spot

illumination upon the neural form function problem and is a scientific contribution

toward the theoretical basis that it is hoped will one day result in realization of true

general computational cognition.
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Future Work

This research has the potential to generate a great deal of future work. We hope to

expand this research along several avenues. Structure based understanding of brain

function is an especially promising topic. Higher fidelity models of hippocampus

and supporting cortex can be constructed through iteration of the current design.

New brain areas can be modeled and tested. Predictions have been produced that

can be followed up with new experimentation and analysis of data from biological

organisms.

8.1 Structure

Structure based understanding of brain function could refer to any types of structure.

Specifically, we assert that there are many relationships to be discovered between

categorical structure, brain function, and behavior.

A point is made of calling out categorical structure because there is much mention

in the literature of the “form function link.” Though form and structure are synony-

mous, almost no biologically focused literature to date is concerned with mathemat-

ical structure as treated by category theory. In the term form function link, form is

referring to actual neural structure as opposed to the abstract categorical structure
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we wish to investigate. Abstract structure must be related back to neural structure,

an effort which this research initiates in the embodied domain. It is suggested that

abstract categorical structure is a rewarding level at which to investigate the link

with neural function, and further research should be pursued.

8.2 Feedback in Reward Realization Motor Plan

An opportunity exists to introduce sensory memory feedback into motor recall pro-

cessing. In operation, each motor plan that is bound to expected reward leads to an-

other such that successful navigation occurs. However, within each plan the method

is to initialize motor recall and follow the bound motor memory. An improvement

to following the motor plan would be to initialize sensory recall in parallel with the

motor recall.

Just as motor sequences are encoded by the ART - temporal integrator - ART so-

matosensory cortex neural assemblies, sensory sequences are encoded by by the ART

- temporal integrator - ART sensory cortex neural assemblies. Trajectories through

motor space which are encoded as the proprioceptive sequence component of episodic

memories (i.e. motor paths) should correspond to trajectories through sensory space

which are encoded as the visual sequence component of episodic memories. Error

correction techniques could be employed to drive the actual sensory trajectory to

the recalled expected sensory trajectory. Memories only encode characterizations of

experienced episodes so feedback would not results in exact error correction but it is

suggested that performance would be improved.

We propose an experiment which would provide evidence as to whether biological

rats use environmental sensory feedback during navigation to learned reward. The

experiment uses two environments which are indistinguishable until a certain loca-

tion threshold is crossed. After that threshold, some form of sensory input would

differ. For instance, solid floor tiles could be used throughout the first environment,
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solid floor tiles used for the first half of the second environment, and hollow floor

tiles used for the second half of the second environment. A given factor is that rats

can sense the difference between solid and hollow floor tiles. The protocol is for

a rat to learn to navigate to reward in one environment, then undergo testing in

the second environment. Because the second environment is indistinguishable from

the first for the initial portion of navigation to reward, the trained rat would begin

along the learned path. Some portion of the way through that path, environmen-

tal observations would cease to match the environmental observations which were

present when the sensory-motor episodes were formed. If the rat simply continued

along the learned path, there would be evidence that motor recall is being initiated

then followed regardless of environmental matches to other components of the sen-

sory episode. It is noted that the dissertation model uses many episodic memories

in navigation from start point to reward platform, so there are in practice sensory

checkpoints all along the total navigation path. Still, the dissertation model would

not alter behavior if sensory input changed mid-navigation segment. In the proposed

biological experiment, if the rat changed behavior the instant the new sensed envi-

ronmental condition occurred there would be evidence that multiple components of

memory episodes are recalled and compared to current input.

8.3 Morris Water Maze Rat Platform Placement

After Retrieval

As discussed previously, when the simulated rat has been searching for the hidden

escape platform in the water for too long, we retrieve it as is customary with bio-

logical rats. Some biological experiments proceed to place the retrieved rat on the

escape platform for a period of time after retrieval. For the purpose of future work,

we hypothesize that platform placement after retrieval would decrease average con-

vergence time for training. The specific protocol for placement would be to, upon
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the time limit being reached and the rat not having found the platform, manually

locomote the rat from its current position directly to the platform. This would be

equivalent to biological experiments where the rat can sense its environment as it is

moved to the platform. Through the process of externally administered locomotion,

rat orientation would be as if the rat were swimming itself directly to the platform.

Manual locomotion after retrieval inspires a further set of experiments. Figure

3.6 illustrated the expected reward episodic memory bindings which the embodied

architecture forms. An ideal expected reward visualization would have all arrows ori-

ented directly at the platform, indicating that the highest expected reward condition

from any location in the tank is being set up to move directly toward the platform.

A measure of the potential for any particular embodied architecture to encode that

ideal could be taken through manual locomotion. If the rat were repeatedly trained

from all points and orientations in the tank, how to navigate directly to the platform,

an architecture with unlimited representation ability and capacity should form the

ideal expected reward map. Ability and capacity of subsequent architectures realized

with some constraint on resources could be expressed as distance from ideal.

8.4 Decouple Environment Learning from Distal

Reward Learning

One way in which the experiments reported in this dissertation were made more

difficult than necessary was that the computational rats began training in an al-

most completely naive state. The computational rats did recognize the platform on

contact, but they did not have an perceptual primitives with which to understand

the environment. Perceptual primitives could be considered at many levels. For

a person, high level perceptual primitives with which to form navigation episodic

memories might include doorways and street or building signs. Temporal episodes of

observations can be built from previously learned patterns which are observed. For
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example, when I build a memory to navigate down the hall, I need not store each

doorway as an arrangement of colors and shapes in my vision, I already know what

a doorway is. The computational rats do not already know what anything in their

environment is, their modeled visual cortices are blank.

An experimental extension would be to pre-expose the rats to their simulated

environment. The rats could simply wander for a time and build up sensory input

pattern based templates. Allowing the rats to begin training with some experience of

the sensory world in which they will exists might allow for more nuanced experiments

regarding distal reward learning as differentiated from sensory learning.

8.5 Hippocampus

Another future goal of this research is to incorporate a higher fidelity version of the

hippocampal model into the embodied architecture. In the current architecture, we

faithfully model hippocampus as a location of cortical convergence, and a closed loop

where memory merges with recall. Some functional elements of hippocampus though

were refined out in creation of the embodied architecture. Extended research could

make use of the full hippocampal complexity that was developed in the model which

incorporates endorhinal cortex, dentate gyrus, CA3, and CA1 with neuromorphic

connectivity. The model fidelity could be further increased by separating out frontal

cortex structure and function. Frontal cortex is similar to hippocampus in that is

has afferent and efferent connections with a convergence of cortical regions. Frontal

cortex is not implicated nearly as strongly in episodic memory as is hippocampus,

but frontal cortex would likely play a role is decision making as guided by bound

episodic memories.
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8.6 Further Brain Modeling

In addition to more detailed models of hippocampus, there are other brain areas

that can be modeled in detail. Figure 8.1 illustrates an expanded diagram of brain

areas involved in episodic memory behavior. It would be interesting to model some

or all of these additional areas and functionally tie them in to embodied behavior.

For instance an Amygdala component should enable an emotional facet to embodied

behavior. An emotional response would open the potential for some memories to

form more strongly than others due to environmental cues causing a response such

as fright. Neural form that supports emotional function is an important factor in

research into disorders such as post traumatic stress disorder.

8.7 Developmental Perception

Another offshoot of this research that we would like to pursue further is developmen-

tal perception. Building upon the categorical conceptual capacity research in section

A.4 along with the neuromorphic principle of overlapping input fields, we have shown

the development of perceptual primitives. Overlapping input fields within the same

sensory modality is a principle that was partially refined out of the final embodied

architecture, though overlapping input fields between distal and proximal modalities

was preserved. This offshoot of research is satisfying because it allows the explo-

ration of overlapping input field concepts further. An initial experiment is presented

to show the promise of this avenue of future inquiry.

For this experiment, our architecture has overlapping input fields as in Figure

8.3. There are two sources of motivation for overlapping input fields, biological

and categorical. We find biological motivation in the connective structure of simple

cortical cells. As illustrated in Figure 8.2, simple cortical cells have rectangular

receptive fields that respond to visual line segments in different orientations. Each

simple cortical cell represents a different orientation. Multiple simple cortical cells,
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Figure 8.1: Extended functional brain diagram from which embedded architecture is
distilled.

representing different line orientations, receive stimulus from some of the same retinal

ganglion cells[18]. Hence, the receptive fields of the simple cortical cells overlap. An

additional function of separate neural functional subsections that take overlapping

input is the implementation of parallel search for specific perceptual primitives (short

line segments at specific orientations). The parallel speed-up is in comparison to one

large classification system that attempts to match a set of line segments across the

whole visual field at once. A general one-dimensional overlap is implemented so as

not to bias the form of perceptual primitives that the synthetic organism will find.

The form of overlap seen in the biological system is biased for oriented line segment

identification by a simple neural perceptron. Reasonably, this form of architectural
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Figure 8.2: Illustration of connection architecture between retinal ganglion cells and
V1 simple cortical cells.

bias toward a certain perceptual primitive was probably developed through fitness

and selection over evolutionary time.

For this investigation, we implement an architecture of multiple, relatively small,

retinotopically mapped, neural modules with overlapping input fields. We use ART

to classify the inputs of each module into an output vector. The experimental archi-

tecture of small overlapping ART units has 32 ART units covering a 99 element array

of visual sensors. The 99 visual sensor elements are uniformly distributed across the

embodied synthetic organisms visual arc. Each ART unit inputs 6 visual sensor

elements. Each visual sensor element has a red, green, and blue component. The

inputs to each ART unit are complement coded. Therefore, each ART unit has an

input vector of 36 real values. Each ART unit overlaps by half with its neighbors,

with the end units only overlapping on one side. Figure 8.3 illustrates the architec-

ture scheme, though not the specific number of ART units and inputs used for this

experiment.

To analyze formation of sensory perceptual concepts learned from the observed
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Figure 8.3: Simple one layer architecture, overlapping input fields.

world in the ART units, we non-parametrically cluster all formed templates. Nearest

neighbor clustering is used on the vector of connection weights that encodes each

template. Clusters represent perceptual concepts formed in the ART units. Analysis

of which ART units have a member template in a given cluster provides information

as to whether the cluster concept is a universal concept in the context of the simulated

world, or if it is a somewhat unusual concept only seen in certain conditions and not

likely to be useful as a perceptual primitive.

The more ART units in which a particular template is found, the more likely that

template is to represent a perceptual primitive. For instance, if a line segment is a

perceptual primitive for a particular system, then we would expect to see neural pat-

terns that represent line segments occurring in locations throughout retinotopically

mapped visual cortex. In biology, the simple cortical cell encodes line segments and

is found encoding line segments is all locations throughout the visual field[18].

In section 8.7, the percentage of ART modules in which each template cluster is

found is analyzed. In biological visual cortex, it would be expected to find the equiv-

alent of clusters that represent oriented lines in 100% of visual field subsections. If

our architecture displays common templates across its visual field, then a reasonable

claim can be made to an analouge of developmental perception. The developmental

claim is valid in part because the ART modules are self-organizing, they start with

no designed in notion of a common perceptual primitive. Therefore, any common

perceptual primitives which from across sections of the visual field must be a result

of the simulated developmental process.

The developmental perception analysis looks for evidence of perceptual primitives

formed in our artificial neural architecture. Each template, in an ART that encodes
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a portion of the visual field, represents a certain pattern of inputs in that visual

sub-field. Templates are encoded as weight vectors in the ART modules. As such, it

is possible to take a measure of euclidean distance between two templates. With a

distance measure, it is possible to cluster templates, and that is how we analyze the

results.

Figure 8.4: Percent of templates represented per cluster, 30 degree visual arc.

Figure 8.5: Percent of templates represented per cluster, 1.25 degree visual arc.

Figures 8.4 and 8.5 show the percent of all ART units that have at least one

member template in a given cluster for two different visual arc angles. We see a

number of clusters with members in all ART units. These clusters give evidence

that universal perceptual primitives are represented. With evidence that perceptual

primitives can be represented at the lowest level of the architecture, more complex

architectures can be considered.

As a corollary to the investigation on developmental perception, experiments

are performed on a variation of ART that implements forgetting. An additional

constraint is applied to the environment where ART is used in an embodied system.

Our system is resource limited and therefor has a maximum number of F2 nodes with

which to form abstractions. The main consequence of this constraint is realized when

highly infrequent, and unusual, inputs are considered. Highly infrequent means that

the inputs may be encountered only a few times in a simulated lifetime. Unusual
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means that the inputs are not similar to any other inputs encountered. The ART

orienting subsystem will make it likely that any unusual input gets a new abstraction.

If that input, or anything like it, is never observed again, then the F2 node used to

form it’s abstraction is wasted in the context of the rest of the system’s life and a fit

system with constrained resources would forget.

8.8 High Performance Computing

Yet another of the research avenues that we would most like to investigate is the

implementation of a high performance computing (HPC) version of the architecture.

The current architecture was implemented using OpenMP to parallelize ART’s res-

onant search for a winning template. However, on a modern four core processor,

the overhead of data distribution to parallelize the search only breaks even with the

realized speed-up, giving no net gain.

Similarly, the 128-bit registers available in modern processors were used to per-

form four single precision float comparisons at one. Using this parallelization during

the ART template search has the potential to give the same speed-up as OpenMP

on a four core processor. Unfortunately, the overhead of packing and loading four

floats into the 128-bit register also canceled out the gain from the parallel search.

These negative results suggest that greater than four way parallelization is re-

quired to successfully amortize overhead costs of distributing computational tasks.

We would like to investigate MPI on HPC clusters as a traditional avenue of mas-

sive parallelization. Also, we would like to investigate general purpose graphical

processing unit processing as an efficient means of large scale parallelization.
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8.9 Robotics

It is proposed that the demonstrated system of proprioceptive sensing and recall

would be well suited to physically implemented systems. Especially for mechanically

complex systems, reverse kinematics is a difficult problem. The experience based

system in this dissertation could greatly simplify novel motor path realizations. In

essence this simplification is because no paths would actually be novel, all movement

would be built up from previously experienced proprioceptive states. The expected

reward mediated system used by the embodied architecture could also be employed to

build complex motor paths from simpler experiences. For instance, pairwise training

among degrees of freedom might be chainable in recall. For instance in a robotic arm

with three rotational joints like a wrist and three angular joints like an elbow there

are six degrees of freedom. A relatively complex motor path would involve moving

all six joints at once. A relatively simple motor path would involve movement of two

joints. There could probably be an algorithm developed where joints that move in

sequence along a motor recall path would learn to move in parallel for efficient arm

positioning.

