4,080 research outputs found

    Guidelines for the use of cell lines in biomedical research

    Get PDF
    Cell-line misidentification and contamination with microorganisms, such as mycoplasma, together with instability, both genetic and phenotypic, are among the problems that continue to affect cell culture. Many of these problems are avoidable with the necessary foresight, and these Guidelines have been prepared to provide those new to the field and others engaged in teaching and instruction with the information necessary to increase their awareness of the problems and to enable them to deal with them effectively. The Guidelines cover areas such as development, acquisition, authentication, cryopreservation, transfer of cell lines between laboratories, microbial contamination, characterisation, instability and misidentification. Advice is also given on complying with current legal and ethical requirements when deriving cell lines from human and animal tissues, the selection and maintenance of equipment and how to deal with problems that may arise

    Index to 1986 NASA Tech Briefs, volume 11, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1986 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Biopharmaceutical Process – Contract Development Organization: Startup

    Get PDF
    Due to their high specificity and the wide range of treatments they can provide, monoclonal antibodies (MAbs) from mammalian cell cultures have gained increasing popularity in therapeutics. As a result, treatments have become cheaper and easier to manufacture while maintaining their natural effectiveness, further increasing their appeal. Building MAb manufacturing facilities can be costly for biopharmaceutical companies, especially smaller biotech firms, and current production capacities are limited. As a result, there is an everincreasing demand for contract development organizations (CDOs). The CDO being proposed targets demand within this regime specific to MAbs entering clinical trials. It has the capability to screen clones, grow MAb-producing cells up to a 2500 L culture, and purify the MAb to clinical standards. By employing the newest technology available, the facilities will provide flexibility necessary for producing a myriad of different MAb therapeutics in Chinese Hamster Ovary (CHO) cells. Microbioreactors can screen dozens of clones at the millileter scale, saving time and money. Disposable bioreactors in the upstream process allow for variance in the production capacity due to the range of sizes they are available in. Finally, the purification process has been designed to allow for flexibility depending on the size and needs of every client’s product to maximize value to the costumer as well as the company. The current market for MAb production has an astounding worldwide value of approximately 27.5billionandcontinuestoexpandasthenumberofMAbsenteringclinicaltrialsincreases(Cowen2006).Itisestimatedthatwithinthenextfouryearsthattheworldwidemarketvaluewillreach27.5 billion and continues to expand as the number of MAbs entering clinical trials increases (Cowen 2006). It is estimated that within the next four years that the worldwide market value will reach 50 billion (“Preclinical Development”, 2010). The profitability of this proposal is based on running 39 batches a year at 4.326 kg MAb/batch or 168.71 kg MAb/year. By charging a reasonable average of 1,125,000/kgMAb,aprofitabilityprofilecanbecreated.Assuminga701,125,000/kg MAb, a profitability profile can be created. Assuming a 70% production capacity and a ten year plant life, the ROI, NPV and IRR of the project are 115.83%, 111,907,800 and 52.96% respectively. However, using a 70% production capacity also leaves room for even higher profit margins. The plant design also has space allotted for future expansion within the mammalian suite as well as room for a future microbial suite

    Characterization of the Saccharomyces cerevisiae gene MGP1, a novel member of the ras gene superfamily that functions in the mitochondrial biogenesis

