1,770 research outputs found

    Subset Warping: Rubber Sheeting with Cuts

    Full text link
    Image warping, often referred to as "rubber sheeting" represents the deformation of a domain image space into a range image space. In this paper, a technique is described which extends the definition of a rubber-sheet transformation to allow a polygonal region to be warped into one or more subsets of itself, where the subsets may be multiply connected. To do this, it constructs a set of "slits" in the domain image, which correspond to discontinuities in the range image, using a technique based on generalized Voronoi diagrams. The concept of medial axis is extended to describe inner and outer medial contours of a polygon. Polygonal regions are decomposed into annular subregions, and path homotopies are introduced to describe the annular subregions. These constructions motivate the definition of a ladder, which guides the construction of grid point pairs necessary to effect the warp itself

    Time-Optimal Algorithms on Meshes With Multiple Broadcasting

    Get PDF
    The mesh-connected computer architecture has emerged as a natural choice for solving a large number of computational tasks in image processing, computational geometry, and computer vision. However, due to its large communication diameter, the mesh tends to be slow when it comes to handling data transfer operations over long distances. In an attempt to overcome this problem, mesh-connected computers have recently been augmented by the addition of various types of bus systems. One such system known as the mesh with multiple broadcasting involves enhancing the mesh architecture by the addition of row and column buses. The mesh with multiple broadcasting has proven to be feasible to implement in VLSI, and is used in the DAP family of computers. In recent years, efficient algorithms to solve a number of computational problems on meshes with multiple broadcasting have been proposed in the literature. The problems considered in this thesis are semigroup computations, sorting, multiple search, various convexity-related problems, and some tree problems. Based on the size of the input data for the problem under consideration, existing results can be broadly classified into sparse and dense. Specifically, for a given √n x √n mesh with multiple broadcasting, we refer to problems involving m∈O(nm \in O(\sqrt{n}) items as sparse, while the case £ O(n) will be referred to as dense. Finally, the case corresponding to 2 ≤ m ≤ n is be termed general. The motivation behind the current work is twofold. First, time-optimal solutions are proposed for the problems listed above. Secondly, an attempt is made to remove the artificial limitation of problems studied to sparse and dense cases. To establish the time-optimality of the algorithms presented in this work, we use some existing lower bound techniques along with new ones that we develop. We solve the semigroup computation problem for the general case and present a novel lower bound argument. We solve the multiple search problem in the general case and present some surprising applications to computational geometry. In the case of sorting, the general case is defined to be slightly different. For the specified range of the size of input, we present a time and VLSI-optimal algorithm. We also present time lower bound results and matching algorithms for a number of convexity related and tree problems in the sparse case

    Rendering techniques for multimodal data

    Get PDF
    Many different direct volume rendering methods have been developed to visualize 3D scalar fields on uniform rectilinear grids. However, little work has been done on rendering simultaneously various properties of the same 3D region measured with different registration devices or at different instants of time. The demand for this type of visualization is rapidly increasing in scientific applications such as medicine in which the visual integration of multiple modalities allows a better comprehension of the anatomy and a perception of its relationships with activity. This paper presents different strategies of Direct Multimodal Volume Rendering (DMVR). It is restricted to voxel models with a known 3D rigid alignment transformation. The paper evaluates at which steps of the render-ing pipeline must the data fusion be realized in order to accomplish the desired visual integration and to provide fast re-renders when some fusion parameters are modified. In addition, it analyzes how existing monomodal visualization al-gorithms can be extended to multiple datasets and it compares their efficiency and their computational cost.Postprint (published version

    Crowdsourcing in Computer Vision

    Full text link
    Computer vision systems require large amounts of manually annotated data to properly learn challenging visual concepts. Crowdsourcing platforms offer an inexpensive method to capture human knowledge and understanding, for a vast number of visual perception tasks. In this survey, we describe the types of annotations computer vision researchers have collected using crowdsourcing, and how they have ensured that this data is of high quality while annotation effort is minimized. We begin by discussing data collection on both classic (e.g., object recognition) and recent (e.g., visual story-telling) vision tasks. We then summarize key design decisions for creating effective data collection interfaces and workflows, and present strategies for intelligently selecting the most important data instances to annotate. Finally, we conclude with some thoughts on the future of crowdsourcing in computer vision.Comment: A 69-page meta review of the field, Foundations and Trends in Computer Graphics and Vision, 201

    A mathematical model and inversion procedure for Magneto-Acousto-Electric Tomography (MAET)

    Full text link
    Magneto-Acousto-Electric Tomography (MAET), also known as the Lorentz force or Hall effect tomography, is a novel hybrid modality designed to be a high-resolution alternative to the unstable Electrical Impedance Tomography. In the present paper we analyze existing mathematical models of this method, and propose a general procedure for solving the inverse problem associated with MAET. It consists in applying to the data one of the algorithms of Thermo-Acoustic tomography, followed by solving the Neumann problem for the Laplace equation and the Poisson equation. For the particular case when the region of interest is a cube, we present an explicit series solution resulting in a fast reconstruction algorithm. As we show, both analytically and numerically, MAET is a stable technique yilelding high-resolution images even in the presence of significant noise in the data
    • …
    corecore