This ends the Future work chapter. A number of avenues for extensions of this

dissertation research were suggested. The remainder of this document is the Ap-

pendix section and References list.
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Introduction to Category Theory

Category theory is the mathematical discipline concerned with structure. The pre-

ceding explanation demonstrates our rationale for considering structure to be a crit-

ical consideration in the design or modeling of any neural system. Category theory

provides a way to treat structure with mathematical rigor.

The following subsection provides a brief introduction to some of the basic ideas

of category theory. A more in depth introduction is provided in appendix A. The in-

troduction in the appendix explains in more detail the foundational ideas of category

theory. Though from the point of view of a practicing category theory mathemati-

cian, even the appendix introduction barely scratches the surface. The reader who is

interested in an even deeper journey through beginning category theory is referenced

to [62], [109], and [110].

A.1 Category Theory from Thirty Thousand Feet

Some of the primary ideas of category theory are objects, morphisms, categories,

functors, natural transformations, and commutative diagrams. Objects are the atomic

unit of category theory, they can represent anything, physical or nonphysical, real

or imagined. Morphisms are transformations between objects. Morphisms detail the
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relative structure of objects. Categories are collections of objects and morphisms,

one might have a category of vegetables or a category of theories. Functors are

transformations between categories, they map each object and morphism in a domain

category to objects and morphisms in a codomain category. Natural transformations

are transformations between functors. If a functor AB maps category A to category B

and an other functor AC maps category A to category C, then natural transformation

ABAC can be defined between functor AB and functor AC. Commutative diagrams

are key structural elements in the use of category theory. A commutative diagram is

made up of two equivalent, morphism defined, paths between a domain object and a

codomain object.

A defining characteristic of functors and natural transformations is that they are

structure preserving. A commutative diagram in one category will, when mapped to

another category by a functor, still be a commutative diagram. The specific objects

and morphisms involved will likely change, but the structure remains. This preser-

vation of structure is why category theory has descriptive power for the structural

representation of the world in a neural network.

As noted earlier, a deeper introduction to category theory is found in Appendix

A. Also in Appendix A and Appendix E are the results of experiments using category

theory to analyze neural networks.

A.2 A Comment on Structure

Any intelligent system must have some sort of representation of its external and

internal environment. Even a simple sense-response system has an implicit world

representation that tells it a certain response is appropriate for a certain sensation.

An amoeba with a chemical food sensor and locomotive cilia forms a world repre-

sentation that includes concepts of spatial geometry, “if food sensed in direction x,

then movement along direction x will decrease distance to the food”. In some sense,
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a system is considered more intelligent the better job it does at correctly forming

and manipulating a world representation. For example , a system that could form

and manipulate a world representation where all observable phenomena such as time

dilation and gravitational waves are explain would be considered quite intelligent.

Category theory provides a mathematical language that allows discussion of the

structures that must be formed and transformations that must hold true in a valid

world representation.

The knowledge stored in our biological neural networks, i.e. brains, derives its

meaning completely from structure in its sensory apparatus. Each neuron does not

have a “label” that identifies its meaning. The meaning of a given neuron is defined

by that neuron’s connections to other neurons and their individual activations, that

is, the position in the neural circuit and the posible range of inputs it may receive.

The relationship between structure and function (i.e. meaning within the brain) is of

great importance in neuroscience [111] and is part of what we explore in this work.

As an extended example: A dog walks across our field of view. A million sensory

inputs per eye send signals into our brain [18]. Various portions of our brain extract

information from those inputs. A given alignment of active inputs causes a simple

cortical cell to activate [112] [113]. The activation of that simple cortical cell repre-

sents a certain edge in the visual field. Activation of the correct simple cortical cells

causes activation of a certain complex cortical cell [18]. We reasonably hypothesize,

without giving further exact details, that visual processing continues through many

neurons and connections as higher level features are extracted. Four legs may be

recognized within the image. The temporal pattern of inputs could be processed

by a collection of neurons to detect a characteristic dog-like motion. Ultimately, a

specific arrangement of neural activations forms in higher level collections of neurons

that represents a dog. This is the result of many self organizing operations using no

external labels on any arrangement of activations. The particular arrangement of

neural activations only represents a dog because of the hierarchical structural rela-
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tionships of all of the involved nodes leading from the sensory system.. The primary

lesson here is that the semantics of any neural representation is dependent on entire

hierarchical subnetwork, including sensor neurons, that leads to its activation.

All nodes and connections in a network, taken together, describe the structure of

that network. As connections form the context by which neural node activations have

meaning, all meaning in a neural network is dependent on the network’s connections.

Therefore all meaning in a neural network that can be represented is dependent on

the structure of that network. As category theory is the study of mathematical

structure [114], it is natural to use it to study meaning in a neural network.

A.3 Category Theory from Five Thousand Feet

Having provided a broad introduction to category theory in the last section, this

section provides a more detailed description in the context of neural representation.

Objects, morphisms, commutative diagrams, functors, natural transformations, and

limits will be discussed.

A.3.1 Objects

The notation is used that a neural object (pi, η), from the neural category, is a

carrier node pi in an output interval η over transition Φ. A node pi is said to be

active, relative to the object (pi, η) if its output falls in η. The region of activation

for pi is the subset of input space for which pi is in η. The neural object (pi, η) is

highlighted if its node pi is active in η. Φ represents the total neural processing of

input e; (v, ψ) = Φ(ω, θ, e), where ψ and θ are arrays of node activation values for the

whole network and v and w are weight arrays. (θ, e) is called an instance associated

with the transition Φ. Transitions are considered that, because they occur after a

feedforward network has stabilized, leave θ and ω constant.

A signal path is a set of neural category objects and the neural network connec-
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tions between the carrier nodes for the objects. The signal path relates activity in the

neural network to morphisms in the associated neural category. Each signal path is of

the form γ = [(p1, η1), c1, (p2, η2), ..., cn−1, (pn, ηn)] where (p1, η1) is the source object

and (pn, ηn) is the target object. A signal path γ has an associated set of carrier node

activations θ. The activations θ correspond to node outputs ξ = φ(θ) which place

each carrier node p in its active interval as determined by the signal path γ. φ() is the

activation function of a node which takes as input the activation θ and determines

the node output φ(θ). By calling out each neural object in the path, γ prescribes

an interval for each carrier node on the path. A path set Γ consists of one or more

paths Γ = {γ1, γ2, ...} = {[(p1, η1), c1, ..., cn−1, (pn, ηn)], [(p1, η1), ca, ..., cz, (pn, ηn)]}.

Note that the curly brackets enclose the path set, square brackets enclose each path

in the set, and parentheses enclose each object in the path.

A.3.2 Morphisms

A morphism m : (pi, ηi) → (pj, ηj) consists of a domain (source) object (pi, ηi),

a codomain (target) object (pj , ηj), a path set Γ between domain and codomain

objects, and a set UΓ,w of all the instances (θ, e) which allow the paths γ ∈ Γ to

persist over Φ. By persist, we mean that each node output is in the specified interval

and each connection is nonzero before and after Φ. We call the instances (θ, e) in

the set UΓ,w also instances for the morphism m.

A.3.3 Commutative Diagrams

A composition of morphisms is a pasting together of morphisms m′ ◦m. Instances

of m′ ◦ m is the set UΓ,w ∩ UΓ′,w where Γ′ is the signal path set for m′, see [62]

for more details. For Figure A.1 to represent a commutative diagram, the com-

position of morphisms that form the path from p1 through p2 to p4 must equal

the composition of morphisms that form the path from p1 through p3 to p4. De-
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Figure A.1: Potential commutative diagram

fine morphisms m1 = {[(p1, η1), c1, (p2, η2)]}, m2 = {[(p1, η1), c2, (p3, η3)]}, m3 =

{[(p2, η2), c3, (p4, η4)]}, and m4 = {[(p3, η3), c4, (p4, η4)]}. Then, the left side path

ml = m1 ◦ m3 = {[(p1, η1), c1, (p2, η2), c3, (p4, η4)]} and the right side path mr =

m2 ◦m4 = {[(p1, η1), c2, (p3, η3), c4, (p4, η4)]}. If UΓl,w = UΓr ,w then we have a com-

mutative diagram because the right and left paths are for the same morphism. In

that case, the intersection of the instances for m1 and m3 equals the intersection of

the instances form2 andm4, therefore ml = m1◦m3 = mr = m2◦m4. If there existed

some ci incident on p2 then the morphism ml could have a contributing factor lacking

in mr and the two morphisms could be different. If there existed some cj incident

on p4 then we would be unable to guarantee the desired activation of p4 based only

on the connections from p2 and p3. These are not the only possible conditions which

would prevent a commutative diagram, just representative examples. Figure A.1 can

only represent a commutative diagram if instances of the objects and connections of

mr are one to one with those of ml.

A.3.4 Functors

A functor is a transformation from one category to another that preserves composi-

tions and hence preserves commutative diagrams. A neural network can be analyzed

by using the neural category determined by the previous methods. One question
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is whether the category associated with the neural network contains enough com-

mutative diagrams so that a functor can be defined from Concept to the neural

category. If a neural network can represent a commutative diagram then there exists

the capacity to accept a commutative diagram mapped from the concept category to

the neural category then induced onto the neural network. Using limits and colimit

[62], we can apply commutative diagrams to represent the formation of both more

specific and more abstract concepts from a given collection of concepts and concept

morphisms. Therefore, we desire our neural networks to yield neural categories hav-

ing the capacity to accept enough commutative diagrams to represent a nontrivial

part of Concept in our neural network.

Figure A.2: Commutative diagram input regions. E is the set of all input space. The
regions p1, ..., p4 are the activation regions, mapped to input space, for the objects
(p1, η1), ..., (p4, η4) from figure A.1.

Figure A.2 shows how the corresponding instance sets are related given that

Figure A.1 is a commutative diagram. For mr to be equivalent to ml, p2 can only
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be active in η2 when p3 is active in η3. If Figure A.1 corresponds to a commutative

diagram that is the functional image of a diagram in Concept, there is an additional

consideration: the instances of object (p2, η2) are also instances of the object (p1, η1)

and similarly for the domain and codomain objects of the other neural morphisms.

This consideration, along with the assumption that each neural object represents

at most one object from Concept, leads to a nesting of sets corresponding to the

instance sets of Figure A.2. This gives us the constraint that the region of activation

for p1 must contain the regions of activation for p2 and p3. (p4, η4) can only be active

when (p2, η2) and (p3, η3) and active.

A.3.5 Natural Transformations

As functors are structure preserving mappings between categories, natural trans-

formations are structure preserving mappings between functors. One application of

natural transformations to biological neural networks is in multimodal systems. Each

sensory modality builds up a conceptual structural representation of the world as ob-

served through that modality. Given multiple structure preserving transformations,

for multiple modalities, a transformation can be defined between those transforma-

tions. I.e. a transformation between the different sensory modality functors. A

transformation among functors is a natural transformation.

A.3.6 Limits

Limits are abstract notions that can be related to specificity and generalization. For

a collection of objects and morphism, a limit represents a unique property which all

objects in the collection map from. The dual notion, a colimit represents a unique

property which all objects in the collection map to.

An important use of these key notions is in the definition of limits and colimits.

Healy and Caudell, [62] [67], show how colimits model the learning of more complex
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Figure A.3: A limit for a diagram ∆

concepts through the re-use of simpler concepts already represented in the synaptic-

weight memory of a neural network. Their Axiomathes paper, [62], shows how limits

model the learning of simpler, more abstract concepts through the re-use of existing

representations. Reversing the arrows and substituting ”initial” for ”terminal” and

”cocone” for ”cone” in the following description of limits provide an overview of the

dual notion, colimits, which corresponds to the learning of complex, more specific

concepts through structures of more general concepts. Let ∆ be a diagram in a

category C as shown in Figure A.3, with objects a1, a2, a3, a4 and morphisms

f1 : a1 → a3, f2 : a2 → a3, f3 : a1 → a4, f4 : a2 → a4. The diagram ∆ extends

∆ to a commutative diagram by adding a cone K, consisting of an apical object

b and morphisms gi : b → ai(i = 1, ..., 4) (called colimit leg morphisms) such that

f1 ◦ g1 = g3 = f2 ◦ g2andf3 = g1 = g4 = f4 ◦ g2 (provided additional objects and

morphisms with the requisite properties exist in C). Cones for ∆ are the objects

of a category cone∆ (whose morphisms are described in Ontologies and Worlds in

Category Theory: Implications for Neural Systems [62]). A limit for the diagram ∆

is a terminal object K in cone∆, in which case ∆ is called the defining diagram for

the limit and ∆ is called its base diagram.
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A.4 Conceptual Capacity

In this section, the capacity of a given neural architecture to represent at least

some portion of the concept category is explored. We concern ourselves with feed-

forward neural networks that are fully connected by layer. Note that the selected

architectures are not suggested as being of stand-alone practical use, but rather

represent morphologies likely to be found in larger artificial neural networks. In

order to explore the capacity of a given architecture, we conduct repeated trials

with different weight vectors. The elements of each weight vector are created by a

function that approximates a uniform distribution between -1 and 1. By looking at

aggregate results over a large number of trials, we discount the effect of specific weight

elements and can consider the properties of the architecture. Inputs are sequentially

incremented such that all possible input vectors are covered for each trial. Input

space can be represented as an n-dimension unit hypercube where n is the number

of sensor nodes. Each element of the input vector varies from zero to one. As input

space is covered, the node outputs are analyzed to extract information about the

property of interest.

The first property examined is the capacity of a given architecture to represent

objects in the neural category. The number of distinct combinations of neural objects

that we can represent is a bound on the number of distinct concepts we can represent.

We count the number of distinct patterns of discretized node outputs observed as the

network input covers input space. Each output pattern is a Γ, i.e. set of signal paths.

Though we don’t yet put any constraints on how those signal paths relate. Note that

as this is a simulation, all values are discretized at some level. Our artificial neural

network evaluations are carried out at ANSI C float precision. When we mention

a discretized value we have discretized a float value into some much small set of

possible values.

Next, the commutative diagram capacity of an architecture is examined. The

constraints [62] that a network must meet over its input space in order to be capable
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of representing a commutative diagram are enumerated in the Background section.

We determine the commutative diagram capacity of two network architectures by

searching over random weight vectors for the satisfaction of those constraints. In

this context, commutative diagram capacity can be thought of as how well a neu-

ral architecture lends itself to representing a commutative diagram from a neural

category (and through a functor, the category Concept).

For each experiment a network architecture is selected. The architecture will

remain constant throughout the experiment. Figure A.4 shows each architecture

and the label given to that architecture. Each experiment consists of 100 trials.

