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Abstract—Smart networks and services leverage in-network 

caching to improve transmission efficiency and support large 

amount of content sharing, decrease high operating costs and 

handle disconnections. In this paper, we investigate the complex 

challenges related to content popularity weighting process in 

collaborative caching algorithm in heterogeneous mobile 

disconnection prone environments. We describe a reputation-

based popularity weighting mechanism built in information-

centric layer of our adaptive collaborative caching framework 

CafRepCache which considers a realistic case where caching 

points gathering content popularity observed by nodes  

differentiates between them according to node’s reputation and 

network’s connectivity. We extensively evaluate CafRepCache 

with competitive protocols across three heterogeneous real-world 

mobility, connectivity traces and use YouTube dataset for 

different workload and content popularity patterns. We show that 

our collaborative caching mechanism CafRepCache balances the 

trade-off that achieves higher cache hit ratio, efficiency and 

success ratios while keeping lower delays, packet loss and caching 

footprint compared to competing protocols across three traces in 

the face of dynamic mobility of publishers and subscribers.   

Keywords— Opportunistic mobile networks, content discovery 

and retrieval, content caching, reputation, mobility and connectivity 

I. INTRODUCTION 

Current smart and cloud-based infrastructures, which are 
large-scale distributed network systems built on multi-layer 
architecture, are dealing with emerging challenges with respect 
to the dramatically increasing number of connected mobile 
devices and network traffic demands which involve distributed 
mobile decision making in real time. In dynamic mobile 
disconnection-prone networks, new technologies like the Fog 
Computing or the Internet of Things motivate the need to 
moving data and services from the core (e.g. centralised 
infrastructure/cloud services) to the edges of the network (e.g. 
people, vehicles, base stations, access points) with an aim to 
leverage information on the local available resources (energy, 
storage, computation), mobility of publishers/subscribers and 
dynamic content look up and notifications. 

Powerful mobile devices allow an individual mobile device 
to be both cloud user and service provider. Efficiency, low-cost, 

timely manner and local relevance are the advantages of Mobile 
Edge/Fog Computing over conventional Internet Cloud. Current 
researches investigate complex challenges of the opportunistic 
discovery of content stored in remote mobile devices and the 
delivery to the requesting nodes in heterogeneous mobile 
disconnection prone environments. In our previous works, we 
proposed a latency-aware adaptive collaborative caching 
framework, CafRepCache [8], for content dissemination and 
query in heterogeneous mobile opportunistic networks and 
dynamic workloads. CafRepCache addresses complex open 
questions about decisions making in distributed opportunistic 
caching: where to cache and what to cache as well as how to 
manage the cache in order to maximise cache hit ratio while 
minimizing latency and avoiding network congestion. We built 
CafRepCache on dynamic predictive relative utilities and ensure 
all nodes in the network to be incentivised to collaborate. 

In this paper, we focus on the information-centric layer of 
CafRepCache and investigate its collaborative cognitive caching 
framework by describing an integrated reputation aware 
weighting popularity mechanism in order to help caching points 
efficiently utilize the exchanged popularity values aggregated 
from other nodes through collaborative caching process, thus 
enhance the accuracy of its predictive content analytics and 
improve its cache hit ratio. Previous research has shown that 
collaborative caching usually outperforms locally optimized 
algorithms [20], thus node utility and content popularity are 
resolved by both local node and its neighbours. How to 
adaptively weight and combine the value of local observation 
and different collaborative observations is a challenging 
problem that need to be addressed in order to utilise efficiently 
the exchanged information, thus improve caching performance. 
We integrate “ego network” of each node as a dynamic network 
consisting of that node and contacts it meets most frequently or 
most recently. Ego network allows each node to give its own 
regional or temporal perspective of the network (or both are 
included). However, not every node’s perspective of the 
network has the same value and level of accuracy. Thus, we 
describe our novel reputation-aware caching decision 
mechanism that evaluates and weighs different exchanged 
information derived from different nodes in the network based 
on node’s reputation and connectivity, in order to improve the 
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caching performance of our framework. Note that we assume 
there is no malicious behaviour from nodes in the network, thus 
focus on designing underlying algorithms that can adaptively 
utilise the exchanged resources from trusted collaborators. 

