9,086 research outputs found

    Evaluation of Deep Convolutional Nets for Document Image Classification and Retrieval

    Full text link
    This paper presents a new state-of-the-art for document image classification and retrieval, using features learned by deep convolutional neural networks (CNNs). In object and scene analysis, deep neural nets are capable of learning a hierarchical chain of abstraction from pixel inputs to concise and descriptive representations. The current work explores this capacity in the realm of document analysis, and confirms that this representation strategy is superior to a variety of popular hand-crafted alternatives. Experiments also show that (i) features extracted from CNNs are robust to compression, (ii) CNNs trained on non-document images transfer well to document analysis tasks, and (iii) enforcing region-specific feature-learning is unnecessary given sufficient training data. This work also makes available a new labelled subset of the IIT-CDIP collection, containing 400,000 document images across 16 categories, useful for training new CNNs for document analysis

    Recovering Homography from Camera Captured Documents using Convolutional Neural Networks

    Get PDF
    Removing perspective distortion from hand held camera captured document images is one of the primitive tasks in document analysis, but unfortunately, no such method exists that can reliably remove the perspective distortion from document images automatically. In this paper, we propose a convolutional neural network based method for recovering homography from hand-held camera captured documents. Our proposed method works independent of document's underlying content and is trained end-to-end in a fully automatic way. Specifically, this paper makes following three contributions: Firstly, we introduce a large scale synthetic dataset for recovering homography from documents images captured under different geometric and photometric transformations; secondly, we show that a generic convolutional neural network based architecture can be successfully used for regressing the corners positions of documents captured under wild settings; thirdly, we show that L1 loss can be reliably used for corners regression. Our proposed method gives state-of-the-art performance on the tested datasets, and has potential to become an integral part of document analysis pipeline.Comment: 10 pages, 8 figure

    Historical Document Image Segmentation with LDA-Initialized Deep Neural Networks

    Full text link
    In this paper, we present a novel approach to perform deep neural networks layer-wise weight initialization using Linear Discriminant Analysis (LDA). Typically, the weights of a deep neural network are initialized with: random values, greedy layer-wise pre-training (usually as Deep Belief Network or as auto-encoder) or by re-using the layers from another network (transfer learning). Hence, many training epochs are needed before meaningful weights are learned, or a rather similar dataset is required for seeding a fine-tuning of transfer learning. In this paper, we describe how to turn an LDA into either a neural layer or a classification layer. We analyze the initialization technique on historical documents. First, we show that an LDA-based initialization is quick and leads to a very stable initialization. Furthermore, for the task of layout analysis at pixel level, we investigate the effectiveness of LDA-based initialization and show that it outperforms state-of-the-art random weight initialization methods.Comment: 5 page

    Cutting the Error by Half: Investigation of Very Deep CNN and Advanced Training Strategies for Document Image Classification

    Full text link
    We present an exhaustive investigation of recent Deep Learning architectures, algorithms, and strategies for the task of document image classification to finally reduce the error by more than half. Existing approaches, such as the DeepDocClassifier, apply standard Convolutional Network architectures with transfer learning from the object recognition domain. The contribution of the paper is threefold: First, it investigates recently introduced very deep neural network architectures (GoogLeNet, VGG, ResNet) using transfer learning (from real images). Second, it proposes transfer learning from a huge set of document images, i.e. 400,000 documents. Third, it analyzes the impact of the amount of training data (document images) and other parameters to the classification abilities. We use two datasets, the Tobacco-3482 and the large-scale RVL-CDIP dataset. We achieve an accuracy of 91.13% for the Tobacco-3482 dataset while earlier approaches reach only 77.6%. Thus, a relative error reduction of more than 60% is achieved. For the large dataset RVL-CDIP, an accuracy of 90.97% is achieved, corresponding to a relative error reduction of 11.5%
    corecore