A new set of connection weights is assigned to the network for each trial. The

elements of each weight vector are uniform randomly distributed between -1 and

1. We also select an output discretization size for each experiment. Weight values,

activation values, and output values are all stored to float precision. Input-space

is covered to a fixed discretization size for the whole experiment. After a network

has stabilized, outputs are binned to the output discretization size. If the output

discretization size is 0.25, then output values would be classified as 0, 1, 2, 3 based

on the output being in [0, 0.25), [0.25, 0.5), [0.5, 0.75), [0.75, 1.0] respectively. In all

cases, the output function of each node is a sigmoid generated by 1/(1 + e−θ) where

θ is the node activation value.

The first set of experiments counts unique output patterns. An output pattern is

an N component vector of the discrete intervals into which the output of each of the N

nodes in the architecture fall. The experiment is run using each of the architectures

in figure A.4. For the 2x2 and 2x3 architectures, we compare the number of distinct

output vectors given output discretization sizes of 0.25, 0.125, 0.0625, and 0.03125.

For the 3x2, 3x3 and 4x2 architectures, we use output discretization sizes of 0.25,

0.125, and 0.0625. The 2x2 and 2x3 experiments are run with an input discretization

size of 0.015625. The remaining experiments are run with an input discretization size

of 0.0625. Each input element takes on either 17 or 65 equally spaced values from 0 to
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Figure A.4: Neural network architectures used in experiments.

1. Where n is the number of input nodes, we picture an n-dimensional grid of equally

spaced points. We increment over all points in the grid and thereby cover input-space.

For each input vector we evaluate the neural network repeatedly until the changes

caused by the new input vector have propagated to the highest level of the network.

A neural network evaluation step is, for each node in the network, the calculation of

the node output function on the weighted sum of all input connections to the node.

We use eLoom [96], an open source neural network simulation tool, to carry out

network evaluation. At this point the network will be stable and exhibit no further

changes until we again change the input vector. Recall that the definition of a neural

object is a neural network node which has output value within some interval η over
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a network transition. The node outputs of our feed-forward networks remain stable

indefinitely after an the input values propagate throughout the network. Therefore,

the neural objects being represented are constant after that propagation period, until

the input vector is changed again.

Figure A.5: Mean distinct outputs versus Output bins for 3x2 and 3x3 architectures.

The mean number of unique output patterns is plotted versus the number of

output bins. The number of output bins is the reciprocal of the output discretization

size plus one. I.e. the number of intervals of a node output that each map to a single

discrete value. A line is fit, and R2 provided, to highlight the data trend. Note that

R2 is a statistical measure of how close a set of data points is to fitting a line. The

closer R2 is to unity, the better the linear fit. The graphs for the 2x2, 2x3 and 4x2

architectures are similar to figure A.5 except with R2 of 0.9904, 0.9717, and 0.962 to a

linear fit. The mean number of unique output patterns is calculated over 100 random

sets of network weights for each output discretization size for each architecture. We

also consider the histograms of number of distinct output patterns, for each input

vector over the 100 trials for a given architecture, see figure A.6.

Next network architecture, weight vector pairs are analyzed to determine if they

can represent a commutative diagram. For each architecture, we iterate over 100 ran-

dom weight vectors. We record the number of weight vectors which allow the neural

network to represent a commutative diagram. Ability to represent a commutative
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Figure A.6: Histogram of number of distinct output patterns for output discretization
of 0.03125 on 2x3 architecture.

diagram is determined by recording the regions over which each node of the network

is active. Recall that a node is active if its output is within a predefined interval.

We map the active output areas onto input space and test for the required nesting

conditions seen in figure A.2. As the input region over which a node will be active is

dependent on the interval which defines node activation, we test for a commutative

diagram on each architecture, weight vector pair with the active interval defined se-

quentially as each possible discrete output. If the architecture, weight vector pair is

found to be capable of representing a commutative diagram for any of the interval

definitions then the count is incremented and we move to the next weight vector on

the same architecture.

Our first step in finding commutative diagrams is to look for incomplete but

potential commutative diagrams. We consider the 2x2 network architecture. The

2x2 architecture can not represent a commutative diagram because it does not have

a third layer to hold the target object. We look for only a source object and two

intermediate objects. q1 and q2, see figure A.4, are both potential source objects,

we first consider the beginning of a commutative diagram using q1 as source. All

rules for later using q2 as the source are a simple substitution of q1 and its activation

regions for q1 and its activation regions. Recall that the activation region of qi is the

region of input space for which q1 is in the interval ηi. In terms of our activation

region criteria, we look for (q3, η3) and (q4, η4) active inside the region of activation
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of (q1, η1). In addition, the regions of activation for (q3, η3) and (q4, η4) must have

a nonempty intersection. The nonempty intersection is so that if we completed the

diagram with a target object, there would be some area where both (q3, η3) and

(q4, η4) could have a morphism to the same target object.

The first part of the commutative diagram testing algorithm consists of three

nested loops. The outer loop iterates through possible intervals η1. The next loop

iterates through possible intervals η2. The third loop iterates through possible inter-

vals η3. In this way, all combinations of intervals are tested for a partial commutative

diagram. Inside of the three interval loops, we iterate over input-space. For each

3-tuple of η intervals, there are five conditions which must hold over all input-space

in order for a potential commutative diagram to be represented. If we examine

figure A.2, we see these conditions in the venn diagram. Regions illustrated in fig-

ure A.2 are the active regions of their respective nodes. Recall that a node pi is

active relative to the neural object (pi, ηi) if its output falls in the interval ηi. For

the 2x2 architecture of figure A.4, the region of input space for which q3 is active

must not extend outside the region of input space for which q1 is active. q4 must

not be active outside the region of activation of q1. q3 must be active somewhere in

input space. q4 must be active somewhere in input space. The activation regions

for q3 and q4 must intersect for some region of input-space. Implicit in those five

conditions is that q1 be active somewhere in the input space. If all five conditions

are true for any 3-tuple of η intervals for a given weight vector, then that weight

vector, on the architecture under analysis, is capable of representing the beginning

of a commutative diagram. After testing with q1, q3, and q4 we repeat the test with

q2, q3, and q4. If any of the eta 3-tuples, for either the q1 or the q2 case, reveal a

potential commutative diagram then the current weight state is considered capable

of supporting a commutative diagram. We count the number of weight states, i.e.

trials, that are capable of supporting commutative diagrams out of 100 trials, see

figure A.7.
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Figure A.7: Number of random weight vectors, out of 100, which could represent a
commutative diagram on a 2x2 architecture.

After searching 2x2 networks for possible commutative diagrams, we extend the

technique to the 2x3 architecture and possible complete commutative diagrams. Con-

ditions are the same as in the 2x2 case except that now we also have a target node.

In the 2x3 case, the target node can be either q5 or q6. For each weight state, we first

consider q5 the target node, then q6. Taking into account the two possible source

nodes, we consider in order, q1 to q5, q2 to q5, q1 to q6, and q2 to q6. In each case,

morphisms must pass through q3 and q4 in order to get the two equivalent paths

which are necessary in the definition of a commutative diagram. Taking q5 as the

target node, the additional commutative diagram test condition is that (q5, η5) exists

inside the intersection of the active regions for (q3, η3) and (q4, η4). As before, if any

combination of possible target and source nodes reveals a commutative diagram then

the trial is capable of supporting a commutative diagram. In figure A.8, we see the

number of trials, out of 100, capable of supporting a commutative diagram.

Figure A.8: Number of random weight vectors, out of 100, which could represent a
commutative diagram on a 2x3 architecture.

In figure A.5 we notice that the number of distinct output patterns scales linearly
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with the output discretization size. Note that the input discretization size stays

constant for a given architecture. The increase in distinct output patterns is not due

to an increase in distinct inputs. Output space is an n-dimensional space where n

is the number of nodes in the network and the component of the output pattern in

each dimension can take on any of the bin values allowed by the output discretization

(i.e. 0,1,2,3 if the discretization is 0.25). Had the output patterns been distributed

uniformly through output space, then halving output discretization size would result

in 2n time more output patterns than seen at the prior discretization. To see this,

consider the case of maximum discretization size with only one output bin. All

output patterns look alike; therefore there is only one distinct pattern. Now consider

discretization such that there are two output bins. If output patterns are distributed

uniformly around output space, then an equal number of output patterns should

fall into each of the two output bins in n dimensions, yielding 2n distinct output

patterns. Double the number of output bins again and there are four output bins

per dimension for a total of 2n ∗ 2n possible distinct output patterns. As long as the

number of system inputs does not constrain the number of distinct outputs, then

for uniformly distributed output patterns we should see exponential growth in the

number of distinct output patterns as we exponentially decrease output discretization

(reducing discretization size by half at each step). As it is, we only see linear growth

in the number of distinct output patterns. There is some compression of input

vectors into areas of output space. This follows conceptually in that for a given

trained network there should be the ability for multiple sensor observations (i.e.

network inputs) to activate the same concept (i.e. output pattern). E.g. two different

perspective views of the same object.

A network instance is the state of all node outputs in the network, given a constant

weight state and architecture. Each distinct output pattern represents a unique

instance of the network. Each unique network instance represents a unique collection

of neural objects. The number of unique combinations of neural objects that a
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network can represent determines the concept capacity of that network.

The relatively large spread of frequencies in the number of distinct output pattern

histograms, see figure A.6, presents an interesting bit of information. The number

of distinct output patterns is an upper bound on the number of distinct concepts.

If the number of distinct output patterns realizable by a network is highly variable

upon the weight state of the network, then the number of concepts that a network

can represent is a function of the connection weights of that network. This result

only explicitly holds true for the fully connected feedforward networks examined

in this work. However, as many, more complex networks will likely have a large

number of feedforward elements, it seems reasonable that this result will be present

to some degree in other networks. Extrapolating to trained neural networks, this

result suggests that if we want a neural network to be able to represent a large

number of concepts then we will have to take care in the network’s training such that

its connection weights end up in a state which allows a large number of concepts.

Some areas of weight-space may only allow a relatively small number of concepts

to be represented by the network. To meaningfully specify the concept capacity of

a network, we need to know not only the architecture but also the current weight

state.

Figure A.8 shows that the ability of a network to represent a commutative dia-

gram scales in a reasonable manner with output discretization. As we go to smaller

output discretization, the active region of each node, for any given η, will become

smaller because there will be more possible ηs for each node to fall into. Consider the

nested Venn diagram of figure A.2. If the regions become smaller on average, then

it will be harder for random weight vectors to induce the desired nesting of regions.

The result from counting distinct output patterns suggests that simply increasing

the number of neural objects per neural network node may not be a sufficient way

to increase concept storage. Additionally, the commutative diagram results suggest

that we will want to develop training guidelines to maximize the conceptual capacity

160



Appendix A. Introduction to Category Theory

of a given network.

A.5 Theoretical Bounds on Categorical Concept

Capacity

Following the investigation of applied methods, a combinatorics based theoretical

method was developed for the same type of networks. Numerical work in the pre-

vious section calculated average commutative diagram upper bounds for a given

architecture. In this investigation, we take those same fully connected by layer

feedforward architectures and find a theoretical upper bound on their capacity to

represent commutative diagrams. This theoretical upper bound is based only on the

structure of the neural network and not on specific implementations as in the first

set of experiments.

The second investigation involved a combinatoric count of possible commutative

diagrams. Counting possible commutative diagrams gave average commutative dia-

gram upper bounds (i.e. capacity) for given architectures with specific weights. Now,

those same fully connected by layer feedforward architectures are analyzed for a the-

oretical upper bound on their capacity to represent commutative diagrams. This

theoretical upper bound is based only on the structure of the neural network and

not on specific implementations as in the first set of experiments.

Neural networks derive meaning from the relative connections between nodes.

The structure of a given network is specified by these relative connections. Cat-

egory theory is the mathematical discipline that is concerned with structure. As

category theory provides a rigorous framework to analyze structure, it provides a

rigorous method to analyze those properties of neural networks that are determined

by structure.

We postulate that a natural mathematical context for the operation of neural

networks is representation and manipulation of the structure of input information. In
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Figure A.9: Commutative diagram path examples. The left panel illustrates one
possible commutative diagram over these node, and the center a different possible
commutative diagram. The right panel illustrates all possible paths using the fully
connected by layer scheme.

the case of biological, or otherwise embodied, neural networks, the input information

is supplied by sensors reacting to environmental observation. Letting a concept be

any element of information, the structure of input information is the conceptual

structure of the observed environment. The Categorical Neural Semantic Theory

(CNST) by which an individual concept can be represented as an object in the

Concept category, and the activation of a neural node within a certain interval, is

detailed in the work of Healy and Caudell [62]. These ideas of object and category

are two fundamental ideas of category theory. An overview of category theory is

found in A.

A commutative diagram requires two or more paths with common source and

target nodes. Each node in the path may be one of a number of neural objects

depending upon what interval its activation falls in. A unique instance of neural

objects and connections, that form two or more signal paths between common source

and target nodes, is a unique commutative diagram in the neural category.

By counting the number of unique instances of two or more signal paths between

each possible source and target node, we calculate an upper bound on the number

of unique commutative diagrams representable by a given architecture with a given

output discretization size and object forming interval scheme. We begin with fully

connected by layer, feedforward, architectures as used in [4].

Consider the example architecture of figure A.9. The right panel shows all archi-
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tecture connections. The center panel shows one way to form a commutative diagram

with this architecture. The left panel shows another way to form a commutative di-

agram. For a given set of paths, a unique commutative diagram is formed for each

unique combination of neural objects used in the paths. We will count all possible

ways to form commutative diagrams in this architecture, then in other architectures

of the fully connected by layer feedforward form.

First, fix the target and source nodes. Paths from source to target must then

choose one of the two nodes at each of the two middle layers. A set of two or more

valid paths forms a commutative diagram. In this case,
(

2
1

)

∗
(

2
1

)

= 4 different paths

can be formed given that there are 2 nodes in each layer and 1 node is chosen from

each layer. Given four possible paths, we can form
(

4
2

)

+
(

4
3

)

+
(

4
4

)

=
∑4

k=2

(

4
k

)

= 14

unique, commutative diagram forming, path sets. Note that a commutative diagram

forming path set needs include at least two paths and may include up to all paths

from source to target. We now account for the selection of any possible source-target

pair by noting that there are two choices for the source and two choices for the target.

This gives us 2 ∗ 2
∑4

k=2

(

4
k

)

commutative diagram forming path sets through this

architecture. The last step is to consider the actual neural objects forming each path

set. Two topologically identical path sets are distinct if any of the neural objects

composing the paths are different. Each set of paths need not include all nodes in the

middle layers (middle layers being those which do not contain the source or target

layer), but to create an upper bound, we consider the number of distinct neural node

configurations formed by the middle layers along with the target and source nodes.

For the architecture under consideration, we have 4 nodes in the middle layer plus

a target and source node for a total 6 node upper bound on the number of nodes

in any given path set. Each node may be one of as many different neural objects

as there are distinct intervals defined to form those neural objects. At most, there

may be as many distinct object intervals as there are discrete neural output values.