The paper begins by providing an overview of the related 
work in section II, section III introduces reputation-aware 
collaborative adaptive caching CafRepCache model and scheme 
as well as describes its heuristics, section IV evaluates 
performance of different collaborative caching protocols 
associated with reputation-aware popularity weighting 
algorithms in opportunistic networks across a range of metrics 
over three heterogeneous realistic mobile social and vehicular 
traces for real-world workloads and content popularity from 
YouTube dataset. Section V gives a conclusion. 

II. RELATED WORK 

Authors in [21,22,23] considered caching content at the edge 
of the mobile networks as the promising approach to address the 
network traffic demands from mobile users in which public or 
private transportation may act as mobile relays and caches. [21] 
and [22] then focus on the problem of downloading whole 
content and streaming videos from vehicles acting as mobile 
cloud. In our previous work [25], we envisaged a low cost 
mobile personal cloud architecture that is able to senses and 
adapts to the infrastructure behaviour, dynamic social ties, 
reputation of other nodes and uses intelligent network 
communication for increased reliability. In [23], authors 
assumed that content is streamed chunk-by-chunk and if a chunk 
can be downloaded from an encountered vehicle before it must 
be played, this is data traffic that is offloaded from the main 
infrastructure or expensive macro cell links without any visible 
impact on the use. 

Authors in [19] studied the effect of cooperative caching 
schemes on delay tolerant mobile network. [19] designed a 
mathematical model of mobile content sharing network based 
on file popularity distribution, user mobility and delay tolerance. 
Authors in [14] combine betweenness, similarity and tie strength 
for social routing metric which directs the traffic to more central 
nodes, and thus increases the probability of finding the optimal 
relay for delivering packets but congests the points that have 
higher social centrality. [4] proposed Café and CafeREP, a 
congestion-aware mobile social framework for data forwarding 
over heterogeneous opportunistic networks. Our previous work 
[8] describes our early proof of concept new latency aware 
collaborative cognitive caching approach in heterogeneous 
opportunistic mobile networks which utilises fully localised and 
ego networks multi-layer predictive heuristics about 
dynamically changing topology, resources and popularity 
content. In this paper, we base our work on [4,8] and focus on 
resolving the content popularity based on reputation through 
collaborative caching process.  

[18] proposed a reputation framework based on mobility and 
centrality to improve security in highly mobile, sparse and 
disconnected environments. Authors integrated centrality, local 
observations, selective deviation test and adaptive timer 
techniques in the reputation model to improve efficiently node 
monitoring and trust resolution. [3] proposed a reputation aware 
adaptive obfuscation in mobile opportunistic networks based on 
implicit reputation building, complex graph connectivity 

analytics and obfuscation history analyses. The authors 
presented testing scheme and hierarchical reputation states to 
enable an accurate, intelligent and efficient fully distributed 
reputation building based on the nodes’ obfuscation behaviour. 
Authors in [24] proposed an intelligent cooperative sensing 
framework that enhances the reliability of the manufacturing 
plant in the disconnection prone heterogeneous sensor networks. 
Each node has its own trust value which is resolved based on the 
weighted sum of multiple nodes’ observations of the node. The 
framework identifies and uses nodes that have both high 
centrality and reputation to improve the reliability and accelerate 
reputation convergence while being able to detect and isolate 
faulty nodes that have low trust value. In [5], authors propose 
fully distributed reputation mechanism for next generation 
mobile offloading in resource constrained mobile networks. [7] 
presented a Fuzzy-based qualified voting model in which every 
peer has a voting score according to its behaviours and the 
success or failure of its actions. The authors stated that Fuzzy 
Logic helps to deal with imprecision and approximate reasoning 
that are involved in the given problem [6]. Thus, the proposed 
system could choose reliable peers with good voting score to 
make collaborative decisions in P2P mobile environment. In this 
paper, we compare our reputation aware collaborative caching 
against Fuzzy-based qualified voting model in [7]. We follows 
distributed reputation guidelines given in [2,9,10], considers 
sociality metrics [14] and reputation testing in [3,18] to propose 
a reputation-based popularity weighting mechanism built in 
information-centric layer of the collaborative adaptive caching 
framework CafRepCache [8] in order to improve the accuracy 
of its predictive content analytics. 

