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Abstract

This thesis provides novel methodology for statistical analysis of paired high-dimensional genomic

data, with the aim to identify gene interactions specific to each group of samples as well as the gene

connections that change between the two classes of observations. An example of such groups can

be patients under two medical conditions, in which the estimation of gene interaction networks is

relevant to biologists as part of discerning gene regulatory mechanisms that control a disease process

like, for instance, cancer. We construct these interaction networks from data by considering the non-

zero structure of correlation matrices, which measure linear dependence between random variables,

and their inverse matrices, which are commonly known as precision matrices and determine linear

conditional dependence instead. In this regard, we study three statistical problems related to the

testing, single estimation and joint estimation of (conditional) dependence structures.

Firstly, we develop hypothesis testing methods to assess the equality of two correlation matrices,

and also two correlation sub-matrices, corresponding to two classes of samples, and hence the equality

of the underlying gene interaction networks. We consider statistics based on the average of squares,

maximum and sum of exceedances of sample correlations, which are suitable for both independent

and paired observations. We derive the limiting distributions for the test statistics where possible

and, for practical needs, we present a permuted samples based approach to find their corresponding

non-parametric distributions.

Cases where such hypothesis testing presents enough evidence against the null hypothesis of

equality of two correlation matrices give rise to the problem of estimating two correlation (or pre-

cision) matrices. However, before that we address the statistical problem of estimating conditional

dependence between random variables in a single class of samples when data are high-dimensional,

which is the second topic of the thesis. We study the graphical lasso method which employs an L1

penalized likelihood expression to estimate the precision matrix and its underlying non-zero graph

structure. The lasso penalization term is given by the L1 norm of the precision matrix elements scaled

by a regularization parameter, which determines the trade-off between sparsity of the graph and fit

to the data, and its selection is our main focus of investigation. We propose several procedures to

select the regularization parameter in the graphical lasso optimization problem that rely on network

characteristics such as clustering or connectivity of the graph.

Thirdly, we address the more general problem of estimating two precision matrices that are
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expected to be similar, when datasets are dependent, focusing on the particular case of paired

observations. We propose a new method to estimate these precision matrices simultaneously, a

weighted fused graphical lasso estimator. The analogous joint estimation method concerning two

regression coefficient matrices, which we call weighted fused regression lasso, is also developed in

this thesis under the same paired and high-dimensional setting. The two joint estimators maximize

penalized marginal log likelihood functions, which encourage both sparsity and similarity in the

estimated matrices, and that are solved using an alternating direction method of multipliers (ADMM)

algorithm. Sparsity and similarity of the matrices are determined by two tuning parameters and we

propose to choose them by controlling the corresponding average error rates related to the expected

number of false positive edges in the estimated conditional dependence networks.

These testing and estimation methods are implemented within the R package ldstatsHD, and are

applied to a comprehensive range of simulated data sets as well as to high-dimensional real case

studies of genomic data. We employ testing approaches with the purpose of discovering pathway

lists of genes that present significantly different correlation matrices on healthy and unhealthy (e.g.,

tumor) samples. Besides, we use hypothesis testing problems on correlation sub-matrices to reduce

the number of genes for estimation. The proposed joint estimation methods are then considered to

find gene interactions that are common between medical conditions as well as interactions that vary

in the presence of unhealthy tissues.
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Lay summary

The term high-dimensional data is used in the statistics community to refer to cases where the number

of parameters that have to be estimated is larger than the number of observations. This is a common

situation when analyzing omics data, which can be originated from genomics, metabolomics or

proteomics, as for example, the number of genes that are identified in organisms such as humans or

mice are of order of thousands, whereas the number of subjects that are involved in the studies tend

to be one or two order of magnitudes smaller.

Classical statistical inference methods, though, are developed under the assumption of datasets

with more observations than covariates. Hence, common statistical inference topics such as hypothe-

sis testing or statistical modeling have to be reconsidered under this challenging high-dimensional

paradigm.

The genome activity in an organism depends on the way the genes are interconnected among

each other, and might be altered on the presence of illness processes such as cancer. Finding accurate

estimations of gene interaction networks from data is important for biologists to understand the gene

regulatory mechanisms that control the disease.

This thesis presents statistical methodology related to the estimation and hypothesis testing

of gene interaction networks with the purpose to infer common/unique gene-to-gene conditional

dependence structures of two classes of samples from the same subject, that as an example, could be

determined by the location of their tissues, one being healthy and the other containing a tumor.
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Chapter 1

Introduction

1.1 Introduction and motivation

The discovery of high-throughput technology has revolutionized the way to collect genomic data

differing from old techniques for its capacity to capture the information of a huge number of genes

in a single sample under a particular condition. Experiments employing this machinery, e.g., gene

expression microarrays, which are reasonably fast and cheap to perform, have been widely used in

the last two decades to measure genome profiles of individuals with illness processes such as cancer.

As part of the general interest to fight such diseases, many of the platforms that undertake these

experiments make the data publicly available for their analysis.

Organisms are made of cells which contain a large number of genes (and also methylation sites,

proteins, metabolites, etc.), even though the estimate of this number for humans is still subject to

debate; in a recent publication, Ezkurdia et al. (2014) argue that there are about 19,000 protein-

coding genes in the whole human genome. One of the main challenges for scientists is to discern the

functions of the genes in a biological process and how these interact between each others in a cell.

The dependence structure between genes may vary according to the characteristics and conditions of

the populations. For instance, a state of illness such as cancer in an organism may modify the way

genes are expressed and their relationships in the cell. In that regard, the collection and analysis of

genomic data are essential for both discovery and verification of specific genes that have important

functions in cancer cells.

The number of samples (e.g., organisms as humans, mice or plants) that are subjected to these type

of experiments is often much smaller than the number of genes that are measured. This is referred

to as “high-dimensionality" where the number of unknown parameters of interest is much larger

than the sample size. The analysis of high-dimensional data using classic likelihood-based statistical

methods tends to be either not appropriate or not useful. Finding suitable tools to accommodate

data with large dimensions has posed new challenges for the scientific community. Statisticians and

mathematicians have studied and proposed different inference procedures that take into account
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high-dimensionality issues in the past two decades (Sánchez and Villa, 2008; Buhlmann and van de

Geer, 2011). Besides, operational researchers and bioinformaticians have developed computationally

efficient methods that process datasets which can be “big” (Marx, 2013; Greene et al., 2014).

The main motivating data for this thesis are presented in Hinoue et al. (2012) and contain the gene

expression and methylation presence profile of 25 patients with colon cancer. For every patient there

are measures of gene expression in more than 20,000 genes as well as for methylation presence in

more than 27,000 sites, for tissues under two medical conditions: a tumor and an adjacent normal

colon tissues. The objectives in the analysis of these data are (1) find out which gene associations are

or are not common between the two medical conditions, (2) relate the changes to groups of genes that

are known to act together in biological functions, (3) measure the connections between methylation

presence and gene expression, and use the two datasets together for a joint analysis.

We consider the following four main methodological topics:

A) Hypothesis testing problems involving the comparison of correlation matrices.

B) Selection of the regularization parameters in graphical models.

C) Joint estimation of two precision matrices.

D) Joint estimation of two regression coefficient matrices.

Hypothesis testing problems in A are applied to assess whether the linear dependence structure of a

group of genes is equal or not in samples under two medical conditions. Besides, estimation problems

in B, C and D are used for finding associations between genes using high throughput genomic data as

well as for linking different types of genomic data.

The first topic A is addressed in the literature (Schott, 2007; Li and Chen, 2012; Cai et al., 2013)

for testing the equality of two correlation matrices when the two datasets are high-dimensional, and

the observations underlying the matrices are independent. Besides, for topic B, sparse precision

matrix estimators are developed in Meinshausen and Bühlmann (2006) or Friedman et al. (2007) by

maximizing a lasso-penalized likelihood expression. A natural extension of graphical lasso is applied

to jointly estimate multiple precision matrices, which is part of our aim C. For instance, Guo et al.

(2011) use a group-lasso penalization to control the differences between the non-zero structure of

several precision matrices or Danaher et al. (2014) incorporate a fused-lasso penalization option to

constrain the absolute value of the precision matrices elementwise differences. In a similar context,

following topic D, a penalized least squares estimator, known as regression lasso (Tibshirani, 1996),

is employed to find sparse vectors of regression coefficients when the number of covariates is large.

The joint estimation of regression coeficients in multiple classes is also studied in the literature. For

instance, Zhang and Wang (2012) use a fused-lasso estimator to find the regression coefficients linking

high-dimensional explanatory variables and a single response variable in two conditions, or Lam

et al. (2016) propose an L2-fused lasso estimator when both explanatory and response variables are

high-dimensional.
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Most of the testing and estimation methods seen in the literature assume that the multiple datasets

consist of independent groups of samples. In this thesis, motivated by colon cancer data introduced

in Hinoue et al. (2012), we present novel statistical techniques for the testing and estimation of gene

interactions with the aim to investigate changes in the dependence structure between healthy and

unhealthy samples when such independence between groups of samples cannot be assumed. The

ultimate goal of this thesis is to provide suitable methodology to fully analyze and integrate multiple

types of paired high-dimensional datasets corresponding to samples under two medical condition.

Since both healthy and unhealthy (e.g., tumor) samples are observed for every individual, two

precision matrices can be jointly estimated to infer the conditional dependence structure of gene

expression in healthy samples and tumor samples, as well as its difference matrix. As a pre-estimation

step, we consider the simpler problem of testing whether the two precision matrices are exactly equal,

in which case the differential precision matrix does not need to be estimated since it can be taken

to be a zero matrix. We reformulate this problem to the equivalent hypothesis testing problem of

equality of two correlation matrices so we exploit statistics based on the average of squares and

maximum of sample correlations differences similarly to the the approaches found in the literature

for independent datasets. Moreover, we present a novel test statistic that takes the sum of sample

correlation differences that exceed a given threshold. Other relevant hypothesis testing problems

involving correlation sub-matrices are also proposed in the same paired high-dimensional data

framework.

Graphical lasso (Friedman et al., 2007) adds a penalty term in the likelihood which is affected by

a tuning parameter whose choice represents the trade-off between close fit to the data and sparsity

of the estimated precision matrix. The selection problem of this sparsity tuning parameter has been

given relatively attention in the literature so far, where generally likelihood based methods were used,

which may fail for large dimensions (Liu et al., 2010). Alternatively, we propose several procedures

to select the regularization parameter in the estimation of graphical models that concentrate on

reliably recovering a desired network characteristic (e.g., clustering or graph connectivity) in biological

systems.

Gadaleta and Bessonov (2015) integrate gene expression and methylation presence for a dataset

with 215 individuals affected with glioblastoma cancer. The authors use lasso penalized maximum

likelihood to estimate two networks: the non-zero structure of the regression coefficients using gene

expression as response variables and methylation presence as explanatory variables; and the non-zero

structure of the precision matrix (using only gene expression data). We develop weighted fused-lasso

methods to perform a similar analysis on the colon cancer data by using both healthy and tumor

samples and by accounting for paired observations. We jointly estimate marginal precision matrices,

by considering a weighted fused graphical lasso approach (WFGL), and the regression coefficients,

by a weighted fused regression lasso approach (WFRL). For the tuning parameters of the penalty

terms in either WFGL or WFRL, we introduce a novel strategy to select the expected number of false

positive edges, which is applied to our paired data setting but could also be used in other lasso/fused
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penalized estimators.

Even though the initial motivating data are given by the colon cancer gene expression and methyla-

tion presence datasets, throughout the thesis we are also motivated by other related experiments. For

instance, we use a dataset that contains the microarray gene expression information of 154 samples

for patients with colon tumor and about 18,000 genes, which is publicly available at the Cancer

Genome Atlas (TCGA) repository (https://cancergenome.nih.gov/). A second dataset provides

the gene expression profile of 82 patients with paired samples: the gene expression in a psoriasis

vulgaris lesional tissue and the gene expression in its adjacent non-lesional tissue. We also analyze a

third dataset that contains the gene expression measurements of 60 patients with lung cancer for a

paired tumor and healthy tissues. Both psoriasis and lung cancer data are publicly available in the

Gene Expression Omnibus (GEO) database (Edgar et al., 2002) and consist of more than 19,000 genes

for each sample.

All proposed methods on correlation matrices testing, regularization parameter selection proce-

dures, or joint estimation of both precision matrices and regression coefficients are implemented

within the R package ldstatsHD (Caballe, 2017), which is available in the CRAN repository.

1.2 Chapters of the thesis

Chapter 2 is an introductory chapter in which we define and denote some important concepts for

the development of the thesis. We discuss the connection between linear dependence structures

(correlation and covariance matrices) and conditional linear dependence structures (precision ma-

trices and regression coefficient matrices). We present some theoretical models, which are often

employed to characterize biological networks, and that we will consider throughout the thesis to

generate the graphical structure of conditional dependence matrices for simulated data analyses.

Finally, we introduce several models that are suitable for data generation of biological experiments in

paired observations.

In Chapter 3 we review some of the methods that have broken through the statistical literature

for the testing and estimation of dependence structures in high-dimensional data. We mainly cover

the topics A-D described in Section 1.1, and then we present other major statistical techniques in the

multivariate data analysis literature that have been used to summarize dependence between random

variables in high-dimensional data. We finish the chapter by drawing attention to the impact that

some of the reviewed methods have had in the application to biological data.

The following three chapters, which represent the main methodological contributions of this

thesis, are based on several scientific articles and are meant to work as stand alone pieces of text.

Chapter 4 is concerned with topic A. We mainly study the hypothesis testing problem of equality

of two correlation matrices using two dependent high-dimensional datasets. Nevertheless, other

similar testing problems using correlation matrices are considered. These include testing if a row in

a correlation matrix is equal to the same row of another correlation matrix, testing if a correlation
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matrix is the identity or testing if a row in a correlation matrix is equal to the same row in the

identity matrix. We consider test statistics based on the average of squares, maximum and sum of

exceedances of sample correlations. For the first problem of equality of correlations, we derive the

limiting distribution of the test statistics and we study the behavior of the null distribution p-values

using asymptotic and permutation-based distributions. Theoretical results on the power of the tests

under different alternatives are presented and backed up by a range of simulation experiments. We

apply testing approaches to high-dimensional real case studies of psoriasis lesional and lung tumor

gene expression data with the aim of discovering pathway lists of genes that present significantly

different correlation matrices on healthy and unhealthy samples.

In Chapter 5 we describe several risk functions which encourage relevant network characteristics

such as clustering or graph connectivity, and that are employed to select the regularization parameter

of lasso precision matrix estimators (topic B). We conduct an extensive simulation study to show that

the proposed methods produce useful results for different network topologies. The approaches are

also applied in a high-dimensional real case study of gene expression data with the aim to discover

the genes relevant to colon cancer.

The focus of Chapter 6 is the two joint estimation problems corresponding to topics C and D: the

joint estimation of two similar sparse precision matrices and their corresponding marginal condi-

tional dependence graphs; and the joint estimation of two regression coefficient matrices and their

underlying graph structure. Both estimators are especially useful in the situation of high dimensional

data where observations of the two matrices are dependent, as they come from paired observations.

We propose novel methods to estimate these conditional dependence matrices simultaneously, a

weighted fused graphical lasso estimator (WFGL) and a weighted fused regression lasso (WFRL) which

monitor both sparsity and similarity in the estimated matrices. The tuning parameters of sparsity

of the matrices are selected by controlling the estimated expected number of false positive edges,

and the penalty term controlling similarity of the matrices is weighted for every pair of variables to

account for linear dependence between datasets. We observe overestimation of triangular motifs in

the estimated precision matrices, so we incorporate an additional step to remove such edges. We

conduct a simulation study to show that the proposed methodology successfully recovers the true

conditional dependence graphs for different combinations of sample size and dimension. Besides,

the proposed approaches are applied to high-dimensional case studies of paired gene expression data

with samples in two medical conditions, non-lesional and psoriasis lesional tissues (first dataset) as

well as healthy and lung cancer tissues (second dataset), to estimate common networks of genes as

well as the differentially connected genes that interact differently in the two types of tissues.

In Chapter 7 we introduce the R package ldstatsHD, linear dependence statistics for high-dimensional

data, (Caballe, 2017). This consists of functions that implement the methodology proposed in previous

chapters and that can be grouped in three modules: data simulators, testing methods and estimation

methods. In this chapter we describe the main functions in each module and then we illustrate the

functionality of the implemented code using several examples.
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In the final Chapter 8 we will then employ the testing and estimation methodology presented

in the thesis to exhaustively analyze a high-dimensional case study of paired gene expression and

methylation presence data where samples consider tissues under two medical conditions: healthy

and colon cancer. We estimate two types of joint networks, a site-to-gene directed network and a

gene-to-gene undirected network. The first is determined by an estimated joint regression coefficient

matrix mapping methylation presence in a site to gene expression, whereas the second is found by

a joint precision matrix that is only applied to gene expression data. In both cases, we distinguish

between a common network of genes/sites as well as a differential network where genes/sites interact

differently in tumor and healthy samples. Our findings confirm that methylation sites tend to be

negatively related to genes that are nearby. We observe a hub-based structure where the methylation

presence of few methylation sites explain the variability (in gene expression) of many different genes.

In both gene-to-gene network and site-to-gene network, graph structures for healthy samples tend to

be denser than the ones for tumor samples. Finally, the two type of networks are estimated for some

important gene sets with known biological interactions. We find several list of genes, that have been

related to the disease of interest, such as Tgf-beta, Gaba or EGFR in which site-to-gene interactions

change significantly in the two classes of observations.
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Chapter 2

Types of dependence structures

2.1 Link between regression and Gaussian graphical modeling

Consider n independent and identically distributed (i.i.d.) p-dimensional random vectors X =
(X1, . . . , Xp ) ∼ Np (0,ΣX ), assuming, without a loss of generality, that the mean is zero. The covariance

matrix ΣX and its scaled matrix RX = [r x
i j ] = diag(ΣX )−1/2ΣX diag(ΣX )−1/2, the correlation matrix,

measure linear relationship between pairs of variables and they are the key of many multivariate

techniques in the statistical literature (Mardia et al., 1979).

The inverse of the covariance matrix ΣX (or sometimes preferable RX ), commonly known as

precision matrix, and denoted by ΩX = [Ωx
i j ] differs from the correlation matrix since it measures

linear relationship between pairs of variables accounting for the linear dependence in the rest of

the variables. Two variables Xi and X j are said to be conditionally independent given the rest of the

variables if the coefficient Ωx
i j is zero. The non-zero structure of ΩX is characterized by an undirected

graph G(V ,E ) in which nodes V represent the random variables and edges E connect variables whose

elements in the precision matrix are non-zero, i.e.,

(i , j )&( j , i ) ∈ E ⇐⇒ Xi 6⊥ X j |XV \{i , j } ⇐⇒Ωx
i j 6= 0.

The graph structure is often represented by a p ×p symmetric matrix called adjacency matrix and

denoted by AG = [AG
i j ]. The off-diagonal elements of AG are determined by the precision matrix

(AG
i j = 0 ifΩx

i j = 0 and AG
i j = 1 otherwise) and the diagonal elements are set to zero.

Take y = X j , being the j th variable in X , update X− j = XV \ j , and consider the regression model

y ∼ N (X− jβ,σ2
e ), (2.1)

where β is the (p −1)×1 vector of regression coefficients and σ2
e = Var(y −X− jβ) is a positive constant.
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Then

βh =−Ωx
j h/Ωx

j j , ∀h ∈V \ j , (2.2)

links precision matrix and regression coefficients.

2.2 Data in two conditions and cross-correlation matrix

Consider n independent and identically distributed (i.i.d.) p-dimensional random vectors Y (1)
k =

(Y (1)
k1 , . . . ,Y (1)

kp ) and Y (2)
k = (Y (2)

k1 , . . . ,Y (2)
kp ) associated with condition I (e.g., healthy genes) and condition

II (e.g., tumor genes) respectively that jointly follow a multivariate standard normal distribution with

correlation R, i.e.,

(Y (1)
k ,Y (2)

k ) ∼ N2p (0,R), R = [ri j ] =
 R1 R12

Rᵀ
12 R2

 , (2.3)

where R1 and R2 are the covariance matrices that correspond to healthy genes and tumor genes,

respectively. Assume, without loss of generality, zero mean vector and unit variances for simplicity so

covariance matrices coincide with correlation matrices.

Let Ω1 = R−1
1 , Ω2 = R−1

2 , ΩJ
1 = (R1 −R12Ω2R21)−1 and ΩJ

2 = (R2 −R21Ω1R12)−1. The matrix Ω1

characterizes marginal dependence of Y (1) whereasΩJ
1 measures dependence of Y (1) conditionally

on Y (2), and similarly forΩ2 andΩJ
2. The joint precision matrixΩJ is given by the inverse of the joint

correlation matrix R, with

ΩJ = R−1 =
ΩJ

1 ΩJ
12

ΩJ
21 ΩJ

2

 ,

In the situations we will consider, the group of observations in Y (1) and Y (2) will not be independent

in general but will have a non-trivial cross correlation matrix R12. We will start with the simpler

independence model though where both R12 = 0 and ΩJ
12 = 0, which lead to Ω1 =ΩJ

1 and Ω2 =ΩJ
2.

We further present alternative models which account for dependence, R12 6= 0, that seem to be more

realistic to justify the paired data setting given in our motivating data, whereΩ1 &Ω2 may differ slightly

fromΩJ
1 &ΩJ

2, respectively.

Independence model

This model assumes subject independence in Y (1) and Y (2),

Y (1) = Y (1)∗; Y (2) = Y (2)∗, (2.4)

with Y (1)∗ ⊥ Y (2)∗, thus R12 = 0. Take model (2.3), the correlation, which is denoted by Ri nd , and its

inverseΩi nd , the precision matrix, are specified by

Ri nd =
R1 0

0 R2

 and Ωi nd =
Ω1 0

0 Ω2

 , (2.5)
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withΩ1 = R−1
1 andΩ2 = R−1

2 .

Additive model

Assume that data in first condition Y (1) correspond to samples in a "normal" state (e.g., healthy

samples) and data in the second condition Y (2) are the samples in the "changing" state (e.g., tumor

samples). In a matrix form, this can be specified by

Y (1) = Z∆1/2 +H∆̄1/2; Y (2) = Z∆1/2 +T ∆̄1/2. (2.6)

Take ∆ to be a p ×p diagonal matrix with the class-correlation magnitudes. Moreover, ∆̄ is also a

diagonal matrix with ∆̄i i = 1−∆i i for any i ∈ {1, . . . , p}. Here Z is the common expression in the

two classes, and H and T represent the differential expressions due to changing conditions. We

assume that Z ∼ N (0,RZ ), H ∼ N (0,RH ) and T ∼ N (0,RT ) are independent between each other so

R1 =∆1/2RZ∆
1/2 + ∆̄1/2RH ∆̄

1/2 and R2 =∆1/2RZ∆
1/2 + ∆̄1/2RT ∆̄

1/2 define the covariance matrices in

Y (1) and Y (2), respectively. Take model (2.3), the correlation, which is denoted by Radd , and its inverse,

Ωadd , are specified by

Radd
.=

 R1 ∆1/2RZ∆
1/2

∆1/2RZ∆
1/2 R2

 and Ωadd
.=

ΩJ
1 ΩJ

12

ΩJ
21 ΩJ

2

 . (2.7)

whereΩJ
1 = (R1−∆1/2RZ∆

1/2R−1
2 ∆1/2RZ∆

1/2)−1,ΩJ
12 =−ΩJ

1∆
1/2RZ∆

1/2R−1
2 ,ΩJ

21 =−R−1
2 ∆1/2RZ∆

1/2ΩJ
1

and ΩJ
2 = (R2 −∆1/2RZ∆

1/2R−1
1 ∆1/2RZ∆

1/2)−1. Since Y (1) is considered to be the "normal" state, we

could further assume that RZ is proportional to R1.

Multiplicative model

We consider a model with a linear transformation from class Y (1), the "normal" state, to class Y (2), the

"changing" state, which is defined by

Y (1) = Z∆1/2 +H∆̄1/2; Y (2) = ZQ∆1/2 +T ∆̄1/2. (2.8)

The class-correlation matrices∆ and ∆̄ have the same interpretation as for the additive model. Besides,

Z ∼ N (0,RZ ), H ∼ N (0,RH ) and T ∼ N (0,RT ) are independent between each other, and are equivalent

to the definition in expression (2.6). Here, we further assume that R1 and R2 are proportional to RZ

and RT , respectively, with Q = R1/2
2 R−1/2

1 being the transformation matrix. In terms of the model

introduced in (2.3), the correlation, which is denoted byRmul t , and its inverse, Ωmul t , are specified by

Rmul t
.=

 R1 ∆1/2R1/2
1 R1/2

2 ∆1/2

∆1/2R1/2
2 R1/2

1 ∆1/2 R2

 and Ωmul t
.=

ΩJ
1 ΩJ

12

ΩJ
21 ΩJ

2

 . (2.9)

where ΩJ
1 = (R1 −∆1/2R1/2

1 R1/2
2 ∆1/2R−1

2 ∆1/2R1/2
2 R1/2

1 ∆1/2)−1, ΩJ
12 = −ΩJ

1∆
1/2R1/2

1 R1/2
2 ∆1/2R−1

2 , ΩJ
21 =
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Ω
′ J
12 andΩJ

2 = (R2 −∆1/2R1/2
2 R1/2

1 ∆1/2R−1
1 ∆1/2R1/2

1 R1/2
2 ∆1/2)−1.

Direct effect model

This model assumes that a variable in the first condition Y (1)
g1

is conditionally independent to a

variable in the second condition Y (2)
g2

, for any g1, g2 ∈V , if g1 6= g2 and V = {1, . . . , p}. Besides, for some

g1 ∈V , Y (1)
g1

can be conditionally dependent to Y (2)
g1

given the rest of the variables in Y (1) and Y (2) (see

graphical representation at Figure 2.1). Take model (2.3), the precision matrixΩdi ag is determined by

ΩJ
1,ΩJ

12,ΩJ
21,ΩJ

2, whereΩJ
12 andΩJ

21 are diagonal matrices.

g2g2

g1g1

condition I condition II

Figure 2.1. Square-type conditional graph dependence structure. Gene g 1 and gene g 2 are directly
connected whithin the same condition, gene g 1 in the first condition is directly linked with gene g 1 in
the second condition (and similarly for gene g 2). No direct connections are present between genes g 1
and g 2 relating the two conditions.

Interpretation of proposed models

The first model, the independence model, is only suitable under the hypothesis that Y (1) and Y (2)

come from independent group of observations. In our motivating data, see Section 1.1, there is

the gene expression information for classes healthy and tumor in the same individuals. Hence, R12

is expected to contain non-zero coefficients. Nevertheless, we keep this model in the list as many

testing and estimation methods we will review from the literature in the following Chapter 3 assume

independence between random vectors Y (1) and Y (2).

The additive model seems a very reasonable structure for the nature of our data. It considers a clear

distinction between a normal state Y (1) and a tumor state Y (2) and it assumes that the expression in

tumor samples is equal to the expression in healthy samples plus an additional differential expression

term which is independent from the initial state. The multiplicative model reproduces the differences

between normal and tumor conditions as follows. The cancer state is given by a transformation of the

normal state, which differs from the additive model by the fact that it assumes dependence between

initial state and cancer effect. The transformation matrix Q indicates linear dependence between

healthy expression and cancer expression. In both models, Z can be interpreted as a source of
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systemic variation in gene expression: variation present in all measured tissues of the same individual.