We define d as the number of distinct intervals defined to form neural objects. In
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this case, we have up to d6 distinct combinations of neural objects along a set of

paths from a source to a target node. Therefore, this architecture can support up to

d6 ∗ 2 ∗ 2
∑4

k=2

(

4
k

)

distinct commutative diagrams.

In a more general case, for any fully connected by layer feedforward network with

each layer the same size, we can specify a network by its length l and width w.

For each path, we pick one node from w choices for each of the l − 2 middle layers

resulting in wl−2 distinct paths from any given source node to any given target node.

Forming path sets from those paths, we can make
∑wl−2

k=2

(

wl−2

k

)

distinct path sets.

Adding the consideration of distinct neural objects, each path in a set can contain at

most w ∗ (l− 2) neural objects. This yield as upper bound of dw∗(l−2) ∗
∑wl−2

k=2

(

wl−2

k

)

distinct potential commutative diagrams from any given source to any given target

node. Therefore we have w∗w∗dw∗(l−2)∗
∑wl−2

k=2

(

wl−2

k

)

distinct potential commutative

diagrams from arbitrary first level source to arbitrary last level target.

A.6 Categorical Encoding of Conceptual Struc-

ture

The theory that brain operation, at the conceptual level, can be expressed as a

function of structure is illustrated in Figure A.10. The lower left quadrant represents

afferent sensory information from the world. It could be said that the quadrant

actually represents the world as it exists external to the brain, but then we run into

philosophical objections as to whether there is any world outside the brain. As such,

we only claim there is some information that appears to stimulate an organism’s

senses. For simplicity’s sake though, we will henceforth refer to the world as if it is

an external reference. The lower right quadrant represents neural tissue. The upper

left quadrant represents the conceptual structure resulting from a given instance of

the world. The upper right quadrant represents the conceptual structure resulting

from a given instance of neural tissue. The main idea of the structure based theory
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Figure A.10: Structure of categories relating brain and environment.

is that the most fit organisms will have a structurally invariant mapping between the

conceptual structure of the world and the conceptual structure of their neural tissue

because this will allow neural processing to produce conclusions about the external

world. As our goal is to embody neural networks that invariantly map conceptual

structure from the world to the artificial neural tissue, evidence will be produced

either for or against the structure based theory of brain operation.

We assert that biological neural tissue is able to represent the structure of the

physical world. I.e. when we perform an inflective task of rotating an object in

our imagination, we are performing operations upon neural tissue activation levels

where the neural tissue activation levels map to an object of the physical world, and

operations on the activation levels map to physical rotation of the object. Given that
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assertion, there will exist a mapping from physical objects to neural activations in a

particular instance of neural tissue. In order to be mathematically consistent, that

mapping must satisfy certain rules described by category theory [110]. A category

must have definitions for objects and morphisms between those objects. A category

must satisfy two ”bookkeeping” rules, as well as the identity rule and the associative

rule. The first bookkeeping rule is that the domain and codomain of IA are both A.

Where I is the identity morphism. The second bookkeeping rule is that g ◦ f is only

defined if the domain of g is the codomain of f , the domain of g ◦ f is the domain

of f and the codomain of g ◦ f is the codomain of g. The identity rule requires that

if A
f
→ B then IB ◦ f = f and f ◦ IA = f . The associative rule requires that if

A
f
→ B

g
→ C

h
→ D then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

The fact that there are rules for valid categories, and that valid categories are

necessary to perform valid structure mappings suggests that instantiations of neural

systems will have to meet certain rules to perform optimally. One of the contributions

of this dissertation is to demonstrate that addition of a categorically valid neural

structure improves the performance of the embodiment of that system.
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StimValue

StimLB(q) StimUB(q’)

StimInt(q,q’)

Figure A.11: A stimulus concept colimit with base diagram ∆ and defining diagram
∆̄. The apical object q < Activation < q′ could also be represented as a stimulus
interval object StimInt(q, q′).
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Categorical Limits

This appendix describes an ART variant which has the power to represent categorical

limits and colimits. Categorical limits and colimits represent generalization and

specificity in a neural architecture.

B.1 LimitsART Implements Limits and Colimits

The method which will be implemented to allow limit and colimit representation

corresponds to control over the length of each side of template hyperboxes. This

subsection specifies how that method is implemented and why it corresponds to

categorical limit and colimit representation.

The neural structure which controls hyperbox length is the ρ vigilance node in

conjunction with the resonance interface between the F1 layer and the F2 layer.

Controlling the maximum size of each hyperbox side means controlling the individual

regions T k
d of each template T k to restrict the maximum difference among all possible

values r = q′ − q. The strategy taken is adapted for fuzzy ART from [115]; in the

segment of the F1 layer for each stack interval network, attach the architectural

structure necessary to represent the colimit apical object StimInt(q, q′] (shown in

Figure A.11) to each pair q, q′ of F1 nodes having the desired difference rmax = q′−q
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between their neural activations.

B.1.1 The Colimit Representations

Consider the ART network F0 and F1 layers subdivided into n segments. These seg-

ments might be labeled pattern components, hyperbox dimensions, feature elements,

or something else appropriate for a particular input vector context. The discussion

in this section will apply separately for each value of d, where 1 ≤ d ≤ n. All n

segments will be considered together when appropriate.

The concepts StimLBq and StimUBq′ , their common subconcept StimV al, and

the morphisms StimV al → StimLBq and StimV al → StimUBq′ in the base dia-

gram ∆ of the desired colimit (Figure A.11) are already explicitly represented by

the activation of segment d of F0, and hence, F1. To represent the colimit, add

a node and connections representing the colimit apical object StimInt(q, q′] and

its cocone leg morphisms, whose domains are base diagram objects (reciprocal con-

nections are also needed, since here it is necessary to actively enforce the model-

space morphism property). The leg morphisms StimUBq → StimInt(q, q′] and

StimLBq′ → StimInt(q, q′] are represented by additive connections from the two

F1 nodes representing StimLBq′ and StimUBq together with the reciprocal con-

nections. The leg morphism StimV al → StimInt(q, q′] is represented by the set

containing the two paths from the StimV al node, through the nodes representing

StimLBq′ and StimUBq, and terminating at the StimInt(q, q′] node, along with

a reciprocal connection from the StimInt(q, q′] node to the StimV al node. Small,

positive fixed weights for these connections ensure that the colimit node requires

input from both nodes q and q′ in order to become active, thereby ensuring that one

path representing the colimit defining diagram is active if and only if the other path

is as well. This ensures the commutativity of the defining diagram for the colimit

in the category NA,w, which represents the defining diagram for the StimInt(q, q′]

colimit in the category Concept.
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V

F2

F1

F0

Figure B.1: Unmodified ART illustrated here for comparison to LimitsART.

V

F2

F1

F0

S

F1

F1

+

_

Figure B.2: LimitsART augments the F1 layer with colimits and limits.

Figure B.2 shows two colimit apical object nodes and connections added to each

input dimension of the fuzzy ART network of Figure B.1. In the case of Figure

B.2, there are two input dimensions in the input vector. The F0/F1 nodes are, in

sequence, the two real valued inputs followed by the complements of those inputs.
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The complement of each real valued input r is rmax − r, where rmax is the maximum

node activation value. Each feature dimension has a colimit apical object node. The

nodes representing the colimit apical objects StimInt(q, q′] for each of the n input

dimensions all together form a new layer which is called F1+.

Suppose that the maximum hyperbox side length to be allowed is rmax. This

determines a range of real valued pairs (q, q′) with q ≤ N−rmax (where all quantities

are as described in the previous paragraphs) and q′ = max(q, 0) + rmax. These pairs

represent all possible intervals having the maximum length rmax for side d of any

template hyperbox, corresponding to an interval q < v ≤ q + rmax. The maximum

side length rmax is to be applied uniformly across the n dimensions.

To understand why the colimits represent maximum side lengths, suppose that a

hyperbox “grows” so that side d has length r and is represented by the pair (q1, q2)

with q2 = q1 + r. Suppose further that the side exceeds the maximum length,

r > rmax. This means that when the corresponding template is active, and for any

of colimit pair (q, q′) from the possible range, either node q is inactive (if q1 < q) or

node q′ is inactive (if q′ < q2). Then, none of the colimit nodes in that segment of

F1+ can remain active since at least one of its leg morphisms must be inactive, the

nodes q, q′ being the sources of the connections implementing those leg morphisms

(refer to Figure B.2).

B.1.2 The Limit Representations

There is a range of StimInt(q, q′] concept colimit representations for each hyperbox

dimension d. However, it is irrelevant to our purpose which interval in this range

contains the actual hyperbox side d: only the side length rmax need be considered,

since that is what we wish to control. This control can be exerted by applying the

knowledge that exceeding the side length will result in all colimit nodes becoming

inactive in segment d of F1+. This calls for an abstraction: remove the information

specific to each particular pair (q, q′), leaving only their common side length, which
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is to be compared with rmax. Since a particular pair is represented by a colimit node,

the abstraction can be achieved by attaching the node and connections necessary to

form a limit cone for a diagram containing desired colimit apical objects represented

in segment d of F1+, including reciprocal connections for the limit leg morphisms(see

Figure B.2). To complete the limit defining diagram, an upper level node is added

representing a common concept that the colimits all map to. Otherwise, the diagram

is discrete, and there are virtually no limits for discrete diagrams in the concept

category.

In [115], we see that for stack coded binary ART1 there are n stack interval

networks which correspond to n limit cones. For real valued fuzzy ART, intervals

defined by (q, q′) can fall anywhere in a continuous range, so certain intervals must

be chosen at implementation time to be represented by actual nodes. As shown

in Figure B.2, apical object nodes form a new layer designated F1−, which has a

single node for each of the n segments of F1+. The added node L is in all the base

diagrams, it represents a concept AllStimInt formed from StimV al and the concepts

StimInt(q, q′] via concept morphisms represented by the appropriate connections.

Its inclusion is necessary for the limit cones to correctly represent concept limits. If

rmax ≤ 1
2
N − 1, AllStimInt will be an inconsistent concept, since it requires the

activation value v to be in all intervals at once. As is described for the original stack

coded theory, inconsistent theory representations cause no harm as long as they are

not given a role in network operation, and the only role for node L is to represent

AllStimInt. The F1− nodes and their attendant connections correspond to limit

cones in the neural category NA,w which are the images of the appropriate limit cones

in Concept.

Using the property of a functor M : Concept → NA,w and other categorical

principles, we have redesigned the ART network to obtain LimitsART, which enforces

the properties conferred by colimits and limits from the category concept. As long

as some F1+ colimit object node is active in each segment d, its limit object node
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in F−1
+ will be active because of the model-space morphism property designed into

the connections representing the limit cone morphisms. Since it has no other inputs,

the limit node will be inactive if all colimit nodes are inactive. Now, as previously

shown, the requirement that some colimit node in segment d be active is r ≤ rmax,

which is to say that the interval (q, q′) represented by a given hyperbox side must

not exceed the maximum specified interval.

B.1.3 Limit Representations Control Vigilance

The following describes how fuzzy LimitsART implements the effects of limits upon

template formation. This implementation description is adapted from the Neuro-

computing paper which describes LimitsART in detail [115]. Connections from the

F − 1+ nodes to the ART vigilance node V through the node labeled S as shown

in Figure B.2 allow each F − 1+ node to supplement the vigilance node’s F2 re-

set capability, as follows. First, node S is tetanically active except when the entire

F − 1+ layer,acting cumulatively, suppresses its activation through n inhibitory(-)

connections targeting S, one for each F − 1+ node. Therefore, if resonance between

the current input and a template pattern is about to occur, but any one of the F−1+

nodes is inactive (because all of its F1+ correspondents are inactive), the resulting

lowering of the cumulative inhibitory signal to S allows it to become active. Act-

ing through its additive connection to the vigilance node V , S thereby activates V ,

effectively vetoing the resonance via an F2 layer reset.

To avoid activating V each segment d must satisfy the inequality
∥

∥Id ∧ T
k
d

∥

∥ ≥

N − rmax = t ·N . An F1 activity pattern I ∧ T k is made up of the activity patterns

Id ∧ T k
d . The added network structure in LimitsART (Figure B.2) provides for a

uniform upper bound on hyperbox side length. This allows the user of the network

to exercise a more specific control over template information “erosion” during re-

coding than is allowed by having a vigilance parameter alone. Just as ρ can be

applied to control the amount of specialization versus generalization allowed in the
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templates, t can be applied to control the specialization versus generalization allowed

in each of the n segments of the templates. A higher value for either parameter means

smaller hyperboxes, hence fewer input exemplars per template, and therefore greater

specialization.

Just as in the stack coded case, it might be considered whether the parameter ρ

can be eliminated altogether. I.e. does t make ρ redundant? It can be shown that

the usual test involving ρ is indeed redundant if t ≥ ρ. However, this is not the case

when t < ρ,and therefore the parameter ρ is not redundant.

B.1.4 Apparatus

In this section, an experiment is detailed that implements LimitsART and is designed

to test whether LimitsART provides an improved classification of input data when

compared with that obtained with unaugmented ART. The experiment is carried

out in a standalone context, i.e. not as part of any greater neural architecture. The

purpose of the experiment is to provide evidence as to whether it might improve

performance to incorporate LimitsART into the larger embodied architecture.

The data domain for the experiment was chosen to enable tests of separate hy-

potheses about performance improvement. A single LimitsART simulation program

was used. The simulator was programmed so that with a nonzero value of the afore-

mentioned threshold value t it simulates LimitsART at that threshold, and with

t = 0 it simulates ART.

The LimitsART simulator was produced using the network specification and sim-

ulation package eLoom [96]. A major advantage of working with variations on ART

is that, while the theory behind it is substantial and mathematically guarantees that

it performs classification in a well-defined manner for items represented by binary

input patterns [63], its simulation involves a relatively simple algorithm. LimitsART

simulation is equally simple. This simplicity can be attributed directly to the math-

ematical performance guarantees of the theories behind ART [65] and LimitsART
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[62]. In particular, a choice of colimits, all representing intervals with the same length

for all segments of F1, determines the maximum allowed hyperbox side length. The

choice is specified as the spacing of nodes in the colimit base diagrams, given by the

threshold parameter t for the activation of limit apical nodes. Thus, an abstraction

derived from the semantic theory (limits built upon colimits) has given rise to a

numerical parameter. This is to say, the theoretical consideration of category theory

has resulted in an implementable design element.

B.1.5 Experiment

The results of the stand alone LimitsART experiment can be found in appendix E.