III. ADAPTIVE COLLABORATIVE CACHING FRAMEWORK 

Our adaptive collaborative caching framework CafRepCache 

has a distributed cross-layer structure as shown in [8]. 

Reputation system built in the content layer assisting the 

caching cooperation process by adaptively weighting 

popularity values aggregated from other nodes. We first 

describe briefly the system model and related assumptions used 

in CafRepCache framework [8], then we focus on our 

reputation building architecture of the content layer and its 

functional overview.  

A. System Model 

We model a system as a network G that consists of a set N 

of nodes and a set E of edges, G = (N, E). As the connectivity 

of the network and the state of the nodes change over time, we 

model each of these sets as time series, thus N = {��: t ∈ T} 

and E = {�� : t ∈ T}. 

We assume that each node in the network �� 	 ∈ �  has a 

cache of size ��. We denote with 	 a set of content files that can 

be requested by the network. Each content 
�� ∈ 	 (or 
�  for 

simplicity) is published at time t and has the size ��. At each 

node �� ∈ �, �,��  is the normalised request rate of the content 


� (i.e. content popularity) observed locally from �� at time t, ∑ �,�� = 1� ; ��,��  is the normalised aggregated request rate of 

the content 
� observed from all the neighbours of �� at time t, ∑ ��,�� = 1� . When two nodes are in contact, they exchange their 

local content popularity observation. Each node continuously 

resolves the value of dynamically changing content popularity 



based on its local observation and the collaborative 

observations it gets from others. ���,�� , ��,�� � = ��,�� � 	���,��  

denotes the function to weight the value of collaborative 

observations over local observation. 

We integrate “ego network” of each node �� : ���  as a 

dynamic network consisting of a the node ��  and contacts it 

meets most frequently or most recently. In this way, ego 

network allows each node to give its own regional or temporal 

perspective of the network (or both are included). 

Each node ��  has a node utility value which consists of 

social utility (betweenness, similarity, tie strength), resource 

utility (retentiveness, receptiveness, congesting rate), energy 

utility and end-user utility. 

B. Reputation-Based Content Popularity Weighting 

Mechanism 

Our distributed reputation aware mechanism built within 

information-centric layer of CafRepCache integrates four main 

features: centrality, credit-based feedback, reputation 

discounting and secondary response (as in line with [1,2,18]) to 

weigh the value of exchanged content popularities among ego 

network nodes in order to improve the collaborative caching 

decisions in highly mobile and disconnection-prone scenarios. 

Fig. 1 shows the interaction between the key components of our 

reputation model in order to provide automatic and autonomous 

weighing collaborative content popularities based on the 

available neighbours’ reputations. 

 

Figure 1. Architecture & Reputation system model. 

Given a caching point ��  has a request to resolve a 

popularity of a certain content 
� in order to make a caching 

decision (e.g. whether to cache that content or not, whether to 

choose to delegate or remove the content, etc.). Through the 

collaborative caching process, ��  aggregates different 

popularity value ��,�  of content 
�  observed from each 

neighbor node �� ∈ 	��� in its ego network ���. Assuming that 

�� take account equal for every node, the aggregated content 

popularity of the content 
� observed from all the neighbours 

of �� is: 

��,� =	 1
|���| � ��,�

��∈	� !
 

However, we argue that not every node’s perspective of the 

network has the same value and level of accuracy, thus we 

weigh the value of content popularity observed from a node 

based on its reputation. Firstly, we measure a node’s reputation 

based on its centrality, similarity and tie strength [9,14], to the 

caching point ��. 
Nodes with higher centrality have higher connectivity or 

higher probability of getting in contact with many other nodes 

than nodes with lower centrality, thus its observation on a 

popularity of a particular content is preferred. Let  "�,� be the 

adjacency matrix, i.e. "�,� = 1 if �� is linked to �� and "�,� = 0 

otherwise. The relative eigenvector centrality [2,10] of ��  is 

defined as: 

$� = 1% � $�
��∈	� !

= 1%�"�,�$�
 

�&'
 

in which	% is a constant. 