    Get PDF
    This dissertation characterizes Mgp1p, a mitochondrial protein that functions in mitochondrial biogenesis. Mgp1p is the first protein related to the p21[superscript] H-ras oncoprotein shown to function in mitochondria;The Saccharomyces cerevisiae gene MGP1 was isolated based on its ability to restore respiratory competence to a strain containing the nuclear petite mutation msg1-1. MGP1 codes for a protein of approximately 58 kDa, with an amino terminal sequence typical of a mitochondrial targeting peptide. A 190 residue region of Mgp1p shares approximately 30% amino acid sequence identity with any member of p21[superscript] ras-related protein superfamily, with particularly strong homology in the regions known to interact with guanine nucleotides. Multiple copies of MGP1 suppress the respiratory enzyme assembly defects caused by msg1 mutations. To demonstrate that Mgp1p is functionally similar to p21[superscript] ras-related proteins, a mutation was introduced into MGP1 that deleted the phosphate group binding region conserved in this family of guanine nucleotide binding proteins. This mutation inactivated the suppressor function of MGP1;Mgp1p co-fractionated with mitochondria in subcellular fractionation experiments. In vitro mitochondrial import experiments demonstrated Mgp1p is translocated into mitochondria by a mechanism dependent on inner membrane potential, and Mgp1p was processed during translocation. After translocation Mgp1p was bound to mitochondrial membranes. Mutation of cysteine residue 523 to a serine reduced the association of Mgp1p with mitochondrial membranes, suggesting C-terminal post-translational modifications occur for Mgp1p similar to those known for other p21[superscript] ras-related proteins. This mutation inactivated the suppressor function of MGP1;Mgp1p was produced in E. coli to facilitate biochemical analysis. Crosslinking experiments demonstrated Mgp1p expressed in E. coli is capable of binding GTP. Taken together, the data presented in this dissertation suggest Mgp1p is a p21[superscript] ras-related, GTP-binding protein attached to the mitochondrial membrane by a mechanism involving modification at its carboxyl terminus. Based on the known functions of such proteins, Mgp1p may serve as part of a signal transduction mechanism involved in communication between mitochondria and the cytosol

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Mathematics and Digital Signal Processing

    Get PDF
    Modern computer technology has opened up new opportunities for the development of digital signal processing methods. The applications of digital signal processing have expanded significantly and today include audio and speech processing, sonar, radar, and other sensor array processing, spectral density estimation, statistical signal processing, digital image processing, signal processing for telecommunications, control systems, biomedical engineering, and seismology, among others. This Special Issue is aimed at wide coverage of the problems of digital signal processing, from mathematical modeling to the implementation of problem-oriented systems. The basis of digital signal processing is digital filtering. Wavelet analysis implements multiscale signal processing and is used to solve applied problems of de-noising and compression. Processing of visual information, including image and video processing and pattern recognition, is actively used in robotic systems and industrial processes control today. Improving digital signal processing circuits and developing new signal processing systems can improve the technical characteristics of many digital devices. The development of new methods of artificial intelligence, including artificial neural networks and brain-computer interfaces, opens up new prospects for the creation of smart technology. This Special Issue contains the latest technological developments in mathematics and digital signal processing. The stated results are of interest to researchers in the field of applied mathematics and developers of modern digital signal processing systems

    Index to 1985 NASA Tech Briefs, volume 10, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1985 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Industrial-Scale Manufacture of Oleosin 30G for Use as Contrast Agent in Echocardiography

    Get PDF
    In ultrasound sonography, microbubbles are used as contrasting agents to improve the effectiveness of ultrasound imaging. Monodisperse microbubbles are required to achieve the optimal image quality. In order to achieve a uniform size distribution, microbubbles are stabilized with surfactant molecules. One such molecule is Oleosin, an amphiphilic structural protein found in vascular plant oil bodies that contains one hydrophobic and two hydrophilic sections. Controlling the functionalization of microbubbles is a comprehensive and versatile process using recombinant technology to produce a genetically engineered form of Oleosin called Oleosin 30G. With the control of a microfluidic device, uniformly-sized and resonant microbubbles can be readily produced and stored in stable conditions up to one month. Currently, Oleosin microbubbles are limited to the lab-scale; however, through development of an integrated batch bioprocessing model, the overall product yield of Oleosin 30G can be increased to 7.39 kg/year to meet needs on the industrial-scale. An Oleosin-stabilized microbubble suspension as a contrast agent is in a strong position to take a competitive share of the current market, capitalizing on needs unmet by current market leader, Definity®. Based on market dynamics and process logistics, scaled-up production of Oleosin 30G for use as a contrast agent is expected to be both a useful and profitable venture
    corecore