The conclusion based on experimental results is that LimitsART was better able to

form templates which efficiently covered the input data. Unaugmented ART was

able to learn classifications of all input data, but ART formed templates spanning

over large regions of input space in which no inputs occured. In the sense that

classification templates are generalizations of groups of input points, LimitsART

performs better at the generalization task because it only formed templates around

regions in which input points occure. Based on this performance, LimitsART will

be incorporated into the embodied architecture to see if the improvements derived

from category theory will improve embodied performance.
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Extended Background Material

C.1 Hippocampus

In addition to activation during item and context association, the hippocampus is

also selectively activated during the encoding or retrieval of verbal [116] [117] and

face-name associations [118] [119] [120]. Correspondingly, recent neuropsychological

studies have found that recognition of associations is impaired even when recogni-

tion for single items is spared in amnesic patients [121] [122]. These studies reported

impairment in recognition memory for associations between words or between faces

or face-occupations pairs, as compared to normal performance in recognition of sin-

gle items. At the same time, other functional imaging studies and characterizations

of amnesia have suggested that the hippocampus is sometimes involved in both as-

sociative and single item recognition, highlighting the need to clarify the nature

of associative information that composes an “event” [123]. To build evidence that

a successfully model of hippocampus which displays some of the behavior demon-

strated by the preceding literature can be computationally realized with the methods

presented in the dissertation research, a computational hippocampus model will be

presented.

Many component elements combine to create context-rich episodic memories.
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Functional imaging studies provide evidence to support activation of the hippocam-

pus during the encoding or retrieval of associations among many elements of a mem-

ory [124] [125] [126] [127]. For example, Henke [128] observed greater hippocampal

activation when subjects associated a person with a house, as compared to making

independent judgments about the person and house. Others have found selective

hippocampal activation during recollection of the context in which prior learning

occurred while performing formal tests of memory [129] [130].

The coding of associations has been experimentally demonstrated to extend be-

yond item and context associations. These findings are generally consistent with

the notion that the hippocampus plays a distinct role in recollection associated with

binding features of items and their context to represent salient events [131]. The

environment in which the architecture of this dissertation is embodied will by nature

be limited to the sensory stimuli which encode the distal reward task. Similarly,

there is no temporal existence other than during the task. As such, all of the em-

bodied architecture’s existence is salient and Eichenbaum’s results are informative to

the embodied architecture. Given that, evidence present in the Eichenbaum study

suggests the hippocampal function binds recollection with item features and their

context.

Furthermore, these sequential codings can be envisioned to represent the series

of events and their places that compose a meaningful episode. The information

contained in these representations distinguishes related episodes that share common

events and therefore could be confused. Several studies on the spatial firing patterns

of hippocampal neurons as animals traverse different routes that share overlapping

locations provide compelling data consistent with this characterization. In one study,

rats were trained on the classic spatial alternation task in a modified T-maze [132]

[133] [35]. Performance on this task requires that the animal distinguish left-turn

and right-turn episodes that overlap for a common segment of the maze and requires

the animal to remember the immediately preceding episode to guide the choice on
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the current trial, and in that way, the task is similar in demands to those of episodic

memory. If hippocampal neurons encode each sequential behavioral event and its

locus within one type of episode, then most cells should fire only when the rat

is performing within either the left-turn or the right-turn type of episode. This

should be particularly evident when the rat is on the “stem” of the maze, when

the rat traverses the same set of locations on both types of trials. Indeed, a large

proportion of cells that fired when the rat was on the maze stem fired differentially

on left-turn versus right-turn trials. The majority of cells showed strong selectivity,

some firing at over ten times the rate on one trial type, suggesting they were part

of the representations of only one type of episode. Other cells fired substantially

on both trial types, potentially providing a link between left-turn and right-turn

representations by the common places traversed on both trial types.

Functional imaging studies in humans have also revealed hippocampal involve-

ment in both spatial and non-spatial sequence representation. Several studies have

shown that the hippocampus is active when people recall routes between specific

start points and goals, but not when subjects merely follow a set of cues through

space (Hartley et al.2003). In addition, the hippocampus is selectively activated

when people learn sequences of pictures (Kumaran & Maguire, 2006). The stand

alone hippocampus model which is refined into the hippocampal compnent of the

embodied neural architecture of this dissertation is tested with picture sequences.

Even greater hippocampal activation is observed when subjects must disambiguate

picture sequences that overlap, parallel to the findings on hippocampal cells that

disambiguate spatial sequences [132].

Memories are networked to support inference. Further consideration of the cog-

nitive properties of episodic memory suggest that related episodic representations

might be integrated with one another to support semantic memory and the ability

to generalize and make inferences from memories. Referring to how related memories

are integrated with one another, William James [134] emphasized that “in mental
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terms, the more other facts a fact is associated with in the mind, the better possession

of it our memory retains. Each of its associates becomes a hook to which it hangs, a

means by which to fish it up by when sunk beneath the surface. Together they form

a network of attachments by which it is woven into the entire tissue of our thought.”

James envisioned memory as a systematic organization of information wherein the

usefulness of memories was determined by how well they are linked together.

There are two main outcomes of the linking of representations of specific ex-

periences. One is a common base of associations that are not dependent on the

episodic context in which the information was acquired. Thus, when several experi-

ences share considerable common information, the overlapping elements and common

links among them will be reinforced, such that those items and associations become

general regularities. The representation of these general regularities constitutes se-

mantic “knowledge” that is not bound to the particular episode or context in which

the information was encoded. The networking of episodic memories by common el-

ements provides a mechanism for the commonly (though not universally [135]) held

view that semantic knowledge is derived from information repeated within and ab-

stracted from episodic memories.

Eichenbaum has conducted a series of studies to research the involvement of

hippocampus in the linking of memories. The role of the hippocampus in making

indirect associations was examined in one particular study. This study examined

associations between stimuli that were each directly associated with a common stim-

ulus. Initially, normal rats and rats with hippocampal lesions were trained on a series

of overlapping “paired associates” [136]. The study procedure consists of a series of

trials. On each trial, one of two items were initially presented to the rat in a pairing.

The rat then had to select the arbitrarily assigned associate item. For example, given

that the rat was trained on the pairs A-B and X-Y, if A was the initial item, then

the rat was expected to select B and not Y; conversely, if X was the initial item

the rat was expected to select Y and not B. Afterward, the rats were trained on a

179



Appendix C. Extended Background Material

second paired associated list where the initial items were the second items in the

first list and new items were the associates (B paired with C and Y paired with Z).

Thus, when B was presented initially, the rat was expected to select C and not Z.

When Y was presented initially, the rat was now expected to select Z and not C.

After training on all four paired associates, recall of the indirect relations among the

pairings was tested for each rat. These tests were carried out with presentations of

an initial item from the first learned paired associates (A or X) followed by a choice

between the second items of the later learned associates (C versus Z). Normal rats

demonstrated their ability to express these indirect relations by selecting C when A

was presented and Z when X was presented, whereas rats with selective hippocampal

damage showed no capacity for this inference from memory. These findings, as well

as results from another transitive inference task [137], indicate that the hippocam-

pus is critical to binding distinct memories into a relational network that supports

flexible memory expression. The embodied architecture is this dissertation creates a

temporal and spatial framework among sensory memories.
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Computational Cortical

Hippocampal Model

D.1 Episodic Memory

Implementing episodic memory requires at least two components; one component

to encode the semantic content of sensory input from the observed environment,

and another component to encode the trajectory of sensory input through semantic

space over time. A cortical model is presented, with biologically plausible function,

that can perform temporal semantic encoding. This cortical model is joined to a

neuromorphic hippocampal model for the purpose of emulating biological episodic

memory function. Experimental evidence is presented to show that the episodic

memory architecture is exhibiting biologically equivalent episodic memory behaviors.

D.2 Cortical Model

The cortical model is comprised of stacked layers of fuzzy Adaptive Resonance Theory

(ART) networks. While ART is a good choice for the neuro-cortical classification

modules, other unsupervised learning techniques could be expected to render similar
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results, though probably with subtle and interesting differences. Between each pair

of ART modules there is a layer of temporal integrators (Taylor et al., 2009), with

an adjustable time constant of integration for each layer. This TIART network

models a biological cortical column, which receives afferent connections from either a

particular subsection of the input field or a particular subsection of the previous layer.

These subsections overlap in the manner of biological cortex (Kingsley, 2000). The

system as a whole is a simple but powerful cortical classifier. Progressively higher

layers encode progressively more abstract objects or spatial locations. Low levels

correspond to simple perceptual primitives (edges etc.), high levels might correspond

to whole objects or other semantic concepts. Corresponding to the temporal episode

representation method described earlier, the cortical ART networks are modified.

Each ART network has a “top down” recall mode driven by input from higher-

level, more abstract layers as well as the traditional ”bottom up” mode driven by

stimulus input. While in “top down” mode, an activated F2 node in the ART

network reinstates the prototypical input pattern which it encodes in synaptic weights

between layers F1 and F2 (see Figure 4). So, for example if a particular F2 node

encoded the concept of “dog” it could read out the features (“fur,” “tail,” “barks,”

etc.) in the F1 layer. These features would in turn activate the F2 layer of the next

lowest ART module and so on. In this way the network learns new inputs from the

bottom up, and can then recall and reconstruct these features from the top down.

D.3 Hippocampal Model

This section presents the detailed computational hippocampus model. Figure D.1

illustrates the computational hippocampal model with approximate neuron counts

from human biology noted. Actual neural node counts are not preserved in the com-

putational model, but relative complexity of modules as reflected in ratios of neuron

counts is preserved. Experimental results are provided as evidence for biologically
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CA3:
~2.83M neurons

Model as:
SOMART

CA1:
~14M neurons

Model as:
LAPART-2

Dentate Gyrus:
~18M neurons

Model as:
kWTA fuzzyARTs

Entorhinal Cortex:
~0.66M output
layer neurons

Model as:
layed fuzzyART

Perforant
Pathway

Figure D.1: Hippocampal model with biological neuron counts.

faithful behavior. As was discussed, this stand-alone model will be refined for incor-

poration into the final embodied architecture. Through computational reproduction

and experimentation, understanding is demonstrated of hippocampal structure and

function as it relates to episodic memory which is implicated in distal reward tasks.

The computational hippocampal model itself is a contribution to the fields of cog-

nitive neuroscience and neuro-psychology. The design of this hippocampal model

was undertaken in collaboration with Howard Eichenbaum, Neal Cohen, Michael

Bernard, Stephen Verzi, Dan Morrow, Patrick Watson, and Thomas Caudell.

The model of the hippocampal system makes use of several ART variations. It is

related to the model of the cortical system, but has a very different architecture and

accomplishes fundamentally different information processing. While the cortex at-

tempts to represent the conceptual structure of its inputs, the hippocampus attempts

to quickly bind snapshots of high level cortical activity. Behaviorally, this produces

an episodic memory mechanism, where concepts originating in multimodal sensory

input are bound together. By way of this binding, the hippocampal representation
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can also be used to recover neocortical representations from partial activations.

Hippocampus is modeled as a loop of neural modules starting at entorhinal cortex,

proceeding to dentate gyrus, continuing to CA3, and then returning to entorhinal

cortex through CA1, where some of the function of subiculum is implicitly captured

in CA1. Entorhinal cortex is the last level of cortex on the way from sensory input

to the hippocampus. Entorhinal cortex is where all information that will be encoded

in episodic memory must converge. Dentate gyrus provides a pattern separation

function for the information received from entorhinal cortex. CA3 provides pat-

tern completion and semanto-spatial association. CA1 closes the loop and provides

temporal association.

D.3.1 Entorhinal Cortex

The entorhinal cortex (EC) is an area of multi-modal convergence [138] where sev-

eral data streams from different senses come together. The EC’s cytoarchitechture

resembles that of the cortex, so it here is modeled similarly to the cortical model.

However, the ART networks which make up the ERC have two sets of connections

to the hippocampus, a feed forward connection to the dentate gyrus and CA3 meant

to simulate the perforant path, and bidirectional connections to the CA1/Subiculum

component of the hippocampal model. The forward connections provide inputs to

the hippocampal module. The back connections use LAPART rules to learn asso-

ciative links between activity in CA1 and ERC, thereby closing the autoassociative

hippocampal loop. When a CA1 representation is activated, these back connections

can drive top-down cortical recall.

In our implementation the pre-MTL sensory cortex and EC are represented by

layers of fuzzy-ART modules which are modified to encode temporal semantic data.

Individually, these temporally integrated adaptive resonance theory (TIART) mod-

ules are capable of encoding categorical representations of their given input vectors

over time [73]. By combining layers of TIART modules, our EC creates categories
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of categories to represent larger semantic concepts and combine the ”dorsal stream”

containing contextual information and the ”ventral stream” of focal information be-

fore these streams enter the hippocampus. Within the hippocampal representation

in our model, each of the primary regions is represented by a different ART variant

selected to achieve the particular functionality of the individual region. The relative

size of each module is scaled in accordance with approximate human neuroanatomy

(Figure 2).

D.3.2 Dentate Gyrus

The dentate gyrus (DG) has peculiar anatomical properties. It has a large number

of neurons with relatively low activity and it is one of the few places in the brain

in which new neurons are generated in adults. These properties have lead to the

suggestion that the DG creates sparse, non-overlapping codes for unique events via

pattern separation [139]. The DG model module is implemented with a layer of k

ART networks with large input fields. Each of these networks has a single winner,

and thus over all the network implements a k-winners take all system, which creates

a unique, non-overlapping code for each input. This code serves as the input for

CA3.

The DG model module receives conjoined multimodal sensory signals from EC.

DG performs pattern separation on this abundance of sensory information to produce

sparse output activation, which helps bias different semantic concepts toward unique

encodings [140]. Computationally, a series of k-winner-take-all (k-WTA) fuzzy-ART

modules constitute the DG module of our model. A WTA module is a competitive

network in which a single classification beats out competing classifications to repre-

sent the input vector. Effectively, a sparse encoding is created as each of the k WTA

modules yields a single output. Regardless of the number of input dimensions, a k

element output vector is formed.

DG performs pattern separation as compared to a clustering method. A cluster-
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ing method would place all similar input vectors into the same cluster, given nF2k

clusters for k-WTA with nF2 output nodes per WTA submodule. Clustering tech-

niques tend to consolidate patterns. The semi-topological, highly connected, EC

output DG input synapse system provides a chance for differences in regions of the

input vector to result in classification into a different output vector. Otherwise, re-

gional differences might be outweighed by similarity in the rest of the input when

using a traditional clustering technique. Hence we consider this DG architecture to

perform pattern seperation.