Moreover, we argue that nodes with higher similarity value 

[9,14] with the caching point may help to give a short-term 

predictive content popularity due to the spatial and temporal 

locality of content requests. The similarity degree between �� 
and ��  is measured by (�� 	∩ 	��(	as the similarity of contact 

between node �� and �� 
On the other hand, we still consider nodes which have weak 

tie strength [14] with the caching point as we argue that these 

nodes may have a completely different connectivity patterns 

compared to the caching point, thus may give a wider and 

broaden long-term predictive content popularity. The tie 

strength value between node �� and �� is defined as: 

	*+ = 	 ,���
-���.	,����	 /01���

2���.	/01����	 3���
4���.	3���  

Through our experiments, we observed that centrality and 

similarity have a major contribution to the reputation building 

due to the spatial and temporal locality of content request 

whiles nodes with weak tie strength does not add significant 

value to the accuracy of aggregated content popularity. 

Assuming that �� take social metrics as the first reputation into 

account for every node, the aggregated content popularity of the 

content 
�  observed from all the neighbours of ��  is now 

rewritten as: 

��,� =	 1
|���| � +
56789:;<::�,� . ��,�

��∈	� !
 

+
56789:;<::�,� = >?:�@<786@A, +6B687<6@A, *6:	+@<:�;@CD 
Then, we base on our previous work [1,3,18] to propose 

credit-based feedback algorithm in order to evaluate the 

accuracy and usefulness the content popularity value reported 

from a node in ego networks to a caching point. 

At the beginning, we assume that the reputation of all nodes 

in the network is equal to their social degree as described above. 

After the first exchanging information, node ��  gets the 

collaborative content popularity from others and weight them 

based on its reputation. After the first cache hit, caching point ��  weights up the reputation value of nodes who reported 

correctly and weights down the reputation value of those who 

reported incorrectly. 

EF�,��@� = +
56789:;<::�,�	GC:�	@ = 0F�,��@� = F�,��@ H 1� I J  

where J is the value added or deducted based on the success or 

failure of content popularity prediction of a collaborative node. J  value is proportional to the gap between the content 



popularity value it reported to ��  and the actual content 

popularity �� experiences after a certain time window ∆T. 

The reputation of a node decreases when it reported to �� 
that a certain content is high popular but �� does not encounter 

any request for that content, and vice versa. In this case, J value 

added or deducted is proportional to the time duration ∆T. 

In addition to using historical observations, we also use 

adaptive expiration timer, reputation discounting and secondary 

response [1,2,18] specifically tailored for our highly challenged 

environment in order to increase the accuracy and reliability of 

the reputation resolution. Each node holds N neighbour 

reputation records where N can be determined by the node’s 

resource capacity. Nodes with higher reputation and centrality 

should hold enough reputation records about other nodes in 

order to provide sufficient coverage of the nodes in its own area. 

Node recycles these records using expiration time to balance 

the trade-off between different overheads and the need to have 

enough reputation about different neighbours. Our protocol 

uses reputation discounting to ensure that old reputations will 

age giving more chance for nodes to reclaim their reputation by 

consistently behaving in a cooperative manner and contributing 

to the aggregated content popularity. The reputation value of a 

node ages along time that: 

 F�,��@� = � ∗ F�,��@ H 1� where � is aging factor. 

The secondary response avoids reputation discounting 

backfires by increasing sensitivity to nodes that have been 

deemed predictively inaccurate in the past. 

Assuming that ��  take reputation into account for every 

node, the aggregated content popularity of the content 
� 

observed from all the neighbours of �� is now rewritten as: 

��,� =	 1
|���| � F�,� 	��,�

��∈	� !
 

IV. EVALUATION 

In this section, we present and evaluate the performance of 
CafRepCache against state-of-the-art caching protocols 
including LFU and Fuzzy Cache [7] while varying the number 
of contents and the cache buffer size. In our experiments, we 
tailor LFU to not only keep a counter associated each content as 
popularity value but also to collaboratively exchange the counter 
value between its neighbours. The aggregated popularity value 
is resolved by equally weighting all content popularity values 
gathered from others. Fuzzy Cache [7] uses the Fuzzy Logic 
based-qualified voting model to weight the exchanged content 
popularity which in turn is resolved by the number of requests. 
In order to enable fair analysis, we implement LFU and Fuzzy 
Cache over social forwarding as other algorithms have different 
social forwarding algorithms and all three traces have been 
shown to have social character.  

