33 research outputs found

    Failure of adaptive self-organized criticality during epileptic seizure attacks

    Get PDF
    Critical dynamics are assumed to be an attractive mode for normal brain functioning as information processing and computational capabilities are found to be optimized there. Recent experimental observations of neuronal activity patterns following power-law distributions, a hallmark of systems at a critical state, have led to the hypothesis that human brain dynamics could be poised at a phase transition between ordered and disordered activity. A so far unresolved question concerns the medical significance of critical brain activity and how it relates to pathological conditions. Using data from invasive electroencephalogram recordings from humans we show that during epileptic seizure attacks neuronal activity patterns deviate from the normally observed power-law distribution characterizing critical dynamics. The comparison of these observations to results from a computational model exhibiting self-organized criticality (SOC) based on adaptive networks allows further insights into the underlying dynamics. Together these results suggest that brain dynamics deviates from criticality during seizures caused by the failure of adaptive SOC.Comment: 7 pages, 5 figure

    Dynamic Adaptive Computation: Tuning network states to task requirements

    Get PDF
    Neural circuits are able to perform computations under very diverse conditions and requirements. The required computations impose clear constraints on their fine-tuning: a rapid and maximally informative response to stimuli in general requires decorrelated baseline neural activity. Such network dynamics is known as asynchronous-irregular. In contrast, spatio-temporal integration of information requires maintenance and transfer of stimulus information over extended time periods. This can be realized at criticality, a phase transition where correlations, sensitivity and integration time diverge. Being able to flexibly switch, or even combine the above properties in a task-dependent manner would present a clear functional advantage. We propose that cortex operates in a "reverberating regime" because it is particularly favorable for ready adaptation of computational properties to context and task. This reverberating regime enables cortical networks to interpolate between the asynchronous-irregular and the critical state by small changes in effective synaptic strength or excitation-inhibition ratio. These changes directly adapt computational properties, including sensitivity, amplification, integration time and correlation length within the local network. We review recent converging evidence that cortex in vivo operates in the reverberating regime, and that various cortical areas have adapted their integration times to processing requirements. In addition, we propose that neuromodulation enables a fine-tuning of the network, so that local circuits can either decorrelate or integrate, and quench or maintain their input depending on task. We argue that this task-dependent tuning, which we call "dynamic adaptive computation", presents a central organization principle of cortical networks and discuss first experimental evidence.Comment: 6 pages + references, 2 figure

    Decline of long-range temporal correlations in the human brain during sustained wakefulness

    Get PDF
    Sleep is crucial for daytime functioning, cognitive performance and general well-being. These aspects of daily life are known to be impaired after extended wake, yet, the underlying neuronal correlates have been difficult to identify. Accumulating evidence suggests that normal functioning of the brain is characterized by long-range temporal correlations (LRTCs) in cortex, which are supportive for decision-making and working memory tasks. Here we assess LRTCs in resting state human EEG data during a 40-hour sleep deprivation experiment by evaluating the decay in autocorrelation and the scaling exponent of the detrended fluctuation analysis from EEG amplitude fluctuations. We find with both measures that LRTCs decline as sleep deprivation progresses. This decline becomes evident when taking changes in signal power into appropriate consideration. Our results demonstrate the importance of sleep to maintain LRTCs in the human brain. In complex networks, LRTCs naturally emerge in the vicinity of a critical state. The observation of declining LRTCs during wake thus provides additional support for our hypothesis that sleep reorganizes cortical networks towards critical dynamics for optimal functioning

    Self-Organized Supercriticality and Oscillations in Networks of Stochastic Spiking Neurons

    Full text link
    Networks of stochastic spiking neurons are interesting models in the area of Theoretical Neuroscience, presenting both continuous and discontinuous phase transitions. Here we study fully connected networks analytically, numerically and by computational simulations. The neurons have dynamic gains that enable the network to converge to a stationary slightly supercritical state (self-organized supercriticality or SOSC) in the presence of the continuous transition. We show that SOSC, which presents power laws for neuronal avalanches plus some large events, is robust as a function of the main parameter of the neuronal gain dynamics. We discuss the possible applications of the idea of SOSC to biological phenomena like epilepsy and dragon king avalanches. We also find that neuronal gains can produce collective oscillations that coexists with neuronal avalanches, with frequencies compatible with characteristic brain rhythms.Comment: 16 pages, 16 figures divided into 7 figures in the articl

    The interplay between long- and short-range temporal correlations shapes cortex dynamics across vigilance states

    Full text link
    Increasing evidence suggests that cortical dynamics during wake exhibits long-range temporal correlations suitable to integrate inputs over extended periods of time to increase the signal-to-noise ratio in decision-making and working memory tasks. Accordingly, sleep has been suggested as a state characterized by a breakdown of long-range correlations; detailed measurements of neuronal timescales that support this view, however, have so far been lacking. Here we show that the long timescales measured at the individual neuron level in freely-behaving rats during the awake state are abrogated during non-REM (NREM) sleep. We provide evidence for the existence of two distinct states in terms of timescale dynamics in cortex: one which is characterized by long timescales which dominate during wake and REM sleep, and a second one characterized by the absence of long-range temporal correlations which characterizes NREM sleep. We observe that both timescale regimes can co-exist and, in combination, lead to an apparent gradual decline of long timescales during extended wake which is restored after sleep. Our results provide a missing link between the observed long timescales in individual neuron fluctuations during wake and the reported absence of long-term correlations during deep sleep in EEG and fMRI studies. They furthermore suggest a network-level function of sleep, to reorganize cortical networks towards states governed by slow cortex dynamics to ensure optimal function for the time awake

    Brain Performance versus Phase Transitions

    Get PDF
    We here illustrate how a well-founded study of the brain may originate in assuming analogies with phase-transition phenomena. Analyzing to what extent a weak signal endures in noisy environments, we identify the underlying mechanisms, and it results a description of how the excitability associated to (non-equilibrium) phase changes and criticality optimizes the processing of the signal. Our setting is a network of integrate-and-fire nodes in which connections are heterogeneous with rapid time-varying intensities mimicking fatigue and potentiation. Emergence then becomes quite robust against wiring topology modification—in fact, we considered from a fully connected network to the Homo sapiens connectome—showing the essential role of synaptic flickering on computations. We also suggest how to experimentally disclose significant changes during actual brain operation.The authors acknowledge support from the Spanish Ministry of Economy and Competitiveness under the project FIS2013-43201-P

    Universal Organization of Resting Brain Activity at the Thermodynamic Critical Point

    Get PDF
    Thermodynamic criticality describes emergent phenomena in a wide variety of complex systems. In the mammalian brain, the complex dynamics that spontaneously emerge from neuronal interactions have been characterized as neuronal avalanches, a form of critical branching dynamics. Here, we show that neuronal avalanches also reflect that the brain dynamics are organized close to a thermodynamic critical point. We recorded spontaneous cortical activity in monkeys and humans at rest using high-density intracranial microelectrode arrays and magnetoencephalography, respectively. By numerically changing a control parameter equivalent to thermodynamic temperature, we observed typical critical behavior in cortical activities near the actual physiological condition, including the phase transition of an order parameter, as well as the divergence of susceptibility and specific heat. Finite-size scaling of these quantities allowed us to derive robust critical exponents highly consistent across monkey and humans that uncover a distinct, yet universal organization of brain dynamics
    corecore