264 research outputs found

    Analysis and Design of Non-Orthogonal Multiple Access (NOMA) Techniques for Next Generation Wireless Communication Systems

    Get PDF
    The current surge in wireless connectivity, anticipated to amplify significantly in future wireless technologies, brings a new wave of users. Given the impracticality of an endlessly expanding bandwidth, there’s a pressing need for communication techniques that efficiently serve this burgeoning user base with limited resources. Multiple Access (MA) techniques, notably Orthogonal Multiple Access (OMA), have long addressed bandwidth constraints. However, with escalating user numbers, OMA’s orthogonality becomes limiting for emerging wireless technologies. Non-Orthogonal Multiple Access (NOMA), employing superposition coding, serves more users within the same bandwidth as OMA by allocating different power levels to users whose signals can then be detected using the gap between them, thus offering superior spectral efficiency and massive connectivity. This thesis examines the integration of NOMA techniques with cooperative relaying, EXtrinsic Information Transfer (EXIT) chart analysis, and deep learning for enhancing 6G and beyond communication systems. The adopted methodology aims to optimize the systems’ performance, spanning from bit-error rate (BER) versus signal to noise ratio (SNR) to overall system efficiency and data rates. The primary focus of this thesis is the investigation of the integration of NOMA with cooperative relaying, EXIT chart analysis, and deep learning techniques. In the cooperative relaying context, NOMA notably improved diversity gains, thereby proving the superiority of combining NOMA with cooperative relaying over just NOMA. With EXIT chart analysis, NOMA achieved low BER at mid-range SNR as well as achieved optimal user fairness in the power allocation stage. Additionally, employing a trained neural network enhanced signal detection for NOMA in the deep learning scenario, thereby producing a simpler signal detection for NOMA which addresses NOMAs’ complex receiver problem

    Multiple Access Techniques for Next Generation Wireless: Recent Advances and Future Perspectives

    Get PDF
    The advances in multiple access techniques has been one of the key drivers in moving from one cellular generation to another. Starting from the first generation, several multiple access techniques have been explored in different generations and various emerging multiplexing/multiple access techniques are being investigated for the next generation of cellular networks. In this context, this paper first provides a detailed review on the existing Space Division Multiple Access (SDMA) related works. Subsequently, it highlights the main features and the drawbacks of various existing and emerging multiplexing/multiple access techniques. Finally, we propose a novel concept of clustered orthogonal signature division multiple access for the next generation of cellular networks. The proposed concept envisions to employ joint antenna coding in order to enhance the orthogonality of SDMA beams with the objective of enhancing the spectral efficiency of future cellular networks

    On the power-splitting relaying protocol for SWIPT with multiple UAVs in downlink NOMA-IoT networks

    Get PDF
    Unmanned aerial vehicle (UAV) communication and non-orthogonal multiple access (NOMA) are two promising technologies for wireless 5G networks and beyond. The UAVs can be used as flying base stations to form line-of-sight communication links to the Internet of things devices (IDs) and to enhance the performance of usual terrestrial cellular networks. Moreover, the UAVs can also be deployed as flying relay nodes for forwarding data from a base station (BS) to the IDs. On the other hand, non-orthogonal resource sharing for many concurrent users is exploited in NOMA, thus improving spectrum efficiency (SE) and supporting massive connections. The NOMA combined with energy harvesting (EH) in an amplify-and-forward (AF) with cooperative UAV systems is researched. Specifically, the UAVs act as rotary-wing relays to forward data from the BSs to two IDs. This paper focuses on the analysis of outage probabilities (OPs), system throughput, and energy efficiency (EE) for two IDs. Besides, we also do the asymptotic analysis of OPs at high signal-to-noise ratios (SNRs). Furthermore, this paper also inspects the impacts of the UAV-based relaying on the OP, system throughput, and EE of the proposed NOMA scheme. The derived asymptotic expansions show that the suggested model can enhance user fairness and the analytical results match the simulation results

    Non-Orthogonal Multiple Access for 5G: Design and Performance Enhancement

    Get PDF
    PhDSpectrum scarcity is one of the most important challenges in wireless communications networks due to the sky-rocketing growth of multimedia applications. As the latest member of the multiple access family, non-orthogonal multiple access (NOMA) has been recently proposed for 3GPP Long Term Evolution (LTE) and envisioned to be a key component of the 5th generation (5G) mobile networks for its potential ability on spectrum enhancement. The feature of NOMA is to serve multiple users at the same time/frequency/code, but with di erent power levels, which yields a signi cant spectral e ciency gain over conventional orthogonal multiple access (OMA). This thesis provides a systematic treatment of this newly emerging technology, from the basic principles of NOMA, to its combination with simultaneously information and wireless power transfer (SWIPT) technology, to apply in cognitive radio (CR) networks and Heterogeneous networks (HetNets), as well as enhancing the physical layer security and addressing the fairness issue. First, this thesis examines the application of SWIPT to NOMA networks with spatially randomly located users. A new cooperative SWIPT NOMA protocol is proposed, in which near NOMA users that are close to the source act as energy harvesting relays in the aid of far NOMA users. Three user selection schemes are proposed to investigate the e ect of locations on the performance. Besides the closed-form expressions in terms of outage probability and throughput, the diversity gain of the considered networks is determined. Second, when considering NOMA in CR networks, stochastic geometry tools are used to evaluate the outage performance of the considered network. New closed-form expressions are derived for the outage probability. Diversity order of NOMA users has been analyzed based on the derived outage probability, which reveals important design insights regarding the interplay between two power constraints scenarios. Third, a new promising transmission framework is proposed, in which massive multipleinput multiple-output (MIMO) is employed in macro cells and NOMA is adopted in small cells. For maximizing the biased average received power at mobile users, a massive MIMO and NOMA based user association scheme is developed. Analytical expressions for the spectrum e ciency of each tier are derived using stochastic geometry. It is con rmed that NOMA is capable of enhancing the spectrum e ciency of the network compared to the OMA based HetNets. Fourth, this thesis investigates the physical layer security of NOMA in large-scale networks with invoking stochastic geometry. Both single-antenna and multiple-antenna aided transmission scenarios are considered, where the base station (BS) communicates with randomly distributed NOMA users. In addition to the derived exact analytical expressions for each scenario, some important insights such as secrecy diversity order and large antenna array property are obtained by carrying the asymptotic analysis. Fifth and last, the fundamental issues of fairness surrounding the joint power allocation and dynamic user clustering are addressed in MIMO-NOMA systems in this thesis. A two-step optimization approach is proposed to solve the formulated problem. Three e cient suboptimal algorithms are proposed to reduce the computational complexity. To further improve the performance of the worst user in each cluster, power allocation coe cients are optimized by using bi-section search. Important insights are concluded from the generated simulate results
    • …
    corecore