5 research outputs found

    Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions

    Full text link
    Heavy smokers undergoing screening with low-dose chest CT are affected by cardiovascular disease as much as by lung cancer. Low-dose chest CT scans acquired in screening enable quantification of atherosclerotic calcifications and thus enable identification of subjects at increased cardiovascular risk. This paper presents a method for automatic detection of coronary artery, thoracic aorta and cardiac valve calcifications in low-dose chest CT using two consecutive convolutional neural networks. The first network identifies and labels potential calcifications according to their anatomical location and the second network identifies true calcifications among the detected candidates. This method was trained and evaluated on a set of 1744 CT scans from the National Lung Screening Trial. To determine whether any reconstruction or only images reconstructed with soft tissue filters can be used for calcification detection, we evaluated the method on soft and medium/sharp filter reconstructions separately. On soft filter reconstructions, the method achieved F1 scores of 0.89, 0.89, 0.67, and 0.55 for coronary artery, thoracic aorta, aortic valve and mitral valve calcifications, respectively. On sharp filter reconstructions, the F1 scores were 0.84, 0.81, 0.64, and 0.66, respectively. Linearly weighted kappa coefficients for risk category assignment based on per subject coronary artery calcium were 0.91 and 0.90 for soft and sharp filter reconstructions, respectively. These results demonstrate that the presented method enables reliable automatic cardiovascular risk assessment in all low-dose chest CT scans acquired for lung cancer screening

    Quantitative cardiac dual source CT; from morphology to function

    Get PDF
    Cardiovascular diseases are a large contributor to the global mortality rate. Non-invasive imaging techniques, such as computed tomography (CT) imaging, have been playing a growing role in the risk assessment, diagnosis, and prognosis of coronary artery disease (CAD). One of the main challenges in the evaluation of CAD is the establishment of the optimal workflow to evaluate the anatomical as well as the functional aspects of CAD in all phases of the ischemic cascade.The research described in this thesis investigates the possibilities of CT to perform both morphological and functional evaluation of CAD and it is debated whether CT can be used clinically for the visualization of the entire ischemic cascade.Results show that the diagnostic and prognostic value of CT procedures for coronary artery disease evaluation can be improved by adding additional functional information to the anatomical evaluation. This was concluded from research done on two new technologies analyzing the blood flow through the coronaries and through the heart muscle. Besides that, important questions regarding protocol optimization and standardization have been investigated. Although CT shows great potential for the evaluation of CAD, the clinical workflow and combination of techniques to be used is yet to be optimized. Automating processes, for example with the use of Artificial Intelligence (AI), can enhance the clinical implementation and can help the field of cardiac radiology deal with the increased demand for cardiac imaging