Besides, H and T are viewed as category-specific variation.

Finally, the direct effect model is a simplification of the additive and multiplicative models which

assumes thatΩJ
12 is a diagonal matrix where (ΩJ

12)g g gives the conditional relationship between gene

g in a tumor tissue and gene g in a healthy tissue. This diagonal structure considers that the only

variables needed to link the gene expression of a gene in a specific state, say gene g in a normal state,

are the other genes V \ g in the same state (normal) as well as the same gene g in the alternative state

(cancer). Hence, it considers conditional independence between gene g in the normal state and all

other genes V \ g in the alternative state.
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Chapter 3

Literature overview

3.1 Hypothesis testing problems on correlation matrices

Consider n1 independent and identically distributed (i.i.d.) p-dimensional random vectors Y (1) =
(Y (1)

1 , . . . ,Y (1)
p ) and n2 i.i.d. random vectors Y (2) = (Y (2)

1 , . . . ,Y (2)
p ), which represent measures of the

same variables in two different classes, with Y (1) ∼ N (0,R1) and Y (2) ∼ N (0,R2), with R1 = [r (1)
i j ] and

R2 = [r (2)
i j ], assuming unit variances for all variables in the two conditions.

In this section we review some of the methods in the literature that test the hypothesis

H0 : R1 = R2 against H1 : R1 6= R2, (3.1)

when observations in Y (1) and Y (2) are independent. Moreover, we report some other related hypoth-

esis testing methods that only involve a single correlation matrix or that consider sub-matrices of the

original R1 and R2.

3.1.1 Tests statistics for equality of correlation matrices

Classical tests

Random matrix theory ascertains that the sample correlation matrix from normally distributed

random variables follows a Wishart distribution. The most powerful test for equality of two correlation

matrices is given by the likelihood ratio, which under Gaussianity, it is a function of the determinant

of the two sample matrices. The expression of the test statistic is derived in Kullback (1967),

TK ul ∝
|R̂1|(1/2)n1 |R̂2|(1/2)n2

|R̂1 + R̂2|(1/2)(n2+n1)
, (3.2)

and it is only well defined when min(n1,n2) > p. Jennrich (1970) suggests another similar proposal
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that pursuits a good approximation for

TJen = (LT (R̂1)−LT (R̂2))′Ψ−1(LT (R̂1)−LT (R̂2)), (3.3)

where LT stands for lower triangular matrix and Ψ is the p(p −1)/2×p(p −1)/2 covariance matrix

of the difference coefficients. If Ψ is known then the test is asymptotically chi-squared distributed.

Moreover, the author finds an estimator of TJen in a lower dimension p, instead of p(p −1)/2, which

involves computing the inverse of the average correlation matrix ¯̂R = (n2R̂2 +n1R̂1)/(n2 +n1), with

n2 +n1 > p being a necessary condition.

Datasets that arise from biological experiments are frequently high-dimensional, with n2+n1 ¿ p,

and standard statistics, as defined by eq. (3.2) and eq. (3.3), are not suitable. There are two main

directions that address this hypothesis testing problem for high-dimensional data in the literature.

The first is based on sum of squares statistics, e.g., Schott (2007) and Li and Chen (2012) use the

Frobenius norm as a distance measure to compare the two sample correlation matrices. The second

is based on extreme value statistics, e.g., Larntz and Perlman (1985) use the maximum of Fisher

transform sample correlation coefficient differences in absolute value, Cai et al. (2013) propose an

asymptotic test based on the maximum of the squared sample correlation coefficient differences or,

similarly, Zhou et al. (2015) apply an extreme value test on Kendall's tau sample correlations. The sum

of squares test of Li and Chen (2012) and the extreme value test of Cai et al. (2013) are described below.

Sum of squares test

Li and Chen (2012) propose a method to test the equality of covariance matrices, which can be ap-

plied to correlation matrices after an appropriate transformation. The authors study the form of the

Frobenius norm of the matrix with the sample correlation differences: tr{(R̂2 − R̂1)2}. This is decom-

posed in three terms, tr{(R̂2 − R̂1)2} = tr(R̂2
1 )+ tr(R̂2

2 )−2tr(R̂1R̂2), which are estimated using unbiased

statistics. Define γ(m,s)
2i j

= Y (m)′
i Y (s)

j , γ(m,s)
3i j k

= Y (m)′
i Y (s)

j Y (m)′
i Y (s)

k and γ(m,s)
4i j kl

= Y (m)′
i Y (s)

j Y (m)′
k Y (s)

l with

γ̄(m,s)
2 , γ̄(m,s)

3 and γ̄(m,s)
4 being the averages of [γ(m,s)

2i j
], [γ(m,s)

3i j k
] and [γ(m,s)

4i j kl
], with m, s ∈ {1,2}, i 6= j , j 6= k,

k 6= l , respectively. The test statistic is given by

TLi u = An1 + An2 −2Cn12 , (3.4)

where Anm = γ̄(m,m)
2 − γ̄(m,m)

3 + γ̄(m,m)
4 and Cn12 = γ̄(1,2)

2 − γ̄(1,2)
3 + γ̄(1,2)

4 .

Under the null hypothesis (R1 = R2) and some mild conditions in terms of sample sizes, dimension

and dependence, then TLi u tends in distribution to a normal distribution with expected value zero

and variance σ2
0 = 4(n−1

1 +n−1
2 )tr2(R2). The variance can be estimated by σ̂2

0 = 2n−1
1 An1 +2n−1

2 An2 as

it is proven to be a ratio-consistent estimator of σ2
0.

Extreme values test

Cai et al. (2013) consider the maximum of standardized element-wise sample correlation differences
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to test the hypothesis of equality between the two matrices. Let

Di j =
(r̂ (2)

i j − r̂ (1)
i j )2

θ̂(1)
i j /n1 + θ̂(2)

i j /n2

,

where θ̂(1)
i j and θ̂(2)

i j are the estimators of var(r̂ (1)
i j ) and var(r̂ (2)

i j ), respectively, which can be found by

θ̂(1)
i j = n−1

1

n1∑
k=1

(Y (1)
ki Y (1)

k j − r̂ (1)
i j )2, θ̂(2)

i j = n−1
2

n2∑
k=1

(Y (2)
ki Y (2)

k j − r̂ (2)
i j )2.

The test statistic is given by the maximum of elements in the lower triangular matrix of D ,

TC ai = max
i< j

Di j = max
i< j

(r̂ (2)
i j − r̂ (1)

i j )2

θ̂(1)
i j /n1 + θ̂(2)

i j /n2

. (3.5)

Under the hypothesis of equal correlation matrices and similar mild conditions as for Li and Chen

(2012), then Di j are weakly dependent random variables that converge in distribution to a chi-square.

The maximum of chi-squared distributed random variables tends in distribution to a Gumbel, i.e.,

Pr(TC ai −4log p + loglog p ≤ t ) → exp{−(8π)−1/2exp(−t/2)},

can be used to assess the evidence of equal correlations.

3.1.2 Other tests involving correlation sub-matrices

A useful transformation for the correlation coefficients is given by the Fisher transformation (Fisher,

1924) which can be defined by

g : (−1,1) →R, g (z) = log{(1+ z)/(1− z)}/2,

and it is found to stabilize the variance of sample correlation coefficients. For sufficiently large sample

size nh , h ∈ {1,2}, the Fisher transformation of a sample correlation estimator r̂ (h)
i j approximately

follows a normal distribution, i.e., û(h)
i j = g (r̂ (h)

i j )
p

n1 −3 ∼ N (g (r (h)
i j )

p
nh −3,1). The equality of corre-

lation coefficients in different classes is tested in Dunn and Clark (1969) or Steiger (1980) locally for all

pairs of variables (i , j ) ∈ {1, . . . , p}, i < j , by comparing c(û(1)
i j − û(2)

i j ) where c = 2−2ψ(12)
i j is an estimator

for the variance of the difference û(1)
i j − û(2)

i j . Similarly, Fukushima (2013) recovers a network of tested

correlation coefficients using as test statistic
p

c{g (r̂ (1)
i j )− g (r̂ (2)

i j )} with c = {(n2 −3)−1 + (n1 −3)−1}−1/2.

The observed p-values are adjusted by multiple testing by controlling the false discovery rate (Ben-

jamini and Hochberg, 1995).

Li and Chen (2012) also consider the problem of testing whether two correlation sub-matrices

are equal or not. The authors propose a Frobenius norm based test statistic on the correlation sub-

matrices similar to the statistic in eq. (3.4), which recall was applied to the whole matrices instead.

31



Raghunathan (2003) tests the equality of two correlation coefficients as well as the equality of two

correlation sub-matrices by employing the square of the difference between Fisher-transform sample

correlation coefficients and by considering chi-squared null distributions. Finally, Srivastava et al.

(2014), among others, propose a method to test whether a single correlation matrix is the identity

matrix (H0 : R1 = I vs H1 : R1 6= I ) using related ideas to the hypothesis testing approach presented in

Li and Chen (2012), which is discussed in section 3.1.1, for the equality of two correlation matrices.

Some of these approaches are implemented within the R package cocor (Diedenhofen and Musch,

2015).

3.2 Linear regression and Gaussian graphical models

The first problem considered in this section is the linear regression model with Gaussian errors

yk ∼ N (βXk ,σ2
e ), k = 1, . . . ,n, where σ2

e is a positive constant and β represents the linear regression

coefficients that relate explanatory variables X with response variable y , and it is typically estimated

by least squares (LSE),

β̂LSE = argmin
β

(
1

2n
||y −Xβ||22

)
, (3.6)

with exact solution given by β̂= (X ′X )−1X ′y if (X ′X )−1 exists (p < n is a necessary condition).

The second problem refers to the estimation of the precision matrixΩX = R−1
X , see definition in

Section 2.1, which can be estimated by maximum likelihood (MLE) by

(Ω̂X )MLE = arg max
ΩX Â0

logdetΩX − tr(SXΩX ), (3.7)

where SX = n−1 ∑n
k=1 X ′

k Xk is the sample covariance matrix. Taking the derivative with respect to

ΩX by using (i) ∂
∂B log |B | = (B−1)′ and (ii) ∂

∂B tr[BC ] = C ′, it is immediate to demonstrate that the

maximum likelihood is reached when Ω̂X = S−1
X and therefore Σ̂X = SX . However, p < n is a necessary

condition for S−1
X to exist.

The study of conditional dependence structures such as β and ΩX in a high-dimensional data,

where the number of unknown parameters to be estimated is larger than the number of observations,

and both β̂LSE and (Ω̂X )MLE are not uniquely defined, is fairly recent. Tibshirani (1996) with the

introduction of lasso regression and also Lauritzen (1996) with his book on graphical models opened

a door of investigation that has motivated researchers ever since. In this section we review some of

the main estimation methods for conditional dependence structures that have been relevant in the

statistics literature and that have motivated the work presented in Chapters 5 and 6.

3.2.1 Regression models in high-dimensional data

For p > n, the least squares estimator defined in eq. (3.6) is not unique and some type of regularization

is needed to obtain a tractable problem. Tibshirani (1996) considers an L1 constraint for the regression
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coefficients by solving the following optimization problem

β̂τl asso = argmin
β

( 1
2n ||y −βX ||22

)
s.t.

∑p
i=1 |βi | ≤ τ.

Using the Lagrangian multipliers, the constraint can be rewritten as a penalty term in the

objective function

β̂λl asso = argmin
β

[
1

2n
||y −βX ||22 +Pλ(β)

]
, Pλ(β) =λ||β||1, (3.8)

where ||β||1 =∑p
i=1 |βi | and λ, which has one-to-one correspondence to τ, represents the trade-off

between close fit to the data and sparsity of β. This method to estimate the regression coefficients in

high-dimensional data is commonly known as least absolute shrinkage and selector operator (lasso).

The analogous interpretation of lasso estimates is given in a Bayesian framework (Yuan and Lin,

2005; Park and Casella, 2008; Hans, 2009; Kyung et al., 2010) by finding the mode of the regression

coefficients posterior distribution of the model f (yk |β,σ) ∼ N(yk | Xkβ,σ2
e ), k = 1, . . . ,n, when using

independent and identical Laplace priors on β

π(β|σe ) =
p∏

j=1

λ

2σe
e−λ|β j |/σe .

and an inverse gamma prior on σ2
e . Gibbs sampling algorithms are employed to approximate the

posterior distribution for the regression coefficients.

Other regularization penalties can be used instead of the L1 norm to overcome high-dimensionality

problems in solving eq. (3.6). For instance, the ridge regression (Hoerl and Kennard, 1970) constrains

the regression coefficients using an L2 norm penalization term by Pλ(β) =λ||β||22. The comparison

between the two penalties is seen in Figure 1 (graphical representation taken from book by Buhlmann

and van de Geer (2011)). The L2 norm shrinks regression coefficients towards zero but does not

encourage the exact zero values of lasso. This intrinsic variable selection component of the lasso

estimates, due to the squared area suggested in the left hand side figure, has made such penalty so

appealing in comparison to ridge.

Both L1 and L2 norm constraints can be used together, and its underlying estimator is commonly

known as elastic-net (Zou and Hastie, 2005). The incorporation of the L2 norm in the lasso estimation

problem can be beneficial in cases where covariates are highly correlated since it acts as grouping

effect where correlated variables are either all in or all out of the model.

It is well known for the problem of estimating sparse vectors in high dimensions with the lasso

penalty (and also elastic-net), that the variable selection part, with an appropriate λ, is consistent,

however, the estimation of the non-zero values usually has some bias (Wasserman and Roeder, 2009).

This is due to the convex relaxation of the desired L0 penalty to the computationally efficient L1
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Figure 3.1. lasso constraint solution (left) versus ridge constraint solution (right).

penalty. The adaptive lasso (Zou, 2006), the relaxed lasso (Meinshausen, 2007) or the smoothly clipped

absolute deviation (SCAD) penalty (Fan Jianqing, 2001; Kim et al., 2008) are procedures that intend to

provide unbiased estimators. Besides, the SCAD penalty can be combined with an L2 norm penalty

(Zeng and Xie, 2012) to reduce the bias of the estimator and achieve desired grouping properties when

covariates are correlated.

Other sparse estimators for the regression coefficients include the Dantzig selector (Candes and

Tao, 2007), which estimates β by solving an L1 minimization problem that forces the correlation

between residuals and any variable entering in the model to be smaller than a value within noise level.

Another relevant approach is the least angle regression (LARS) (Efron et al., 2004), which finds a sparse

solution without employing a penalization on the least squares function. It is similar to classic forward

selection since starts by setting all regression coefficients equal to zero, and a predictor is included in

the model once at a time. However, LARS updates the regression estimates so all predictors included

in the model are equally correlated (equiangular) to the current residuals.

Linear regression assuming a broad type of exponential family distributions for the errors (GLM)

in high-dimensional data is also studied in the literature. Van De Geer (2008) uses a lasso penaliza-

tion on generalized linear models, James and Radchenko (2009) suggest to employ a generalized

Dantzig selector criterion, which is the extension of the Dantzig selector for non Gaussian errors, or

Augugliaro et al. (2013) propose a differential geometric least angle regression method based on the

LARS algorithm for generalized model selection in high-dimensional data.

Sparse regression estimators are implemented within the free software R in the package dglars

(Augugliaro et al., 2014), which contains the algorithmic procedures to estimate the regression coef-

ficients for both Gaussian and non-Gaussian errors using lasso, elastic-net and ridge penalizations.

Least angle regression and lasso regression are also available within the package lars (Hastie and

Efron, 2013).
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3.2.2 Graphical modeling in high-dimensional data

Three lines of approaches are studied in this section to overcome problems in estimatingΩX = [Ωx
i j ]

when data X are high-dimensional: shrinkage, thresholding and penalization methods. Shrinkage

and thresholding operate on the covariance (or correlation) matrix whereas penalization methods are

used directly on the precision matrix elements and will be the main focus of attention of this review.

Moreover, thresholding and penalization approaches differ from shrinkage approaches by assuming

sparsity in the covariance and precision matrix, respectively, i.e., most of the elements in the matrix

are assumed to be exactly zero.

When n/p is small, the condition number of the sample covariance matrix is high, meaning

that the largest sample eigenvalue is biased upwards and the smallest sample eigenvalue is biased

downwards (Pourahmadi, 2007). Shrinkage procedures intend to concentrate the eigenvalues to a

common value. Ledoit and Wolf (2004) present a shrinkage estimator of the covariance matrix ΣX by

using a linear combination of two models

Σ̂X =λT + (1−λ)U , (3.9)

where U is an unrestricted high-dimensional model for the parameters of interest, T matches such

parameters in a lower dimension, and 0 ≤λ≤ 1 is the shrinkage intensity that weights the importance

of the two models and allows positive definiteness in the resulting matrix. A common strategy is to use

U = SX (sample covariance) and T = diag(SX ) (diagonal of sample covariance). Then, off-diagonal

elements are shrunk towards zero as λ increases. The selection of an optimal shrinkage intensity

that balance variance (mostly due to U ) and bias (mostly due to T ) in the estimator is proposed in

Schäfer and Strimmer (2005). The ridge constraint for matrix inversion (Hoerl and Kennard, 1970) is a

sub-case of the shrinkage procedure in eq. (3.9) when U = I .

In a Bayesian context, Daniels and Kass (1999, 2001) present several shrinkage alternatives to

(3.9) that use Bayesian hierarchical models that go further than placing a Wishart prior distribution

(the conjugate prior) on the sample covariance matrix. For instance, the authors describe a Markov

chain Monte Carlo (MCMC) algorithm that uses a normal prior distribution centered at zero on the

Fisher transformation of the off-diagonal elements of the correlation matrix, or also a similar prior to

the Givens angles. In both cases, the eigenvalues of the mode of the posterior distribution of Σ̂X are

shrunk towards a constant, positive definiteness is achievable and the inverse of Σ̂X determines the

estimated conditional dependence structure.

Thresholding approaches (Bickel and Levina, 2008) first estimate the sample covariance matrix

SX and then set the elements of SX to zero by a thresholding function. For instance, soft thresholding

uses a lasso type penalization by

ST (z,λ) = si g n(z)(|z|−λ)+, (3.10)
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which fixes to zero the coefficients with lower magnitude than λ. Other penalizations such as SCAD

or adaptive lasso are an extension of the simple soft thresholding and are compared for several data

settings in Rothman et al. (2009). This method does not ensure non-singularity in the estimated

covariance matrix making the estimation of Ω̂X a non-trivial problem. The main advantage of using

thresholding in comparison to other approaches is that it is computationally fast and thus is easily

applied to real life high-dimensional studies.

Lastly, penalization approaches demand more computational efforts than thresholding since the

sparsity is directly assumed in the conditional dependence structure ΩX . These methods optimize an

expression that combines the log-likelihood minus a penalization term

(Ω̂λ
X )P ML = arg max

ΩX Â0
[logdetΩX − tr(SXΩX )−Pλ(ΩX )], (3.11)

where P ML stands for penalized maximum likelihood. One of the most famous penalization functions

is the lasso or L1 norm (Banerjee et al., 2008; Friedman et al., 2007), and it is defined by

Pλ
GL(ΩX ) =λ||ΩX ||1 =λ

p∑
i=1

p∑
j=1

|Ωx
i j |, (3.12)

where GL stands for graphical lasso, and λ represents the trade-off between close fit to the data

and sparsity of ΩX . Even though the L1 penalty in (3.12) is applied to all elements of ΩX , some

authors have proposed the same penalty applied to only the off-diagonal elements (Yuan and Lin,

2007). An extension of the graphical lasso is given by the adaptive, or weighted, graphical lasso

(Zhou, 2006), which incorporates a weight V = [vi j ] for each pair of variables on the penalization by

Pλ,V
W GL(ΩX ) =λ∑p

i=1

∑p
j=1 vi j |Ωx

i j |.

The lasso penalization approach has a Bayesian interpretation (Wang, 2012), i.e., the estimator

by GL finds similar values to the mode of the posterior distribution of the model f (Xk |Ω) ∼ N(Xk |
0,Ω−1

X ), k = 1, . . . ,n, assuming a double-exponential prior distribution on the off-diagonal elements

ofΩX and an exponential distribution on the diagonal ones

P (Ω|λ) ∝ ∏
i< j

{DE(Ωx
i j |λ)}

p∏
i=1

{Exp(Ωx
i i |λ/2)},

where DE represents the double exponential function with density f (x) =λ/2exp(−λ|x|) and Exp is

the exponential function with density f (x) =λexp(−λx). Sampling from the posterior distribution is

usually done by a MCMC procedure that turns out to be computationally intensive. The reason is that

there are as many as 2(p(p−1)/2) possible models, that for large p, make MCMC visits quite unreliable

(Banerjee and Ghosal, 2014). To make the problem tractable, Wong et al. (2003) use the Cholesky

decomposition on ΩX and set a non-uniform prior distribution for a variable that quantifies the

number of non-zero elements in the matrix (reducing the 2(p(p−1)/2) possible models). Then, MCMC

samples are generated from the posterior distribution given a Metropolis Hasting algorithm. Besides,
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Mohammadi and Wit (2015a) use a birth/death MCMC method to reduce the number of operations

to kp2, where k is the number of iterations to achieve convergence. These methods are proven to be

competitive to lasso estimates. Nevertheless, the computational burden continues to be high when

the dimension is of the order of thousands.

Gaussian graphical lasso works fine in the variable selection part under certain conditions (Zhao

and Yu, 2006) but generates a biased estimator. In case there is an interest in finding a good approxi-

mation of the magnitude of the coefficients, a SCAD penalty (Fan et al., 2009) is typically used instead.

Another proposal is the constrained L1-minimization for inverse matrix estimation -CLIME- (Cai et al.,

2011). The optimization problem is given by the minimization of the L1 norm of ΩX constraining

|ΣXΩX − I |∞ ≤ λ. This method presents some interesting convergence and computational charac-

teristics. For instance, the optimization problem can be separated in p different problems so that

parallel computations can be performed. A similar idea is used in Yuan (2010) by fitting p regression

models using the so called Dantzig selector estimator (Candes and Tao, 2007).

Several contributions have also been proposed to relax the Gaussian assumption. Among others,

Lafferty et al. (2012) present various non-parametric methods to estimate sparse conditional depen-

dence structures, Liu et al. (2012) introduce a semi paremetric copula procedure that employs robust

correlation estimators such as Spearman's rho and Kendall's tau, or Abegaz and Wit (2015) describe a

Gaussian copula graphical model approach to infer conditional dependence among variables that

can be both discrete and continuous.

Some of the reviewed methods can be used in the free statistical software R. The package GeneNet

(Schäfer et al., 2006) contains shrinkage estimators in the form of eq. (3.9). The package huge (Zhao

et al., 2012) consists of functions that solve the graphical lasso minimization problem presented in eq.

(3.11) and (3.12). Similarly, the package Camel (Liu and Wang, 2012) implements the so called tuning-

insensitive graph estimation and regression (tiger) approach which can be used to estimate sparse

precision matrices. The R package FastGGM (Wang et al., 2016) uses a graphical lasso algorithm that

is designed to estimate huge biological networks. The Bayesian graphical lasso is also implemented in

R by Mohammadi and Wit (2015b) within the package BDgraph.

Most of the approaches seen in this section require the selection of a regularization parameter λ

which controls the sparsity of the estimated regression coefficients / precision matrix elements. Some

of the ways that are used in the literature to chose this tuning parameter are reviewed in Section 3.5.

3.3 Joint estimation of multiple precision matrices

Consider the problem of estimating two precision matrices corresponding to the conditional depen-

dence structure of two i.i.d. Gaussian p-dimensional vectors Y (1) : {Y (1)
1 , . . . ,Y (1)

n1
} and Y (2) : {Y (2)

1 , . . . ,Y (2)
n2

},

where p À n1 and p À n2. The estimation of precision matrices Ω1 = [Ω(1)
i j ] (for Y (1) samples) and

Ω2 = [Ω(2)
i j ] (for Y (2) samples) separately in a high-dimensional setting has been well studied in the

past few years (see Section 3.2.2) but a potential joint structure (or commonality) of the two condi-
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tional dependence structures tends to be ignored in these articles. This particularity is exploited in

a few recent contributions by using some type of penalization that encourages similarity between

the precision matrices or their underlying graph structures. In Section 3.3.1 we review methods to

estimate the two precision matrices together and in Section 3.3.2 we focus on the available alternatives

to estimate directly the difference matrixΩd =Ω2 −Ω1.

3.3.1 Joint graphical lasso

Define the joint graphical lasso estimation problem (JGL) by

{Ω̂λ
1 ,Ω̂λ

2 }JGL = argmax
ΩÂ0

∑
k={1,2}

[logdetΩk − tr (SkΩk )]−Pλ1,λ2 (Ω1,Ω2), (3.13)

which is the sum of log-likelihood functions for the two datasets minus a penalty term. The first

important proposal to estimate multiple sparse precision matrices simultaneously was described

in Guo et al. (2011). The authors suggest to use a group lasso maximum likelihood estimator (GGL)

determined by the optimization problem in eq. (3.13) with penalty

PGGL
λ2

(Ω) =λ2
∑
i 6= j

( ∑
k={1,2}

|Ω(k)
i j |

)1/2

, (3.14)

where λ2 is a tuning parameter that controls similarity between the graph structures in the two classes,

thus ignoring the sign of non-zero values. An algorithm used to solve eq. (3.13) with penalty (3.14)

is based on solving two graphical lasso problems iteratively (one for Y (1) and one for Y (2)) until

convergence by keeping the estimate of the other precision matrix fixed. The maximization problem

can be immediately extended to account for datasets with more than two classes.

The two main problems of the precision matrix estimator determined by the penalty in eq. (3.14)

are its non-convexity and the control of sparsity (graph structure similarity and sparsity are affected

together by λ2). Danaher et al. (2014) address these two issues by proposing to use the penalty

PGGL
λ1,λ2

(Ω) =λ1
∑
i 6= j

∑
k={1,2}

|Ω(k)
i j |+λ2

∑
i 6= j

( ∑
k={1,2}

(Ω(k)
i j )2

)1/2

. (3.15)

In this case, λ1 controls the sparsity of the precision matrices and λ2 controls their common or not

common graph structure. In the same article, Danaher et al. propose to use a fused lasso penalization

approach that differs from the group lasso since it encourages similarity between the values of

the precision matrix elements rather than their underlying non-zero structure. Fused penalization

was previosly used in a time series context in Witten et al. (2009) and Kolar et al. (2012) to smooth

consecutive regression coefficients (and it is reviewed later in Section 3.4). This concept is applied to
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the precision matrix elements for two classes so

P FGL
λ1,λ2

(Ω2,Ω1) =λ1||Ω2||1 +λ1||Ω1||1 +λ2

p∑
i=1

p∑
j=1

|Ω(2)
i j −Ω(1)

i j |. (3.16)

Both optimization problems proposed in Danaher et al. (2014) can be solved by an alternating

directions method of multipliers (ADMM) algorithm (Boyd, 2010) and are implemented within the R

package JGL (Danaher, 2013).