D.3.3 CA3

Anatomical studies of the hippocampus proper reveal cytoarchitecture which differs

radically from that of the cortex [138]. While both CA1 and CA3 contain pyramidal

cells like the cortex, existence of extensive recurrent connections in CA3 and the

presence of inhibitory and excitatory interneurons have led some investigators to

suggest that CA3 may be involved in pattern completion [141] [142]. Building on

this idea, CA3 is modeled as a self-organizing map of semantic associations. CA3

uses a modified ART network in which the F2 nodes are laid out on a grid, and

updated according to a self organizing map learning algorithm, similar to a Kohonen

map [143]. The two dimensional array of modeled CA3 nodes corresponds to the

laminar section of hippocampus that is biological CA3.

wj(n+ 1) = β(I ∧ wj(n)) + (1− β)wj(n) (D.1)

The Self Organizing Map ART (SOMART) operates up through the F2 layer just

as a normal Fuzzy ART. For that matter, SOMART need not use real valued inputs,

and therefore need not use Fuzzy ART is particular. SOMART can be adapted from

any version of ART. In SOMART, the F2 output node which wins selection through

through the ART algorithm is updated with fast learning. In fast learning, the ART
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learning parameter β is set to unity in Equation D.1. All variables in Equation D.1

are as described when this equation was introduced in section 2.7.1. Neighboring F2

nodes are then updates with slow learning, where the speed of learning falls off with

distance from the winning node. Learning speed β becomes a function of each F2

node’s distance from the winning node. In the general case, F2 nodes can be laid

out on any topology which allows a distance measure.

The operation of SOMART is such that semantic attractor regions are formed in

ART template space. The specific mapping for those semantic regions to episodes

and phenomena in the environment observed by an embodied SOMART is dependent

upon the specific mapping of sensor inputs to SOMART. In general though, so long

as sensors which capture an appropriate subset of information from the environment

are employed, SOMART semantic regions have representational power for concepts

manifest in the observed environment.

The combination of these ART and Kohonen learning techniques is critical. Be-

cause the Kohonen algorithm updates a neighborhood of neurons, inputs to CA3

collapse into small attractor basins which represent a particular DG input code. This

allows the network to perform pattern completion, as sufficiently similar inputs will

collapse into the same attractor-space as previously encoded DG inputs. However,

the underlying ART algorithm constrains the Kohonen algorithm to a single, best fit

winner, which may not be topologically local to previously encoded attractor basins.

Thus the learning algorithm creates islands of activity which respond to similar input

sets, but avoids a global topology. These islands of CA3 activation in response to

particular environmental stimuli manifest in biological hippocampus as place fields.

Place fields are regions of CA3 cells which are repeatably active when a subject is in

a certain environmental context, often but not necessarily a physical location [59].

A global topology in the biology would correspond to a map of the subject’s known

environmental universe within hippocampus. This has logical problems, and is has

not been observed.

187



Appendix D. Computational Cortical Hippocampal Model

In the computational hippocampal model architecture, the sparse output pattern

from DG serves as input to CA3. Functionally, CA3 assists with episodic binding

through auto-association; in our model, this functionality is represented by a self-

organizing map (SOM) structure. A standard SOM transforms a given input vector

into a distinct topological region without supervision guiding the classification [144].

Incorporating the neighborhood updating capabilities of a SOM within a fuzzy-ART

module, a SOMART module has been created to represent CA3. This module is

capable of mapping semantically similar inputs to proximate topological regions. In

effect, related concepts are clustered together to help associate episodic memories.

The activation patterns of these clusters form the input to CA1.

D.3.4 CA1 and Subiculum

CA1 has been implicated in learning relational information for temporal sequences.

Since the computational CA3 can only encode momentary conjunctions, a mechanism

is needed which can capture sequences of changing relations. Thus, CA1 contains

a unit which temporally integrates CA3 outputs using a set of leaky integrators

just as occurs in the neocortical model. This provides a temporal gradient of input

conjunctions coming from CA3, the oldest bindings will have the weakest signal

in the temporal integrator, while the most recent bindings will be most strongly

represented. This temporally coded sequence of CA3 activity is used by CA1 to

create a topology of temporal sequence.

Once this temporal topology has been established, activity in CA1 is associated

with activity in the EC via a LAPART supervised learning paradigm. Local CA1

learning is supervised in that a certain sequence of CA3 activations corresponds

with a certain EC activation. CA3 sequence A, where that sequence is translated to

an instantaneous representation through the temporal integrator, is bound through

learning to EC activation B. LAPART uses two ART modules connected by a lat-

eral activation field, so the activations on each side are generalized via the ART
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classification mechanism. Through experience, a connection weight is learned to

bind the node that corresponds to each classified CA3 sequence to a node that cor-

responds to some ERC activation. This mapping of sequences onto the high-level

cortical representations closes the hippocampal loop, and allows activations in CA1

to cue top-down recall in the cortex and unspool the temporal representations it has

created.

Anatomically, the output of CA3 proceeds to CA1 and then to the subiculum as

the major output region of the hippocampus. However, the exact functionality of

the subiculum is largely unknown, so the connectivity of CA1 and subiculum have

been merged in the computational model. CA1 is involved in forming sequences of

relations and connecting these episodic encodings back to the original sensory inputs

from EC. This ability to link sequences allows for temporal packaging of episodes.

To handle the sequencing of associations, we temporally integrate the inputs passed

into the model’s conjoined representation of CA1 and subiculum. A laterally primed

adaptive resonance theory (LAPART) module represents the conjoined CA1 and

subiculum regions. The LAPART module learns to associate CA3 encodings with

the original unaltered EC inputs. This allows the LAPART module to complete the

hippocampal loop and propagate temporal sequences back to EC and eventually to

cortex for long term storage.

D.3.5 Computational Cortical Hippocampal Process

Figures D.2 through D.11 illustrate the process of neural activations through the

hippocampal model. Examples are shown of behavior through sensory cortex, en-

dorhinal cortex, detate gyrus, CA3, and CA1. Later, in section D.4, results from the

experimental implementation of this model are presented.

In Figure D.2, when presented with a novel input pattern, an ART module creates

a representative category. The temporal integrator connected to the ART module

raises the activation of the corresponding category to full value, encoding it as the
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Figure D.2: Initial input into cortical model.

most recent F2 activation.

Let the same input pattern be presented, once again, as illustrated in Figure D.3.

The ART module uses the same category encoding and the corresponding temporal

integrator activation remains at full value.
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Figure D.3: Second, identical, input into cortical model
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Figure D.4: Third input into cortical model, abstracted to different cortical class
than first two inputs.

Next, in Figure D.4, a new input pattern is presented. This input pattern is suffi-

ciently different from previous pattern that vigilance is not met, i.e. the input vector

is too far from the closest template vector. The ART module forms a new category

and primes the corresponding temporal integrator value. The temporal integrator

decays the activation value of the previous category and the current category’s node

is active at maximum value.
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Figure D.5: Fourth input, third distinct input. A third distinct F2 output node is
active.
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With the presentation of a third distinct input pattern in Figurefig:HCprocessD,

a corresponding third category is formed which primes the respective temporal inte-

grator value. The temporal integrator decays the activations of previously observed

categories creating a real-valued gradient vector of temporally integrated categories.

EC

DG

Sparse activation pattern on DG output

EC output highly connected to DG input

Figure D.6: Consolidated activations from multiple areas of sensory cortex converge
upon endorhinal cortex and are linked through a highly connected synaptic network
to dentate gyrus. The high connectivity between EC and DG, in combination with
k-winner-take-all behavior for DG output neurons is the modeled mechanism for
sparse activation of DG neurons.

Figure D.6 illustrates converged sensory cortex activations, which represent ob-

served semantic concepts, being encoded as a sparse output activation by DG. Where

we recall that DG is comprised of a number of individual classifiers which a highly

connected to EC outputs. Through cortex, layers of sequential ART modules and

temporal integrators allow for the creation of categories of categories, which further

allow for the formation of semantic concepts in the EC as the convergence of sensor

modality input patterns. Multi-modality semantic concepts from EC are passed as

inputs into the DG which yields a sparse pattern of output activation.
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EC

DG

Sparse activation pattern on DG output

EC output highly connected to DG input

Figure D.7: Same model elements as the previous figure. The figure illustrates unique
DG activation as a result of unique DG activation.

As seen in Figure D.7, unique DG inputs create distinctly different sparse acti-

vation patterns. The hypothesized function of DG is a form of pattern separation,

as supported in the neuroscience literature [139] [145]. Highly converged semantic

encodings are input and sparse lower dimensionality encodings are output.

The separated sparse activations serve as inputs to the highly recurrent CA3 hip-

pocampal region which processes these inputs performing an auto-associative map-

ping as represented in Figure D.8. Recurrence is observed in biological DG [146],

and the form in which we model recurrence is in both the function of ART and the

local activation reinforcement of the self-organizing map portion of SOMART.
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DG

CA3

Figure D.8: Illustrates one possible DG activation pattern and a corresponding field
of activation that might form in the SOMART modeling CA3.
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DG

CA3

Figure D.9: Second, different, input into CA3. Different DG activation pattern
results is different characteristic activation field in CA3 output array.

A second, different input propagates to CA3 in Figure D.9. Unrelated sparse

activations are observed to be mapped to distinctly different CA3 regions, and related

patterns are mapped in close proximity to each other facilitating association of related

concepts. This mapping creates a topology across the CA3 output space. The

particular topology is an explicit function of the neuromorphic connectivity of the

cortical and hippocampal model components. Implicitly, the topology is a function

of the semantic content of sensory observations.

In Figure D.10, CA3 auto-associations are integrated temporally within CA1 and

create an input vector for the A side of a LAPART. This allows relational mappings

to form between associated temporal semantic episodes and EC semantic concepts.

Figure D.11 illustrates that localized regions (islands) of activation are formed
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CA1

Figure D.10: The input nodes of CA1 temporally integrate the output activations
from CA3. This results in CA1 associating temporal sequences of CA3 output fields
to instantaneous EC activation patterns. The EC activation patterns are incident
upon the B side of the LAPART which models CA1, while the temporally integrated
CA3 outputs are incident upon the A side.

CA3

Temporal
Intergrator

fuzzy LAPART
side A

EC Semantic Concept

fuzzy LAPART
side B

CA1

Figure D.11: Temporal encoding in CA1.

temporally as prior regions of activity decay away. This decay process contributes to

distinct episode encoding, along with the abstraction of sensory inputs that results

in changing ART F2 output nodes. CA1 can perform prediction in the form of

temporal pattern completion based on prior experience.

In the computational hippocampus architecture, when an episodic memory is re-
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called, the hippocampus activates one of the categories in CA1, and it begins the

top-down recall of the episodic trace which it encodes. In that recall, the active cat-

egory in the CA1 ART unit encodes a temporal sequence of conjunctive associations

which were formed in CA3 during the episodic memory formation. During recall

of a specific conjunctive association in CA3, each stream (ventral and dorsal) that

makes up part of the conjunctive association is activated in top-down fashion. The

top-down activation of each stream is similar, thus the top-down description of a

single stream will be given in the interest of brevity. In the top-down activation of a

cortical stream (either focus or context), the top-level ART category is activated (in

the EC or DG). This top-level category consists of a concatenation of ART categories

from each column in the cortical stream. Top-down recall of this concatenation of

categories consists of a simultaneous recall of each column starting at the ART unit

which is at the top of each column. It is this ART unit which provides its category

for the concatenation during the formation of the episodic memory. The top-down

recall for each column is similar, thus the description of a single column will be

given in the interest of brevity. During recall of a cortical column, the category in

the top-most ART unit is activated in top-down fashion. This category contains a

temporal sequence of categories from the next lower ART unit as integrated through

the integration unit between them. The recall continues from ART unit to ART unit

downward through the connecting temporal integration units until the bottom ART

unit is reached. In top-down activation, each temporal integration unit contains a

temporal sequence of ART category activations which were fed to it as input during

episodic memory formation. During recall of the temporal sequence of ART cate-

gories in a temporal integration unit, each category in the sequence is re-activated

in top-down fashion in the same temporal order as was originally experienced and

encoded in the episodic memory trace. When the recall reaches the lowest level ART

unit, it is ready for “replay.” During replay, the memory is re-activated in forward

or bottom-up fashion in the same temporal sequence it was originally experienced.
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In this system, temporal information is stored in the activation potentials of tempo-

ral nodes. Local semantic information is stored in the synaptic weights of the ART

modules. Long-term, memory can occur through Hebbian-like adaptation of synaptic

connection weights between local cortical areas. In our model, a local cortical area

at a given level is comprised of a collection of nodes that all influence the activation

of the same ART output node.

D.4 Experimental Results

D.4.1 Associating Object/Scenes Pairs

For this assessment of the cortical hippocampal model, results from the computa-

tional model are compared to published human study results of Hannula et al. [147].

The Hannula study, as illustrated in D.12, presented human subjects with a series of

face-scene pairs in a study block. Eye movement was then tracked for sets of three

faces, with a background scene, presented in a test block. The set of three faces

can be from one of three categories: match, re-pair, or novel. The match face sets

contain three known (previously seen) faces, one of which is correctly paired with the

background scene. The re-pair face sets contain three known faces, but none of them

are correctly paired with the background scene. The novel face sets contain three

unknown faces. This task is an exercise in episodic memory for associating people

and places.

Published results show that normal subjects will spend a larger proportion of

viewing time directed to a face that correctly matched the background. Subjects

with hippocampal damage did not exhibit this proportional increase in dwell time

on the matching face. This result indicates that hippocampus is required for the

recognition of previously observed episodes.

The goal of this assessment is to show evidence that our model exhibits some of

the same function as biological brain with regard to scene/object pair association.
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Figure D.12: Visual input scheme of Hannula study.

In the interest of correlating behavior from our model to human behavior, we create

a mapping of the human experimental setup to an experiment that we can run, in

simulation, on our model. To mitigate visual processing effects, we map the face-

scene focus-context images to simple geometric images (initially using squares and

triangles, then going to orthogonal lines and dashed lines). Our input images were

ten pixels by ten pixels.

We present arrangements of our focus and context images that correspond with

the study and test image presentations of the original experiment. The study pre-

sentation sequence of the original experiment is fixation, scene, face. As the com-

putational model lacks a mechanism for separating focus and context information

in the visual field, we must simulate that separation by presenting separate images
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to the focus and surround modality inputs. The presentation sequence for the focus

modality is fixation, scene, face. The presentation sequence for the context modality

is fixation, scene, scene. These sequences reflect the fact that the scene image is a

focus image during the second element of the original study presentation because the

scene is the only image on the screen. The context modality only ever sees the scene

because even when the face is present in the original study presentation, the scene

still forms the background of the image. Part of the original experimental setup is

that visual dwell time on an image is a measure of recognition of that image. As the

model is lacking eyes, an alternate measure of recognition must be developed. The

simulated measure of recognition is equivalent to directly probing neural activation

in a human brain. Modeled neural activation can be evaluated by observing the ART

classifier module output in the cortex model and the grid node outputs in the hip-

pocampus model. Model recognition scores are computed by summing contributions

from each cortical classification module, and the hippocampus. The cortical classifi-

cation modules can each contribute one point, and the hippocampus can contribute

a point. The first ART module in the cortical focus modality contributed a point

if it identified an existing template (i.e. it had previously learned a generalization)

for the current input. As inputs are presented in sequences of three (fixation, scene,

face), the first ART module will make its contribution based on the last element of

the sequence. The second ART module in each cortical modality is located after a

temporal integrator, and so it will score familiarity based on the whole sequence.

