9 research outputs found

    ZIPMAPS: Zoom-in-bestimmte-Bereiche Texturen

    Get PDF
    In this technical report, we propose a method for rendering highly detailed close-up views of arbitrary textured surfaces. To augment the texture map locally with high-resolution information, we describe how to automatically, seamlessly merge unregistered images of different scales. Our hierarchical texture representation can easily be rendered in real-time, enabling zooming into specific texture regions to almost arbitrary magnification. Our method is useful wherever close-up renderings of specific regions shall be possible, without the need for excessively large texture maps.Wir präsentieren eine neue Methode um sehr detailierte Ansichten von beliebig texturierten Oberflächen zu generieren. Wir beschreiben wie man automatisch und ohne sichtbare Nähte unregistrierte Bilder unterschiedlicher Skalen miteinander kombiniert um lokal hochaufgelöste Detailinformationen hinzuzufügen. Unsere hierarchische Texturrepräsentation kann sehr einfach und in Echtzeit gerendert werden und erlaubt somit den Zoom in bestimmte Textureregionen mit nahezu beliebiger Vergrößerung. Unsere Methode ist immer dann sinnvoll, wenn Vergrößerungen entsprechender Bereiche notwendig sind, ohne dass man entsprechend große Texturen speichern möchte

    VISUAL SEMANTIC SEGMENTATION AND ITS APPLICATIONS

    Get PDF
    This dissertation addresses the difficulties of semantic segmentation when dealing with an extensive collection of images and 3D point clouds. Due to the ubiquity of digital cameras that help capture the world around us, as well as the advanced scanning techniques that are able to record 3D replicas of real cities, the sheer amount of visual data available presents many opportunities for both academic research and industrial applications. But the mere quantity of data also poses a tremendous challenge. In particular, the problem of distilling useful information from such a large repository of visual data has attracted ongoing interests in the fields of computer vision and data mining. Structural Semantics are fundamental to understanding both natural and man-made objects. Buildings, for example, are like languages in that they are made up of repeated structures or patterns that can be captured in images. In order to find these recurring patterns in images, I present an unsupervised frequent visual pattern mining approach that goes beyond co-location to identify spatially coherent visual patterns, regardless of their shape, size, locations and orientation. First, my approach categorizes visual items from scale-invariant image primitives with similar appearance using a suite of polynomial-time algorithms that have been designed to identify consistent structural associations among visual items, representing frequent visual patterns. After detecting repetitive image patterns, I use unsupervised and automatic segmentation of the identified patterns to generate more semantically meaningful representations. The underlying assumption is that pixels capturing the same portion of image patterns are visually consistent, while pixels that come from different backdrops are usually inconsistent. I further extend this approach to perform automatic segmentation of foreground objects from an Internet photo collection of landmark locations. New scanning technologies have successfully advanced the digital acquisition of large-scale urban landscapes. In addressing semantic segmentation and reconstruction of this data using LiDAR point clouds and geo-registered images of large-scale residential areas, I develop a complete system that simultaneously uses classification and segmentation methods to first identify different object categories and then apply category-specific reconstruction techniques to create visually pleasing and complete scene models

    Data-driven shape analysis and processing

    Get PDF
    Data-driven methods serve an increasingly important role in discovering geometric, structural, and semantic relationships between shapes. In contrast to traditional approaches that process shapes in isolation of each other, data-driven methods aggregate information from 3D model collections to improve the analysis, modeling and editing of shapes. Through reviewing the literature, we provide an overview of the main concepts and components of these methods, as well as discuss their application to classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing

    State of the Art in Example-based Texture Synthesis

    Get PDF
    International audienceRecent years have witnessed significant progress in example-based texture synthesis algorithms. Given an example texture, these methods produce a larger texture that is tailored to the user's needs. In this state-of-the-art report, we aim to achieve three goals: (1) provide a tutorial that is easy to follow for readers who are not already familiar with the subject, (2) make a comprehensive survey and comparisons of different methods, and (3) sketch a vision for future work that can help motivate and guide readers that are interested in texture synthesis research. We cover fundamental algorithms as well as extensions and applications of texture synthesis

    Space-optimized texture atlases

    Get PDF
    Texture atlas parameterization provides an effective way to map a variety of colour and data attributes from 2D texture domains onto polygonal surface meshes. Most of the existing literature focus on how to build seamless texture atlases for continuous photometric detail, but little e ort has been devoted to devise e cient techniques for encoding self-repeating, uncontinuous signals such as building facades. We present a perception-based scheme for generating space-optimized texture atlases speci cally designed for intentionally non-bijective parameterizations. Our scheme combines within-chart tiling support with intelligent packing and perceptual measures for assigning texture space in accordance to the amount of information contents of the image and on its saliency. We demonstrate our optimization scheme in the context of real-time navigation through a gigatexel urban model of an European city. Our scheme achieves signi cant compression ratios and speed-up factors with visually indistinguishable results. We developed a technique that generates space-optimized texture atlases for the particular encoding of uncontinuous signals projected onto geometry. The scene is partitioned using a texture atlas tree that contains for each node a texture atlas. The leaf nodes of the tree contain scene geometry. The level of detail is controlled by traversing the tree and selecting the appropriate texture atlas for a given viewer position and orientation. In a preprocessing step, textures associated to each texture atlas node of the tree are packed. Textures are resized according to a given user-de ned texel size and the size of the geometry that are projected onto. We also use perceptual measures to assign texture space in accordance to image detail. We also explore different techniques for supporting texture wrapping of uncontinuous signals, which involved the development of e cient techniques for compressing texture coordinates via the GPU. Our approach supports texture ltering and DXTC compression without noticeable artifacts. We have implemented a prototype version of our space-optimized texture atlases technique and used it to render the 3D city model of Barcelona achieving interactive rendering frame rates. The whole model was composed by more than three million triangles and contained more than twenty thousand different textures representing the building facades with an average original resolution of 512 pixels per texture. Our scheme achieves up 100:1 compression ratios and speed-up factors of 20 with visually indistinguishable results

    Factoring repeated content within and among images

    No full text

    Factoring repeated content within and among images

    No full text
    corecore