56 research outputs found

    Fairness in Federated Learning via Core-Stability

    Full text link
    Federated learning provides an effective paradigm to jointly optimize a model benefited from rich distributed data while protecting data privacy. Nonetheless, the heterogeneity nature of distributed data makes it challenging to define and ensure fairness among local agents. For instance, it is intuitively "unfair" for agents with data of high quality to sacrifice their performance due to other agents with low quality data. Currently popular egalitarian and weighted equity-based fairness measures suffer from the aforementioned pitfall. In this work, we aim to formally represent this problem and address these fairness issues using concepts from co-operative game theory and social choice theory. We model the task of learning a shared predictor in the federated setting as a fair public decision making problem, and then define the notion of core-stable fairness: Given NN agents, there is no subset of agents SS that can benefit significantly by forming a coalition among themselves based on their utilities UNU_N and USU_S (i.e., ∣S∣NUSβ‰₯UN\frac{|S|}{N} U_S \geq U_N). Core-stable predictors are robust to low quality local data from some agents, and additionally they satisfy Proportionality and Pareto-optimality, two well sought-after fairness and efficiency notions within social choice. We then propose an efficient federated learning protocol CoreFed to optimize a core stable predictor. CoreFed determines a core-stable predictor when the loss functions of the agents are convex. CoreFed also determines approximate core-stable predictors when the loss functions are not convex, like smooth neural networks. We further show the existence of core-stable predictors in more general settings using Kakutani's fixed point theorem. Finally, we empirically validate our analysis on two real-world datasets, and we show that CoreFed achieves higher core-stability fairness than FedAvg while having similar accuracy.Comment: NeurIPS 2022; code: https://openreview.net/attachment?id=lKULHf7oFDo&name=supplementary_materia

    Fair Knapsack

    Full text link
    We study the following multiagent variant of the knapsack problem. We are given a set of items, a set of voters, and a value of the budget; each item is endowed with a cost and each voter assigns to each item a certain value. The goal is to select a subset of items with the total cost not exceeding the budget, in a way that is consistent with the voters' preferences. Since the preferences of the voters over the items can vary significantly, we need a way of aggregating these preferences, in order to select the socially best valid knapsack. We study three approaches to aggregating voters' preferences, which are motivated by the literature on multiwinner elections and fair allocation. This way we introduce the concepts of individually best, diverse, and fair knapsack. We study the computational complexity (including parameterized complexity, and complexity under restricted domains) of the aforementioned multiagent variants of knapsack.Comment: Extended abstract will appear in Proc. of 33rd AAAI 201

    Sub-committee Approval Voting and Generalised Justified Representation Axioms

    Full text link
    Social choice is replete with various settings including single-winner voting, multi-winner voting, probabilistic voting, multiple referenda, and public decision making. We study a general model of social choice called Sub-Committee Voting (SCV) that simultaneously generalizes these settings. We then focus on sub-committee voting with approvals and propose extensions of the justified representation axioms that have been considered for proportional representation in approval-based committee voting. We study the properties and relations of these axioms. For each of the axioms, we analyse whether a representative committee exists and also examine the complexity of computing and verifying such a committee

    Fair and Efficient Allocations under Subadditive Valuations

    Get PDF
    We study the problem of allocating a set of indivisible goods among agents with subadditive valuations in a fair and efficient manner. Envy-Freeness up to any good (EFX) is the most compelling notion of fairness in the context of indivisible goods. Although the existence of EFX is not known beyond the simple case of two agents with subadditive valuations, some good approximations of EFX are known to exist, namely 12\tfrac{1}{2}-EFX allocation and EFX allocations with bounded charity. Nash welfare (the geometric mean of agents' valuations) is one of the most commonly used measures of efficiency. In case of additive valuations, an allocation that maximizes Nash welfare also satisfies fairness properties like Envy-Free up to one good (EF1). Although there is substantial work on approximating Nash welfare when agents have additive valuations, very little is known when agents have subadditive valuations. In this paper, we design a polynomial-time algorithm that outputs an allocation that satisfies either of the two approximations of EFX as well as achieves an O(n)\mathcal{O}(n) approximation to the Nash welfare. Our result also improves the current best-known approximation of O(nlog⁑n)\mathcal{O}(n \log n) and O(m)\mathcal{O}(m) to Nash welfare when agents have submodular and subadditive valuations, respectively. Furthermore, our technique also gives an O(n)\mathcal{O}(n) approximation to a family of welfare measures, pp-mean of valuations for p∈(βˆ’βˆž,1]p\in (-\infty, 1], thereby also matching asymptotically the current best known approximation ratio for special cases like p=βˆ’βˆžp =-\infty while also retaining the fairness properties
    • …
    corecore