Another biological brain mechanism that the computational model lacks is the

ability to concentrate on different portions of an image. As such, that ability is

simulated for the purpose of the test images. Instead of a single sequence with the

last image containing three faces, three sequences are presented with the last image

each containing one face. This way, the model does not need to consider three sub-

images as the human subjects do when looking at the single test image of three

faces.
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D.4.1.1 Empirical Results

Figure D.13 shows an example of the experimental results. This example reflects

two test sequences from the Hannula experiment. As this example is from the match

category of faces, all three faces are known. One face should have an episodic memory

associating it with the tested scene.

Figure D.13: Results of Hannula experimental comparison.

The intact model results in higher familiarity scores when previously studied

matching focus-context (face-scene) image pairs are presented, as opposed to pairs

that were not studied together. This behavior correlates to the eye dwell time of

human subjects in the Hannula study. If the hippocampus section of the model is

lesioned, familiarity scores are the same between matching and non-matching image

pairs. This behavior also correlates with human subjects, where subjects with hip-

pocampal damage do not preferentially dwell on particular faces during the matching

and non-matching face-scene pairs. Further results show that there is no difference

in familiarity scores between different focus images in the re-pair and novel tasks,

with either intact or lesioned models. These results correlate with the Hannula data

where hippocampally damaged and normal subjects both view faces in the re-pair

task with no preference.
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D.4.2 Co-occurrence of Shared Scenes with Novel Objects

For the third assessment we compared the model to a study performed by Preston

et al. [148]. In the Preston study, human subjects were trained on black and white

photographs of face-house pairs and face-face pairs in three sets. The first set consists

of pairs of faces and houses. The second training set introduces new faces paired

with the same set of houses shown in the first set. And finally, the third training

set consisted of face-face pairs which were previously unseen. During the testing

phase of the Preston study, subjects performed forced-choice judgment tasks. Two

of the tasks presented either a face or a house and required the subject select the

corresponding house or face to complete the pair. The other two tasks focused on

face-face pairs. One task was simply a test of the learned face-face pairs, whereas

the other task tested subject’s ability to recall related face-face pairs which shared a

common house but which were never explicitly seen together. Similarly, we trained

our model using face-house pairs such that a face is processed by the ventral stream

and a house is processed by the dorsal stream. An example of the input presented to

the model may be seen in the left half of Figure D.14. See Appendix B for the full

training sequence. Our model lacks the ability to perform the forced-choice judgment

task. So rather we first trained the model on face-house pairs including faces with a

common house. Then, we turned off learning in the model so that no new concepts

could be formed, but rather only existent concepts could be used. We then presented

the model an ambiguous partial input cue by inputting a blank image to the ventral

stream and one of the houses previously seen during training to the dorsal stream.

This partial cue presentation may be seen on the right half of Figure 15. Rather

than selecting between possible choices as in the forced-choice judgment task, we get

our model to reconstruct the image that it has stored in memory associated with the

house. The resultant image is not an exact copy of the original input, but rather is

an amalgamation of categorical representations distributed throughout the hierarchy

of TIART modules comprising sensory cortex. A sample recalled face may be seen
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at the bottom right of Figure D.14.

Figure D.14: Visual input scheme of Preston study.

D.4.2.1 Qualitative Preston Comparison Results

In addition to the example shown in Figure D.14, the model was successfully able to

recall correct corresponding faces for each of the houses shown during testing. All

of the recalled faces clearly resembled a particular face shown during the training

phase; however, each was subject to slight distortions yielding an imperfect recall.

The ability to associate related face-face pairs can be observed qualitatively within

the model by noting the activation regions within CA3. Portrayed in the upper left

region of the graphical user interface (GUI), shown in Figure D.15, informally one

can observe whether or not the same CA3 activations are employed to encode the

association of cohabitation. The visual input presented to the model can be seen

in the lower left of the GUI. As displayed in Figure D.15, when presented with face
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A and house A, a distinct region of CA3 is activated. Likewise, as shown in Figure

D.16, when presented with a different face B also paired with house A, an overlapping

region of CA3 is indeed active indicative of the shared encoding between the related

face-face pairing. On the other hand, as shown by Figure D.17, when presented a

distinctly different face C and a different house B an entirely different CA3 region is

utilized for the encoding.

Figure D.15: Person ’A’ with house ’A’

D.4.2.2 Quantitative Comparison Results

In the absence of a fully embodied model with output modality to articulate the

envisioned associations beyond cued recall, a mathematics technique from informa-
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Figure D.16: Person ’B’ with house ’A’

tion theory has been applied to quantify the relationship between semantic concepts

within the architectural implementation of CA3. Information theory allows for a

quantitative evaluation of the information content independent of the particular

computational implementation or the underlying neuroanatomical processes mod-

eled. More specifically, within the context of information theory, mutual information

is a measure of the dependence between two random variables [149], and is computed

by the double summation given in Equation D.2.

I(X ; Y ) =
∑

x∈X

∑

y∈Y

p(x, y)log(
p(x, y)

p(x)p(y)
(D.2)

I(X ; Y ) is the mutual information between random variable X and random vari-

able Y . The random variables are states of the output neurons of CA3. x and y
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Figure D.17: Person ’C’ with house ’B’

are neural nodes in the respective random variables, e.g. a CA3 instantiation with

a ten by ten output node array would have one hundred x and one hundred y vari-

ables to sum over in the double summation. Probabilities are calculated as the node

activation value, using the convention that a node activation level represents the

likelihood of an action potential event. p(x) is the activation value of node x. p(y)

is the activation value of node y. p(x, y) is the joint probability of x and y, which is

calculated as the product of the activation of x and the activation of y.

Treating a conjoined face-house pair semantic concept as a random variable, the

various CA3 encoding regions represent the alphabet of possible states the random

variable may take on. In other words, a single random variable X represents the

combined concept of a particular face and a specific house. Any specific pattern of
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activation within CA3 may be used to represent the random variable, and thus the en-

tire CA3 grid is the set of all possible values the random variable may express. From

this perspective, mutual information may then be used to quantitatively evaluate

whether or not the architecture recognizes and auto associates inferred relationships.

In comparison to the Preston study, this technique allows us to evaluate whether

or not our model is capable of forming an association between unseen related face-

face pairs. A single face is only part of a random variable, and so for two different

faces to share a relationship they must have a common context. The left column of

Figure D.18 lists the mutual information for the related face-face pairs our model was

trained on. For instance, the first entry is the mutual information for two random

variables A and E. A different face is represented by A than that of E; however

both random variables share the same house. The right column on the other hand

presents an averaged mutual information value of all the unrelated faces in reference

to a particular face. As an example, the face represented by A is only related to the

face represented by E. All other random variables (in this case B, C, D, F, G, and

H) represent unrelated faces. Therefore, in column 2 of Figure D.18, we represent

the average mutual information values for non-matching (i.e. non-auto-associated)

faces.

Furthermore, we have tested the capabilities of our model on even more complex

associations than those in the Preston experiment, to demonstrate the flexibility

available in forming novel arbitrary associations. As shown in Figure D.19, we have

tested our model using a vehicle context in addition to houses. In addition to con-

textual relationship, a more advanced partially overlapping association occurs in this

more advanced example.

The motivation behind the Preston et al. study was to investigate the role of the

human hippocampus in the novel expression of declarative memories [148]. Com-

parable performance by our model on an equivalent test demonstrates a functional

appropriation to the modules comprising our architecture.
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Figure D.18: Model comparison to Preston study.

In the Preston study, human performance was near perfect for the learned face-

house pairs [148]. Likewise, the computational model was successfully able to recall

a correct face for each house presented such that the recalled image incurred only

slight distortion. Due to algorithmic limitations, the present version of the model

can only recall one of the faces associated with a given house. However, this could

be corrected by allowing the model to retrieve all association pairs rather than only

the single best match.

The Preston study observed increased hippocampal activation during fMRI scans

when subjects were tested on related face-face pairs compared with learned face-face

pairs [148]. This observation demonstrates the important role of the hippocampus

in relational tasks. While we are not concerned with relational tasks in isolation,

we are concerned with high fidelity modeling of hippocampus. As such, empirical

evidence of correlation between our model and biological behavior is useful in any

210



Appendix D. Computational Cortical Hippocampal Model

Figure D.19: Faces paired with different contexts.

form as validation of the computational methods.

Beyond simply leveraging the hippocampus to form associations that enable de-

sired function within the model, mutual information has quantifiably shown the

model is capable of forming associations between novel concepts. In our mutual

information measure, we approximate the joint probability distributions for two se-

mantic concepts. This approximation is calculated by computing the normalized

fuzzy conjunction of the respective CA3 activations when the concepts are processed

by the model individually. As can be seen by the mutual information approximation

values given in Figure 20, the related face-face pairs have a significantly larger CA3

mutual information measure than that of unrelated pairs.
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Furthermore, by incorporating vehicles as an additional context, we are able to

demonstrate that our model is capable of processing a variety of concepts, as is true

for humans, and is not only capable of processing houses. This more complex as-

sociation additionally demonstrates the ability to associate multiple contexts with

a single focus in addition to associating multiple foci with a single context. For

example, as illustrated in Figure D.19, the same person represented in concepts A

and B is associated with a house in one concept and a vehicle in the next. A second

person is additionally associated with the same house as shown in concept C. While

both people cohabitate the same house, only the first person is associated with the

vehicle. The ability to differentiate between these overlapping associations is evident

by the mutual information measures. Both the mutual information value associating

the first person with his house and vehicle, as well as the mutual information value

associating the two people cohabitating the same house are considerably larger than

the relationship between the second person and the vehicle. Comparing human CA3

activation during a co-occurrence task [150] to the CA3 activation of the compu-

tational model during a similar co-occurrence task yielded similar results. This is

shown in Figure D.20.
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Figure D.20: Experimental and model image of CA3 hippocampal activation during
a co-occurrence task.
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Appendix E

LimitsART Experiment

This appendix presents additional detail to the modification of Fuzzy ART which

enables representation of categorical structure that otherwise would not be possible.

The categorical structures which cannot be represented by unmodified ART are limits

and colimits. First, the inability of ART to represent categorical limits is discussed.

Then, an ART modification is described that allows categorical limit structures to

be represented within an ART system. This modified ART is labeled LimitsART.

To finish this section on the development of LimitsART, experimental results are

presented to show improved performance of LimitsART versus general ART. These

experimental results motivate the incorporation of LimitsART into the embodied

architecture.

E.0.3 ART and Colimits

This subsection discusses categorical limit structures, why they are useful, and the

inability of unmodified ART to represent then. Categorical limits are a critical

element of structure in category theory, and it is hypothesized that the embodied

architecture will perform better if it has the capacity to represent transforms of

categorical limits from the Concept category.

The following ART modification was originally described and tested with stack
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coded inputs on binary ART1 [115]. As fuzzy ART is used in the neural architecture

being developed, a real valued description is given here. Binary ART 1 has been

shown to be equivalent to fuzzy ART [66] in classification template formation, there-

for an initial understanding is that a valid transformation exists from the pre-existing

binary stack coded description to a real valued description.

Activation
Level

Activation
> 0.3

Activation
< 0.8

0.3 <
Activation

< 0.8

Figure E.1: A stimulus concept colimit with base diagram ∆ and defining diagram
∆̄. The apical object 0.3 < Activation < 0.8 could also be represented as a stimulus
interval object StimInt(0.3, 0.8).

Let r be an value with 1 ≤ r ≤ N . For fuzzy ART, N is at most the maximum

encodable float value in the computational neural implementation. Another popular

choice for N would be 1 in a normalized fuzzy ART implementation where all input

vector elements are between zero and one. For binary ART1, N would correspond to

the number of positive stack nodes in a stack encoding of r. For each pair of values

(q, q′) with −1 ≤ q and q′ = q+ r, we can form a colimit as illustrated in Figure E.1

for the specific values (0.3, 0.8) and in Figure E.2 for the unspecified values (q, q′).

The colimit apical object StimInt(q, q′] is a concept that combines StimLowerBound(q)
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StimValue

StimLB(q) StimUB(q’)

StimInt(q,q’)

Figure E.2: A stimulus concept colimit with base diagram ∆ and defining diagram
∆̄. The apical object q < Activation < q′ could also be represented as a stimulus
interval object StimInt(q, q′).

with StimUpperBoundq′ at their common sub-concept StimV alue. Note that a

structural relationship is being described between these concepts. StimV alue is

more general than StimLowerBound or StimUpperBound in that V alue has not

been tied down as either an upper bound or a lower bound. A yet more general

concept might be V alue, where is has not been specified that the value is part of a

stimulus condition concept. These relationships are examples of the utility of cat-

egorical limit and colimit representation within a neural architecture. Without the

categorical limit and colimit structures, there is a fundamental inability to represent

these concepts, and therefore in the framework of the CNST there is no mapping

from the Concept category to the Neural category.

The LimitsART experiment tests the hypothesis that LimitsART can yield im-

proved performance over ART on the type of problem it is meant to address. The

experiment will produce evidence as to whether control of hyperbox side length is

a reliable way to generate hyperboxes for clusters that are naturally separated into
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Figure E.3: Cluster hyperboxes (where t = 0.0 ) with ρ = 0.8.

hyperbox regions with fixed side lengths in each dimension. This experiment is not

meant to be a comprehensive characterization of LimitsART, but rather to supply

input as to whether the above design for LimitsART accomplishes its objective of

improving performance over unaugmented ART.

To make this as simple and unequivocal a test as possible, the experiment data are

separated into clusters which are circumscribed by 2-dimensional square hyperbox

regions, corresponding to the use of a single threshold t across all dimensions. The

minimum separation between clusters is equal to the side length, and this separation

occurs in both dimensions (see Figure E.3 and Figure E.4). Testing the hypothesis

serves two purposes: first, it illustrates what in general is to be gained by control-

ling hyperbox size. Second, it provides a clear exercise with the minimal expected

difficulty in obtaining this gain: forming the appropriate hyperboxes for clusters as

well separated as described must be a minimum requirement for improvement.
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Figure E.4: Cluster hyperboxes (where t = 0.8 ) with ρ = 0.8.