    ์ง์ ‘ ๋ณผ๋ฅจ ๋ Œ๋”๋ง์˜ ์ „์ด ํ•จ์ˆ˜ ์„ค๊ณ„์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 2. ์‹ ์˜๊ธธ.Although direct volume rendering (DVR) has become a commodity, the design of transfer functions still a challenge. Transfer functions which map data values to optical properties (i.e., colors and opacities) highlight features of interests as well as hide unimportant regions, dramatically impacting on the quality of the visualization. Therefore, for the effective rendering of interesting features, the design of transfer functions is very important and challenging task. Furthermore, manipulation of these transfer functions is tedious and time-consuming task. In this paper, we propose a 3D spatial field for accurately identifying and visually distinguishing interesting features as well as a mechanism for data exploration using multi-dimensional transfer function. First, we introduce a 3D spatial field for the effective visualization of constricted tubular structures, called as a stenosis map which stores the degree of constriction at each voxel. Constrictions within tubular structures are quantified by using newly proposed measures (i.e., line similarity measure and constriction measure) based on the localized structure analysis, and classified with a proposed transfer function mapping the degree of constriction to color and opacity. We show the application results of our method to the visualization of coronary artery stenoses. We present performance evaluations using twenty-eight clinical datasets, demonstrating high accuracy and efficacy of our proposed method. Second, we propose a new multi-dimensional transfer function which incorporates texture features calculated from statistically homogeneous regions. This approach employs parallel coordinates to provide an intuitive interface for exploring a new multi-dimensional transfer function space. Three specific ways to use a new transfer function based on parallel coordinates enables the effective exploration of large and complex datasets. We present a mechanism for data exploration with a new transfer function space, demonstrating the practical efficacy of our proposed method. Through a study on transfer function design for DVR, we propose two useful approaches. First method to saliently visualize the constrictions within tubular structures and interactively adjust the visual appearance of the constrictions delivers a substantial aid in radiologic practice. Furthermore, second method to classify objects with our intuitive interface utilizing parallel coordinates proves to be a powerful tool for complex data exploration.Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Volume rendering 1 1.1.2 Computer-aided diagnosis 3 1.1.3 Parallel coordinates 5 1.2 Problem statement 8 1.3 Main contribution 12 1.4 Organization of dissertation 16 Chapter 2 Related Work 17 2.1 Transfer function 17 2.1.1 Transfer functions based on spatial characteristics 17 2.1.2 Opacity modulation techniques 20 2.1.3 Multi-dimensional transfer functions 22 2.1.4 Manipulation mechanism for transfer functions 25 2.2 Coronary artery stenosis 28 2.3 Parallel coordinates 32 Chapter 3 Volume Visualization of Constricted Tubular Structures 36 3.1 Overview 36 3.2 Localized structure analysis 37 3.3 Stenosis map 39 3.3.1 Overview 39 3.3.2 Detection of tubular structures 40 3.3.3 Stenosis map computation 49 3.4 Stenosis-based classification 52 3.4.1 Overview 52 3.4.2 Constriction-encoded volume rendering 52 3.4.3 Opacity modulation based on constriction 54 3.5 GPU implementation 57 3.6 Experimental results 59 3.6.1 Clinical data preparation 59 3.6.2 Qualitative evaluation 60 3.6.3 Quantitative evaluation 63 3.6.4 Comparison with previous methods 66 3.6.5 Parameter study 69 Chapter 4 Interactive Multi-Dimensional Transfer Function Using Adaptive Block Based Feature Analysis 73 4.1 Overview 73 4.2 Extraction of statistical features 74 4.3 Extraction of texture features 78 4.4 Multi-dimensional transfer function design using parallel coordinates 81 4.5 Experimental results 86 Chapter 5 Conclusion 90 Bibliography 92 ์ดˆ ๋ก 107Docto

    Fast Automatic Detection of Calcified Coronary Lesions in 3D Cardiac CT Images

    No full text
    Abstract. Even with the recent advances in multidetector computed tomography (MDCT) imaging techniques, detection of calcified coronary lesions remains a highly tedious task. Noise, blooming and motion artifacts etc. add to its complication. We propose a novel learning-based, fully automatic algorithm for detection of calcified lesions in contrastenhanced CT data. We compare and evaluate the performance of two supervised learning methods. Both these methods use rotation invariant features that are extracted along the centerline of the coronary. Our approach is quite robust to the estimates of the centerline and works well in practice. We are able to achieve average detection times of 0.67 and 0.82 seconds per volume using the two methods.

    Combinatorial optimisation for arterial image segmentation.

    Get PDF
    Cardiovascular disease is one of the leading causes of the mortality in the western world. Many imaging modalities have been used to diagnose cardiovascular diseases. However, each has different forms of noise and artifacts that make the medical image analysis field important and challenging. This thesis is concerned with developing fully automatic segmentation methods for cross-sectional coronary arterial imaging in particular, intra-vascular ultrasound and optical coherence tomography, by incorporating prior and tracking information without any user intervention, to effectively overcome various image artifacts and occlusions. Combinatorial optimisation methods are proposed to solve the segmentation problem in polynomial time. A node-weighted directed graph is constructed so that the vessel border delineation is considered as computing a minimum closed set. A set of complementary edge and texture features is extracted. Single and double interface segmentation methods are introduced. Novel optimisation of the boundary energy function is proposed based on a supervised classification method. Shape prior model is incorporated into the segmentation framework based on global and local information through the energy function design and graph construction. A combination of cross-sectional segmentation and longitudinal tracking is proposed using the Kalman filter and the hidden Markov model. The border is parameterised using the radial basis functions. The Kalman filter is used to adapt the inter-frame constraints between every two consecutive frames to obtain coherent temporal segmentation. An HMM-based border tracking method is also proposed in which the emission probability is derived from both the classification-based cost function and the shape prior model. The optimal sequence of the hidden states is computed using the Viterbi algorithm. Both qualitative and quantitative results on thousands of images show superior performance of the proposed methods compared to a number of state-of-the-art segmentation methods
    corecore