7 research outputs found

    Professional development and human resources management in networks

    Get PDF
    Social networks occupy more places in development of people and organizations. Confidence in institutions and social networking are different and based on referentiality in Internet. For communication in network persons choose a different strategies and behavior in LinkedIn, resources of whom may be in different degree are interesting in Human Resources Management for organizations. Members of different social groups and cultures demonstrate some differences in interaction with Russian identity native. There are gender differences behavior in networks. Participating in groups need ethical behavior and norms in social networking for professional development and communication in future

    Machine Learning and Rule Mining Techniques in the Study of Gene Inactivation and RNA Interference

    Get PDF
    RNA interference (RNAi) and gene inactivation are extensively used biological terms in biomedical research. Two categories of small ribonucleic acid (RNA) molecules, viz., microRNA (miRNA) and small interfering RNA (siRNA) are central to the RNAi. There are various kinds of algorithms developed related to RNAi and gene silencing. In this book chapter, we provided a comprehensive review of various machine learning and association rule mining algorithms developed to handle different biological problems such as detection of gene signature, biomarker, gene module, potentially disordered protein, differentially methylated region and many more. We also provided a comparative study of different well-known classifiers along with other used methods. In addition, we demonstrated the brief biological information regarding the immense biological challenges for gene activation as well as their advantages, disadvantages and possible therapeutic strategies. Finally, our study helps the bioinformaticians to understand the overall immense idea in different research dimensions including several learning algorithms for the benevolent of the disease discovery

    Sparse Estimation of Huge Networks with a Block-Wise Structure

    Get PDF
    Networks with a very large number of nodes appear in many application areas and pose challenges to the traditional Gaussian graphical modelling approaches. In this paper we focus on the estimation of a Gaussian graphical model when the dependence between variables has a block-wise structure. We propose a penalised likelihood estimation of the inverse covariance matrix, also called Graphical LASSO, applied to block averages of observations, and derive its asymptotic properties. Monte Carlo experiments, comparing the properties of our estimator with those of the conventional Graphical LASSO, show that the proposed approach works well in the presence of block-wise dependence structure and is also robust to possible model misspeci cation. We conclude the paper with an empirical study on economic growth and convergence of 1,088 European small regions in the years 1980 to 2012. While requiring a-priori information on the block structure, for example given by the hierarchical structure of data, our approach can be adopted for estimation and prediction using very large panel data sets. Also, it is particularly useful when there is a problem of missing values and outliers or when the focus of the analysis is on out-of-sample prediction

    Joint Estimation of Sparse Networks with application to Paired Gene Expression data

    Get PDF
    We consider a method to jointly estimate sparse precision matrices and their underlying graph structures using dependent high-dimensional datasets. We present a penalized maximum likelihood estimator which encourages both sparsity and similarity in the estimated precision matrices where tuning parameters are automatically selected by controlling the expected number of false positive edges. We also incorporate an extra step to remove edges which represent an overestimation of triangular motifs. We conduct a simulation study to show that the proposed methodology presents consistent results for different combinations of sample size and dimension. Then, we apply the suggested approaches to a high-dimensional real case study of gene expression data with samples in two medical conditions, healthy and colon cancer tissues, to estimate a common network of genes as well as the differentially connected genes that are important to the disease. We find denser graph structures for healthy samples than for tumor samples, with groups of genes interacting together in the shape of clusters.Comment: 34 pages, 10 figures, 7 table

    Statistical methods for the testing and estimation of linear dependence structures on paired high-dimensional data: application to genomic data