A more general method to jointly estimate sparse-similar precision matrices is given in Mohan

et al. (2014). The authors consider a node-based approach that focus on the differential patterns

between multiple classes, but they do it in the variables space rather than in the edges space. They

introduce the following penalty

P RCON
λ1,λ2

(Ω2,Ω1) =λ1||Ω2||1 +λ1||Ω1||1 +λ2

p∑
i=1

p∑
j=1

Gq (Ω(2)
i j −Ω(1)

i j ), (3.17)

where Gq defines the row-column overlap norm (RCON) with L1/Lq norm and 1 ≤ q ≤∞ such that

Gq (Ω) = min
V

p∑
g=1

||Vg ||q , s.t.Ω=V +V t .

By using a penalization on the (possible) non-symmetric matrix V , it encourages structures of interest

on the columns and rows of the differential matrixΩd . For instance, for q = 1, the penalty coincides

with FGL, and for q = 2 or q =∞, the non-zero structure in the differential coefficients is shared

in the whole row and column of Ωd . The assumption of these latter cases is that once a variable

is deferentially connected to another variable, then it must be differently connected to all other

variables (except for cases where both Ω(2)
i j = Ω(1)

i j = 0). An ADMM algorithm is also used to solve

the optimization problem. In a similar framework, Cai et al. (2016) provides an L∞/L1 optimization

problem to jointly estimate the two matrices.

Other proposals include Lee (2015), who defines a CLIME-type optimization problem (Cai et al.,

2011) that jointly estimates multiple precision matrices, and that is applicable to Gaussian and non-

Gaussian family distributions, or Wit and Abbruzzo (2015), who estimate a joint precision matrix

by considering several graph structure designs prior to estimation. Recently, in Xie et al. (2016), the

joint estimation is made when the two datasets corresponding to two different classes are dependent.

The authors assume an additive model (see Section 2.2): Y (1)
k = Zk + Hk and Y (2)

k = Zk +Tk , for

any k ∈ {1, . . . ,n}, where Zk is the common measure, and {Hk ,Tk } are the unique structures of the

two classes. They use the cross-covariance cov(Y (1)
k ,Y (2)

k ) to represent the common structure and

describe an expectation maximization (EM) algorithm to infer the common and unique conditional

dependence structures.

Bayesian inference for these type of joint models is also available in the literature. For instance,

in Peterson et al. (2015) the similarity between related precision matrices is supported by taking a
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Markov random field prior to the graph structures. This is done by considering a reference network

as well as the two networks corresponding to the two classes. The authors assume that the prior

probability of existing an specific edge linking two variables in either of the two unique networks

is positively related to the presence of the same edge in the reference network (giving higher prior

probabilities). A G-Wishart prior (Roverato, 2002) is placed on the two precision matrices.

Most of the joint estimation procedures seen in this section require the selection of two regular-

ization parameters λ1 and λ2 that control sparsity and similarity of the estimated precision matrix

elements in the two classes, respectively. Section 3.5 presents some of the available alternatives in the

literature to estimate the parameters.

3.3.2 Direct estimation of differential network

By estimatingΩ2 andΩ1, it is immediate to obtain the difference matrixΩd =Ω2 −Ω1, or the network

structures defined by set of edges E1 = {(i j ) : Ω(2)
i j = 0, Ω(1)

i j 6= 0} and E2 = {(i j ) : Ω(2)
i j 6= 0, Ω(1)

i j = 0}.

However, if the interest is only inΩd , its estimation can be done directly, i.e., estimating the marginals

Ω2 andΩ1 is not required.

In Zhao et al. (2014), the difference matrix Ωd is estimated directly by using the fact that, in theory,

R2Ωd R1 − (R1 −R2) = 0. The authors suggest to assume sparsity in onlyΩd , allowingΩ2 andΩ1 to be

dense. The proposed optimization problem follows a CLIME-type constraint,

Ω̂dC LI ME =argmin
Ωd

|Ωd |

s.t. |(R̂1Ωd R̂2)− (R̂2 − R̂1)|∞ ≤λn .

(3.18)

Here R̂2 = n−1
2

∑n2
k=1 Y (2)′

k Y (2)
k and R̂1 = n−1

1
∑n1

k=1 Y (1)′
k Y (1)

k . Zhao et al. (2014) consider the equivalent

linear program where the minimization of |Ωd | is subject to |(R̂1 ⊗ R̂2)vec(Ωd )−vec(R̂2 − R̂1)|∞ ≤λn

with ⊗ indicating the Kronecker products operator. This requires the computation of a p2 ×p2 matrix

in the constraint (R̂1 ⊗ R̂2). The authors use the symmetry property ofΩd , to further solve the problem

in eq. (3.18) by computing a p(p−1)/2×p(p−1)/2 matrix instead of the p2×p2 matrix given in R̂1 ⊗ R̂2,

but stronger theoretical conditions are implied. An ADMM-type recursive algorithm is employed to

find an estimator for the differential precision matrix.

A similar problem is tackled in Mitra et al. (2016), who estimate differential networks using a

Bayesian formulation. The authors assume a uniform prior for the edges in the first graph and a

Bernoulli trial for the equality of edges between the first and second graph. This totally specifies the

prior for the graph in the second class. A MCMC approach is used to infer the posterior distribution of

the differential network.
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3.4 Joint estimation of multiple linear regression models

In this section we study the problem of estimating regression coefficient matrices in a high-dimensional

framework. We first review an approach for estimating a single sparse regression coefficients matrix

and then we discuss the methods available in the literature that jointly estimate sparse regression

coefficients in more than one class of observations.

3.4.1 Sparse multivariate linear regression

Consider the multivariate Gaussian linear regression model that links pairs of observations {Xk ,Yk }n
k=1,

where Xk are p-dimensional covariates and Yk contain the q-dimensional response variables,

Yk ∼ N (βXk ,Σe ), for any k = 1, . . . ,n. (3.19)

The covariance matrix Σe = cov(Yk −βXk ) describes the residuals linear dependence structure, and

the linear regression coefficients β relate explanatory variables X to the response variables Y and are

typically estimated by least squares:

β̂= argmin
β

(
1

2n
||Y −Xβ||22

)
, (3.20)

with solution β̂= (X ′X )−1X ′Y .

A multivariate linear regression method to estimate β for high-dimensional data, where (X ′X )

is not invertible, is proposed in Rothman et al. (2010). The authors jointly estimate the regression

coefficients in β as well as the precision matrix Ωe = Σ−1
e , that describes the error’s conditional

dependence, by solving the following minimization problem:

(β̂,Ω̂) = argmin
B ,Ωe

{
tr{

1

n
(Y −Xβ)t (Y −Xβ)Ωe }− log |Ωe |+λ1

∑
i 6= j

|Ω(e)
i j |+λ2

p∑
j=1

q∑
i=1

|βi j |
}

(3.21)

where λ1 and λ2 are penalization parameters. The estimator in (3.21) is “bi-convex", i.e., it is a

convex function once assuming that either β orΩe is known. Hence, the proposed algorithm to find a

solution of eq. (3.21) uses an iterative process that combines a cyclical coordinate descend algorithm

(Friedman et al., 2007) to find β̂X (keeping Ωe fix) and a glasso algorithm (Friedman et al., 2007) to

find Ω̂e (keeping βX fix). The multidimensional regression approach is implemented within the R

package MRCE (Rothman, 2013).

3.4.2 Joint estimation of regression lasso

Consider the extension of the multivariate linear model described in Section 3.4.1 when two samples

corresponding to two different classes are observed for both covariates and responses: {X (1)
k ,Y (1)

k }n1
k=1
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and {X (2)
k ,Y (2)

k }n2
k=1. Assume predictors and responses are associated by a Gaussian linear model

(Y (1)
k ,Y (2)

k ) ∼ N2p

β(1)X (1)
k

β(2)X (2)
k

′

,Σe

 , Σe =
Σ(11)

e Σ(12)
e

Σ(12)′
e Σ(22)

e

 , (3.22)

where Σe is the residuals covariance matrix. All methods presented in this section assume indepen-

dence between datasets, with both Σ(12)
e = 0 and Σ(12)

X = 0 and allowing n1 6= n2.

Fused regression lasso is initially proposed by Tibshirani et al. (2005) to address the problem of

estimating regression coefficients in high-dimensional data when the covariates are ordered (e.g. time

ordering). The authors smooth the changes for consecutive estimated coefficients by considering an

additional penalty term in the regression lasso optimization problem

β̂λOF RL = argmin
β

[
1

2n
||y −βX ||22 +Pλ1,λ2 (β)

]
, (3.23)

with

POF RL
λ1,λ2

(β) =λ1||β||1 +λ2

p∑
i=2

|βi −βi−1|1,

where OF RL stands for ordered fused regression lasso.

This idea is used in Zhang and Wang (2012) to encourage similarity of regression coefficients from

different classes in a join linear regression model (JLR):

β̂λJLR = argmin
β

[
1

2n
(||y (1) −β(1)X (1)||22 +||y (2) −β(2)X (2)||22)+Pλ1,λ2 (β)

]
, (3.24)

with

Pλ1,λ2 (β)F RL =λ1
∑

M={1,2}
||β(M)||1 +λ2

p∑
i=1

q∑
j=1

|β(2)
i j −β(1)

i j |,

where F RL stands for fused regression lasso and the response is a single variable. Let V = {1, . . . , p} be

the set of variables, in Zhang and Wang (2012), the optimization problem in eq. (3.24) is solved using

a block coordinate descent algorithm, such that pair of parameters (β(1)
i ,β(2)

i ), for i ∈V , is updated

once at a time considering the rest (β(1)
j ,β(2)

j ), j ∈V \ i , fixed.

In the technical report by Lam et al. (2016), a related fused penalty proposal is used when the

response is also a high-dimensional dataset. The authors present an L2-fused estimator (FRL2) that is

the solution of the minimization problem in (3.24) with penalty defined by

Pλ1,λ2 (β)F RL2 =λ1
∑

M={1,2}
||β(M)||2 +λ2

p∑
i=1

q∑
j=1

(β(2)
i j −β(1)

i j )2.

Since all components are in L2 norm, the problem is convex and can be solved through linear regres-

sion with an augmented design matrix.

As for the joint estimation of precision matrices, optimization problems that jointly estimate

regression coefficients in two classes of observations require the selection of two regularization
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parameters {λ1,λ2}. Section 3.5 describes some of the methods that have been used in the literature.

3.5 Selection of tuning parameters

In this section we review some of the methods in the literature to select the tuning parameters in both

regression and graphical lasso problems. Firstly we describe standard model selection methods such

as Cross Validation (CV), Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC),

and we give some justification why these methods might not be useful for selecting tuning parameters

in our high-dimensional data setting. Finally, we consider three other approaches that have been

proposed to account for situations when the sample size is smaller than the dimension.

Regularization parameter selection for sparsity parameter

Cross Validation is a widely used technique for variable selection which aims to minimize the pre-

dictive error at fixed value of λ. It is based in splitting the data randomly in two blocks, one for

training and one for testing, and finding the predictive error in the testing data using the training

to fit the model. The best tuning parameter by cross-validation is the one with the lowest average

error over several (or all possible) instances of the splitting process. For instance, the λ selection by

leave-one-out CV (where testing data only contains one observation) is determined by

λCV = argmin
λ

n∑
j=1

(y j −X j β̂
− j
λ

)2, (3.25)

where β̂− j
λ

is the lasso (or any other penalization presented in Section 3.2.1) solution using all data

except to the pair (X j , y j ). CV works fine for high-dimensional scenarios, the only consideration

is in the objective of the method which falls in the prediction rather than the recovery of the non-

zero structure of the regression coefficients. Wasserman and Roeder (2009) show that CV overfits the

graphical structure ofβ and propose to perform an addition variable selection stage on the CV-optimal

model where some covariates are eliminated by hypothesis testing. When the aim is to estimate a

precision matrix in the case p > n, when its sample version is not unique, a method based on CV is not

as straightforward as there is no "observable" equivalent of the precision matrix. If we consider the

link between regression and precision matrix described in Section 2.1, a CV adaptation for graphical

models is directly approachable by

λCV = argmin
λ

p∑
g=1

n∑
j=1

(X j g −X j ,−g β̂
(g ,− j )
λ

)2, (3.26)

where β̂(g ,− j )
λ

is a vector of regression coefficients linking X− j ,g with all the other variables X− j ,−g ,

which is determined from the estimated precision matrix following eq. (2.1).

Other likelihood (or least squares) based risk functions to select λ such as AIC and BIC are useful
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to find a compromise between goodness of fit to the data and model over-fitting

λAIC = argmin
λ

L(y, X ,λ)+ s(θλ), λB IC = argmin
λ

L(y, X ,λ)+ s(θλ) log(n)/2, (3.27)

where L(y, X ,λ) = ||y − β̂λX ||22 for linear regression and L(y, X ,λ) =− logdetΩ̂λ
X + tr(SY Ω̂

λ
X ) for graph-

ical modeling. The last term s(θλ) defines the effective number of free parameters and tends to be

approximated by the number of non-zero coefficients. The AIC penalty has its origins from informa-

tion theory, it is found by minimizing the expected Kullback-Leibler divergence between estimated

and "true" models. The BIC comes from a Bayesian background instead, and the obtained risk func-

tion is based on the Laplace approximation of the log likelihood of the model assuming constant

priors for all possible models. For sufficiently large n, the BIC selection finds consistently sparser

estimators than AIC. The main conceptual problem of AIC and BIC for high-dimensional problems is

that these are asymptotic methods by definition, which assume fixed dimension p for increasing n,

but with p > n this justification is not appropriate. This justification is supported by Liu et al. (2010)

in a simulated data analysis, where AIC and BIC are found to overestimate the graphical structure of

ΩX even for cases where n is slightly larger than p.

An extended version of BIC, called eBIC, is given in Chen and Chen (2008). The eBIC reconsiders

the constant priors assumption for the models of BIC by encouraging models with extreme sparsity

levels in both ends (highly sparse and dense matrices) as follows

λeB IC = argmin
λ

L(y, X ,λ)+K log(n)/2+2φ log(τ(θλ)), τ(θλ) =
(

K

s(θλ)

)
, (3.28)

with θλ = β̂λ for regression or θλ = Ω̂λ
X for precision matrix estimation. The hyper-parameter φ is

defined between 0 and 1, so when φ= 0, eBIC coincides with BIC, and as φ increases, it penalizes

sparsity models (in terms of degree distribution) that are more likely to happen just by chance. Another

proposal is given in Zhang and Shen (2010) with the introduction of the lasso regression with RICc

penalty:

λRICc = argmin
λ

L(y, X ,λ)+ 4nσ2s(β̂λ)(log p + loglog p)

λ
, (3.29)

where s(β̂λ) is the number of non-zero elements in the lasso estimate.

A common consideration for the methods described above is that they use the estimated values for

β orΩX which make algorithms like neighbourhood selection (Meinshausen and Bühlmann, 2006),

see Section 5.2.3, not applicable as only estimate the graph structure ofΩX . Liu et al. (2010) propose a

method that contrasts with the usual variable selection statistics since it only considers the estimated

conditional dependence graph structure.The authors consider the stability approach to regularization

selection (StARS) to chose λ by controlling the desirable approximated variability in the estimated

graphs. The variability is estimated for each λ using a subsampling approach. The motivation of

this method resides in the fact that the selection of λ problem, which is difficult to explain by itself,
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is transformed to the selection of the desired amount of variability in the graph, which is easier to

interpret. Another stability approach is discussed in Meinshausen and Bühlman (2010), who control

the expected graph edges false discovery rate. The authors estimateΩX by an average subsampling

graphical lasso method such that the effect of the choice of λ is very low.

Regularization parameter selection for joint estimation methods

The joint estimation problems described in Section 3.3 and Section 3.4 require the selection of

two regularization parameters: λ1 (sparsity) and λ2 (similarity), and the combination of the two

characterizes the estimated network sizes (both common network and differential network). Out of a

grid of values for both λ1 and λ2, Danaher et al. (2014) use an AIC criterion that combines the AIC's

of the two estimated precision matrices, Guo et al. (2011) consider both BIC and CV to obtain the

best λ, Lee (2015) employ a K -fold cross-validation approach, or Xie et al. (2016) find instead the best

estimated precision matrices that minimize the eBIC criterion.

3.6 Other multivariate methods for high-dimensional data

Other multivariate methods such principal component analysis (PCA), partial least squares (PLS) or

canonical correlation analysis (CCA) are used in order to understand the relationship between vari-

ables, and to group samples in different clusters. In this section we review some of theses approaches

as well as their extensions to encourage sparse solutions.

Principal component analysis and independent component analysis

Both PCA (Hotelling, 1933) and independent components analysis -ICA- (Comon, 1994) are multi-

variate techniques which intend to project a data matrix in a lower dimension by keeping as much

information as possible of such original matrix. PCA relies on the second moment of the data (i.e., it

finds linear combinations with data that achieve maximum variance) and hence it assumes Gaussian

features whereas ICA exploits higher order moments (e.g., minimizes the kurtosis) which are not

demanded in a Gaussian context. A sparse variation of the methods is used in a high-dimensional data

setting by regularizing the values of the loadings vectors, which describe the relationship between

the original variables and the unit-scaled components. Jolliffe et al. (2003) introduce SCoTLASS

(Simplified Component Technique- LASSO), which is a procedure that finds the sparse loadings of

PCA by directly constraining the L1 norm of the coefficients. Later, Zou et al. (2006) consider the

regression reformulation of the PCA problem and include an elastic-net penalization for the loadings

in a two stages based algorithm, or Shen and Huang (2008) propose a regularized singular value

decomposition (SVD) with lasso/SCAD penalty for the loadings. Similarly, Yao et al. (2012) use soft

thresholding on the independent components to obtain the sparse coefficients. These techniques are

implemented within the R package mixOmics (Le Cao et al., 2016) and functions spca and sipca. An

analogous method for PCA when the input is a contingency table is also available and it is well known

as correspondence analysis (Yelland, 2010).

45



Sparse partial least squares, canonical correlation analysis and co-inertia analysis

Partial least squares -PLS- (Wold, 1966) is a multidimensional technique which aims to find a pro-

jection of two data sets X and Y such that the covariance between X and Y is maximized. Similarly,

canonical correlation analysis -CCA- considers a projection of two data sets X and Y such that the

correlation between a linear combination of X and Y is maximized. Lê Cao et al. (2008) for PLS and Lê

Cao et al. (2009) for CCA present the extension of these methods for a high-dimensional data setting.

The authors enforce sparsity in the projections using an L1 penalization on the loadings for X and

an L2 penalization on the loadings for Y . The solutions of the underlying optimization problems

are found by recursive algorithms which are implemented within the R package mixOmics and the

functions spls and rcc. Alternatively, co-inertia analysis -CIA- (Doledec and Chessel, 1994) is used as

a general approach to connect two datasets that can be of any type (either continuous or categorical).

The CIA method is available in R within the ADE-4 package (Thioulouse et al., 1997).

Visualization techniques

The sparse partial least squares and reduced canonical correlation methods project two datasets

(say X and Y ) in a common space, however they do not find directly the associations between the

features on X and Y. González et al. (2012) present a graphical tool, called correlation circle plots, in

order to gather similar characteristics among the variables in the new projected space. In particular,

it measures the correlation between each of the original variables and the projection of the same in

the new space. For instance, considering the representation in the plane, points are within a circle of

radius 1 in which similarity between variables far away from the origin can be directly interpreted but

more dimensions are needed to explain all the other points.

Global measure of dependence between two datasets

Methods reviewed so far in this section like CIA, regularized CCA or sparse PLS are computationally

intensive for high-dimensional data. A conceptually simple statistic can be considered to measure

global similarity between two data matrices, say X and Y . This might be useful to discern which are

the most important pair of datasets for a complete analysis (e.g., by CIA, CCA or PLS) when many

datasets are available. This statistic is introduced in Escoufier (1973) and it is widely known as RV

coefficient

RV(X ,Y ) = tr(R̂X Y R̂ ′
X Y )√

tr(R̂2
X X )tr(R̂2

Y Y )
.

For high-dimensional data, this measure is highly biased under independence between X and Y .

Mayer et al. (2011) propose a related statistic RVad j (X ,Y ) based on adjusted r-squares coefficients

r̂ 2
ad j (xi , y j ) = 1− (n −1)/(n −2)(1− (r̂ x y

i j )2) by

RVad j (X ,Y ) =
∑p

i=1

∑q
j=1 r̂ 2

ad j (xi , y j )√∑p
i , j=1 r̂ 2

ad j (xi , x j )
∑q

i , j=1 r̂ 2
ad j (yi , y j )

,

so that its expected value under independence is equal to zero.
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3.7 Application to omics datasets

There is an endless number of contributions in the biological literature that apply statistical methods

to the analysis of omics (e.g., genomics, proteotomics, metabolomics) datasets. This section highlights

a short list of these articles that employ multivariate data analysis techniques for high-dimensional

data, especially lasso-based approaches. For an extended list of methods and applications that have

broken through in the omics data analysis and integration literature in the past two decades, see Joyce

and Palsson (2006) and more recently Bebek et al. (2012) and Wanichthanarak et al. (2015).

Lasso-based regression

Yang et al. (2013) identify some of the protein markers associated to progression-free survival of

patients with ovarian cancer by applying a lasso regression model. Also employing lasso regression,

Simeonov and Himmelstein (2015) relate demographic and cancer risks to several tumor type inci-

dences in order to detect important charactaristics in lung cancer. Timpe et al. (2015) use lasso and

elastic-net regression to model the sensitivity of 90 drugs in breast cancer with respect to messenger

RNA (mRNA) expression for 160 glycoproteins and two other sets of protein data. Hughey and Butte

(2015) also contemplate the elastic-net penalization to classify four lung cancer subtypes using as

input the gene expression profile of 629 samples.

Lasso-based conditional dependence networks

Chun et al. (2013) apply the group lasso penalized maximum likelihood approaches of Guo et al.

(2011) and Danaher et al. (2014) to estimate four conditional graphical models that correspond to the

dependence structure of gene expression for four different tissues. They also have the information

of another dataset with the genetic markers, so as novelty they consider the estimation problem of

the four conditional dependence structures once accounting for the genetic marker profiles. The

integration and analysis of methylation with gene expression data is studied in Gadaleta and Bessonov

(2015), who integrate gene expression and methylation presence for a dataset with patients with

glioblastoma cancer. The authors employ lasso estimates for the regression coefficients linking gene

expression (response variables) and methylation presence (explanatory variables) as well as for the

precision matrix that considers conditional dependence among genes in only the gene expression

data.

Other multivariate data methods

In Fagan et al. (2007), co-inertia multivariate technique (CIA) is used to relate two datasets containing

the information of gene and proetomic expression for the same individuals. GO annotation terms

describe the functions of specific genes according to Gene Ontology (Ashburner et al., 2000) and

are superimposed on the CIA projections with the intention to detect the roles of the genes and

proteins that are highly expressed. A similar idea is presented in Meng et al. (2014) by employing gene

expression of several tumors types as well as a second dataset from ovarian cancer patients profiled

from two microarray platforms. Sheng et al. (2011) use ICA to integrate gene expression and copy
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number data and then find subsets of the genes with coherent expression patterns and large variation

across samples (process commonly known as shaving).

Data integration for more than two datasets

Other proposals that study the data integration of multiple omics datsets include Kuznetsov et al.

(2009), who use 4 different type of datasets to describe gene connections. These are KEGG pathways,

protein-protein networks, expression correlation matrices corresponding to normal human tissues

and 6 disease state tissues, and transcription factor binding sites (TFBS). The strength of similarity

between datasets is evaluated using a score, and its significance is assessed by comparing it to the

analogous scores under random associations. Kamburov et al. (2011) introduce the web tool IMPaLA

for joint pathway analysis of transcriptomics or proteomics and metabolomics data. It performs

enrichment analysis (it finds terms that are over-represented in a predefined pathway) with user-

specified lists of metabolites and genes using over 3000 pre-annotated pathways from 11 databases.

Gosline et al. (2012) develop SAMNet (Simultaneous Analysis of Multiple Networks), which uses

a constrained optimization approach to analyze signaling and transcriptomic data from multiple

experiments and relate estimated graphs to protein-protein interaction networks.

3.8 The novelty of the present work

The main aim in this thesis is to develop methodology to fully analyze and integrate multiple high-

dimensional datasets that come from the application to genomic data. We focus on testing and

estimation problems for linear dependence structures such as correlation matrices, precision matrices

and regression coefficient matrices. As reviewed in this chapter, these are topics of great concern in

the statistical literature which have been extensively studied in the last 20 years. Nevertheless, some

methodological gaps are still present and we intend to explore them in the following chapters.

As an initial topic we consider global statistical testing whether two dependence structures corre-

sponding to samples distinguishing two classes are equal or not, which is formulated as an hypothesis

testing problem for equality of correlation matrices. In the statistical literature, several methods

are proposed to solve such hypothesis testing issue (see Section 3.1) but typically assume that the

observations in the two classes are independent. The studied methods either contemplate sum of

squares based test statistics (where all correlation differences influence the test statistic) or maximum

test statistics (where only the largest correlation difference is used in the test). As novelty, we propose

similar methods to account for cases where observations are dependent, which frequently occur in

biological data when, for the same individual, it is obtained the information in more than one sample

(e.g., different time points, treatments or tissues). We also consider a test statistic that lies in between

sum of squares and maximum test statistics as given by the sum of exceedances above a threshold.

This is close to the sum of squares for thresholds near zero and finds more similar powers to the

maximum test as the threshold increases. Besides, for a wise selection of the threshold, this procedure
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can dominate the power of the test over the other two methods.

Secondly, when reviewing the literature on estimating conditional dependence structures in high-

dimensional data, e.g., graphical lasso (see Section 3.2), we realized that most of the methods needed

the selection of a tuning parameter λ, which affects the sparsity levels of estimated precision matrices,

denoted by Ω̂ (as well as regression coefficient matrices β̂). Even though this parameter is crucial for

interpreting the graph structure of the estimated conditional dependence structures, researchers have

proposed an uncountable number of estimators for the precision/regression coefficient matrices

but have overlooked the regularization parameter selection issue in most of the occasions. Standard

methods use expressions based on the likelihood function to optimize a certain risk function, e.g.,

cross-validation, AIC, BIC or RIC (Chen and Chen, 2008; Zhang and Shen, 2010) but ignore the graph

structure of the underlying estimated matrices Ω̂ or β̂. This is tackled in Liu et al. (2010), who control

the variability of estimated graphs without employing any likelihood-based expression. In a similar

vein we propose several risk functions that only focus on the graph structure of estimated precision

matrices Ω̂ that can have an interest for interpreting biological data. For instance, we consider novel

selection approaches that monitor network characteristics as clustering structure, graph connectivity

or graph vulnerability.

Finally, a natural extension of graphical lasso is studied in Zhang and Wang (2012), Danaher

et al. (2014) or Tibshirani et al. (2005), among others, to estimate conditional dependence structures

in multiple classes of observations (see Section 3.3 and Section 3.4). These assume both sparsity

in the precision matrices (or regression coefficient matrices) and elementwise similarity between

such matrices. As seen for the testing procedures, most of the approaches found in the literature

assume that observations in different classes are independent. Recently, Xie et al. (2016) accounts for

dependence between datasets by assuming an additive model to estimate several precision matrices.