As mobility and connectivity of the nodes have a major 
impact on the performance of any opportunistic communication 
protocol, it is fundamental to evaluate our caching algorithm 
over multiple heterogeneous real-world mobile data sets. We use 
San Francisco Cab [15], RollerNet [16] and Infocom [17] traces 
in ONE [13]. San Francisco Cab Trace [15] includes GPS traces 
of 550 cabs over a period of 30 days in the San Francisco Bay 
Area. RollerNet [16] spans three hours during which 62 roller-

bladders travel about 20 miles in Paris and utilize Bluetooth on 
their cell phones for communication. Infocom [17] is a 4-day 
trace that consists of 78 volunteers equipped with Bluetooth 
devices and additional 20 static long-range devices placed at 
various semi-static and static locations of the conference venue. 

San Francisco trace [15] is the most challenging trace 
compared with RollerNet [16] and Infocom [17] due to very 
short connectivity durations, very high disconnections and low 
number of contacts during connected times. We observe that 
both San Francisco and RollerNet traces exhibit short contact 
durations (a mean of 45 s and 33 s, a median of 11 s and 24 s 
and a maximum of 73 s and 42s respectively) while Infocom has 
substantially longer contact durations (a mean of 2.5 min, a 
median of 2 min and a maximum value of 4 min). San Francisco 
trace suffers from the longest isolation periods (a mean of 0.5 h, 
a median of 1.7 h and a maximum value of 3 h) compared to 
RollerNet and Infocom (with a mean of 1.5 min and 4 min, a 
median of 1 min and 6 min, and a maximum of 4 min and 10 
min respectively). In addition, RollerNet trace has the highest 
observed number of contacts compared to San Francisco Cab 
and Infocom traces.  

We use YouTube Dataset [11,12] as a real trace for content 
requests. The dataset contains total 2135798 videos, each has 
video id, length, views and other attributes. Based on the 
assumption that file size is proportional to the video length, we 
set up the average file size is 8.4 MB, which is in line with 
[11,12]. We also assume that contents are uniformly distributed 
among publishers. All caching points in the network have a 
uniform storage capacity. 

In the first set of experiments, we compare CafRepCache 
against state-of-the-art caching protocols LFU and Fuzzy Cache 
[7] associated with different content-popularity weighting 
algorithms in opportunistic networks over different criteria: 
cache hit ratio, success ratio, delay and packet loss in the face of 
dynamically varying number of total content in order to evaluate 
our collaborative caching algorithm in the presence of dynamic 
content population. Due to space limitation, only the cache hit 
ratio will be shown. 

In the second set of experiments, we conduct performance 
analysis of CafRepCache against LFU and Fuzzy Cache while 
dynamically varying cache buffer size. We show that 
CafRepCache outperforms other competing protocols in terms 
of cache hit ratio, success ratio, delay, packet loss and relative 
footprint reduction for the end to end content retrieval process 
in the presence of heterogeneous buffer size. 

A. Evaluation in the presence of dynamic content population 

We run six increments with number of contents ranging 

from 10 to 106 contents. For simplicity and to provide 

sensitivity analysis of content size and buffer capacity, we limit 

the upper-bound of number of content to 106 without losing 

generality. We also assume that contents are uniformly 

distributed among publishers. 

All caching points in the network have a uniform storage 

capacity such that the total caching space could fit at 0.1% of 

the total contents population. For each experiment with 

different content population, we assume that a random 50% of 

node population are subscribers and a random 25% of nodes are 



publishers; subscribers and publishers are mobile and not 

uniformly distributed as well as that they can have different 

connectivity patterns. All experiments are repeated ten times 

and averaged. 

We begin by analysing performance of cache hit ratio which 

refers to how many interest packets are matched with the 

contents in caching points without being forwarded to 

publishers and indicates efficiency of caching decisions and 

locations. In Fig. 2, we show that CafRepCache achieves the 

highest cache hit ratio (typically around 90% for all three traces 

and in the face of dynamic content population) compared to 

state of the art algorithms LFU and Fuzzy Cache. When the 

number of contents increases, CafRepCache still keep above 

80% cache hit ratio for all three traces. This is because 

CafRepCache profits from adaptive caching and more accurate 

content popularity prediction. CafRepCache is able to take 

advantage of highly skewed content popularity and content 

request locality to efficiently predict the incoming content 

requests based on its local observation and collaborative 

observations from the others. It profits from favouring some 

nodes’ exchanged popularity value based on their sociality 

degree, assuming that nodes with higher centrality have higher 

connectivity or higher probability of getting in contact with 

many other nodes than nodes with lower centrality, thus its 

observation on a popularity of a particular content is preferred. 

