162 research outputs found

    Exploratory study to explore the role of ICT in the process of knowledge management in an Indian business environment

    Get PDF
    In the 21st century and the emergence of a digital economy, knowledge and the knowledge base economy are rapidly growing. To effectively be able to understand the processes involved in the creating, managing and sharing of knowledge management in the business environment is critical to the success of an organization. This study builds on the previous research of the authors on the enablers of knowledge management by identifying the relationship between the enablers of knowledge management and the role played by information communication technologies (ICT) and ICT infrastructure in a business setting. This paper provides the findings of a survey collected from the four major Indian cities (Chennai, Coimbatore, Madurai and Villupuram) regarding their views and opinions about the enablers of knowledge management in business setting. A total of 80 organizations participated in the study with 100 participants in each city. The results show that ICT and ICT infrastructure can play a critical role in the creating, managing and sharing of knowledge in an Indian business environment

    The enablers and implementation model for mobile KMS in Australian healthcare

    Get PDF
    In this research project, the enablers in implementing mobile KMS in Australian regional healthcare will be investigated, and a validated framework and guidelines to assist healthcare in implementing mobile KMS will also be proposed with both qualitative and quantitative approaches. The outcomes for this study are expected to improve the understanding the enabling factors in implementing mobile KMS in Australian healthcare, as well as provide better guidelines for this process

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    AXMEDIS 2008

    Get PDF
    The AXMEDIS International Conference series aims to explore all subjects and topics related to cross-media and digital-media content production, processing, management, standards, representation, sharing, protection and rights management, to address the latest developments and future trends of the technologies and their applications, impacts and exploitation. The AXMEDIS events offer venues for exchanging concepts, requirements, prototypes, research ideas, and findings which could contribute to academic research and also benefit business and industrial communities. In the Internet as well as in the digital era, cross-media production and distribution represent key developments and innovations that are fostered by emergent technologies to ensure better value for money while optimising productivity and market coverage

    Efficient architectures for multidimensional discrete transforms in image and video processing applications

    Get PDF
    PhD ThesisThis thesis introduces new image compression algorithms, their related architectures and data transforms architectures. The proposed architectures consider the current hardware architectures concerns, such as power consumption, hardware usage, memory requirement, computation time and output accuracy. These concerns and problems are crucial in multidimensional image and video processing applications. This research is divided into three image and video processing related topics: low complexity non-transform-based image compression algorithms and their architectures, architectures for multidimensional Discrete Cosine Transform (DCT); and architectures for multidimensional Discrete Wavelet Transform (DWT). The proposed architectures are parameterised in terms of wordlength, pipelining and input data size. Taking such parameterisation into account, efficient non-transform based and low complexity image compression algorithms for better rate distortion performance are proposed. The proposed algorithms are based on the Adaptive Quantisation Coding (AQC) algorithm, and they achieve a controllable output bit rate and accuracy by considering the intensity variation of each image block. Their high speed, low hardware usage and low power consumption architectures are also introduced and implemented on Xilinx devices. Furthermore, efficient hardware architectures for multidimensional DCT based on the 1-D DCT Radix-2 and 3-D DCT Vector Radix (3-D DCT VR) fast algorithms have been proposed. These architectures attain fast and accurate 3-D DCT computation and provide high processing speed and power consumption reduction. In addition, this research also introduces two low hardware usage 3-D DCT VR architectures. Such architectures perform the computation of butterfly and post addition stages without using block memory for data transposition, which in turn reduces the hardware usage and improves the performance of the proposed architectures. Moreover, parallel and multiplierless lifting-based architectures for the 1-D, 2-D and 3-D Cohen-Daubechies-Feauveau 9/7 (CDF 9/7) DWT computation are also introduced. The presented architectures represent an efficient multiplierless and low memory requirement CDF 9/7 DWT computation scheme using the separable approach. Furthermore, the proposed architectures have been implemented and tested using Xilinx FPGA devices. The evaluation results have revealed that a speed of up to 315 MHz can be achieved in the proposed AQC-based architectures. Further, a speed of up to 330 MHz and low utilisation rate of 722 to 1235 can be achieved in the proposed 3-D DCT VR architectures. In addition, in the proposed 3-D DWT architecture, the computation time of 3-D DWT for data size of 144×176×8-pixel is less than 0.33 ms. Also, a power consumption of 102 mW at 50 MHz clock frequency using 256×256-pixel frame size is achieved. The accuracy tests for all architectures have revealed that a PSNR of infinite can be attained
    corecore