Similarly, we propose a general method to estimate joint precision matrices, which is an extension

of the fused graphical lasso approach introduced in Danaher et al. (2014), that accounts for linear

dependence between datasets. Our method differs from Xie et al. (2016) since it can be used for any

type of linear dependence structure between paired observations (see Section 2.2). Inspired by the

work of Danaher et al. (2014), we also develop a novel weighted fused regression lasso algorithm that

jointly estimates two regression coefficient matrices, and which can be used for both independent

and paired observations. In the two proposed joint estimation problems, precision matrices and

regression coefficient matrices, the selection of tuning parameters is a major issue, as two parameters

controlling sparsity and similarity have to be selected. Standard methods as AIC, BIC or CV have

been used in the literature but present similar problems in their usage as for graphical lasso. For

practical needs, we provide a new approach that monitors error rates related to the probability of

falsely estimating edges in both individual and difference matrices.
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Chapter 4

Hypothesis testing problems involving

correlation matrices

4.1 Introduction and motivation

In recent years, the improvements in technology have made it possible to collect and store reliable

information for a large number of genes, metabolomics or proteins, among others, on an organism in

a single sample. This typically generates datasets where the number of variables p is much larger than

the number of observations n. Statistical techniques that deal with this type of data, commonly known

as high-dimensional data, with the purpose of answering biological questions, are well studied in the

literature (Buhlmann and van de Geer, 2011; Sánchez and Villa, 2008). One of the main challenges

relates to understanding how the genes function in a biological process and how they interact between

each others in a cell. In this regard, measuring and assessing variations of gene interactions on the

presence of an illness process such as cancer is important to biologists as part of discerning the gene

regulatory mechanisms that control the disease.

A statistical technique that is widely used to measure interaction between pairs of genes from data

is given by the Pearson correlation, which quantifies the strength of the linear dependence between

two random variables. The main hypothesis testing (HT) problem we study in this chapter assesses

the evidence of equality of two correlation matrices R1 = [r (1)
i j ] and R2 = [r (2)

i j ] that correspond to

genomic data Y (1) and Y (2) measured in two different conditions (e.g, healthy and tumor tissues),

H0 : R1 = R2 vs H1 : R1 6= R2. (eq. corr. mat. test)

As part of the literature review, see Section 3.1.1, we found two main directions that address this

hypothesis testing problem for high-dimensional data. The first is based on sum of squares statistics

(Schott, 2007; Li and Chen, 2012), and the second is based on extreme value statistics (Cai et al.,

2013; Zhou et al., 2015). To the best of our knowledge, the tests considered so far in the literature are
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applicable when the random vectors Y (1) and Y (2) are independent. Here we study the implications

of using the sample correlation matrices when the two datasets are dependent, particularly when

they come from paired observations, in which case the cross-correlation is not zero. We propose three

different tests which apply to paired data, and that are based on the average, maximum and threshold

exceedances of the elementwise correlation differences.

Three other related HT approaches involving correlation matrices are also contemplated in this

chapter: (a) we consider the simpler problem of testing if a correlation matrix is the identity matrix

with hypothesis

H0 : R1 = I vs H1 : R1 6= I ; (id. corr. mat. test)

(b) we test whether the same g th row in two correlation matrices is equal or not with hypothesis

H0 :
∑
i 6=g

|r (1)
g i − r (2)

g i | = 0 vs H0 :
∑
i 6=g

|r (1)
g i − r (2)

g i | 6= 0; (eq. corr. row. test)

(c) we assess whether the g th variable is linear independent to all the other p −1 variables in the data

by testing the hypothesis

H0 :
∑
i 6=g

|r (1)
g i | = 0 vs H0 :

∑
i 6=g

|r (1)
g i | 6= 0. (id. corr. row. test)

The motivation for studying HT problems (b) and (c) lies in the pre-processing stage of omics datasets

where the number of variables p (i.g., genes, proteins, methyl sites, etc) is very large, say order of

thousands. The statistical analysis of the whole data can involve dealing with p ×p matrices which

supposes a challenge for both number of operations and memory space. For instance, conditional

dependence structures defined by the inverse of the covariance (or correlation) matrices are widely

used in genomic data to find important gene associations in a biological process but the number of

genes is usually reduced by some filtering process to speed up the estimation process. In this regard,

the proposed correlation sub-matrices based tests could be employed to select only highly correlated

or highly differentially correlated genes.

The methodology we develop in this chapter is motivated by genomic data sets that contain, for

the same patient, the gene expression information in two different samples corresponding to two

different medical conditions. For instance, we use a first dataset that contains the gene expression

information of 82 patients with two samples (tissues) for each gene/patient: the expression in a

psoriasis vulgaris lesional tissue and the expression in its adjacent non-lesional tissue. We also

analyze a second dataset that measures the gene expression of 60 patients with lung cancer for a

paired tumor and healthy tissues. In total, there are more than p = 19,000 genes for each dataset.

They are both publicly available in the Gene Expression Omnibus (GEO) database (Edgar et al., 2002)

with accession numbers GSE30999 (psoriasis) and GSE19804 (lung cancer).

Even though the complete p ×p correlation matrix is expected to change considerably between
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the two classes of observations, testing the equality of correlation for subgroups of genes (of the

19,000) that are known to have functions in a biological process is highly important. We test if the

genes interact similarly in the two conditions for 1,320 pathways which describe genes that are known

to interact in the same biological process. Using the same gene sets, we further perform the HT of

identity correlation matrix on tumor (or lesional) samples to screen the pathways whose genes highly

interact between each other. We finally use HT approaches on the correlation matrix rows to test if

each of the 19,000 measured genes is related to all the rest of the genes similarly in the two conditions,

as well as to find the most correlated genes in tumor (or lesional) samples.

The chapter is structured as follows. In Section 4.2 we explore the hypothesis testing problem

of equality of correlation matrices and in Section 4.3 we derive approximate null distributions for

the proposed test statistics. Section 4.4 is concerned with other HT problems including identity

correlation matrix testing and correlation matrix rows testing. We only provide expressions for the

asymptotic power of the tests in the equality of correlation matrices problem. Nevertheless, the

analogous expressions for the other described HT problems could then be deduced. In Section 4.5

we use the methodology in simulations in order to assess the accuracy of the proposed tests under

the null hypothesis and to compare their power for different characteristics under the alternative

hypothesis. Finally, in Section 4.6 we present real data applications where the proposed methodology

is used to answer questions that arise from a biological process. All testing methods discussed in this

chapter are implemented within the R package ldstatsHD (which is presented in Chapter 7).

4.2 Hypothesis testing for equal correlation matrices in paired high-

dimensional data

4.2.1 Mathematical model and biological setting

Consider n independent and identically distributed (i.i.d.) 2p-dimensional random vectors Yk =
(Y (1)

k ,Y (2)
k ), k = 1, . . . ,n, where Y (1) and Y (2) are associated with population I and population II, respec-

tively, and that follow a standard multivariate normal distribution with correlation R, i.e.,

(Y (1)
k ,Y (2)

k ) i i d∼ N2p (0,R), R = [ri j ] =
 R1 R12

Rᵀ
12 R2

 , (4.1)

where R1 and R2 are the category-specific correlation matrices and the cross-correlation R12 is non-

zero if the two random vectors Y (1) and Y (2) are linearly dependent. We assume, without loss of

generality, unit variances and zero mean vector. The main goal of this section is to test whether the

correlation matrix R1 is equal to the correlation matrix R2 with hypothesis H0 : R1 = R2 vs H1 : R1 6= R2.

This paired model is related to the following biological setting: the gene expression is measured for

the same subject under two conditions or in two different tissues such as healthy and tumor. Different
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specifications and biological interpretations of the dependence structure R (or its inverse matrixΩ)

are described in Section 2.2 and they all could be considered to apply the methodology proposed in

this section. Under H0, the additive and multiplicative models, see equations 2.7 and 2.9, coincide

with R12 = R1∆ in both such cases. In the direct effect model, the model specification is done in the

conditional dependence structure, where the cross-joint precision matrix is assumed to be diagonal.

Following notation from Section 2.2, under H0 we considerΩJ
1 =ΩJ

2 andΩJ
12 being a diagonal matrix,

so R1 = R2 = (ΩJ
1)−1(I − A2)−1 with A = (ΩJ

1)−1ΩJ
12 and R12 = R1 A.

4.2.2 Fisher transformation of sample correlations

We denote the sample correlation matrix by R̂, which is determined by R̂1 = [r̂ (1)
i j ] = Y (1)ᵀY (1)/n, R̂2 =

[r̂ (2)
i j ] = Y (2)ᵀY (2)/n and R̂12 = [r̂ (12)

i j ] = Y (1)ᵀY (2)/n. Given the symmetry in the correlation matrices,

we consider their lower triangular matrices instead using the same notation with

M = {(i , j ) ∈ {1, . . . , p} : i < j }, m = Card(M) = p (p −1)/2. (4.2)

An approximate pivot for the correlation coefficient is given by the Fisher transformation (Fisher,

1921), which is defined by g : (−1,1) 7→R, g (z) = log{(1+z)/(1−z)}/2, such that the elementwise Fisher

transformation of R̂K , K ∈ {1,2}, weakly converges to a multivariate normal distribution

ÛK = g (R̂K )
p

n −3 ∼ N (g (RK )
p

n −3,ΨK ), K ∈ {1,2}, (4.3)

whereΨK = [ψ(k)
th ] is the m ×m correlation matrix between elements in ÛK as ψ(k)

t t = 1 for any t ∈ M

and K ∈ {1,2}.

4.2.3 Correlation of sample correlation coefficients

We assume here and throughout that rt < 1 for any t ∈ M . The non-zero dependence structure

between the two random vectors Y (1) and Y (2) leads to correlation between elements in the estimator

Û = [Û1,Û2] (Elston, 1975; Steiger, 1980), which is found as in eq. (4.3). Take s = (h, i ) and t = ( j , l ),

s, t ∈ M , as defined in eq. (4.2), following derivations from Dunn and Clark (1969), the asymptotic

correlation of ûs and ût , ψst =ψhi , j l = cor(ûs , ût ), as n →∞, is expressed by

ψst =ψhi , j l = (ωhh|l ω j j |l )−1[(ωh j |i ωi l | j +ωh j |l ωi l |h)+ (ωhl |i ωi j |l +ωhl | j ωi j |h)]/2, (4.4)

where ωhi | j = rhi − rh j ri j and ωhh|l = 1− r 2
hl .

The difference of Fisher transformed coefficients also approximately follows a normal distribution

∆Û := (Û2−Û1) ∼ N (U2−U1,Ψ1+Ψ2−2Ψ12) whereΨ12 describes the correlation between coefficients

in Û1 and Û2. The diagonal elements (ψ(12)
t t ), t ∈ M , are estimated by plugging-in the sample corre-

lation coefficients in eq. (4.4). This yields a consistent estimator of (ψ(12)
t t ) for large n but produces
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non-negligible bias in the estimation for small n. Let d̂t be the standardized expression of ∆ût , such

that

d̂t =∆ût {2(1− ψ̂(12)
t t )}−1/2, t ∈ M , D̂ = (d̂t ). (4.5)

Under the null hypothesis of equality in the correlation matrices, d̂t has zero expected value and

variance (σ2
t )n with (σ2

t )n → 1, n →∞ for any t ∈ M . Moreover, if ψ(12)
t t is known, then cov(d̂t , d̂k ) is

proportional to ψ(1)
tk +ψ(2)

tk −2ψ(12)
tk , which is non-zero for some k 6= t , unless R = I .

4.2.4 Proposed test statistics

The three test statistics considered here are based on the elementwise standardized differences

between transformed sample correlation coefficients in eq. (4.5). These are average of squares (TS ),

extreme value (TM ) and sum of exceedances (TE ) test statistics

TS = m−1
∑

t∈M
d̂ 2

t , (4.6)

TM = max
t∈M

|d̂t |, (4.7)

T w
E (u) = ∑

t∈M
(|d̂t |−uw)2I (|d̂t | > u). (4.8)

In the sum of exceedances test, w is either 0 or 1 and it is incorporated to weight the importance of

high values over the threshold u.

4.3 Null distributions and asymptotic power

4.3.1 Average of squares test

The following lemma provides expressions for the expected value and variance of the average of

squares test statistic TS , which is defined in eq. (4.6).

Lemma 4.1 (Expected value and variance of TS ). Let µ2 = E(d̂ 2
t ) and µ4 = E(d̂ 4

t ). Define γ̄2 = 2(m2 −
m)−1 ∑

t<h cov(d̂ 2
t , d̂ 2

h). The expected value and variance of TS are expressed by

E[TS ] =µ2; var(TS ) = (µ4 −µ2
2)/m + (1−1/m)γ̄2. (4.9)

Proof. The proof of Lemma 1 can be found in Appendix A.1.

Under H0, asymptotically with n →∞, d̂ 2
t ∼χ2

1, for any t ∈ M . Besides, for sufficiently large n, it

follows from the properties of χ2
1 that µ2

.= 1 and µ4
.= 3. Let ν=∑

t<h I [cov(d̂ 2
t , d̂ 2

h) 6= 0] be an integer

ranging in [0,m(m −1)/2]. If cov(d̂ 2
t , d̂ 2

h) ≤ k, for any t < h, for a finite constant k, and ν/m → 0 as

m →∞, then it follows that var(TS ) = (2/m)(1+O(ν/m)).

However, for a finite dimension, if the correlation matrices are not highly sparse, ν/m is not

negligible and the dependence parameter γ̄2 must be incorporated to assure uniformity in the p-
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values of the test under H0. Moreover, since an estimator for the covariance between Fisher transform

sample correlations ψ(12)
t t (defined in eq. (4.3)) is used, parameters µ2 and µ4 can differ slightly from

their limiting values (1 and 3) and should be estimated. For sufficiently large m and n, TS is well

approximated by a normal distribution with parameters µ=µ2 and σ2 = (µ4 −µ2
2)/m + (1−1/m)γ̄2

with Pr(TS ≤ x | H0)
.=Φ(x;µ,σ2) whereΦ(·;µ,σ2) is the CDF of normal distribution with parameters

µ and σ2. Following the central limit theorem, the Gaussian approximation can be appropriate even

when n if parameters µ2 and µ4 are well specified (not approximated by their limiting values).

Hence, the null hypothesis is rejected at significance level α if the observed value of TS is greater

than

tS,α
.=µ2 + zα

√
(µ4 −µ2

2)/m + (1−1/m)γ̄2. (4.10)

The following theorem gives a lower bound for the power of the average of squares test.

Theorem 4.1 (Power of the average of squares test). Let tS,α be the asymptotic α-quantile of the dis-

tribution for TS under H0 defined by (4.10) with 0 < α < 1/2. Under the alternative hypothesis, let

γ̄′2 = 2(m2 −m)−1 ∑
t<h cov(d̂ 2

t , d̂ 2
h | H1) and δt = |g (r (2)

t )− g (r (1)
t )| with Sd = {t ∈ M : δt 6= 0}. Denote

δ2
0 =

∑
t∈Sd

δ2
t . If condition

δ2
0 > zα

p
2m{1+ (m −1)γ̄2/2)}1/2/(n −3) (4.11)

holds, then, as n,m →∞,

Pr(TS ≥ tS,α | H1) ≥ 1−exp

−1

2

{ (n−3)
m δ2

0 − zα[ 2
m {1+ (m −1)γ̄2/2}]1/2

(m−1/2{2+ 4s(n−3)
m δ2

0 + (m −1)γ̄′2}1/2)

}2
 (1+o(1)).

Corollary 4.1. For γ̄2 < νk and ν/m = o(1), condition (4.11) becomes δ2
0 &

m1/2

n as (n,m) →∞. Under

condition (4.11), when nm−1/2δ2
0 →∞, Pr(TS ≥ tS,α | H1) → 1.

Proof. The proof of Theorem 1 can be found in Appendix A.7.1.

4.3.2 Extreme value test

In this section we provide a heuristic approach to approximating the limiting distribution of TM ,

defined in eq. (4.7), based on two key assumptions: (i ) we suppose that the sample size n is sufficiently

large so that (d̂t : t ∈ M) has a Gaussian distribution with standard N (0,1) margins and (i i ) we assume

max
t<s∈M

|cov(d̂t , d̂s )|< 1 and νt =
∑

s∈M\t
I {cov(d̂t , d̂s ) 6= 0} =O(mηt ), (4.12)

for some ηt ∈ (0,1), t ∈ M . Condition (4.12) implies that no two elements of (d̂t ) are perfectly de-

pendent and that there is sufficiently weak dependence structure in the process. If condition (4.12)

holds, then adapted versions of extreme value limits for non-stationary Gaussian processes apply
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(Leadbetter et al., 1983), i.e., there exist location and scale functions µ(m) ∈R and σ(m) > 0, such that

lim
m→∞Pr

(
TM −µ(m)

σ(m)
< x

∣∣∣H0

)
= exp

{−exp(−x)
}

, (4.13)

describes a Gumbel distribution with µ(m)+σ(m) x →∞, as m →∞, for all x. We note that a similar

type of extreme value limits are obtained in Cai et al. (2013) for the less general setting where (Y (1)
k ,Y (2)

k )

in expression (4.1) are independent. Additionally, our empirical findings from simulations confirm

that this is a reasonable approximation for the distribution of TM provided n and m are sufficiently

large. To back up this result, we illustrate in Appendix A.3 how condition (4.12) links with Leadbetter

et al. (1983) conditions for convergence of the maximum of non-stationary Gaussian processes.

In real applications, where m is finite, limit expression (4.13) may fail to approximate the distribu-

tion of TM in two respects. Firstly, it is known that the rate of convergence to the limit distribution is

very slow. Secondly, its form is independent of the dependence structure of the process (d̂t : t ∈ M), a

result that stems from the joint tail properties of the multivariate Gaussian distribution (Sibuya, 1959;

Tiago de Oliveira, 1962).

An improved approximation that does take into account the dependence characteristics can be

obtained from a sub-asymptotic correction (Eastoe and Tawn, 2012),

Pr

(
TM −µ(m)

σ(m)
< x

∣∣∣H0

)
.= exp

{
−

(mE

m

)
exp(−x)

}
, for large m, (4.14)

where mE = mE (m, x) satisfies mE /m → 1, as m →∞, for all x ∈R, and describes the effective sample

size of independent and identically distributed N (0,1) random variables whose maximum has the

same distribution with TM . Note that the distribution of TM in eq. (4.14) is a Gumbel distribution as

in eq. (4.13) but with an updated location parameter, say µmE (m), which depends on mE .

The null hypothesis is rejected at significance level α if the observed value of TM is greater than

tM ,α
.= µmE (m)−σ(m) log(− log(α)) (4.15)

∼ {2log(2m)}1/2 − [logθm + log{− log(α)}]/{2log(2m)}1/2.

The following theorem gives a lower bound for the power of the extreme value test

Theorem 4.2 (Power of the extreme value test). Assume (4.12) holds. Let tM ,α be the asymptotic α-

quantile of the distribution for TM under H0 defined by (4.15) with 0 <α< 1/2. Under the alternative

hypothesis, let δt = |g (r (2)
t )− g (r (1)

t )| with Sd = {t ∈ M : δt 6= 0}. If the following condition holds

max
t∈Sd

δt > 1p
n −3

[√
2log(2m)− log{− log(α)}√

2log(2m)

]
, (4.16)
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then, as n,m →∞,

Pr(TM ≥ tM ,α | H1) ≥ 1−exp

− (n −3)

2

{
max
t∈Sd

δt −
√

2log(2m)

(n −3)

}2 (1+o(1)).

If s = |Sd |→∞ and

min
t∈Sd

δt > 1p
n −3

[√
2log(2m)− log{− log(α)}√

2log(2m)

]
, (4.17)

then, as n,m →∞,

Pr(TM ≥ tM ,α | H1) ≥ 1−exp

{
−e

−
p

2(n−3)log(2s)

[
mint∈Sd

δt−
√

2log(2m)
(n−3)

]}
(1+o(1)).

Corollary 4.2. As n,m → ∞, condition (4.16) becomes maxt∈Sd δ
2
t & (2log2m)/(n − 3). Under this

condition, if n1/2(maxt∈Sd δt −
√

2log(2m)/n) →∞, Pr(TM ≥ tM ,α | H1) → 1.

Similarly, as n,m →∞ and s = |Sd |→∞, condition (4.17) becomes mint∈Sd δ
2
t & (2 log2m)/(n−3).

Under this condition, if
√

n log s{mint∈Sd δt −
√

2log(2m)/n} →∞, Pr(TM ≥ tM ,α | H1) → 1.

Proof. The proof of Theorem 2 can be found in Appendix A.7.2.

Extremal index to measure dependence on the sequence

Expression (4.14) has similarities with a problem studied in the context of stationary time series.

Define the stationary sequence {Zt }m
t=0 and let mC determine the length of independent clusters of

exceedances with mC = o(m). Following eq. (4.13), take x(m) =µ(m)+σ(m) x, under mild conditions,

the quantity

θ = lim
m→∞θm = lim

m→∞Pr
{

Z1 < x(m), . . . , ZmC < x(m) | Z0 > x(m)
}

= lim
m→∞(mE /m), (4.18)

is known as the extremal index (O’Brien, 1987) and describes the reciprocal of the expected cluster

size of exceedances above large thresholds. For sub-asymptotic models (Eastoe and Tawn, 2012), θm

is interpreted as the exceedance probability of mC consecutive time points just after an exceedance

above a high threshold is observed. In a non-stationary process, a cluster-based structure can still be

present, but independent clusters may take different sizes. This is studied in Aldous (1989), who pro-

poses an heuristic approach that considers a compound Poisson process with non time homogeneous

intensity to represent the extremum of non stationary processes.

In our non-stationary process though, the elements in (d̂t : t ∈ M) are not ordered and the general

interpretation for θm does not apply. However, we have found empirical evidence that using eq. (4.14)

can still improve the representation of TM under H0. Besides, in Appendix A.4 we use a similar

approach as Aldous (1989) to study the form of θm when the correlation matrices R1 and R2 that
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generate the data (see eq. (4.1)) are block diagonal.

4.3.3 Sum of exceedances test

Let Su = {t ∈ M : |d̂t | ≥ u} be the set of exceedances above some threshold u ≥ 0, let Nu = Card(Su) be

the number of elements in Su and recall that m = p(p −1)/2. The cumulative distribution function of

the test statistic TE under H0 is

Pr(T w
E (u) < x | H0) =

m∑
k=1

[
Pr(Nu = k | H0) Pr(T w

E (u) < x | H0, Nu = k)
]

. (4.19)

We define several parameters that are used to determine the limiting distribution of TE :

γ(w)
ut j

= cov((|d̂t |−uw)2, (|d̂ j |−uw)2 | d̂ 2
t > u, d̂ 2

j > u,dt = d j = 0),

η0 = Pr(|d̂t | > u | dt = 0), (4.20)

φt j = Pr(d̂ 2
t > u2, d̂ 2

j > u2 | dt = d j = 0), φ̄= [m(m −1)]−1
∑
t 6= j

φt j .

Let ϕ and Φ be the density and cumulative distribution function of the standard normal distribution,

respectively. For sufficiently large expected number of exceedances, the central limit theorem yields

Pr(T w
E (u) < x | H0)

.=Φ{x,µ(m, w),σ2(m, w)} for any w = {0, 1}, with


µ(m, w) = mη0µw

σ2(m, w) = m {η0σ
2
w +µ2

w (η0 − φ̄)}+m2µ2
w (φ̄−η2

0)+∑
t 6= j γ

(w)
ut j
φt j ,

(4.21)

where for w = 0 µw and σ2
w are defined by


µ0 = 1+uϕ(u)/{1−Φ(u)}

σ2
0 = 3+ (u3 +3u)ϕ(u)/{1−Φ(u)}−µ2

0,
(4.22)

whereas for w = 1 these are


µ1 = u2 +1−uϕ(u)/{1−Φ(u)}

σ2
1 = 3+u4 +6u2 − (5u +u3)ϕ(u)/{1−Φ(u)}−µ2

1.
(4.23)

The derivation of equations (4.21), (4.22) and (4.23) can be found in Appendix A.2. Note that if the

elements in D̂ are near independence, then φ̄ ≈ η2
0, making the third term in the expression for

the variance in eq. (4.21) approximately zero, and the whole expression simplifies to σ2(m, w)
.=

mη0{(1−η0)µ2
w +σ2

w }. Furthermore, in Appendix A.5 we propose a saddle point approximation for

the null distribution of T (w)
E to relax the Gaussian assumption when m is not sufficiently large.
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The null hypothesis is rejected at significance level α if the observed value of T (w)
E is greater than

t (w)
E ,α

.=µ(m, w)+ zασ(m, w). (4.24)

The following theorem shows a lower bound for the power of the sum of exceedances test.

Theorem 4.3 (Power of the sum of exceedances test). Let t (w)
E ,α be the asymptotic α-quantile of the

distribution for T (w)
E under H0 defined by (4.24) with 0 <α< 1/2 and w being either 0 or 1. Consider µ0

and µ1 defined by eq. (4.22) and eq. (4.23), η0 defined by eq. (4.20) and σ2(m, w) defined by eq. (4.21).

Under the alternative hypothesis, let δt = |g (r (2)
t )− g (r (1)

t )| with Sd = {t ∈ M : δt 6= 0}, s = |Sd |, ηt =
Pr(|d̂t | > u | dt 6= 0) and µtw = E((|d̂t |−wu)2 | |d̂t | > u,dt 6= 0). If the following condition holds

∑
t∈Sd

µtwηt > sη0µw − zασ(m, w), (4.25)

then the lower bound for the asymptotic power of sum of exceedances test, with w = {0,1}, as n,mη0 →
∞, is

Pr(T (w)
E ≥ t (w)

E ,α | H1) ≥ 1−exp

{
−1

2

(∑
t∈Sd

µtwηt − sη0µw − zασ(m, w)

σH1 (m, w)

)2
}

(1+o(1)),

where σ2
H1

(m, w) can be found following eq. (A.4).

Note: Gaussian approximation represents the asymptotic power well if and only if mη0 is sufficiently

large, with u <√
2log2m being a necessary condition.

Corollary 4.3. Assume σ2(m, w)
.= mη0{(1−η0)µ2

w +σ2
w }. Let u = u(β) with β = 2(1−Φ(u)), and

let Sdu = {t ∈ M , |dt | À u} with su = |Sdu |. When (m,n,u) → ∞, under condition (4.25), if su =
k max(1, sη0, (2mη0)1/2) for some integer k > 0, and δ2

t (n/u2) →∞ for some t ∈Sdu , Pr(T (w)
E ≥ t (w)

E ,α |
H1) → 1.

1. u = 0: recovery conditions coincide with the average of squares test (Section 4.3.1).

2. u =√
2log2m −o(1): recovery conditions are similar to extreme value test (Section 4.3.2).

Proof. The proof of Theorem 3 can be found in Appendix A.7.3.

4.3.4 Estimation of dependence parameters and non-parametric distributions

Under H0, Y (1)
1 , . . . ,Y (1)

n ∼ N (0,R1) and Y (2)
1 , . . . ,Y (2)

n ∼ N (0,R2) with R1 = R2. In case Y (1)
k and Y (2)

k were

independent for all k ∈ {1, . . . ,n}, the elements in [Y (1)
1 , . . . ,Y (1)

n ,Y (2)
1 , . . . ,Y (2)

n ] would be exchangeable

(i.e., permutation invariant). For paired datasets, R12 6= 0 and standard permutation methods are not

suitable. Alternatively, we consider a resampling method which keeps paired observations together:

find [(Zπ1
1 , . . . , Zπn

n ), (Z π̄1
1 , . . . , Z π̄n

n )] where π̄k = 1−πk , and Zπk
k = Y (1)

i if πk = 0 or Zπk
k = Y (2)

k if πk = 1,

with πk ∼ Bern(1/2). The permutation process is repeated B times and for each replicate (i = 1, . . . ,B)
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the difference of Fisher transform correlation matrices, defined in eq. (4.5), is calculated and denoted

by D̂ (i ). Finally, a B ×m matrix D̃ is considered where row i contains the lower triangular matrix of

D̂ (i ).