    Get PDF
    This thesis provides novel methodology for statistical analysis of paired high-dimensional genomic data, with the aimto identify gene interactions specific to each group of samples as well as the gene connections that change between the two classes of observations. An example of such groups can be patients under two medical conditions, in which the estimation of gene interaction networks is relevant to biologists as part of discerning gene regulatory mechanisms that control a disease process like, for instance, cancer. We construct these interaction networks fromdata by considering the non-zero structure of correlationmatrices, which measure linear dependence between random variables, and their inversematrices, which are commonly known as precision matrices and determine linear conditional dependence instead. In this regard, we study three statistical problems related to the testing, single estimation and joint estimation of (conditional) dependence structures. Firstly, we develop hypothesis testingmethods to assess the equality of two correlation matrices, and also two correlation sub-matrices, corresponding to two classes of samples, and hence the equality of the underlying gene interaction networks. We consider statistics based on the average of squares, maximum and sum of exceedances of sample correlations, which are suitable for both independent and paired observations. We derive the limiting distributions for the test statistics where possible and, for practical needs, we present a permuted samples based approach to find their corresponding non-parametric distributions. Cases where such hypothesis testing presents enough evidence against the null hypothesis of equality of two correlation matrices give rise to the problem of estimating two correlation (or precision) matrices. However, before that we address the statistical problem of estimating conditional dependence between random variables in a single class of samples when data are high-dimensional, which is the second topic of the thesis. We study the graphical lasso method which employs an L1 penalized likelihood expression to estimate the precision matrix and its underlying non-zero graph structure. The lasso penalization termis given by the L1 normof the precisionmatrix elements scaled by a regularization parameter, which determines the trade-off between sparsity of the graph and fit to the data, and its selection is our main focus of investigation. We propose several procedures to select the regularization parameter in the graphical lasso optimization problem that rely on network characteristics such as clustering or connectivity of the graph. Thirdly, we address the more general problem of estimating two precision matrices that are expected to be similar, when datasets are dependent, focusing on the particular case of paired observations. We propose a new method to estimate these precision matrices simultaneously, a weighted fused graphical lasso estimator. The analogous joint estimation method concerning two regression coefficient matrices, which we call weighted fused regression lasso, is also developed in this thesis under the same paired and high-dimensional setting. The two joint estimators maximize penalized marginal log likelihood functions, which encourage both sparsity and similarity in the estimated matrices, and that are solved using an alternating direction method of multipliers (ADMM) algorithm. Sparsity and similarity of thematrices are determined by two tuning parameters and we propose to choose them by controlling the corresponding average error rates related to the expected number of false positive edges in the estimated conditional dependence networks. These testing and estimation methods are implemented within the R package ldstatsHD, and are applied to a comprehensive range of simulated data sets as well as to high-dimensional real case studies of genomic data. We employ testing approaches with the purpose of discovering pathway lists of genes that present significantly different correlation matrices on healthy and unhealthy (e.g., tumor) samples. Besides, we use hypothesis testing problems on correlation sub-matrices to reduce the number of genes for estimation. The proposed joint estimation methods are then considered to find gene interactions that are common between medical conditions as well as interactions that vary in the presence of unhealthy tissues

    Factorial graphical models for dynamic networks

    No full text

    Dynamic factorial graphical models for dynamic networks

    No full text
    Dynamic networks models describe a growing number of important scientific processes, from cell biology and epidemiology to sociology and finance. Estimating dynamic networks from noisy time series data is a difficult task since the number of components involved in the system is very large. As a result, the number of parameters to be estimated is typically larger than the number of observations. However, a characteristic of many real life networks is that they are sparse. For example, the molec- ular structure of genes make interactions with other components a highly-structured and, therefore, a sparse process. Penalized Gaussian graphical models have been used to estimate sparse networks. However, the literature has focussed on static networks, which lack specific temporal interpretations. We propose a flexible collection of ANOVA-like dynamic network models, where the user can select specific time dynamics, known presence or absence of links and a particular autoregressive structure. We use undirected graphical models with block equality constraints on the parameters. This reduces the number of parameters, increases the accuracy of the estimates and makes interpretation of the results more relevant. We show that the constrained likelihood optimization problem can be solved by taking advantage of an efficient solver, LogdetPPA, developed in convex optimization. Model selection strategies can be used to select a particular model. We illustrate the flexibility of the method on both synthetic and real data
    corecore