884 research outputs found

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Understanding information centric layer of adaptive collaborative caching framework in mobile disconnection-prone networks

    Get PDF
    Smart networks and services leverage in-network caching to improve transmission efficiency and support large amount of content sharing, decrease high operating costs and handle disconnections. In this paper, we investigate the complex challenges related to content popularity weighting process in collaborative caching algorithm in heterogeneous mobile disconnection prone environments. We describe a reputation-based popularity weighting mechanism built in information-centric layer of our adaptive collaborative caching framework CafRepCache which considers a realistic case where caching points gathering content popularity observed by nodes differentiates between them according to node's reputation and network's connectivity. We extensively evaluate CafRepCache with competitive protocols across three heterogeneous real-world mobility, connectivity traces and use YouTube dataset for different workload and content popularity patterns. We show that our collaborative caching mechanism CafRepCache balances the trade-off that achieves higher cache hit ratio, efficiency and success ratios while keeping lower delays, packet loss and caching footprint compared to competing protocols across three traces in the face of dynamic mobility of publishers and subscribers

    Understanding information centric layer of adaptive collaborative caching framework in mobile disconnection-prone networks

    Get PDF
    Smart networks and services leverage in-network caching to improve transmission efficiency and support large amount of content sharing, decrease high operating costs and handle disconnections. In this paper, we investigate the complex challenges related to content popularity weighting process in collaborative caching algorithm in heterogeneous mobile disconnection prone environments. We describe a reputation-based popularity weighting mechanism built in information-centric layer of our adaptive collaborative caching framework CafRepCache which considers a realistic case where caching points gathering content popularity observed by nodes differentiates between them according to node's reputation and network's connectivity. We extensively evaluate CafRepCache with competitive protocols across three heterogeneous real-world mobility, connectivity traces and use YouTube dataset for different workload and content popularity patterns. We show that our collaborative caching mechanism CafRepCache balances the trade-off that achieves higher cache hit ratio, efficiency and success ratios while keeping lower delays, packet loss and caching footprint compared to competing protocols across three traces in the face of dynamic mobility of publishers and subscribers
    • …
    corecore