We denote D̃2 by the elementwise product of the matrix D̃ and D̃4 by the elementwise product of

the matrix D̃2. The parameters µ2, µ4 and γ̄2 for the average of squares test defined in eq. (4.9) are

estimated using permuted samples such that

µ̂2 = 1

Bm

B∑
i=1

m∑
t=1

D̃2
i t , µ̂4 = 1

Bm

B∑
i=1

m∑
t=1

D̃4
i t , ˆ̄γ2 = 2

Bm(m −1)

B∑
i=1

∑
t<h

cov(D̃2
i t ,D̃2

i h).

Regarding the extreme value test, for each replicate of the permutation process, i = 1, . . . ,B , the

maximum T̂ (i )
M = maxt∈M |D̃i t | is computed so that for sufficiently large sample size n, T̂ (i )

M can be

considered as an independent replicate of a Gumbel distributed random variable with parame-

ters µmE (m) and σ(m). The location parameter µmE (m) of the Gumbel distribution is estimated by

maximum likelihood. Finally, for the sum of exceedances test, the parameter σ2(m, w) defined in

eq. (4.21) is estimated by maximum likelihood using permuted samples such that Pr(T w
E (u) < x |

H0)
.=Φ{x,µ(m, w), σ̂2(m, w)} where the parameter µ(m, w) is also expressed in eq. (4.21).

A non-parametric null distribution for TQ , Q ∈ S, M ,E , based on permuted samples is also con-

sidered by recording the value of B test statistics, i.e., T̂ (i )
S = m−1 ∑m

t=1 D̃2
i t , T (i )

M = maxt∈M |D̃i t | or

T̂ (i )
E =∑

t∈Su (D̃i t −uw)2, for i = 1, . . . ,B , with Pr(TQ ≤ x | H0)
.= B−1 ∑B

i=1 I (T̂ (i )
Q ≤ x).

4.3.5 Comparison of the tests

Extreme value test is more powerful when it comes to sparse alternatives whereas the average of

squares test is useful when the differential correlation matrix is non-sparse and the magnitude of the

coefficients is small. The sum of exceedances test lies in between the other two tests. For threshold u

near zero, the test statistic is similar to the average of squares test and for u ≈√
2logm it finds similar

power to the extreme value test. In between there are infinitely many possibilities and the optimal value

is difficult to find without any prior knowledge. In Appendix A.6 we describe an approach to select

the threshold that maximizes the lower bound of the power determined in Theorem 2 by integrating

out some of the unknown parameters. Furthermore, the weight w is added to the expression of the

sum of exceedances since the underlying test powers are complementary regarding sample sizes and

number of non-zero correlation differences. For instance, for w = 1 the test is powerful for highly

sparse differential correlation matrix and small sample sizes (or small magnitude for the difference

coefficients). Otherwise, w = 0 achieves the most powerful test of the two. We consider a default value

of w = 0. The theoretical results obtained in this section are completed empirically using simulated

data in Section 4.5.
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4.4 Other hypothesis testing problems using correlation matrices

4.4.1 Testing for equal correlation matrix rows in paired high-dimensional data

Consider the problem setting described in Section 4.2.2 where n i.i.d. p-dimensional random vectors

Y (1)
k = (Y (1)

k1 , . . . ,Y (1)
kp ) and Y (2)

k = (Y (2)
k1 , . . . ,Y (2)

kp ), k = 1, . . . ,n, are associated to two different classes and

jointly follow a standard multivariate normal distribution with joint correlation matrix R (determined

by R1, R2 and R12). This section studies the HT problem of equality between the row g in R1 and the

same row g in R2 with hypothesis H0 :
∑

i 6=g |r (1)
g i − r (2)

g i | = 0 vs H1 :
∑

i 6=g |r (1)
g i − r (2)

g i | 6= 0.

Recall from eq. (4.5) that D̂ denotes the matrix of Fisher transform correlation differences. We

consider an average of squares and extreme value test statistics

TS (g ) = (p −1)−1
∑
i 6=g

d̂ 2
g i , g ∈ {1, . . . , p}, (4.26)

TM (g ) = max
i 6=g

|d̂g i |, g ∈ {1, . . . , p}. (4.27)

Non parametric null distributions based on permutations are approximated for both test statistics as

described in Algorithm 1.

Algorithm 1 Null distribution and p-values for the equality of correlation rows test

1: procedure TQ (g )
2: Calculate test statistics TQ (g ) for Q = {S, M }.
3: for t in 1:B do
4: Follow Section 4.3.4 to permute data Y (1) and Y (2) to obtain matrices Zπ and Z π̄.
5: Find p dimensional vectors R̃(t )

1 (g ) = [n−1 ∑n
k=1 Zπ

kg Zπ
k ] and R̃(t )

2 (g ) = [n−1 ∑n
k=1 Z π̄

kg Z π̄
k ].

6: Calculate the Fisher transform differences of permuted-data sample correlations by

d̃ (t )
g j = {g ([R̃(t )

1 (g )] j )− g ([R̃(t )
2 (g )] j )}{(n −3)/(2−2ψ̂(t )

g j )}1/2, for all j 6= g .

7: Compute the average of squares T̃ (t )
S (g ) as defined in eq. (4.26) applied to the elements

d̃ (t )
g j , and compute the extreme value test statistic T̃ (t )

M (g ) given in eq. (4.27) using d̃ (t )
g j .

8: For Q = {S, M }, approximate the p-value of test statistic TQ (g ) by

p-val(g ) = 1

B

B∑
t=1

I (TQ (g ) < T̃ (t )
Q (g )). (4.28)

4.4.2 Testing for identity correlation matrix under a single condition

Consider n i.i.d. p-dimensional random vectors Y (1)
k = (Y (1)

k1 , . . . ,Y (1)
kp ), k = 1, . . . ,n, that follow a mul-

tivariate normal distribution with correlation R1, i.e., Y (1)
k ∼ Np (0,R1), assuming, without loss of

generality, unit variances for simplicity. This section considers the HT problem that assesses whether

the correlation R1 is or is not the identity matrix with hypothesis H0 : R1 = I vs H1 : R1 6= I . Recall

from Section 4.2.2 that R̂1 denotes the sample correlation lower-triangular matrix of random vector
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Y (1). Besides, denote by ζ̂1 the m-dimensional vector containing the Fisher transformation of sample

correlation coefficients vector R̂1 with

ζ̂1 = g (R̂1)
p

n −3 ∼ N (g (R1)
p

n −3,Ψ1), ζ̂1 = [ζ̂(1)
t ]t∈M .

Under H0, marginally ζ̂(1)
t , t ∈ M , weakly converges to a standard normal distribution.

The three test statistics proposed are equivalent to the ones for equality of correlation matrices

but here are applied to ζ̂1 instead of the difference coefficients in D̂

T I
S = m−1

∑
t∈M

(ζ̂(1)
t )2, (4.29)

T I
M = max

t∈M
|ζ̂(1)

t |, (4.30)

T I ,w
E (u) = ∑

t∈M
(|ζ̂(1)

t |−uw)2I (|ζ̂(1)
t | > u). (4.31)

Null distributions and powers can be obtained from results in Section 4.3 replacing D̂ = [d̂t ] by

ζ̂1 = [ζ̂(1)
t ].

4.4.3 Testing for identity correlation matrix rows under a single condition

Consider the problem setting described in Section 4.4.2 where p-dimensional random vectors Y (1)
k =

(Y (1)
k1 , . . . ,Y (1)

kp ), k = 1, . . . ,n, follow a multivariate normal distribution with correlation R1. This section

assesses whether a variable is or is not linear independent to all other variables with hypothesis H0 :∑
i 6=g |r (1)

g i | = 0 vs H1 :
∑

i 6=g |r (1)
g i | 6= 0. The average of adjusted square sample correlation coefficients

(S) and the maximum of the absolute value of sample correlation coefficients (M) are the test statistics

employed

T I
S (g ) =

(
n −1

n −2

)
T I

SS (g )−1

p −1
− 1

n −2
, g ∈V = {1, . . . , p}, (4.32)

T I
M (g ) = max

i 6=g
|r̂ (1)

i g |, g ∈V = {1, . . . , p}, (4.33)

where T I
SS (g ) =∑p

i=1(r̂ (1)
i g )2 is the sum of squared sample correlation coefficients of variable g .

The sum of squared sample correlations T I
SS (g ) is computationally fast to obtain for all g ∈ V

simultaneously when p À n using some algebra on the definition of correlation coefficient. Given

the standardized matrix Y (1), note that the square sample correlation of Y (1) is proportional to

(Y (1)ᵀY (1))(Y (1)ᵀY (1)) which is the product of two p ×p matrices. The same expression can be found

by employing fewer number of operations: (1) find n×n matrix A =< Y (1),Y (1)ᵀ > (2) find p×n matrix

B =< Y (1)ᵀ , A > (c) find T I
SS (g ) = {p (n −1)2}−1Bg .Y

(1)
.g .

Under the hypothesis of total independence presented in Section 4.4.2, say H0 : {r (1)
i g = 0, for all i 6=

g }, for the law of large numbers, T I
S (g ) is well approximated by a normal distribution centered at zero.

However, in the HT problem presented in this section, H0 allows cases where
∑

i 6= j , (i , j )∈V \g |r (1)
j i | 6= 0,
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so some pairs r̂i g , r̂ j g , i 6= j 6= g , can be correlated. A Monte Carlo based procedure that accounts for

this linear dependence structure is proposed to find an empirical null distribution. This is done by

replicating (i) and (ii) B times with (i) simulate n i.i.d. observations from a standard normal distri-

bution (which is the marginal distribution of any variable g ∈V ) and (ii) find the sample correlation

vector that measures the linear dependence between simulated data and all genes in the original data

Y (1). The approximate p-values of the tests are found as described in Algorithm 2. Note that the same

null distribution can be used for any g ∈V . Hence, the Monte Carlo based procedure only needs to be

done once to test all variables in the dataset.

Algorithm 2 Null distribution and p-values for the variables linear independence test

1: procedure
2: Calculate test statistics T I

S (g ) and T I
M (g ) for any g ∈V = {1, . . . , p}.

3: for t in 1:B do
4: Generate {z}n

k=1 i.i.d. replicates with zk ∼ N (0,1).

5: Compute (r̃ 1
j )(t ) = n−1 ∑n

k=1 Y (1)
k j zk , for all j ∈V ,

6: Find T̃ I (t )
S = p−1{1+∑p

j=1[(r̃ 1
j )(t )]2}, and apply eq. (4.32) to average of squares T̃ I (t )

S

instead of T I
S (g ) to obtain T̃ I (t )

S . Similarly, find T̃ I (t )
M = max

j∈V
|(r̃ 1

j )(t )|.

7: For Q = {S, M }, approximate the p-value of test statistics by

p-val(g ) = 1

B

B∑
b=1

I (T I
Q (g ) < T̃ I (t )

Q ). (4.34)

4.5 Simulation study

We analyze the performance of the proposed methods in simulated data sets. We study different

structures for the correlation matrix R directly (Section 4.5.1 and Section 4.5.3) or indirectly by setting

different graph structures for the precision matrixΩ= R−1 (Section 4.5.2). In both sections we consider

two model specifications to generate the data: (i) under H0 to evaluate the size of the testing methods;

(ii) under H1 to compare the power of the testing methods.

4.5.1 Independent datasets, dense correlation matrices

We can observe in real data, some groups of highly dependent genes whose underlying correlation

matrix is non-sparse. In such a case, we argue that asymptotic independence tests are not reliable

under H0 even when the datasets are independent. We show this in simulated data by considering a

dense correlation matrix denoted by R̃. This matrix is obtained by the sample correlation matrix of

a subset of 50 variables from the real dataset described in Section 4.6. In order to obtain a positive

definite matrix, we regularize R̃ by

Σ= R̃ + Iλ, (4.35)

where λ> 0. Note that as we increase λ, off-diagonal elements of the correlation matrix decrease.
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Data Y (1)
k ∼ N (0,Σ1) and Y (2)

k ∼ N (0,Σ2), i.i.d. for all k = 1, . . . ,n are generated using the following

specifications for the covariance matrices: (i) under H0, we consider Σ1 =Σ2 =Σ; (ii) under H1, we

consider Σ1 = Σ and for Σ2, we create a two-block diagonal matrix of sizes 40 and 10 by setting to

zero the between-block covariance elements of the matrix Σ. We refer to this model in the results

presented in Sections 4.5.4 and 4.5.5 as model 1, which is applied for n = 50,100 and λ= 1/2,1,2,3.

4.5.2 Dependent datasets, sparse correlation matrices

We generate data using joint models following notation introduced in Section 2.2. Sparse correlation

matrices are obtained by setting almost-block diagonal precision matrices, where each block has

a power-law underlying graph structure (see description in Section 5.5.1) and some extra random

connections between blocks. Let A be the adjacency matrix with the non-zeros of the precision matrix,

the coefficients of the precision matrix are simulated by

Ω(0) = [ω(0)
i j ], ω(0)

i j =


Unif(0.5,0.9) if Ai j = 1 with probability 0.5 ;

Unif(−0.5,−0.9) if Ai j = 1 with probability 0.5 ;

0 if Ai j = 0.

(4.36)

Data (Y (1)
k ,Y (2)

k ) ∼ N (0,Ω−1), i.i.d. for all k = 1, . . . ,n are generated using a direct effect model (see

definition in Section 2.2) with the following specifications for the joint precision matrixΩ: (i) under

H0, Ω is determined by ΩJ
1 = Ω(0), ΩJ

2 = Ω(0) and ΩJ
12 being a diagonal matrix with (ΩJ

12)i i = 0.6

for bp/2c diagonal elements and (ΩJ
12)i i = 0 for the other dp/2e; under H1, let D1 and D2 be two

different precision matrices which are generated with the same model as for Ω(0). We consider

ΩJ
1 = diag(Ω(0),D1, I ), ΩJ

2 = diag(Ω(0), I ,D2) and the same specification for ΩJ
12 given under H0. In

both setting, to obtain a positive definite matrix, we regularizeΩ byΩ=Ω+λI , with λ such that the

condition number ofΩ is less than the number of nodes (Cai and Liu, 2011). We refer to this model in

the results presented in Sections 4.5.4 and 4.5.5 as model 2, which is applied for p = 70,120,210 and

n = 25,50,100,200. .

4.5.3 Almost identity correlation matrices

We use a toy example to show the behavior of the linear independence tests (both identity correlation

matrix and row) when data are generated by a multivariate normal distribution with zero mean vector

and correlation matrix

R1 =



1 ρ12 0 · · · 0

1 ρ23
. . . 0

1
. . .

...

. . . ρ(p−1)p

1


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We consider different sample sizes n = 25,50,100,200 and dimensions p = 70,120,210. Besides, the

coefficient ρi j , for any j = i +1, is fixed to either 0, under H0, or 0.3 under H1. We refer to this model

in the results presented in Section 4.5.5 as model 3.

4.5.4 Power and size of the equality of correlation matrices test

We consider the average of squares test -S-, the extreme value test -M- and the sum of exceedances

test -E- for both w = 0 and w = 1 with threshold selected as described in Section 4.3.3. We compute

the empirical power of the tests to estimate Pr(Reject H0 | H1 true) as well as the test size to estimate

Pr(Reject H0 | H0 true) using significance level of α = 0.05. We approximate asymptotic null distri-

butions by assuming linear independence between elements in D̂ (denoted by AI) or by estimating

the dependence parameters using permuted samples (AD). We further approximate non-parametric

null distribution (NP) as described in Section 4.3.4. For w = 1 we only show the power of the non-

parametric null distribution which is labeled by E(NP)(1). Nevertheless, test sizes when w = 1 are seen

to be similar to the ones provided when w = 0.

In Table 4.1 we present the empirical approximations of power and size for the dense correlation

matrices scenario (model 1). Generally, tests show a good trade off between false rejection and true

rejection rates. For low regularization λ, as defined in (4.35), asymptotic linear independence tests

are not suitable with empirical sizes being larger than the expected 0.05. The average of squares test

is the one that dominates the power in this model for λ≥ 2 and gives similar powers to the sum of

exceedances test (with w = 0) for λ< 2. Sum of exceedances test with w = 1 achieves worse powers

than the test with w = 0 for large λ.

In Table 4.2 we show a similar analysis for dependent datasets with sparse correlation matrices

(model 2). Null distributions accounting for dependence (AD and NP) achieve better estimates of

the size than asymptotic linear independence tests. Particularly, in the average of squares and sum

of exceedances tests adjusting for dependence is desired to obtain a good representation of the null

distribution. The asymptotic linear independence extreme value test yields good estimates for the size.

It is slightly conservative for large p-values but these do not affect the evidence interpretation. Hence,

for sparse dependence structures, the asymptotic extreme value test could be used to speed up the

process. The sum of exceedances test with w = 1 produces consistently the highest powers among the

three tests. Contrarily of what we observe in Table 4.1, the test with w = 1 gives better powers than the

one with w = 0. Moreover, the extreme value test provides higher powers than the average of squares

for large sample sizes.

We also analyze the performance of the tests with respect to the proportion of non-zero correlation

differences ρs . In a global analysis, we compute the average power for small proportions (ρs ≤ 0.3) and

large proportions (ρs > 0.3) using the three test statistics. The sum of exceedances test has average

powers 0.426 and 0.543 respectively, the extreme value test obtains 0.373 and 0.465, and the average

of squares test produces 0.312 and 0.477. Thus, it is TS that benefits the most from the increase of the

66



Table 4.1. Size, uniformity and power of the equality of correlation matrices test using model 1 -dense
correlation matrices- (×103). Test statistics S (average of squares), M (extreme values) and E
(exceedances with w = 0 or w = 1), and null distributions AI (asymptotic independence), AD
(asymptotic dependence) and NP (non-parametric) are compared at α= 0.05 level.

n=50 n=100
λ 0.5 1 2 3 0.5 1 2 3

Empirical size
S(AD) 62 50 58 53 52 59 60 52
M(AD) 45 43 49 61 42 48 54 50
E(AD)(0) 49 54 59 48 52 50 48 54
S(NP) 61 47 54 52 53 54 57 50
M(NP) 51 44 47 59 50 50 51 48
E(NP)(0) 54 50 60 55 46 60 46 58
S(AI) 306 238 192 133 304 254 192 126
M(AI) 68 58 59 66 62 54 59 61
E(AI)(0) 103 126 92 86 200 158 121 88

ks.test p-value to test for uniformity in the correlation test p-values
S(AD) 247 23 716 317 72 400 151 79
M(AD) 865 121 835 426 147 52 245 646
E(AD)(0) 51 416 779 211 231 123 532 883
S(NP) 432 15 134 181 62 432 500 148
M(NP) 936 69 400 969 181 48 288 181
E(NP)(0) 288 618 241 500 400 723 648 785
S(AI) 0 0 0 0 0 0 0 0
M(AI) 0 0 24 27 0 0 193 150
E(AI)(0) 0 0 0 0 0 0 0 0

Empirical power
S(AD) 890 690 342 240 998 992 802 542
M(AD) 667 270 110 109 996 758 250 122
E(AI)(0) 950 735 374 202 998 992 790 447
S(NP) 897 684 380 250 998 992 806 574
M(NP) 652 280 106 105 996 766 254 118
E(NP)(0) 943 723 380 223 998 992 787 442
E(NP)(1) 940 692 304 143 998 992 687 413
S(AI) 908 588 306 236 998 990 802 450
M(AI) 702 310 126 072 996 796 248 130
E(AI)(0) 973 692 251 126 998 972 676 346

Estimated θ
θ̂m .593 .843 .915 .955 .574 .828 .912 .953

number of differential coefficients.

For model 1 (dense difference correlations matrix), the correlation between p-values for the

same test statistic using both non-parametric and asymptotic null distributions is very high (around

0.994 in average) whereas the average correlation between extreme value and average of squares

p-values is [0.61,0.48,0.36,0.30] in the four regularization parameters used. The p-values for the sum

of exceedances test (for both w), seem to be more correlated to the p-values for the other two tests

with [0.91,0.88,0.82,0.75] against the average of squares and [0.75,0.63,0.55,0.52] against the extreme

value. For model 2 (sparse difference correlation matrix), the correlations are smaller with an average

of [0.19,0.12,0.07] between average of squares and extreme value p-values for the three dimensions

used, [0.55,0.39,0.27] between average of squares and exceedances and [0.49,0.49,0.48] between

extreme value and exceedances.

We estimate the extremal index θm , which quantifies the dependence structure over high ex-

ceedances, and it is defined in Section 4.3.2. In the sparse model 2, the average estimated θm gets

close to 1 as the sample size increases. For large n, we could assume that θm is equal to 1 and use the
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Table 4.2. Size, uniformity and power of the equality of correlation matrices test using model 2
-sparse correlation matrices- (×103). Test statistics S (average of squares), M (extreme value) and E
(sum of exceedances with w = 0 or w = 1), and null distributions AI (asymptotic independence), AD
(asymptotic dependence) and NP (non-parametric) are compared at α= 0.05 level.

p=70 p=120 p=210
n 50 100 200 500 50 100 200 500 50 100 200 500

Empirical size
S(AD) 50 50 50 52 49 42 56 52 38 46 48 54
M(AD) 55 46 51 58 48 54 46 48 48 50 56 44
E(AD)(0) 50 50 52 51 56 54 56 44 50 43 46 53
S(NP) 58 54 50 52 55 48 58 50 52 50 50 53
M(NP) 55 44 51 57 48 54 46 47 47 51 54 44
E(NP)(0) 47 48 49 49 52 53 54 44 48 46 47 52
S(AI) 32 58 78 78 22 40 62 69 4 26 44 62
M(AI) 60 41 47 54 56 57 47 47 62 54 58 42
E(AI)(0) 56 42 38 66 66 47 46 52 64 52 54 46

ks.test p-value to test for uniformity in the correlation test p-values
S(AD) 1 376 37 895 0 929 351 31 0 0 886 286
M(AD) 58 662 528 266 701 836 917 423 5 837 50 498
E(AD)(0) 888 58 914 374 155 819 725 349 598 191 85 42
S(NP) 5 536 29 794 0 648 370 48 0 0 500 164
M(NP) 87 500 466 341 648 859 936 241 3 723 33 341
E(NP)(0) 43 536 913 263 43 648 794 466 610 988 241 466
S(AI) 0 0 0 0 0 0 0 1 0 0 0 0
M(AI) 173 255 19 798 513 241 298 78 435 701 19 267
E(AI)(0) 138 360 10 135 28 207 856 39 0 5 100 42

Empirical power
S(AD) 60 144 437 730 78 88 178 398 4 78 152 439
M(AD) 76 220 715 944 68 76 176 722 42 72 180 651
E(AD)(0) 101 200 631 910 80 82 170 520 70 74 180 550
S(NP) 62 150 430 720 96 106 182 404 86 94 160 440
M(NP) 82 228 706 950 60 58 174 710 44 72 174 649
E(NP)(0) 102 204 615 960 82 80 180 544 72 76 182 534
E(NP)(1) 94 316 800 984 102 94 272 816 70 84 232 836
M(AI) 64 180 458 894 76 76 180 714 56 74 168 632
S(AI) 68 152 331 630 87 111 162 401 82 91 154 391
E(AI)(0) 78 261 598 954 106 93 265 819 72 83 214 801

Estimated θ
θ̂m .790 .871 .908 .943 .788 .848 .913 .945 .770 .841 .903 .937

asymptotic approximation which would speed up the results. However, for dense correlations like

model 1, θm can be quite small (≈ 0.6 for small regularization λ) and permutations-based tests should

be used instead.

4.5.5 Power and size of other tests

The HT problems presented in Section 4.4 are also applied to simulated data. We compare the

empirical size and power for all proposed test statistics using significance level of α= 0.05. For the

equality of correlation rows test, we consider model 1 (see Table 4.3) and model 2 (see Table 4.4) to

generate the data. The empirical size is close to the expected 0.05 for all scenarios. Moreover, the

average of squares test statistic achieves larger power than the maximum test in model 1, whereas the

opposite behavior is shown in model 2. This goes in the same direction to the power found for the

equality of correlation matrices tests in Section 4.5.4.

Tests based on linear independence are contrasted using model 2 and model 3 (see Table 4.5 and

Table 4.6 for identity correlation matrix and identity correlation rows, respectively). Model 2 generates
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Table 4.3. Size and power of the equality correlation test by rows at α= 0.05 level using model 1
-dense correlation matrices- (×103). Test statistics S (average of squares) and M (extreme values) are
compared.

n=50 n=100
λ 0.5 1 2 3 0.5 1 2 3

Empirical size
S(NP) 40 45 57 59 48 55 42 54
M(NP) 50 41 47 53 52 50 48 45

Empirical power
S(NP) 263 156 77 90 418 293 176 130
M(NP) 266 122 66 60 506 286 148 91

Table 4.4. Size and power of the equality correlation test by rows at α= 0.05 level using model 2
-sparse correlation matrices- (×103). Test statistics S (average of squares) and M (extreme values) are
compared.

p=70 p=120 p=210
n 25 50 100 200 25 50 100 200 25 50 100 200

Empirical size
S(NP) 59 56 42 51 47 56 52 51 52 48 55 42
M(NP) 51 59 48 52 49 43 48 49 44 46 52 59

Empirical power
S(NP) 76 112 157 404 64 83 113 214 59 68 88 93
M(NP) 69 122 230 622 51 81 146 392 54 47 72 130

sparse correlation matrices but does not achieve the sparsity levels of model 3. The empirical size for

non-parametric and dependence-correction tests in Table 4.5 are near the desired 0.05 for all three

test statistics. However, asymptotic distributions, especially for maximum and sum of exceedances

test, fail to recover the expected size when n is small. This can be due to approximating the Fisher

transform sample correlation by a normal distribution, which seems to have problems in the tail of

the distribution. Section 4.5.6 studies this particular problem in detail using more simulations. In

terms of the power, the maximum does better than the average of squares for highly sparse correlation

matrices defined in model 3, but its over-performed by the average of squares and sum of exceedances

in the slightly less sparse correlation matrix defined in model 2.

4.5.6 Fisher transformation and estimation of correlation of correlations

The Fisher transformation g (r̂i j ) of a sample correlation coefficient r̂i j , for sufficiently large n, is

established to be well approximated by a normal distribution with expected value g (ri j ) and variance

approximately equal to n−3. We use this assumption to propose the null distribution of the asymptotic

test statistics to speed up the process, but here we want to determine if this is a reasonable assumption

when n is small using simulations.

