Magneto-Acousto-Electric Tomography (MAET), also known as the Lorentz force
or Hall effect tomography, is a novel hybrid modality designed to be a
high-resolution alternative to the unstable Electrical Impedance Tomography. In
the present paper we analyze existing mathematical models of this method, and
propose a general procedure for solving the inverse problem associated with
MAET. It consists in applying to the data one of the algorithms of
Thermo-Acoustic tomography, followed by solving the Neumann problem for the
Laplace equation and the Poisson equation.
For the particular case when the region of interest is a cube, we present an
explicit series solution resulting in a fast reconstruction algorithm. As we
show, both analytically and numerically, MAET is a stable technique yilelding
high-resolution images even in the presence of significant noise in the data