5,397 research outputs found

    Data optimizations for constraint automata

    Get PDF
    Constraint automata (CA) constitute a coordination model based on finite automata on infinite words. Originally introduced for modeling of coordinators, an interesting new application of CAs is implementing coordinators (i.e., compiling CAs into executable code). Such an approach guarantees correctness-by-construction and can even yield code that outperforms hand-crafted code. The extent to which these two potential advantages materialize depends on the smartness of CA-compilers and the existence of proofs of their correctness. Every transition in a CA is labeled by a "data constraint" that specifies an atomic data-flow between coordinated processes as a first-order formula. At run-time, compiler-generated code must handle data constraints as efficiently as possible. In this paper, we present, and prove the correctness of two optimization techniques for CA-compilers related to handling of data constraints: a reduction to eliminate redundant variables and a translation from (declarative) data constraints to (imperative) data commands expressed in a small sequential language. Through experiments, we show that these optimization techniques can have a positive impact on performance of generated executable code

    (Co-)Inductive semantics for Constraint Handling Rules

    Full text link
    In this paper, we address the problem of defining a fixpoint semantics for Constraint Handling Rules (CHR) that captures the behavior of both simplification and propagation rules in a sound and complete way with respect to their declarative semantics. Firstly, we show that the logical reading of states with respect to a set of simplification rules can be characterized by a least fixpoint over the transition system generated by the abstract operational semantics of CHR. Similarly, we demonstrate that the logical reading of states with respect to a set of propagation rules can be characterized by a greatest fixpoint. Then, in order to take advantage of both types of rules without losing fixpoint characterization, we present an operational semantics with persistent. We finally establish that this semantics can be characterized by two nested fixpoints, and we show the resulting language is an elegant framework to program using coinductive reasoning.Comment: 17 page

    Deterministic Automata for Unordered Trees

    Get PDF
    Automata for unordered unranked trees are relevant for defining schemas and queries for data trees in Json or Xml format. While the existing notions are well-investigated concerning expressiveness, they all lack a proper notion of determinism, which makes it difficult to distinguish subclasses of automata for which problems such as inclusion, equivalence, and minimization can be solved efficiently. In this paper, we propose and investigate different notions of "horizontal determinism", starting from automata for unranked trees in which the horizontal evaluation is performed by finite state automata. We show that a restriction to confluent horizontal evaluation leads to polynomial-time emptiness and universality, but still suffers from coNP-completeness of the emptiness of binary intersections. Finally, efficient algorithms can be obtained by imposing an order of horizontal evaluation globally for all automata in the class. Depending on the choice of the order, we obtain different classes of automata, each of which has the same expressiveness as CMso.Comment: In Proceedings GandALF 2014, arXiv:1408.556
    • …
    corecore