We generate data from a multivariate normal distribution with zero mean and correlation matrices

as defined in model 2 (see Section 4.5.2) with p = 70. Initially, since we only want to analyze the utility

of the Fisher transformation, we consider independent datasets and R1 = R2. Moreover, we use several

sample sizes n = 25,50,100,150,200. For a generated data set, we estimate the difference between

Fisher transform sample correlation matrices, which is denoted by D̂ in eq. (4.5), assuming all ψ̂i j = 0
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Table 4.5. Size and power of the identity correlation matrix test using model 2 -sparse correlation
matrices- and model 3 - almost identity matrix. Several dimensions p are considered for model 2
whereas several regularization values λ are considered for model 3. Test statistics S (average of
squares), M (extreme value) and E (sum of exceedances with w = 0 or w = 1), and null distributions AI
(asymptotic independence), AD (asymptotic dependence) and NP (non-parametric) are compared at
α= 0.05 level.

p=70 (λ= 1) p=120 (λ= 3) p=210 (λ= 5)
n 25 50 100 200 25 50 100 200 25 50 100 200

Empirical size
S(AD) 56 38 54 46 68 51 55 52 56 50 53 50
M(AD) 51 44 51 49 38 50 62 50 51 50 50 42
E(AD)(0) 48 39 54 46 61 50 48 46 60 48 54 48
S(NP) 52 37 53 43 62 48 49 52 51 50 50 51
M(NP) 51 42 54 47 41 48 58 49 52 50 50 42
E(NP)(0) 45 44 52 51 58 44 50 47 58 44 50 48
S(AI) 57 39 55 46 66 50 58 53 54 50 54 52
M(AI) 108 75 64 54 136 86 80 59 166 100 68 54
E(AI)(0) 98 67 65 55 167 88 69 54 277 134 93 62

Empirical power model 2
S(NP) 444 456 848 994 112 256 412 514 60 70 130 252
M(NP) 78 116 668 928 64 56 112 180 48 52 54 100
E(NP)(0) 360 372 826 994 86 182 312 432 50 60 132 178

Empirical power model 3
S(NP) 300 772 998 1000 300 742 998 1000 302 774 1000 1000
M(NP) 108 520 990 1000 104 428 990 1000 80 378 1000 1000
E(NP)(0) 292 892 1000 1000 274 870 1000 1000 298 920 1000 1000

(due to having independent random vectors Y (1) and Y (2)). We repeat the process 500 times such

that we record a 500×m matrix with i.i.d. replicates of the lower triangular matrix of D̂. Then we

consider four statistics: (a) the mean of the average of squares by rows; (b) the variance of the average

of squares by rows; (c) the mean of the maximum of absolute values by rows; and (d) the variance of

the maximum values by rows. In Figure 4.1 we have their representation using 100 instances of the

whole process. For first and second order measures such as the mean and variance of the average

of squares, see panels (a) and (b), the sample size does not have a big impact on the values of the

test statistics. However, the behavior in the tail of the distribution, given here by the maximum is

very much dependent on n with decreasing mean and variance (see panels (c) and (d)). For n larger

than 100, the mean/variance of the maximum can be quite well approximated by the maximum of

a standard normal distribution, which is the marginal null distribution we assume for elements d̂t

in the asymptotic independence test. Moreover, in the variance of TS we can see the effect of not

accounting for the dependence coefficient γ̄2 which results in a much larger variance, constant for all

n, than the expected under a standard normal distribution.

In Section 4.2.3 we define the asymptotic correlation between Fisher transform sample correlation

coefficients [ψt ], and we employ it to standardize the Fisher transform sample correlation differences

when the observations of the two datasets are paired. The parameters [ψt ] have an asymptotic

expression which depends on the true correlation coefficients and are estimated employing sample

correlation coefficients instead. Below we show using simulations that employing estimated values

for [ψt ] increases the variance of elements [d̂t ] and in consequence the variance of the test statistics.

We consider simulations by model 2 but now with paired observations. We estimate [D̂] using
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Table 4.6. Size and power of the identity correlation matrix test by rows at α= 0.05 level using model
2 -sparse correlation matrices- and model 3 - almost identity matrix. Several dimensions p are
considered for model 2 whereas several regularization values λ are considered for model 3. Besides,
test statistics S (average of squares) and M (extreme values) are compared.

p=70 (λ= 1) p=120 (λ= 3) p=210 (λ= 5)
n 25 50 100 200 25 50 100 200 25 50 100 200

Empirical size model 2
S(NP) 58 41 52 51 54 48 51 59 46 45 56 58
M(NP) 56 39 54 41 47 58 52 48 56 43 48 50

Empirical size model 3
S(NP) 42 58 49 51 49 52 56 50 58 46 52 57
M(NP) 41 55 49 46 45 47 47 39 42 41 59 48

Empirical power model 2
S(NP) 69 97 135 182 42 61 74 94 45 51 62 86
M(NP) 61 58 117 169 67 46 65 77 46 46 54 68

Empirical power model 3
S(NP) 84 174 408 836 93 140 307 685 94 115 229 541
M(NP) 88 249 677 982 80 207 593 975 67 195 524 960

three expressions for ψ̂t for all t ∈ M : (a) true values ψ̂t =ψt ; (b) empirical marginal distribution

for ψ̂t and (c) estimated ψ̂. Note that in expression (b) we include bias and variability issues with

the fact we are using an estimator but we cancel the dependence structure present between pair of

coefficients (ψ̂t ,ψ̂h) in (c). In Figure 4.2 we show the average of two of our test statistics (average of

squares and maximum). In both cases, the effect of using an estimator for [ψt ] is visible. For instance,

using the empirical marginal distribution of ψ̂t , as expected, supposes an increase on the variance

of d̂t , and in consequence, the averages of the test statistics go up as well. However, when using the

estimator of [ψt ], since their coefficients are themselves correlated for small sample size, the variance

of the d̂t ’s diminishes and this is reflected in the average of the two test statistics with a clear decrease.

The last topic we tackle here is deciding which parametric distribution is better to approximate

the marginal distribution of d̂t when random vectors Y (1) and Y (2) come from the same observations,

and therefore [ψt ] coefficients have to be estimated. We compare the goodness of fit for the empirical

distribution of all [d̂t ] against two theoretical distributions like standard normal and t-student. To do

so we compute the average square difference between estimated values and expected value for the

same quantile in the theoretical distribution. The normal approximation seems to get a better fit than

the t-student, especially for small sample sizes (see Figure 4.3 (a)). Moreover, the mean square error

does not vary much with regards to the sample size (see Figure 4.3 (b)).

4.6 Application to psoriasis vulgaris disease and lung cancer gene

expression data

We apply the proposed HT problems to two different real case studies of gene expression data. The

first dataset contains the gene expression profiling of 82 patients with psoriasis vulgaris disease in a

paired lesional and non-lesional samples (Suárez-Fariñas et al., 2012). The second dataset represents

the gene expression in a paired tumor and healthy samples from 60 female non-smoker patients with
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Figure 4.1. Boxplots with mean and variance of TS (average of squares statistic), and mean and
variance of TM (extreme value statistic).

lung cancer (Lu et al., 2010). In both cases, there are 19,507 different genes which have been identified

by the biomaRt R package (Durinck et al., 2005).

We are particularly interested in knowing how standard gene pathways change in different medical

conditions. To assess which biological processes might be linked to changes in the gene connections

we download 1,320 gene sets from the MSig database (http://www.broadinstitute.org/gsea/

msigdb/index.jsp), which represent canonical pathways compiled from two sources: KeGG (http:

//www.genome.jp/kegg/pathway.html) and Reactome (http://www.reactome.org/). Then we

test the equality of correlation matrices in the two medical conditions by only considering genes

in each of the pathways. We also test the null hypothesis of identity correlation matrix in all these

pathways lists to highlight the most linearly dependent groups of genes. On gene level we test both

the hypothesis of equality and identity in the correlation matrices rows for all genes in the dataset.

We use non-parametric null distribution for assessing all HT problems in either of the two datasets

(psoriasis and lung cancer).

4.6.1 Testing identity and equality of correlation matrices using pathway lists

The hypothesis of identity correlation matrix (see Section 4.4.2) is evaluated for all genes within

each of the 1,320 pathway lists, for both lesional (tumor) and healthy samples. Figure 4.4 shows the
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Figure 4.2. Boxplots with mean of TS (average of squares statistic) and mean of TM (extreme value
statistic) using the true value for ψt (left), a sampled value from its empirical marginal distribution
(center) and the estimate value (right).

confidence interval for the average of squares test statistics. As expected almost all pathway lists

are highly significant (indicated by green and red lines in the plots). In the lung cancer data, test

statistics tend to be larger for healthy samples, though the largest values correspond to pathways for

tumor samples. For psoriasis data, the differences between the two classes are not as big, at least

in a general behavior, but pathways in lesional samples tend to have a larger T I
S than pathways for

non-lesional samples. Some of the pathways with largest T I
S are "REACTOME GABA A RECEPTOR

ACTIVATION", "KEGG MATURITY ONSET DIABETES OF THE YOUNG", "REACTOME OLFACTORY

SIGNALING PATHWAY", "REACTOME RECYCLING OF BILE ACIDS AND SALTS", "REACTOME LIGAND

GATED ION CHANNEL TRANSPORT", and "REACTOME SEROTONIN RECEPTORS" for psoriasis data,

and "REACTOME UNWINDING OFDNA", "BIOCARTA TCYTOTOXIC PATHWAY", "BIOCARTA TCAPOP-

TOSIS PATHWAY", "BIOCARTA THELPER PATHWAY", "BIOCARTA TCRA PATHWAY", "REACTOME

ENDOSOMAL VACUOLAR PATHWAY" for lung cancer data.

We also employ the HT problem for equality of correlation matrices in genes within the 1,320

pathways. In panels (a) and (b) of Figure 4.5 we present the approximated p-values using the three

dependence-correction tests: average of squares, maximum and sum of exceedances (see Section

3.1.2) for the psoriasis and lung cancer datasets, respectively. In the sum of exceedances test we give
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Figure 4.3. Mean square error differences for the quantile distribution of the empirical distribution of
d̂t against a N(0,1) and a t-student with n −1 degrees of freedom.

the results for w = 0, although they are very similar to the p-values found for w = 1.

Firstly for the psoriasis data, 72% of the average of squares test p-values, 34% of the extreme value

test p-values and 70% of the sum of exceedances test p-values are smaller than 0.01 and under H0 we

were expecting only 1%. About 23% of the lists have the three tests with p-values smaller than 0.01.

The correlation between average of squares and sum of exceedances p-values is 0.98, whereas the one

between average of squares and maximum is 0.42, and exceedances and maximum is 0.52. Among

others, the pathways lists that had the largest average of squares statistic are given in Table 4.7.

Table 4.7. Lists with the largest average of squares test statistic for psoriasis dataset on HT for equality
of correlation matrices. Highly overlap label corresponds to pathways lists that contain more than
50% of their genes common to another list.

----------------------------------------------------------------------
[1] "KEGG_OLFACTORY_TRANSDUCTION" (highly overlaps with [2])
[2] "REACTOME_GPCR_DOWNSTREAM_SIGNALING"
[3] "REACTOME_CLASS_C_3_METABOTROPIC_GLUTAMATE_PHEROMONE_RECEPTORS"
[4] "REACTOME_PASSIVE_TRANSPORT_BY_AQUAPORINS"
[5] "REACTOME_GABA_A_RECEPTOR_ACTIVATION"
[6] "REACTOME_INHIBITION_OF_VOLTAGE_GATED_CA2_CHANNELS_VIA_GBETA_GAMMA_SUBUNITS"
[7] "BIOCARTA_GABA_PATHWAY" (highly overlaps with [5])
[8] "BIOCARTA_ASBCELL_PATHWAY"
[9] "KEGG_PROXIMAL_TUBULE_BICARBONATE_RECLAMATION"

[10] "REACTOME_UNBLOCKING_OF_NMDA_RECEPTOR_GLUTAMATE_BINDING_AND_ACTIVATION"
----------------------------------------------------------------------

Secondly for the lung cancer data, 61% of the average of squares test p-values, 35% of the extreme

value test p-values and 63% of the sum of exceedances test p-values are smaller than 0.01. The 16%

of the lists have the three tests with p-values smaller than 0.01. The correlation between average of

squares and sum of exceedances p-values is 0.98, whereas the one between average of squares and

maximum is 0.71, and exceedances and maximum is 0.65, which are higher than the ones observed
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(a) CI psoriasis data (b) CI lung cancer data

Figure 4.4. Hypothesis testing of identity correlation matrix in 1,320 pathway lists. Confidence
interval for average of squares test statistic in (a) psoriasis and (b) lung cancer datasets.

for the psoriasis data. The 10 pathways lists that had the largest average of squares statistic are given

in Table 4.8.

Table 4.8. Lists with the largest average of squares test statistic for lung cancer data on HT for equality
of correlation matrices. Highly overlap label corresponds to pathways lists that contain more than
50% of their genes common to another list.

----------------------------------------------------------------------
[1] "REACTOME_ACTIVATION_OF_THE_PRE_REPLICATIVE_COMPLEX"
[2] "REACTOME_UNWINDING_OF_DNA" (highly overlaps with [1], [4] and [6])
[3] "REACTOME_G1_S_SPECIFIC_TRANSCRIPTION"
[4] "BIOCARTA_MCM_PATHWAY" (highly overlaps with [1] and [6])
[5] "REACTOME_ACTIVATION_OF_ATR_IN_RESPONSE_TO_REPLICATION_STRESS"
[6] "BIOCARTA_LYM_PATHWAY" (highly overlaps with [1])
[7] "BIOCARTA_SKP2E2F_PATHWAY"
[8] "BIOCARTA_IL17_PATHWAY"
[9] "PID_ATR_PATHWAY"

[10] "BIOCARTA_VITCB_PATHWAY"
----------------------------------------------------------------------

We further adjust the p-values for multiple testing by controlling the false discovery rate, and in

Figure 4.5(b) we present a Venn’s diagram of the adjusted p-values smaller than 0.05. Comparing the

results in the two datasets, the p-values tend to be smaller in the psoriasis dataset. This was expected

since the sample size for psoriasis data is fairly larger than the one for the lung cancer data. However,

the obtained test statistics are not highly correlated between psoriasis and lung cancer data (p-values

correlation of 0.13, 0.13 and 0.05 for TS , TE and TM ) which may indicate that the gene connections

are affected differently between the two type of diseases.
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Figure 4.5. P-values for average of squares, sum of exceedances and maximum test statistics where
each point corresponds to a pathway list equality of correlations p-value. Venn’s diagram shows the
number of rejected lists with an adjusted p-value smaller than 0.05.

4.6.2 Testing identity and equality of correlation matrices at gene level

We consider the HT problem of identity correlation matrix rows to find genes that act like hubs in the

tumor (lesional) samples, i.e. genes that are highly dependent to many other genes. In the psoriasis

dataset, the 93% and 87% of genes have a average of squares p-value smaller than 0.01 for lesional and

non-lesional samples, respectively, with the 84% of genes being significant in both conditions (at 0.01

level). For the maximum test, almost all genes (99% for non-lesional and 98% for lesional) achieve

p-values smaller than 0.01. The ten genes with the largest average of squares test statistic are VSX1,

CALCA, FGB, ITGA4, CFAP65, CDY1, ARPP21, CNGB1, MBD3L1 and VWA3B for non-lesional samples,

and AGXT, ADAM30, PEX5L, TRPC5, MUSK, OR2F1, RMST, ATP8B5P, LINC01541 and NEUROG2 for

lesional samples. Analogously, in the lung cancer dataset, the 71% and 75% of genes have an average

of squares p-value smaller than 0.01 for cancer and healthy samples, respectively, with the 60% of

genes being significant in both conditions (at 0.01 level). For the maximum test, 88%, for healthy,
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and 86%, for cancer, of the genes achieve p-values smaller than 0.01. The ten genes with the largest

average of squares test statistic are DPY19L4, RABAC1, MIGA2, PLA2G4F, ATAD3B, STIP1, TTC31,

FBXO3, SMAD2 and UPP1 for healthy samples, and PLIN3, LINC01088, GAST, ZNF839, KCNIP2,

CRTC1, MIGA2, RABAC1, RN7SL731P and TAGLN3 for tumor samples.

Moreover, we test whether the genes are equally correlated in healthy and unhealthy samples.

Hence, we use the testing procedure of equality of correlation matrix rows described at Section 4.4.1.

For the psoriasis dataset, the 52% and the 70% of the genes have p-value smaller than 0.01 for average

of squares and maximum tests, respectively. Besides, the 48% have both p-values smaller than 0.01.

The genes with largest average of squares statistic are IPO5, HSPA12B, CBARP, GOLGA4, CDK14,

VSTM2A, GLRX2, GATS, AQP4-AS1 and TRAV13-2. For the lung cancer dataset, the 32% (average of

squares) and 57% (maximum) of genes have p-values smaller than 0.01. The 29% of the genes have

both p-values smaller than 0.01. Important genes are FRMD5, P2RX5, PPP2R3C, SPRR1A, PRKAA1,

MMP11, GBAS, SLC27A6, TMEM65 and EPS8L3.

4.7 Discussion

In this chapter we propose three tests for equality of two correlation matrices: average of squares,

extreme value and sum of exceedances tests. These are especially useful for high-dimensional and

paired datasets. We further suggest considering dependence-correction or non-parametric tests

instead of asymptotic linear independence tests when the correlation matrices are known to be not

highly sparse. Asymptotic tests, which assume independence among sample correlation coefficients,

are much faster than the other two tests and could be used for highly sparse correlation matrices

to speed up the process. For dense correlation matrices though, asymptotic tests can produce a

non-negligible bias in the approximated p-values when the null hypothesis is true.

The idea of dependence-correction tests diverges with the methods seen so far in the literature.

For instance, the extreme value test proposed in this paper contrasts with the results by Cai et al. (2014)

who test the equality of mean vectors by employing the maximum of the square value of element-wise

differences. The authors, as we have also done in Appendix A.3, prove that the limiting distribution

of the maximum of dependent samples converges to the extreme value distribution of type I under

very mild conditions and they examine this limiting distribution to assess the evidence of the test.

We estimate the parameters using permuted samples since its known that the convergence of the

parameters to the asymptotic ones is slow and we account for bias that arise in paired observations

due to estimating correlation of sample correlation coefficients (Olkin and Finn, 1990).

In terms of test power, for a sensible selection of the exceedance threshold, sum of exceedances

test is shown to be the most powerful test for sparse alternatives. If the sparsity levels are high, the

extreme value test also provides competitive results. In contrast, for dense alternatives and small

sample size, the average of squares dominates the asymptotic power.

We use 1,320 pathway lists to test equality of gene dependence’s structures between normal and
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lung cancer (psoriasis lesional) human samples in groups of genes that are known to interact together

in a cell. A large part of the total number of lists has very small p-values. Especially, this happens in the

average of squares and sum of exceedances tests. The extreme value test also gives smaller p-values

than expected under the null hypothesis but it is more inclined to not reject H0 than the other two

tests. This could be an indication, if H1 is true, that we are closer to the dense alternative scenario

rather than the sparse scenario. This seems not unlikely as we consider genes in a single pathway

so R1 and R2 are probably dense. In contrast, when testing the equality of correlation rows, extreme

value test statistics achieve larger power than average of squares in both datasets.
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Chapter 5

Gaussian graphical lasso and selection

of sparsity tuning parameter

5.1 Introduction and motivation

In recent years, the study of undirected graphical models (Lauritzen, 1996) has been the focus of

attention of many authors. The increasing volume of high-dimensional data in different disciplines

makes them a useful tool in order to determine conditional dependence between random variables.

For instance, graphical models have been applied to gene expression data sets to find biological

associations across genes in Dobra et al. (2004) and Schäfer and Strimmer (2005), as well as in other

biological networks (Dokuzoglu and Purtucuoglu, 2017) and in social networks (Goldenberg, 2007). In

Gaussian graphical models, which are often used for finding associations between genes using high

throughput genomic data, the dependence between the genes is fully characterized by the non-zero

elements of the precision matrixΩ (defined as the inverse of the covariance matrix).

In a high-dimensional framework, where the number of variables p is larger than the number

of observations n, there is not enough information in the data available to estimate Ω by standard

methods, and hence the underlying conditional dependence (CD) graph. To address this problem,

alternative estimators have been proposed in the last two decades using additional information about

Ω such that the estimated covariance matrix and its inverse are of full rank (see Section 3.2.2). In this

chapter we consider the graphical lasso penalization method, which adds the penalty λ||Ω||1 with a

tuning parameter λ in the maximum likelihood to estimateΩ. The penalized maximum likelihood

optimization problem is solved using recursive algorithms, for instance we find that three of the most

efficient and commonly used ways to solve it are glasso by Friedman et al. (2007), neighborhood

selection (MB) by Meinshausen and Bühlmann (2006) and tuning-insensitive graph estimation and

regression (tiger) by Liu and Wang (2012).

The choice of the tuning parameter λ represents the trade-off between close fit to the data and
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sparsity of Ω, and its selection for estimation of the corresponding CD graph structure is the main

focus of attention in this chapter. Methods such as Cross Validation (CV), Akaike Information Criterion

(AIC) or Bayesian Information Criterion (BIC) have been widely used to select tuning parameters when

p is small. However, they fail once dealing with high-dimensional problems by over-fitting the graph

structure ofΩ (Liu et al., 2010; Wasserman and Roeder, 2009). The eBIC criterion introduced by Chen

and Chen (2008) extends BIC to account for high-dimensionality problems. Moreover, Liu et al. (2010)

propose selectingλ by controlling the desirable approximated variability in the estimated graphs using

a subsampling approach (StARS). This method contrasts with the usual variable selection statistics

since it only considers the estimated CD graph structure. Even though the method is promising and

gives an alternative to eBIC, it has a major drawback: another tuning parameter is needed in order to

set the maximum variability across samples which can be unknown a priori in many applications.

Moreover, our simulations show that the default values can lead to overestimation of the network

size in certain graph topologies. Meinshausen and Bühlman (2010) present a stability selection

approach which controls the graph edges false discovery rate. The authors estimateΩ by an average

subsampling graphical lasso method such that the effect of the choice of λ is very low. However, the

trade-off between false positive and true positive edges of the selected network by their subsampling

approach is worse than the one given by a network with the same number of edges using all the data

due to considering smaller effective sample sizes than the original n for estimation.

In the biological literature, the most commonly used approaches to construct gene networks are

based on clustering. This is informed by the expected presence of distinct strongly interconnected

clusters in biological networks (Eisen and Spellman, 1998; Yi et al., 2007). This gave us the motivation

to find λ such that the corresponding graph has a clustering structure which can be interpreted by a

biologist without restricting it to a block diagonal structure and hence missing potentially important

interactions.

Our aim is to select the hyperparameter λ such that (a) it produces reliable estimates of the

edges of the graph (b) the corresponding CD graph structure is interpretable in terms of network

characteristics and (c) works well for networks that arise in biological systems. In this chapter, we

propose several such approaches to selecting λ, in the framework of a general two-step procedure.

The main novelty with respect to classical approaches such as AIC or BIC is that we use only the graph

structure of the graphical lasso estimator to tune the regularization parameter λ. The first proposed

approach, path connectivity (PC), uses the average geodesic distance of estimated networks to find

the graph that corresponds to the biggest change of the number of connections and is associated

with splitting of clusters. The second method, augmented mean square error (A-MSE), similarly to

the StARS approach, controls the variability of the estimated networks in terms of graph dissimilarity

coefficients using either subsampling or a Monte Carlo based approach. The main difference from

StARS is the additional bias term to avoid having a tuning parameter. We consider the bias with respect

to an initial estimated graph structure which contains a desirable global network characteristic. For

instance, we use the AGNES hierarchical clustering coefficient (Kaufman and Rousseeuw, 2009), which
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is the third proposed method to choose λ, to select the graph that presents the highest clustering

structure. Although clustering methods exist in the literature, the novelty here is that we use them to

select the penalty parameter λ in graphical lasso estimation. The last method we employ to select the

tuning parameter is called graph vulnerability (VUL) since finds the most vulnerable estimated graph

structure, i.e., removing a variable supposes the biggest change in the resulting graph structure.

We compare performance of the proposed approaches as well as of the StARS algorithm and

the eBIC criterion on both simulated and real data. The data is a microarray gene expression data

set generated by the TCGA Research Network (http://cancergenome.nih.gov/). It contains 154

samples for patients with colon tumor and about 18,000 genes. We are particularly interested in

finding significant complex gene interactions reliably and relating the observed associations to

pathway databases which describe known biochemistry connections between genes. Simulations and

real data analysis are performed using the R package ldstatsHD, which is fully described at Chapter 7.

The rest of the chapter is organized as follows. In Section 5.2 we review some of the main algorithms

to estimate sparse precision matrices as well as their theoretical and computational properties. In

Section 5.3 we introduce the tuning parameter selection methodology and in Section 5.4 we give their

main algorithmic and computational information. In Section 5.5 we compare the performance of the

methods using simulated data and then apply them to a gene expression dataset in Section 5.6.

5.2 Gaussian graphical model

5.2.1 Problem set up

Consider n independent and identically distributed (i.i.d) observations from a Gaussian model:

Yk ∼ Np (0,Σ), k = 1, . . . ,n, assuming, without a loss of generality, that the mean is zero. CD (conditional

dependence) is totally characterized by the inverse covariance matrix Ω = Σ−1, which is widely

known as precision matrix. Two Gaussian random variables Yi and Y j are said to be conditionally

independent given all the remaining variables if the coefficientΩi j is zero. Recall from Chapter 2 that

CD is often expressed with a graph structure G(V ,E) in which each node in V represents a random

variable and there is an edge in E connecting two different nodes if the correspondent element in the

inverse covariance matrix is non-zero.

The corresponding log likelihood function forΩ is `(Ω) = logdetΩ−tr (SΩ) where S = n−1 ∑n
k=1 Y 2

k .

If S−1 exists (p < n is a necessary condition), the maximum likelihood estimator (MLE) ofΩ is given

by S−1. However, in a high-dimensional framework where the number of variables p is larger than the

number of observations n, the matrix S is singular and so cannot be inverted.

Assume that the CD graph is sparse, and hence that the precision matrix Ω is sparse. Ideally,

we would like to use a penalized likelihood estimator with the penalty proportional to the number

of non-zero elements in Ω. However, such optimization problem is non-convex and thus is very

computationally intensive. In practice, a likelihood estimator with a convex penalty term proportional
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to the `1 norm ofΩ, a graphical lasso (GL), is commonly used instead:

Ω̂λ
GL = argmax

ΩÂ0
{logdetΩ− tr (SΩ)−λ||Ω||1]}, (5.1)

where ||Ω||1 =∑p
i , j=1 |Ωi j | is the element-wise `1 norm of the matrixΩ. For small λ, the corresponding

penalized estimator of Ω tends to be dense and in the extreme (λ = 0) it coincides to the initial

maximum likelihood problem which may not have unique solution when p/n is large (Pourahmadi,

2011). As λ increases, the estimated matrix becomes more and more sparse towards a diagonal matrix.

Therefore, the choice of λ has a crucial effect on the estimated CD graph structure.

5.2.2 Graph notation and distances

We give some basic definitions and properties of networks (Costa and Rodrigues, 2007; Estrada, 2011)

which will be used throughout the chapter. The graph structure G(V ,E) is often represented by a

p ×p matrix, called adjacency matrix and denoted by AG . In the estimation of graphical models, the

off-diagonal elements of AG are determined by the precision matrix (0 if Ωi j = 0 and 1 otherwise) and

the diagonal elements are set to zero. Note that graphical models are undirected which means that

the correspondent AG is symmetric.

The distance between a pair of nodes {Vi ,V j } ∈ G(V ,E) (also known as the geodesic distance)

defines the shortest number of edges connecting node Vi to the node V j and it is denoted by gi j . If

there is no path linking the two nodes, then gi j =∞. The correlation coefficient ρi j between two

nodes {Vi ,V j } ∈ G(V ,E) and the corresponding dissimilarity measure di j are given by

ρi j = ηi j /
√
κiκ j , with di j = 1−ρi j , P = [ρi j ], D = J −P (5.2)

where ηi j is the number of neighbors shared by the nodes Vi and V j , κi is the degree of the node Vi

defined as the number of nodes that are directly connected to Vi and J is the matrix of ones.