E.1 Experimental Procedure

The neural network data were constructed to represent points in 2-dimensional Eu-

clidean space, with a natural spacing into four clusters separated as suggested. Each

point was represented by a real-valued pattern of n = 2 components, corresponding

to two F0 stack interval segments representing two hyperbox dimensions. A square

rectangular region was defined and 400 data points generated within this region as

follows. First, four square rectangular subregions were defined within the larger re-

gion to serve as a base for defining four well-separated clusters. Each cluster was

contained within one of the subregions. The larger region had min/max coordinates

0.0/1.0 in both dimensions. The four smaller regions were defined to have min/max

coordinates at 0.2/0.4, 0.6/0.8 in the two dimensions, resulting in four square rectan-

gular subregions, one for each cluster (see Figure E.3 and Figure E.4). The resulting
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separation distance in each dimension between the four cluster regions was 0.2 in at

least one coordinate, equal to the length of each side of each subregion. Thus, the

minimum spacing between clusters was as great as the width of a cluster in either of

the two dimensions. The points in each of the four clusters were generated by apply-

ing a pseudorandom number generator to obtain 100 points according to a uniform

distribution within the appropriate lower/upper bounds in each dimension. This re-

sulted in a total of 400 points for the four clusters. The clustering problem for both

ART and LimitsART was to discover through adaptation to the 2-component input

patterns the network weights that provide four templates, hence, four hyperboxes,

one hyperbox to bound each of the four clusters.

LimitsART (where the simulator is given the threshold value t > 0, bringing the

colimits and limits into play in the network architecture) with stack intervals restricts

each side of its 2-dimensional hyperboxes to within the same allowed maximum

length. Therefore, it would be expected to separate the four clusters exactly with

the appropriate threshold value, t = 0.8, as long as the vigilance value ρ does not

exceed 0.8. Since 1 − t = 0.2, this threshold value allows a hyperbox to have a

half-circumference(sum of lengths of the left and lower sides) of up to 0.4 units while

restricting each side to a maximum length of 0.2. Therefore, a hyperbox cannot

encompass points in more than one of the four well-separated clusters, yet is allowed

to encompass all the points in a cluster. Generic ART (t = 0) with stack intervals has

no such guarantee. With a vigilance value of ρ = 0.8, it generates hyperboxes which

distribute the value 0.2 over all sides cumulatively, that is, a hyperbox might have one

side at a length of 0.1 and the other at a length of 0.3, for a total half circumference

of 0.4. Thus, a hyperbox might encompass points in two of the specified clusters

while covering each cluster only partially.

With lower threshold settings, 0 < t < 0.8, LimitsART would be expected to

yield partial success, this effect might be enhanced by specifying values of ρ such

that 0 < ρ < 0.8, allowing the ART vigilance subsystem to provide a check on overall
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hyperbox size. Parameter combinations such as these might well be used on arbitrary

data sets, where the appropriate settings (if any) are not known and clustering with

experimental parameter variation might be useful in a search for a combination

yielding acceptable performance. Generic ART (t = 0) with 0 < ρ < 0.8 would be

expected to perform less well. If either parameter t or ρ exceeds 0.8, the points in

each of the four clusters would be divided among several hyperboxes. This would

obviate the identification of the correct clusters with single hyperboxes. Generic ART

might still generate hyperboxes encompassing points in more than one cluster unless

ρ > 0.9. In summary, it was expected that, with known, well-separated clusters, the

generic architecture could (and often would) produce non-square hyperboxes that do

not separate the four clusters appropriately (ρ < 0.9, t = 0) or else produce small

hyperboxes that “fracture” the four clusters into smaller clusters (ρ ≥ 0.9, t = 0).

Since the sole objective was to test the LimitsART architectural modification, other

clustering methods were not considered.

Several combinations of parameter values ρ, t were tried, with 20 runs made for

each combination. The following procedure was used to obtain the input data for

each combination over the 20 runs. First, the aforementioned procedure was used to

obtain a new data set having four clusters each with 100 randomly located points

lying within a hyperbox boundary as previously described. This data set was used

for all 20 runs for that parameter combination. For each run, all 400 points from the

data set were input to the stack interval/ART network simulator for clustering. The

order in which the points were input was randomized anew for each run, and the

points were input in the same order for each of the three passes through the data.

Only two passes are necessary to stabilize the clusters for a data set whose input

patterns are all of a single size-see the seminal paper on ART clustering by Heileman

et al. [65]. The third pass was used for an automated procedure that tallies the

results due to the classifications not being stable until the end of the second pass.

The stack interval coding for converting the two real values in each input pattern
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into a binary pattern was as follows. The positive stack for each of the n = 2 real

values consisted of Npsn = 100 binary bits (the notation used here is the same as

in previous sections). With the complementary stacks included, this yielded a size

of N = n · 2Npsn = 2 · 2Npsn = 4Npsn = 400 bits in each of the resulting input

patterns for ART, which therefore had 400 input F0 nodes and 400 F1 nodes. For

each combination of network parameters ρ, t, the data set with its 400 2-dimensional

points was converted in this fashion by the stack interval networks “on the fly” to 400

ART binary input patterns during each pass through the data. The parameter value

combinations used were selected to simulate experimentation with an arbitrary data

set to find a combination yielding acceptable (loosely, “the best”) performance.The

fact that the correct hyperboxes were known in advance for this experiment allowed

us to develop a figure of merit for measuring performance with a single number. We

call this number “Efficiency”, defined as follows. First, we analyzed the result of each

run for each parameter combination to find the number “Correct Templates” for that

run. A correct template is one whose hyperbox encompasses exactly the points in one

of the four clusters, if a hyperbox either spans more than one cluster or is restricted

to one cluster but omits some of its points, the template is incorrect. We also

obtained the number “Total Templates” for that run, and then found “Efficiency”

as the quotient Efficiency = CorrectTemplates
TotalTemplates

. Obviously, perfect performance is

signified by an efficiency value of 1.0. Finally, we defined the number “Abandoned

Templates” to keep track of templates which, in the final pass through the data for

one run, “lose” all the points which were assigned to the template during earlier

passes.

E.2 Experimental Results

Figure E.3 and Figure E.4 show the results for one run each at the indicated pa-

rameter combinations. In the result shown, stack interval/ART(t = 0) with ρ = 0.8
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Figure E.5: Summary of LimitsART experiment results. Note that the cases with
t = 0.0 are results for generic ART 1. Nonzero values of t apply to LimitsART.

(the optimal value for t) yields one abandoned template and one that spans two clus-

ters, the two templates that exactly encompass the clusters on the left are correct.

Thus, there are two correct templates and six total templates, with one abandoned.

Figure E.5 shows the results for all parameter combinations used in this experi-

ment, performed as if increasing values were being tried, with ρ always greater than

t(otherwise, vigilance is completely overridden by the effect of the threshold value).

The aggregate results for template counts and efficiencies are shown as means and

standard deviations over the 20 runs for each combination. Notice that for each

value of ρ, the results vary systematically in favor of increasing performance with

increasing t. All result reflecting numbers show this trend; Total Templates, Aban-

doned Templates, Correct Templates, and Efficiency. As either ρ or t approaches
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the value 0.8 from below, performance increases,with increasing t having the more

dramatic effect for ρ ≤ 0.75. For ρ = 0.8, the efficiency increases with t toward

unity, reaching it only at t = 0.8, where the effect of ρ is completely overridden.

At the two parameter combinations tried for ρ = 0.9, the efficiency drops to zero

regardless of whether t = 0. Efficiency as we have defined it imposes a rather strin-

gent performance measure, but the number Total Templates does suggest a sudden

increase in the number of templates with a falling-off in performance for ρ values

exceeding 0.8. This effect might be noticed with an arbitrary dataset using some

other criterion for performance, based upon the observed effects of clustering in the

domain from which the data were obtained. In summary, the results show clearly

the intended effect in an experiment designed for this purpose of evaluating Limit-

sART. Given that LimitsART performs hyperbox control as intended, the category

theory described earlier implies that LimitsART is capable of representing categor-

ical limit structures. As such, LimitsART will be incorporated into the embodied

computational neural architecture.
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Behavior Measures

F.1 Single Cardinal Releases

This section contains results from experiments where the rat has no prior experience.

That is, there are no learned templates in the model brain. The rat is released, and

then returned to the release point each time the platform is located. Each set of

releases, where the brain starts with physical structure but no conceptual structure,

then forms sensory-motor memory bindings until the platform is repeatably located,

is called an experiment. Within each experiment, the behavior from one release until

the platform is found is called a trial.

For each experiment, four graphs are displayed. The first graph shows pathlength

per trial. That is, how far the rat traveled from the release point until the platform

was located. It is evident in the pathlength graphs when the rat has learned a path.

After a path is learned in full, subsequent recalled motor sequences will follow this

same path, so the pathlength will repeat.

F.1.1 North release
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Figure F.1: Pathlengths from North release point.
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Figure F.2: Distal template formation from North release point.
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Figure F.3: Proximal template formation from North release point.
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Figure F.4: LAPART A template formation from North release point.
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F.1.2 South release
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Figure F.5: Pathlengths from South release point.
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Figure F.6: Distal template formation from South release point.
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Figure F.7: Proximal template formation from South release point.
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Figure F.8: LAPART A template formation from South release point.
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F.1.3 East release
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Figure F.9: Pathlengths from East release point.
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Figure F.10: Distal template formation from East release point.
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Figure F.11: Proximal template formation from East release point.
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Figure F.12: LAPART A template formation from East release point.
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F.1.4 West release
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Figure F.13: Pathlengths from West release point.
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Figure F.14: Distal template formation from West release point.
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Figure F.15: Proximal template formation from West release point.
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Figure F.16: LAPART A template formation from West release point.

235



Appendix F. Behavior Measures

F.2 Prior Experience Releases

This section contains results from experiments where the rat has previously learned

to navigate to the platform from a single release point. Then for the following graphs,

the rat is released from a different point. The rat is released, and then returned to

the release point each time the platform is located. For each set of releases, when

the computational brain starts with physical structure but no conceptual structure,

then forms sensory-motor memory bindings until the platform is repeatably located,

this is called an experiment. Within each experiment, the behavior from one release

until the platform is found is called a trial.

F.2.1 North then West release
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Figure F.17: Pathlengths from NW release point.
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Figure F.18: Distal template formation from NW release point.
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Figure F.19: Proximal template formation from NW release point.
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Figure F.20: LAPART A template formation from NW release point.
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F.2.2 West then South release
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Figure F.21: Pathlengths from WS release point.
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Figure F.22: Distal template formation from WS release point.
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Figure F.23: Proximal template formation from WS release point.
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Figure F.24: LAPART A template formation from WS release point.
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F.2.3 South then East release
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Figure F.25: Pathlengths from SE release point.
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Figure F.26: Distal template formation from SE release point.
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Figure F.27: Proximal template formation from SE release point.
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Figure F.28: LAPART A template formation from SE release point.
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F.2.4 East then North release
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Figure F.29: Pathlengths from EN release point.
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Figure F.30: Distal template formation from EN release point.
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Figure F.31: Proximal template formation from EN release point.
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Figure F.32: LAPART A template formation from EN release point.
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F.2.5 North then East release
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Figure F.33: Pathlengths from NE release point.

248



Appendix F. Behavior Measures

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  100  200  300  400  500  600

Te
m

pl
at

e 
Nu

m
be

r

Experiment Time

Template Numbers
Release Points

Figure F.34: Distal template formation from NE release point.
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Figure F.35: Proximal template formation from NE release point.
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Figure F.36: LAPART A template formation from NE release point.
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F.2.6 East then South release
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Figure F.37: Pathlengths from ES release point.
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Figure F.38: Distal template formation from ES release point.
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Figure F.39: Proximal template formation from ES release point.
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Figure F.40: LAPART A template formation from ES release point.

253



Appendix F. Behavior Measures

F.2.7 South then West release
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Figure F.41: Pathlengths from SW release point.
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Figure F.42: Distal template formation from SW release point.
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Figure F.43: Proximal template formation from SW release point.
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Figure F.44: LAPART A template formation from SW release point.
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F.2.8 West then North release
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Figure F.45: Pathlengths from WN release point.
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Figure F.46: Distal template formation from WN release point.
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Figure F.47: Proximal template formation from WN release point.
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Figure F.48: LAPART A template formation from WN release point.
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F.3 Block releases

These graphs depict data from the same experiments as previous graphs except

pathlengths are summed over blocks. Recall that a block is a set of four realeases,

one from each of the four release points.

F.3.1 Fixed Platform
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Figure F.49: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 0.
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Figure F.50: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 1.
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Figure F.51: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 2.
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Figure F.52: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 3.
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Figure F.53: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 4.
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Figure F.54: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 5.
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Figure F.55: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 6.
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Figure F.56: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 7.
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Figure F.57: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 8.
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Figure F.58: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 9.
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Figure F.59: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 10.
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Figure F.60: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 11.

266



Appendix F. Behavior Measures

 0

 200

 400

 600

 800

 1000

 1200

 0  10  20  30  40  50  60  70  80  90  100

Sp
ati

al 
Un

its

Release Number

Figure F.61: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 12.
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Figure F.62: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 13.
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Figure F.63: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 14.
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Figure F.64: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 15.
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Figure F.65: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 16.
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Figure F.66: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 17.
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Figure F.67: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 18.
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Figure F.68: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 19.
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F.3.2 Random Platform Location

The purpose of the random platform location experiments are to serve as a control

where no learning to a particular location should occur. At each release, the platform

is found at a new, randomly selected, location.
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Figure F.69: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 0. Platform location changes for each release.
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Figure F.70: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 1. Platform location changes for each release.

272



Appendix F. Behavior Measures

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  10  20  30  40  50  60  70  80  90  100

Sp
ati

al 
Un

its

Release Number

Figure F.71: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 2. Platform location changes for each release.
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Figure F.72: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 3. Platform location changes for each release.
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Figure F.73: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 4. Platform location changes for each release.
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Figure F.74: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 5. Platform location changes for each release.
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Figure F.75: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 6. Platform location changes for each release.
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Figure F.76: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 7. Platform location changes for each release.
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Figure F.77: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 8. Platform location changes for each release.
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Figure F.78: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 9. Platform location changes for each release.

276



Appendix F. Behavior Measures

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0  10  20  30  40  50  60  70  80  90  100

Sp
ati

al 
Un

its

Release Number

Figure F.79: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 10. Platform location changes for each release.
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Figure F.80: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 11. Platform location changes for each release.
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Figure F.81: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 12. Platform location changes for each release.
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Figure F.82: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 13. Platform location changes for each release.
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Figure F.83: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 14. Platform location changes for each release.
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Figure F.84: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 15. Platform location changes for each release.
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Figure F.85: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 16. Platform location changes for each release.
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Figure F.86: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 17. Platform location changes for each release.
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Figure F.87: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 18. Platform location changes for each release.
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Figure F.88: Sum pathlengths by block of releases from random permutation of N,
S, E, W for rat 19. Platform location changes for each release.
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