Moreover, the credit-based feedback module allows 

CafRepCache to adaptively weight and utilize efficiently the 

exchanged popularity values obtained from other nodes within 

its ego network over time, upgrade or downgrade some nodes’ 

observations based on the accuracy and usefulness they offer to 

the caching decision-making later on. Thus, multi-layer real-

time predictive heuristics allows CafRepCache to manage 

complex dynamic trade-offs between dynamically changing 

topology, dynamic resources and varying content popularity 

and interest. CafRepCache is followed by Fuzzy Cache and 

LFU range from 27%-55% for all traces with respect to the 

increase of content population. We observe that Fuzzy Cache 

has no (or little) improvement to the accuracy of predicting 

content popularity compared to the traditional caching 

algorithm LFU. 

B. Evaluation in the presence of dynamic cache buffer size 

In order to evaluate the accuracy of CafRepCache, Fuzzy 

Cache and LFU in predicting content popularity, we first limit 

and then increase the cache buffer size while evaluating cache 

hit ratio, success ratio, delay and packet loss of these weighting 

popularity algorithms. Due to space limitation, only the cache 

hit ratio will be shown in this paper. 

Smaller cache buffer size offers a more selective cached 

contents, thus requires more accurate content popularity 

prediction in order to minimise the cache miss ratio. In Fig. 3, 

we show that CafRepCache achieves the highest cache hit ratio 

(above 70% when the cache space is very limited and typically 

around 92% for all three traces when more cache space is given) 

compared to state of the art algorithms. This is because the 

reputation-based popularity weighting module built on 

information-centric layer of CafRepCache improves the 

predictive content analytics, allows it to weigh efficiently the 

collaborative content popularity reported from the others based 

on their sociality and centrality while being able to adaptively 

Figure 2. Cache Hit Ratio vs. Number of Contents 

Figure 3. Cache Hit Ratio vs. Cache Buffer Size 



test, discount or recover nodes’ reputation over time. More 

accurate aggregated content popularity leads to more accurate 

final content popularity measurement, thus helps caching points 

to efficiently predict the incoming content requests and improve 

its cache hit ratio. 

Fig. 3 shows that equal popularity weighing will not be 

sufficient to optimally weight others’ observations as it shows 

that CafRepCache is followed by LFU and Fuzzy Cache (range 

from 22%-47%). Fuzzy Cache and LFU performance are 

relatively similar, Fuzzy Cache [7] with  Fuzzy Logic based-

qualified voting model relies heavily on a static set of rules and 

knowledge base, thus may not be able to adaptively weight the 

node’s reputation over time with respect to the dynamic 

changing of nodes’ mobility, connectivity, resources and 

workload. In fact, Fig. 3 shows that Fuzzy Cache makes no 

significant improvement compared to traditional caching 

algorithm LFU. 

V. CONCLUSION 

This paper described collaborative adaptive caching 

framework CafRepCache [8] with reputation-based popularity 

weighing mechanism built in information-centric layer of 

CafRepCache to adaptively weight different exchanged content 

popularity values gathered from different nodes in the ego 

network based on node’s reputation and connectivity, in order 

to improve the predictive caching performance. We show that 

CafRepCache significantly improves the performance of 

predictive caching over very different time-varying real world 

network topologies, mobility patterns and content requests 

compared to other state-of-the-art weighting popularity 

algorithms. Reputation-based popularity weigting mechanism 

built in CafRepCache allows it to take advantage of highly 

skewed content popularity and content request locality using 

sociality metrics while being able to test, discount and recover 

the reputation over time in order to utilize efficiently the 

exchanged popularity values obtained from other nodes, thus 

improve significantly the predictive caching decisions. For our 

future work, we plan to investigate CafRepCache caching 

framework in chunk-level object popularity that leverages the 

sequential correlation between chunk requests of the same file 

in order to improve the cache performance. We also plan to 

exploit the energy efficient data sharing approaches that will 

make CafRepCache smart data dissemination and query more 

usable, reliable and scalable in opportunistic disconnection 

tolerant networks. 
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