5.2.3 Coordinate descent for regression lasso and Gaussian graphical lasso

In this section, we describe the coordinate descent procedure presented in Friedman et al. (2007) that

is used to estimate the lasso regression coefficients and it is also a fundamental step in the Gaussian

graphical lasso algorithm. We present the standard glasso method by Friedman et al. (2007) as well as

the neighborhood selection strategy by Meinshausen and Bühlmann (2006) and the tiger extension by

Liu and Wang (2012).

Coordinate descent for estimation of regression coefficients

Let y be a n vector with i.i.d. realizations of a Gaussian random variable and let X be a n ×p matrix
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with explanatory variables. The regression lasso optimization problem is defined by

β̂λl asso = argmin
β

{
1

2n
||y −Xβ||22 +λ||β||1

}
, (5.3)

where β̂λl asso are the estimated regression coefficients with tuning parameter λ. Note that eq. (5.3) is

equivalent to solving

β̂λl asso = argmin
β

{
1

2n

n∑
k=1

(yk −Xk jβ j −
∑
i 6= j

Xki )2βi +λ
∑
i 6= j

|βi |+λ|β j |
}

. (5.4)

This problem is solved by a coordinate descent algorithm (Friedman et al., 2007), which is an iterative

procedure where regression coefficients are estimated one by one keeping all the other values fixed.

For instance, setting βi = β̃i , the parameter β j is estimated (and it is denoted by β̃λj ) by minimizing

expression (5.4) with respect to β j . The solution of the minimization problem is found by

β̃λj ← ST

(∑n
k=1 Xk j (yk −

∑
i 6= j Xki β̃i )∑n

k=1 X 2
ki

,λ

)
, (5.5)

where ST is the soft thresholding operator defined by

ST (z,λ) = si g n(z)(|z|−λ)+.

Given starting values for (β̃ j )p
j=1, all the coefficients are updated using eq. (5.5) iteratively until

convergence. Friedman et al. (2007) show that the (β̃λj )p
j=1 values converge to (β̂λl asso j

)p
j=1.

Glasso

Banerjee et al. (2008) initially proposed partitioning Σ̂ (the estimator of the covariance matrix Σ) and

its inverse Ω̂, with Σ̂= Ω̂−1, such that the row and column of interest (the variable i ) are relocated in

the last row and column as follows

Σ̂=
 Σ̂−i ,−i Σ̂−i ,i

Σ̂i ,−i Σ̂i ,i

 , Ω̂=
 Ω̂−i ,−i Ω̂−i ,i

Ω̂i ,−i Ω̂i ,i

 ,

and identically for the sample covariance matrix,

S =
 S−i ,−i s−i ,i

si ,−i si ,i

 .

Using this scheme, Friedman et al. (2007) show that the graphical lasso maximization problem defined

in eq. (5.1) is equivalent to solving p minimization problems

β̂i = argmin
βi

{
1

2
||Σ̂1/2

−i ,−iβi − Ω̂1/2
−i ,−i si ,−i ||+λ||β||1

}
, (5.6)
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where regression coefficients in β̂i , defining a vector of size p −1, are linked to Σ̂ by Σ̂i ,−i = Σ̂−i ,−i β̂i .

Moreover, the corresponding row of the precision matrix is determined by Ω̂i ,−i =−β̂i Ω̂i ,i and Ω̂i ,i =
1/(Σ̂i ,i − Σ̂i ,−i β̂i ). The authors present a recursive algorithm to find both Σ̂ and Ω̂ based on the

following steps:

1. Given the tuning parameter λ, initialize the estimated covariance matrix by Σ̂= S +λI .

2. Solve the problem in (5.6) for all the nodes permuting Σ̂ and Ω̂ such that in each case the target

node occupies the last row and column of the matrix. The coefficients in βi could be updated

by coordinate descent using soft-thresholding under each βi j , for any j 6= i . For instance, let

W = Σ̂−i ,−i and u = s−i ,i , regression coefficients in the p −1 vector βi are updated iteratively by

β̂i j = ST (u j −∑
h 6= j Wh j β̂i h ,λ)/W j j .

3. Continue until convergence in Σ̂ and Ω̂.

Neighborhood selection

An alternative interpretation of the graphical lasso problem is presented in Meinshausen and Bühlmann

(2006). Even though the authors do not propose an algorithm to find the precision matrix, they recover

in an elegant way the correspondent graph G(V ,E), which describes the non-zero structure in the

precision matrix. They introduce the concept of neighborhood selection: given the node i ∈V , find

the smallest subset of nodes in V \ {i }, which will form the neighborhood of i , denoted by Ynei , such

that Yi is perpendicular to all the remaining data (Y \ Ynei ). This problem can be solved by using a

lasso type constraint for the number of nonzero elements.

Tiger

The minimization problem proposed by Liu and Wang (2012) is of similar fashion as the one given in

(5.6). It estimates the precision matrix by solving the next p lasso regressions problems

β̂i = argmin
βi

{
1p
n
||Yi −Y−iβi ||2 +λ||βi ||1

}
, i ∈ {1, . . . , p}. (5.7)

by coordinate descent using a Lagrangian reformulation. The estimator ofΩ is found by computing

the next three steps

1. β̂i = argmin
βi

{(1−2Ω̂−i ,iβi +βᵀ
i Ω̂−i ,−iβi )1/2 +λ||βi ||1} which can be solved by the coordinate

descent algorithm presented above.

2. τ̂i = (1−2Ω̂−i ,i β̂i + β̂ᵀ
i Ω̂−i ,−i β̂i )1/2.

3. Given Γ̂= diag(S), Ω̂i i = τ̂−2
i Γ̂−1

i i and Ω̂−i ,i = τ̂−2
i Γ̂−1/2

i i Γ̂−1/2
−i ,−i β̂i .
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5.2.4 Theorethical and computational comparison of the methods

The most relevant assumptions of the glasso, neighborhood selection and tiger approaches are the

following:

Allowing high-dimensional cases (p À n): for a constant γ > 0, neighborhood selection assumes

that p = O(nγ) and glasso takes p ≤ nγ. Tiger relaxes the high-dimensionality condition by

lim
n→∞γ

√
(log p)/n = 0, thus assuming that log p grows slower than n.

Non-singularity inΩ: it is shared by all the studied methods. Denote by ϕ(Ω) the vector with eigen-

values of Ω, the authors bound the condition number of Ω given a positive constant c by

ϕmax (Ω)/ϕmi n(Ω) < c.

Sparsity inΩ: neighborhood selection assumes sparsity in the adjacency matrix AG (defined in

Section 5.2.1) such that the sum of non-zero elements in each row is less than the sample size.

Tiger also constrains the number of edges so the sum of non-zero elements in each row is less

than a constant γ with γ2 log p = o(n).

Marginal variance of Y and magnitude in the elements ofΩ: tiger assumes that the marginal vari-

ance of Y do not diverge fast (max j Σ
2
j j < n

4log p ) as n grows and neighborhood selection imposes

that the non-zero elements of Ω are bounded away from 0 which makes the recovery of the

network more feasible.

If the assumptions above hold, the Frobenius loss function for Ω̂ using the glasso algorithm (Zhou

et al., 2010) is given by

||Qλ
g l −Ω||F =Op

(
2M

√
(p + s) logn

n2/3

)
,

where p + s =O(n2/3/logn), large constant M and λn ³
√

logn
n2/3 . Similarly, for the tiger estimator, the

Frobenius norm error between Ω̂ andΩ is

||Qλ
t i g −Ω||F =Op

k||Ω||1
√

(p + s) log p

n

 ,

where λn ³ ζπ
√

log p
2n with ζ ∈ [

p
2/π,1]. The norm error by tiger is lower than glasso if p =O(n). The

underlying graph structure ofΩ is recovered using tiger by

inf
n→∞P (A ⊂ Ât i g ) = 1,

which is slightly more conservative than the asymptotic result for the neighborhood selection algo-

rithm, that recovers A by

P (Âλ
mb = A) = 1−O(exp(−cnε)), n →∞ and ε> 0, c > 0.
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Tiger and glasso are asymptotically tuning-parameter free, meaning that the optimal convergence

rates defined above hold for any λ in its specified interval. The convergence values for the neighbor-

hood selection approach depend on the selection of the optimal tuning parameter λ or prediction-

oracle solution (Meinshausen and Bühlmann, 2006), i.e.,

λor acl e = argmin
λ

E(Ỹi −
∑

j∈nei

qλj i Ỹ j ), (5.8)

where nei defines the neighborhood of conditional dependent variables for the target variable i . The

problem is that Ỹ is a new unknown matrix for Y and cross validation is normally used to approximate

expression (5.8).

In terms of computational time, neighborhood selection is the fastest algorithm of the three, with

glasso being slightly faster than tiger. A comprehensive comparison of these methods as well as some

other approaches like the PC-algorithm (to find a directed acyclic graph -DAGs-) using simulated data

is given in Albieri and Didelez (2014).

5.3 Regularization parameter selection

5.3.1 General two step procedure to select the tuning parameter

The `1 penalized maximum likelihood estimator defined in (5.1) requires the selection of a regular-

ization parameter λ. If the `1 penalization genuinely represented our true prior knowledge about

Ω then one of the standard methods such as the maximum marginal likelihood or cross validation

for the elements ofΩ could be used. However, the `1 penalty here is used due to its computational

convenience, replacing the `0 penalty, so these methods are not appropriate. It is well known for the

problem of estimating sparse vectors in high-dimensions with the lasso penalty, that the variable

selection part, with an appropriate λ, is consistent, however, the estimation of the non-zero values

usually has some bias (Wasserman and Roeder, 2009; Gu et al., 2013). This can be due to the convex

relaxation of the desired `0 penalty to the computationally efficient `1 penalty. Therefore, we suggest

to employ methods that use only the variable selection part from the glasso, Ĝλ(V ,E), for tuning the

hyperparameter λ.

We propose the following two step procedure for estimating λ:

1. Set Ω̂λ
GL as in equation (5.1) for all λ ∈Λ,Λ⊂ [0,λmax ], λmax > 0.

2. Choose λ̂= argminλR(λ,Ĝλ(V ,E),G̃(V ,E))

using risk functions R that are based only on CD graphs Ĝλ(V ,E) and (possible) initial graph G̃(V ,E).

This procedure combines computational efficiency of the lasso algorithm with the choice of λ that

optimizes relevant characteristics of the CD graph such as connectivity, clustering structure, etc.
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5.3.2 Proposed risk functions

We propose several risk functions to select λ that monitor network characteristics of the conditional

dependence graphs that can be applicable to genomic data. It has been observed (Yi et al., 2007) that

molecules in a cell work together in groups, with some – usually less strong – interaction between the

groups. This motivates our choice of risk functions to encourage a clustering structure in the estimated

graphs. We further present the method developed in Liu et al. (2010) to select the tuning parameter by

controlling the estimated variability of the graph and the eBIC likelihood-based approach described

in Chen and Chen (2008). Both methods are compared to our proposed approaches in simulated data.

StARS regularization parameter selection

Liu et al. (2010) propose a resampling approach to select λ. The procedure is based on subsampling

without replacement T samples of size b from the n ×p matrix Y . The graph structure Gλ (t )(V ,E)

is estimated (e.g., using neighborhood selection, glasso or tiger) for all t = 1, . . . ,T . Let θ̂λi j be the

proportion of times that an edge exists connecting two nodes, i.e.,

θ̂λi j = T −1
N∑

t=1
I (Âλ (t )

Gi j
= 1).

Assuming that Âλ (1)
Gi j

, ..., Âλ (T )
Gi j

are independent, the proportion θ̂λi j can be viewed as an estimator of

the parameter of a binomial distribution, whose variance is given by var(θ̂λi j ) ≈ ζ̂λi j = 1
T θ̂

λ
i j (1− θ̂λi j ).

The average of ζ̂λ, denoted by D̄λ =
∑

i< j ζ̂
λ
j i /m for m = p(p −1)/2, can be understood as a measure of

stability of all edges for a given graph with regularization parameter λ. The selection of λ by StARS

depends on the amount of variability that is allowed in the graph

λst = sup{λ : D̄λ ≤β} (5.9)

where β is a power tuning parameter which controls the magnitude of this variability. Generally, a

small β corresponds to a large λ and a high β consequently gives a low λ. We assume β = 0.05 for

all simulated scenarios presented in the Section 5.5 which is the default value proposed in Liu et al.

(2010). The motivation behind this method resides in the fact that the problem of selection of λ is

transformed to the selection of the maximum amount of variability β in the graph, which might be

easier to interpret.

Path connectivity risk function

To motivate the path connectivity risk function, observe the following obvious property of the graph

Ĝλ(V ,E) that corresponds to the penalized estimator Ω̂λ defined by (5.1): for small λ, the likelihood

term dominates and the estimator Ĝλ(V ,E) is usually a dense graph with Ω̂λ closely fitting the data,

and for large λ, the penalty term dominates and the corresponding estimate is a very sparse graph

with Ω̂λ not fitting the data well. Thus, for growing values of λ, there is a decrease in graph complexity,

and the aim here is to capture the value of λ that corresponds to the largest change in the complexity
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of the graph.

For simplicity, consider a grid of values of λ, Λ= (λk )M
k=1 such that λk −λk−1 = h, k = 2, . . . , M , and

the underlying estimated graphs Ĝλ(V ,E), for all λ ∈Λ. Path connectivity (PC) is a novel approach to

find λ that finds the biggest change in graph complexity between the graphs Ĝλ corresponding to two

consecutive values of λ ∈Λ. In this case the measure of graph complexity is calculated by the geodesic

distance mean statistic

H(λ) = 2

p (p −1)

∑
i< j

ĝi j (λ)I (ĝi j (λ) <∞), (5.10)

where ĝi j (λ) are the geodesic distances for the graph Ĝλ(V ,E) as defined in Section 5.2.1. To find

the largest change in H(λ), consider the first order differences of H(λ) by Dh(λ) =∆h H(λ), where ∆h

refers to the difference operator with bandwidth h. The regularization parameter selection by PC is

given by the λ that produces the most rapid relative descent in the number of graph connections

λpc = arg min
λk∈Λ

RPC (λk ) = arg min
λk∈Λ

{− ∣∣Dh(λk )/D̄h(λk )
∣∣} , (5.11)

where λk is the k-th ordered element inΛ and D̄h(λk ) is the running average defined as the average

of elements Dh(λ) with λ ∈ {λ1, . . . ,λk }. The difference of the geodesic distance mean is divided by

D̄h(λk ) in eq. (5.11) to favor big jumps for larger λk (and sparser Ĝλ(V ,E )) in comparison to the jumps

for smaller λk which correspond to denser graphs.

In Figure 5.1 we illustrate the motivation of using the PC selection of λ in simulated data (see

Section 5.5 for details). The true CD graph structure defined by three non-overlapping clusters is

plotted in Figure 5.1(a). We show the geodesic distance mean as function of λ for graph estimations in

Figure 5.1(d). This presents a few big jumps which are related to the separation of clusters. The last

one gives the selected graph by PC and is due to the partition of two clusters (see Figure 5.1(b) for

the selected λpc = λk and Figure 5.1(c) for the previous graph structure defined by λk−1). This is a

generally observed behaviour in both simulated and real gene expression datasets. In Figure 5.1(e) we

show the density estimates of λpc using 100 i.i.d. datasets with n = 200, p = 350 and two theoretical

graph structures: hub-based clustered graph as shown in Figure 5.1(a) and non-clustered/random

graph structure as shown in Figure 5.1(f). We can see the clear peak around λ= 0.25 for the clustered

data against a flatter empirical distribution for the non-clustered data.

A-MSE risk function

The idea explored in this section is to use a risk function based on network characteristics such as

dissimilarities of the graph defined by eq. (5.2). Ideally, we would like to find λoracle that minimizes

RMSE (λ) = E(
∑
i> j

|di j − d̂i j (λ)|q ), (5.12)

for some q ≥ 1 where di j are the dissimilarities of the true graph and d̂i j (λ) are the dissimilarities

of the CD graph estimated by expression (5.2) for a given tuning parameter λ. For q = 2, this risk
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(a) True clustered network

TP = 155 FP = 47

(b) Estimated graph with λ=λpc

TP = 145 FP = 59

(c) Estimated graph with λ=λpc −1.
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Figure 5.1. Path connectivity regularization parameter selection (PC) using the clustered graph
structure in (a) to generate the data. Figure (b) shows the selected network by PC and (c) its previous
estimated network. In both networks, true positive edges are in green whereas false positives are in
red. The graphical structure in (b) differs from the one in (c) since the two clusters in the bottom are
no longer connected by a (false positive) edge. Figure (d) shows the geodesic distance mean statistic
over several values for λ in which the triangle point is λpc . Figure (e) illustrates the empirical
distribution of λpc over 100 i.i.d. instances of data with true graph structure in (a), with black solid
line, and true graph structure in (f), with grey dashed line. The first concentrates the values to a peak
at 0.25 whereas the second is more disperse leading to values of λpc ranging from 0.27 to 0.35.

function can be expressed as a sum of the variance terms and the sum of the squared differences

between the initial and the current estimator (the “bias” term),

RMSE (λ) = ∑
i> j

[E(E[d̂i j (λ)]− d̂i j (λ))2 + (E[d̂i j (λ)]−di j )2]. (5.13)

Note that the first term in (5.13), the variance of the estimated distances, gives a stability measure

similar to the one proposed in StARS (the latter uses the adjacency matrix instead of the dissimilarities).

However, the addition of the bias term for the distance estimator permits avoiding the selection of the

power tuning parameter β that controls the desired variability in the StARS approach.

The risk function RMSE (λ) depends on the unknown true graph structure of Ω; in practice, an

unbiased estimator of RMSE (λ) is used, commonly obtained by subsampling (bootstrap, cross vali-

dation) by comparing estimated values to observations. However, the problem in this setting is that

direct observations of di j are not available. To overcome this issue we propose to use an initial graph
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estimate G̃(V ,E ) and its dissimilarities coefficients [d̃i j ] in place of observed data. Thus, the choice of

λ is given by

λamse = argmin
λ∈Λ

R̂AMSE (λ) = argmin
λ∈Λ

∑
i> j

Ê|d̃i j − d̂i j (λ)|2, (5.14)

where Ê indicates the estimation of the expected value, which is done using either subsampling or

Monte Carlo based approaches.

The proposed RAMSE (λ) risk can be applied to other network characteristics. By the definition

of graph dissimilarities, di j = 1 if nodes i and j are neither directly nor indirectly (share neighbor)

connected. Let hi j = 0 if σi j = 1−di j = 0 and hi j = 1 if σi j > 0. For sparse networks, there are many

(hi j = 0)i< j and only few (hi j = 1)i< j . Applying the RAMSE (λ) to the simplified similarity coefficient

[hi j ] instead of [di j ], leads to

Rh
AMSE (λ) = E

∑
i< j

(hi j − ĥi j (λ))2 =Ch +E
∑

(i j )∈θ(λ)
(1−2hi j ) =Ch +E[T P (λ)−F P (λ)],

where θ(λ) = {(i , j ); i < j & ĥi j (λ) = 1}, FP(λ) = ∑
i< j I [hi j = 0, ĥi j (λ) = 1], TP(λ) = ∑

i< j I [hi j =
1, ĥi j (λ) = 1] and Ch is independent of λ. Minimizing Rh

AMSE (λ) is the same as maximizing the

TP and FP differences (also known as Youden index).

Since the true values of [hi j ] are unknown, here we assume that an initial graph with “best"

global characteristics is available, i.e., exists λ̃ such that
∑

i< j hi j ≈∑
i< j ĥi j (λ̃). An approximation of

E[FP(λ)−TP(λ)] is then found by subsampling or Monte Carlo based approaches with

λh
amse = argmin

λ
R̂h

AMSE (λ) = argmin
λ

∑
i> j

Ê|ĥi j (λ̃)− ĥi j (λ)|2. (5.15)

In practice, biologists often use clustering algorithms to discover groups of genes. Hence, we propose

to use the output of a hierarchical clustering algorithm as an initial estimate of the graph to character-

ize global structure for the dissimilarities [di j ]. We have investigated several clustering algorithms

on real and simulated data, and we have not found much difference in the resulting graph estimate.

Below we present the AGNES clustering method.

AGNES risk function

Clustering of features using a dissimilarity measure has been intensively studied in the literature.

Here we focus on the algorithm AGNES (AGglomerative NESting) which is presented in Kaufman

and Rousseeuw (2009, chap. 5) and is implemented in the R package cluster (Rousseeuw et al.,

2013). AGNES finds clusters iteratively joining groups of nodes with the smallest average dissimilarity

coefficient. This average is found by considering the dissimilarity coefficients between all possible

pairs of nodes coming from two different clusters. Moreover, AGNES provides an agglomerative

coefficient (AC) that measures the average distance between a node in the graph and its closest cluster
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of nodes. We propose to choose λ that maximizes the AC coefficient

λac = argmin
λ∈Λ

R̂AGN ES (λ) = argmin
λ∈Λ

{−AC (λ)}. (5.16)

The details of the AGNES algorithm and the definition of the coefficient AC can be found in Section

5.4. The matrix of dissimilarities D obtained by (5.2) gives a good representation of the complexity of

a given graph, so, in addition to being applied as an initial estimate for the A-MSE method described

above, AGNES can also be used as a method of choosing λ.

Vulnerability risk function

Another proposed approach to select λ corresponds to finding the graph that is most vulnerable from

a range of estimated graphs. Vulnerability (VUL) is measured by

RV U L(λt ) =−
p∑

i=1

Eλt −Eλt

g

Eλt ,

where Eλ is the global efficiency of the original network Ĝλ(V ,E ) and Eλ
g is the global efficiency of the

same network once eliminating gene g and their underling connections, which can be expressed by

Ĝλ(V \ g ,E \ {g ↔ ne(g )}). Thus, it measures the effect of removing a node in the estimated network.

Global efficiency is defined here by the harmonic mean of the geodesic distance

Eλ = 2

p (p −1)

(∑
i< j

1

ĝi j (λ)

)−1

. (5.17)

We propose to choose λ by

λvul = argmin
λ∈Λ

R̂V U L(λ) = argmin
λ∈Λ

{
−

p∑
i=1

Eλt −Eλt

g

Eλt

}
. (5.18)

eBIC risk function

The eBIC criterion to select λ is presented in Chen and Chen (2008) and provides an extension of

BIC for high-dimensional data. As for the standard BIC, it is a likelihood-based expression, so the

precision matrixΩ needs to be estimated. The expression for eBIC risk function is

ReB IC (λ) =− logdetΩ̂λ− tr (SΩ̂λ)+K log(n)/2+2φ log(τ(Ω̂λ)), τ(Ω̂λ) =
(

K

s(Ω̂λ)

)
,

where s(Ω̂λ) is the number of non-zero elements in the precision matrix estimation and 0 ≤ φ ≤ 1

weights the importance of the sparsity models. For φ= 0, this risk coincides with the B IC criterion.

The tuning parameter selection is given by

λeB IC = argmin
λ

ReB IC (λ). (5.19)
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5.3.3 Comparison of the methods

Table 5.1 provides some of the main properties of the 6 risk functions discussed in Section 5.3.2, which

are the four proposed methods, as well as StARS (Liu et al., 2010) and eBIC (Chen and Chen, 2008).

Likelihood-based risk functions to select λ such as AIC, BIC (which are presented in Section 3.5) or

eBIC (described above) are useful to compromise between goodness of fit to the data and model over-

fitting. The additional AIC penalty (given by p (p −1)) is smaller than BIC (given by p (p −1)log(n)/2)

even for very small n. Hence, the selection of λ by AIC results in a denser CD graph structure ofΩ than

by BIC. Moreover, eBIC, which penalizes the chances of estimating a graph structure with a certain

sparsity level, encourages extremer graph sizes, both highly dense and highly sparse graphs, than

BIC as the weight φ grows towards 1. StARS gives a good alternative to select λ when only estimating

graph structures. It transforms the selection of λ problem to the choice of the maximum expected

variability allowed in the graph. Even though such a choice is more intuitive than the direct selection

of λ, we find it difficult to use without any prior information; our simulations show that using the

default value of the tuning parameter results in high number of false positive edges (see Section 5.5.4).

We provide two computationally fast approaches, AGNES and PC, and the slightly more com-

putationally challenging A-MSE and VUL methods. The AGNES selection tends to find the most

clustered graph possible such that different groups of nodes can be interpreted and analyzed. This is

found to be a good choice of λ to recover global graph structure characteristics when the true preci-

sion is block diagonal (see Section 5.5.5 for simulated data analysis). The A-MSE selection uses the

AGNES estimator as the initial graph structure with the aim to improve estimations of local network

characteristics. The value of λ selected by A-MSE is usually smaller than the one given by the initial

estimator (AGNES), and it is used to stabilize the trade-off between false positive and true positive

edges in the original estimator (AGNES) when n is small (see Section 5.5.4 for simulated data analysis).

Moreover, as the sample size increases, the value of λ chosen by the A-MSE method tends to the

original estimator of λ (AGNES). Path connectivity provides an initial good choice of λ to find the most

sparse graph that is easy to interpret. Starting from the sparsest graph and proceeding to denser graph

structures, the PC method monitors the first big change in connectivity of the estimated networks,

which is frequently associated with cluster agglomerations. Finally, the graph vulnerability selection

approach encourages graph structures that are highly impacted by elimination of variables. This

reflects a network characteristic that could also be used individually to each variable in the dataset to

measure its importance in the conditional dependence graph.

5.4 Algorithms

5.4.1 Path connectivity regularization parameter selection

The procedure to select λ by path connectivity is detailed in Algorithm 3. It is generally fast and

straightforward, i.e., does not require any additional tuning.
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Table 5.1. Risk functions main characteristics that are separated between statistics that use the
likelihood expression (eBIC) and statistics that only use the graphical structure of the estimated
precision matrices (PC, A-MSE, AGNES, StARS, VUL).

method penalized uses network subsampling fully fast highly sparse
likelihood characteristics. automatic graph estimates

PC X X X X
A-MSE X X X X
AGNES X X X
VUL X X X
StARS X X
eBIC X X X X

Algorithm 3 Path connectivity algorithm

1: procedure RPC (λ)
2: SetΛ= (λk )M

k=1 with λk −λk−1 = h, k = 2, . . . , M .
3: for k in 1 until M do:
4: Estimate the graph Ĝλk (V ,E) using eq. (5.1) and calculate its geodesic distance matrix

[ĝi j ] as in eq. (5.2).
5: Calculate geodesic distance mean H(λk ) = m−1 ∑

i< j ĝi j (λk )I (ĝi j (λk ) <∞)
with m = p(p −1)/2.

6: Calculate Dh(λk ) = H(λk )−H(λk−1) and the running average
D̄h(λk ) = 1/(M −k −1)

∑M
j=k Dh(λ j ) for (λk )M

k=2.

7: Return Dh(λk )/D̄h(λk ), k = 2, . . . , M .

5.4.2 A-MSE regularization parameter selection

The subsampling procedure to select λamse is presented in Algorithm 4. Following Meinshausen and

Bühlman (2010), the effective sample size is chosen to be B = 0.5n since the procedure gets the closest

to bootstrap. Nevertheless, other effective sizes could be employed, e.g., Liu et al. (2010) suggest to

use B = 10
p

n.

Algorithm 4 Subsampling approach to approximate (5.13)

1: procedure RAMSE (λ)
2: SetΛ= (λk )M

k=1 and number of subsampling replicates T.
3: for t in 1 until T do:
4: Subsample B ⊂ {1 : n} and set YB = (Y j , j ∈ B).
5: Estimate the graphs Ĝλk (t )(V ,E) for all λk ∈Λ using YB .

6: Find dissimilarities of Ĝλk (t )(V ,E) by d̂ (t )
i j (λk ) = 1−η(t )

i j (λk )/
√
κ(t )

i (λk )κ(t )
j (λk ).

7: Set initial graph dissimilarities d̃i j (λk ) for all i ≤ j .

8: Return T −1 ∑T
t=1{d̃i j (λk )− d̂ (t )

i j (λk )}2 for all λk ∈Λ.

The algorithm to select λ by A-MSE using a Monte Carlo based approach is described in Algorithm

5. It is based on simulating n i.i.d. samples y ′
k ∼ N (0,Ω̂λ̃), for k = 1, . . . ,n (with same sample size

n), where Ω̂λ̃ is the estimated precision matrix (using λ̃). For the generated new data, graphical

lasso estimates using the same tuning parameters sequence Λ = (λk )M
k=1 are found. Let ĥ′

i j (λ) be

the λ-estimated simplified similarity coefficient obtained using the generated new samples. We

conjecture that if (A1)
∑

i 6= j ĥi j (λ̃) ≈ ∑
i 6= j hi j , with hi j being the true values, the sum of squared

differences between simplified ĥ′
i j (λ) and the initial ĥi j (λ̃) is a good approximation of the sum of
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squared differences between ĥi j (λ), for the original graphical lasso, and hi j . Note that under the

global characteristic assumption (A1), when n →∞, Ω̂λ̃→Ω and R̂h
AMSE (λ) → Rh

AMSE (λ).

Algorithm 5 Monte Carlo approach to approximate (5.14)

1: procedure R(λ)
2: SetΛ= (λk )M

k=1 and initial λ̃ ∈Λ.

3: Estimate β̂ by using p-regression models: i.e., Yi ∼ N (Yneiβi ,nei ,σ2) where

nei = {∀ j : Âλ̃
i j = 1}.

4: Find Ω̂λ̃ by symmetrizing the matrix β with unit diagonal (i.e., use forceSymmetric from R
package Matrix).

5: Find R̂ λ̃ by inverting Ω̂λ̃ using a quadratic regularization (Danaher et al., 2014).
6: for t in 1 until T do:
7: Generate n i.i.d. samples y (t )

k ∼ N (0, R̂ λ̃), for k = 1, . . . ,n.

8: Estimate the graphs Gλk (t )′ for all λk ∈Λwith the new sampled data.

9: Find dissimilarities d (t )′
i j (λk ) = 1−η(t )′

i j (λk )/
√
κ(t )′

i (λk )κ(t )′
j (λk ) and simplified

10: similarities [ĥ(t )′
i j (λ)].

11: Return T −1 ∑T
t=1{ĥ(t )′

i j (λk )− ĥi j (λ̃k )}2.

The Monte Carlo approach does not depend on extra parameters whereas setting a re-sampling

sample size is needed for the subsampling approach. However, if Ω̂λ̃ is quite different to the trueΩ,

which happens for small sample sizes, locally, hi j will be quite different to h̃i j and the estimator of λ

will not be reliable.

5.4.3 AGNES regularization parameter selection

The AGNES iterative clustering algorithm, including the agglomeration coefficient that is used to

select λ, is detailed in Algorithm 6. The input to the algorithm is a dissimilarity matrix D = [di j ] = D̂(λ)

based on the graph Ĝλ corresponding to the estimator Ω̂λ defined by eq. (5.1). AGNES performs

hierarchical clustering by iteratively joining groups of nodes with the smallest average dissimilarity

coefficient, starting with individual nodes as single clusters and finishing with a single cluster of all p

variables. Let (C (t )
1 , . . . ,C (t )

p ) be a partition of (1 : p) at iteration t , and let δ(t )
k,` denote a dissimilarity

between clusters C (t )
k and C (t )

m . We also record the dissimilarity for each node when it merges with

another cluster or node for the first time, denoting it by δ?j , j = 1, . . . , p, and the distance δ?max between

the two clusters merged at the last step into the single cluster.

The coefficient AC (λ) measures the average distance between a node in the graph and its closest

cluster of nodes. When the dissimilarities within the clusters are small in comparison to the maximum

dissimilarity, then 1−δ?j /δ?max is large for all j and AC (λ) is consequently high.

5.4.4 Vulnerability regularization parameter selection

The vulnerability algorithm used to select λ is presented in Algorithm 7. This results to a computation-

ally intensive algorithm, i.e., M ×p graphical lasso models need to be computed where M is the size
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Algorithm 6 AGNES clustering algorithm

1: procedure RAGN ES (λ)
2: Initialization: take each node as an individual cluster, i.e. set C (0)

k = {k}, k = 1, . . . , p,

and δ(0)
k,` = dk,` - dissimilarity between nodes k and `.

3: At iteration t ≥ 0:
4: Find pair of clusters (h,k) (h < k) with the smallest dissimilarity, i.e.

(h,k) = argmin
i< j

δ(t )
i , j ,

merge them, i.e. set C (t+1)
k = {C (t )

k ,C (t )
h } and remove cluster h: C (t+1)

h =;.

Remaining clusters are unchanged: set C (t+1)
j =C (t )

j for j 6= k,h.

5: The dissimilarities change to

δ(t+1)
j ,h = δ(t+1)

h, j =∞, δ(t+1)
k, j = δ(t+1)

j ,k = 1

2

[
δ(t )

k, j +δ(t )
j ,h

]
, ∀ j 6= k,h.

If |C (t )
k | = 1, set δ?k = δ(t )

k,h ; if |C (t )
h | = 1, set δ?h = δ(t )

k,h .

6: If the number of non-empty sets (clusters) in the newly formed partition (C (t+1)
j )

is more than 1, then set t = t +1 and go to step 3; otherwise set δ?max = δ(t )
k,h .

7: Return

AC (λ) = 1

p

p∑
j=1

(
1−

δ?j

δ?max

)
. (5.20)

of the grid of λ. We consider an alternative proposal when p is large that finds the most vulnerable

graph with respect to removing groups of variables. Thus, we develop a leave-K -out procedure so K

variables are removed randomly from the dataset in step 5. This process is repeated L times, L ¿ p, so

M ×L graphical lasso computations are required.

Algorithm 7 Vulnerability algorithm

1: procedure RV U L(λ)
2: SetΛ= (λk )M

k=1.

3: Estimate the graph Ĝλk
g (V ,E) using (5.1).

4: for g in 1 until p do:

5: Remove g th variable from the estimated graph structure Ĝλk
g (V ,E).

6: for k in 1 until M do:
7: Calculate geodesic distance matrix [ĝi j ] as in eq. (5.2).

8: Calculate the efficiency Eλk
g = 1

m

( ∑
i< j

1
ĝi j (λk )

)−1

, with m = p (p −1)/2.

9: Return RV U L(λt ) =−∑p
i=1

Eλt −Eλt
g

Eλt .

5.5 Simulated data analysis

In this section we consider simulated data to test the performance of the regularization parameter

selection methods using graph structures similar to what can be expected in biological networks. We

analyze both the capacity to obtain the true connections and the accuracy in recovering network

95



characteristics of the true graph.

5.5.1 Graph topologies in biological datasets

In "real world" problems that arise from social networks, information networks and biological net-

works, the graph which defines a kind of level of interaction between nodes (e.g., people in social

networks, papers in information networks or genes in biological networks) is unknown but there

is typically some knowledge about what sort of network structure can be expected (Newman, 2003;

Reinert, 2009; Estrada, 2011).

Biological graph structures which define conditional dependence between nodes by a sparse

precision matrix usually present associations in the shape of clusters, meaning that the nodes form

groups that are more similar to the nodes within the group than to the nodes of other groups (Eisen

and Spellman, 1998). Two distributions that are found to approximate biological networks well are

hub-based and power-law networks. Hub-based networks are graphs where only few nodes have a

much higher degree (or connectivity) than the rest. This is a common case in biological processes

where nodes that behave as hubs may have different biological functions than the other nodes (Lu

et al., 2007). The degree of a node g ∈ V in a graph G(V ,E) is defined as the number of edges that

connect nodes V \ g to g . Let pb be the fraction of nodes in the network that have degree b, power-law

networks assume that pb follows a power-law distribution, i.e.,

pb ∼ b−ας(α)−1,

where b ≥ 1, α is a positive constant and the normalizing function ς(α) is the Riemann zeta function.

Following Peng et al. (2009), α = 2.3 provides a distribution that is close to what is expected in

biological networks.

5.5.2 Simulated data

We generate data from multivariate normal distributions with zero mean vector and several almost-

block diagonal precision matrices, where each block (or cluster) has a hub-based or power-law

underlying graph structure (defined in Section 5.5.1) and there are some extra random connections

between blocks. The non-zeros of the precision matrices, which we initially denote by Ω(0), are

obtained following eq. (4.36). These generated matrices may not be positive definite, so we regularized

them by Ω(1) =Ω(0) +δI , with δ such that the condition number of Ω(1) is less than the number of

nodes, so obtaining a positive definite matrix (Cai et al., 2011). Simulated precision matrices are

non-singular, sparse and with the non-zero elements bounded away from 0.

We consider precision matrices with p = 50, 170, 290 and 500 and sample sizes n = 50, 100, 200,

500. The number of clusters (and variables per cluster) for each p setting are: 1 (50), 3 (70, 60, 40), 5 (70,

100, 40, 50, 30), 7 (100, 100, 80, 60, 60, 70, 30). The degree of hub nodes is generated by an Uniform(5,b)
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where b is one third of the number of variables per cluster. Moreover, the probability for presence of

all remaining edges in hub-based models is determined by an Uniform(0.005,0.03) random variable

and the probability for presence of edges in between clusters is given by an Uniform(0,0.1) random

variable. Following Peng et al. (2009), power-law parameter α is set to 2.3 since provides a distribution

that is close to what is expected in biological networks. Figure 5.2 shows some of the created networks.
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(a) p=50, power-law
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(b) p=170, hub-based
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(c) p=290, power-law
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Figure 5.2. Graphical represenation of some of the CD structures used to generate simulation data.

We use the R package huge (Zhao et al., 2012) to estimate CD graph structures by glasso and

neighborhood selection (MB), as well as the R package camel (Li et al., 2013) to find the tiger estimates.

The glasso and tiger provide the values of the estimated precision matrix whereas MB only give their

underlying non-zero structures. In order to compare the proposed methods to the likelihood-based

eBIC approach, we only present the results for the glasso procedure. Nevertheless, a performance

comparison between the three algorithms to estimate Ω is presented in Section 5.5.4. We take a

sequence of 60 equidistant points for λ going from 0.20 to 0.66 for small n and a sequence going from

0.03 to 0.40 for large n (the graphs almost have no change for λ’s smaller than the lower limit with all

nodes connected as well as higher than the upper limit with no edges across nodes). Then we select λ

by seven different approaches: 1) PC; 2) AGNES; 3) A-MSE (subsampling -sub); 4) A-MSE (Monte Carlo
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-mc); 5) VUL; 6) StARS; 7) eBIC. The method StARS (with β= 0.05) produces the lowest λ for almost

all the simulated datasets. The eBIC results are strongly dependent on the sample size; the method

selects large tuning parameters for small n and low tuning parameters for large n in comparison to

A-MSE. The AGNES selections are always larger than A-MSE (sub) but they get close when n increases.

The PC λ selections do not vary much for different n and p scenarios and produce similar magnitudes

to λ’s selected by A-MSE (mc). The two A-MSE algorithms find similar tuning parameters, with the

subsampling approach tending to give slightly larger λ’s than the Monte Carlo approach.

We assess the performance of the λ selection approaches for glasso estimates using two different

measures: squared errors in both the partial correlation matrix and the dissimilarity matrix defined in

(5.2) and graph recovery with a false positive and true positive analysis. The simulated data analysis

is completed by comparing the selected graph structures against the true networks with regards to

global network characteristics such as clustering, connectivity and graph topology.

5.5.3 Mean square errors for estimated precision and dissimilarity matrices

To measure performance of the methods we use the ranks of the average mean square errors (MSE)

of the precision matrixΩ (Table 5.2) as well as of the dissimilarity matrix D (Table 5.3). This second

rate gives a good reference to determine if the estimated graph captures the true local structure. The

lowest rank (rank = 1) is assigned to the lowest MSE and the largest rank (rank = 7) is for the largest

MSE out of the seven approaches. In the tables, we show the errors for the glasso method.

Even though StARS estimatesΩ well, it produces larger errors than AGNES, A-MSE, PC, VUL and

eBIC when minimizing the MSE of the dissimilarity matrix. Particularly, A-MSE (for both subsampling

and Monte Carlo approximations) tends to be the best selection for this loss function. We find that

eBIC does well for small n, contrarily of what is obtained in Liu et al. (2010), but tends to be unreliable

for larger sample sizes. AGNES gives good ranks for the power-law scenarios, particularly when n is

large. PC and VUL achieve similar levels and are only slightly worse than A-MSE.

5.5.4 Graph recovery of graphical modelling approaches

We compare the performance of the three suggested graphical lasso based methods: glasso, neighbor-

hood selection (mb) and tiger. To do so, we present the ROC curve, which corresponds to the graphical

representation of the sensitivity (True Positive Rate - TPR) and the complement of the specificity

(False Positive Rate - FPR) defined by TPR = TP/P and FPR = FP/N with

T P = ∑
i< j

I (Ω̂i j 6= 0 and Ωi j 6= 0), F P = ∑
i< j

I (Ω̂i j 6= 0 and Ωi j = 0), (5.21)

and P =∑
i< j I (Ωi j 6= 0), N =∑

i< j I (Ωi j = 0). Figure 5.3 shows the ROC curves in a unique simulated

data set, for p = 290 and several n values, which is quite representative of the behavior in the 60

simulations. Each of the three lines corresponds to the FPR-TPR for graph estimation by glasso, MB
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Table 5.2. Average ranks for the mean square error of the precision matrix using several sample sizes,
dimension and network topologies (hub-based and power law). The method StARS finds the best
rates (lowest ranks) whereas PC and A-MSE tend to obtain the worst rates (highest ranks).

Hub-based Power law
n 50 100 200 500 50 100 200 500

dimension p=50
PC 4.34 4.84 5.55 5.66 4.05 4.96 4.80 4.53
AGNES 2.30 2.42 2.94 3.08 2.64 3.01 4.08 4.84
A-MSE (sub) 6.12 6.26 6.14 5.96 5.58 5.47 6.14 5.80
A-MSE (mc) 5.70 5.98 6.17 6.03 5.22 5.21 5.17 4.73
VUL 2.91 3.17 3.35 3.67 3.09 3.90 4.74 5.06
StARS 1.00 1.00 1.20 1.73 1.00 1.00 1.02 1.50
eBIC 5.63 4.32 2.65 1.87 6.42 4.45 2.05 1.53

dimension p=170
PC 3.85 4.38 5.04 4.90 3.85 4.41 5.47 4.56
AGNES 2.04 2.01 2.04 2.88 2.03 2.09 2.90 4.30
A-MSE (sub) 6.56 6.42 6.14 5.90 6.53 5.87 6.08 6.00
A-MSE (mc) 5.38 5.60 5.55 5.50 4.92 4.41 4.82 4.30
VUL 3.52 4.39 5.00 5.69 3.47 4.97 5.45 5.84
StARS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
eBIC 5.66 4.20 3.23 2.13 6.21 5.26 2.27 2.00

dimension p=290
PC 3.75 3.70 4.66 5.12 3.80 4.03 5.54 5.02
AGNES 2.00 2.01 2.01 2.63 2.00 2.01 2.48 3.92
A-MSE (sub) 6.60 6.51 6.22 6.02 6.87 6.49 6.27 6.38
A-MSE (mc) 5.27 5.51 5.49 5.51 5.02 4.23 4.71 4.47
VUL 3.86 4.88 5.38 5.35 3.48 4.66 5.19 5.21
StARS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
eBIC 5.53 4.40 3.25 2.38 5.83 5.58 2.82 2.00

dimension p=500
PC 3.70 3.78 4.58 4.62 3.68 3.88 5.67 5.47
AGNES 2.00 2.00 2.01 2.34 2.00 2.00 2.05 3.44
A-MSE (sub) 6.92 6.77 6.47 6.21 6.83 6.70 6.53 6.53
A-MSE (mc) 5.19 5.46 5.57 5.45 5.08 4.44 4.47 4.47
VUL 3.41 4.04 5.01 5.72 3.52 4.23 5.18 5.09
StARS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
eBIC 5.78 4.95 3.37 2.66 5.89 5.75 3.09 2.00

and tiger. Glasso usually has lower FPR than the other two methods for large TPR levels. When the

TPR is small the rates are similar by the three methods even though MB and tiger result to give a

slightly better compromise between true and false edges than glasso. There are not big differences

with regards to the two graph topologies, power law and hub-based networks.

In order to quantify how well the tuning parameter selection algorithms recover the non-zero

elements inΩ, we compare the true discovery rate (TDR), which can be defined by T DR = T P/(T P +
F P ) with T P and F P expressions given at eq. (5.21), for each of the estimated networks. In Figure 5.4,

we show the average TDR in the 60 simulations for all considered combinations of n and p. The TDR

turns out to be fairly stable with respect to n for A-MSE, PC and VUL. For AGNES, the TDR increases

with n (especially in the power-law scenarios), whereas, for eBIC, this goes down rapidly with n. In

this analysis we can see the limitations of the eBIC method whose main goal is not the graph recovery

of Ω. The eBIC selections go from selecting very sparse graphs with more TP than FP when n is small

to selecting much denser graphs with many more FP than TP when n is large.

5.5.5 AGNES and A-MSE against oracle tuning parameters

The AGNES regularization parameter selection is considered as initial graph to estimate λ by A-MSE

in Section 5.4.2. We argue that AGNES produces desired global network characteristics. This is

shown here using 60 simulated data sets with n = 50,100,200,500, p = 70,120,290 and graph structure
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Table 5.3. Average ranks for the mean square error of the dissimilarity matrix using several sample
sizes, dimension and network topologies (hub-based and power law). A-MSE tends to be the method
with the best rates (lowest ranks). eBIC does well for small sample sizes but fails when the sample size
increases.

Hub-based Power law
n 50 100 200 500 50 100 200 500

dimension p=50
PC 3.56 3.22 2.37 2.40 3.83 3.32 3.32 3.68
AGNES 5.53 5.56 4.94 4.70 4.89 4.62 3.55 2.92
A-MSE (sub) 2.14 1.74 1.82 1.83 2.51 2.66 1.97 2.17
A-MSE (mc) 2.44 2.02 1.96 1.92 2.62 2.85 2.92 3.14
VUL 4.81 4.84 4.62 4.14 4.39 3.84 3.38 3.09
StARS 6.93 7.00 7.00 6.92 6.95 6.98 6.99 6.52
eBIC 2.58 3.62 5.30 6.08 2.81 3.73 5.88 6.48

dimension p=170
PC 3.08 3.64 2.98 3.12 3.37 3.41 2.41 3.29
AGNES 5.89 5.99 5.96 5.12 5.78 5.86 4.95 3.17
A-MSE (sub) 3.14 1.91 1.82 2.04 3.16 2.47 2.05 1.91
A-MSE (mc) 1.97 2.14 2.33 2.49 2.03 2.98 2.82 3.35
VUL 4.02 3.88 3.15 2.36 3.78 3.72 3.13 3.27
StARS 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
eBIC 2.90 3.43 4.76 5.87 2.88 2.58 5.64 6.00

dimension p=290
PC 3.33 3.85 3.36 2.88 2.88 3.30 2.51 2.75
AGNES 5.87 5.92 5.99 5.37 5.97 5.88 5.42 3.76
A-MSE (sub) 3.39 2.46 1.70 1.92 4.06 2.91 1.67 1.64
A-MSE (mc) 1.77 2.08 2.33 2.42 2.00 2.82 3.04 3.24
VUL 4.19 3.60 2.89 2.78 3.21 3.89 3.51 3.61
StARS 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
eBIC 2.45 3.08 4.73 5.62 2.88 2.21 4.85 6.00

dimension p=500
PC 2.58 3.67 3.40 3.34 3.40 2.79 2.30 2.43
AGNES 5.95 5.93 5.99 5.66 6.00 5.85 5.90 4.28
A-MSE (sub) 4.45 2.62 1.47 1.74 3.44 3.40 1.73 1.43
A-MSE (mc) 1.89 1.92 2.30 2.52 1.68 2.46 3.12 3.35
VUL 3.38 4.41 3.23 2.40 3.88 4.03 3.18 3.51
StARS 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
eBIC 2.75 2.45 4.62 5.34 2.61 2.47 4.76 6.00

generated by a power-law distribution as defined in Section 5.2.2. We compare the oracle λ solution

that minimizes

ADR(λ) = E{
∑
i> j

(di j − d̂i j (λ))}2. (5.22)

against the selected λ by AGNES. Figure 5.5(a), Figure 5.5(b) and Figure 5.5(c) present the boxplots

with the λag −λor acl e differences for all combinations of n and p. The differences are close to zero,

especially for p = 120 and p = 290. Thus, the AGNES estimated graph structure provides a good

representation of the global network characteristic in eq. (5.22), at least for this set of simulated data.

Consider the local oracle solution for the regularization parameter that minimizes

DR(λ) = E{
∑
i> j

(di j − d̂i j (λ))2}. (5.23)

The A-MSE selections, see Figure 5.5(d), Figure 5.5(e) and Figure 5.5(f), are reasonably close to the

oracle λ, especially for n > 50, and in all cases, the oracle value of λ is within the 95% confidence

interval for the median of λAMSE . Although here the expected value of the A-MSE risk function is

estimated by Monte Carlo, similar results are found using sub-sampling estimates.
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Figure 5.3. ROC curves for graph recovery using graphical lasso estimators (glasso, mb and tiger).
Hub-based scenarios are on the top figures whereas power-law scenarios are on the bottom figures.
The dimension p = 290 for all cases.

5.5.6 Summary

In our simulations, A-MSE turned out to be the approach with the best estimates of the graph structure

dissimilarity matrix as can be seen in Table 5.3. eBIC is also competitive when n is small, but it is

not reliable when analyzing larger sample sizes. PC is computationally the fastest method and only

does slightly worse than A-MSE in Table 5.3. Moreover, it generally obtains simple graph structures

which result in comprehensible connectivity interpretations. The AGNES procedure is usually over-

performed by the augmented version A-MSE for small n. For large n, AGNES and A-MSE have

similar λ selections with AGNES being significantly faster than A-MSE. StARS (using its default tuning

parameters) produces dense graph estimations and achieves the best results when minimizing the

mean square error ofΩ. Nevertheless, it fails to obtain interpretable network structures due to poor

graph recovery.

5.6 Application to colon cancer gene expression data

We apply the methods to a case study of genomic data which contain the gene expression profile of 154

colorectal tumor samples and 17,617 genes. The data are generated by the TCGA Research Network:

http://cancergenome.nih.gov/, and are currently available at the portal https://gdc-portal.

nci.nih.gov/, under the TCGA cancer program and the Colon Adenocarcinoma disease type.

A reduction on the variable space is applied so that we only keep the most highly correlated genes.

We use a filter for the gene’s average square correlation with threshold equal to 0.04. Moreover, we add
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Figure 5.4. True discovery rate for all λ selection approaches and all combinations of p and n. The
top figures correspond to hub-based networks and the bottom figures are the power-law networks.
The x-axis scale is n : log(n). eBIC rates decrease with the sample size whereas AGNES, A-MSE, VUL
and PC rates slightly increase with the sample size.

the non-filtered genes which have at least one correlation coefficient with the filtered genes larger

than 0.5. This means a reduction to the 55% of the genes with a total of 9,723 genes left to analyze. We

estimate CD graphs via the Neighborhood selection algorithm of Meinshausen and Bühlmann (2006).

We compute 90 different graphs given an equidistant sequence of λ’s between 0.35 and 0.80. Values of

λ lower than 0.35 produce almost-fully connected graphs and values above 0.80 produce zero edges

in the graph. We use the PC and A-MSE approaches to select one particular graph with λpc = 0.69 and

λamse = 0.55. The graphical representation of the two underlying networks is presented in Figure 5.6.

The graph by PC, with 4,819 edges, shows a simpler structure compared to A-MSE, with 19,986 edges.

We separate the graphs in different clusters by applying a Partitioning Around Medoids (Reynolds

et al., 2006) on the shortest distance matrix. We choose the number of clusters manually by considering

the largest rate of change in the within-subject and between-subject variation such that the PC graph

structure contains 15 clusters and the A-MSE contains 18 clusters. To assess which biological processes

may be linked to the clusters, we download 1,320 gene sets from the MSig database (Subramanian et al.,

2005), which represent canonical pathways compiled from two sources: KeGG (Kanehisa et al., 2016)

and Reactome (Milacic et al., 2012). For each pathway we test for a significant over-representation

in a cluster by using Fisher’s exact test applied to the 2× 2-table defined by pathway and cluster

membership with a Bonferroni correction for multiple testing. Note that we use the reduced selection

of 9,723 genes here as “background”, i.e. the analysis corrects for any over-representation of a pathway

in that selection.
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Figure 5.5. AGNES λ selections against the oracle best λ for the mean square errors of average
dissimilarities, see eq (5.22). A-MSE λ selections against the oracle best λ for mean square errors
given local dissimilarities, see eq (5.23).

For the PC and A-MSE selected graphs, respectively, 6 out of 15 clusters of genes, and 7 out of 18

clusters of genes, overlap significantly with at least one pathway gene set (at 0.01 significant level).

Besides, a total of 160 and 122 pathway sets (out of 1.320) present significant overlap with clusters of

genes defined in the PC and A-MSE graphs. Among the significant lists, PLK1, NFAT, DNA replication

or adaptive immune system are pathways associated with tumor cells.

5.7 Discussion

This chapter studies the problem of choosing the regularization parameter λ for Gaussian graphical

models in high-dimensional data assuming we have high level knowledge about the nature of the

graph structures, namely strong clustering of gene expression data (e.g., Eisen and Spellman, 1998).

The methods we introduce in this chapter take this assumption into account by selecting λ so that

statistics measuring the degree of clustering (AGNES, A-MSE) or connectivity (PC, VUL) are optimized.

We aim to select the sparsest graph such that the real cluster structure is maintained and at the same

time it contains a good tradeoff between true and false positive edges. The proposed approaches

to select the regularization parameter provide competitive results in a relatively fast computational

speed. They present more reliable results than the StARS approach which tends to overestimate the

network size. The StARS method accounts for the stability of the estimated graphs and has been
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(a) PC selected graph. (b) A-MSE selected graph.

Figure 5.6. Selected graphs by PC and A-MSE to describe conditional gene associations on colon
cancer gene expression data. The A-MSE graph is denser than the PC graph but in both cases several
clusters of genes are visible.

proven to work well in Liu et al. (2010). It depends, however, on another parameter which controls the

maximum amount of variability in the graph. There is no straightforward choice for this parameter

and our simulation study shows that using the default value of 0.05 StARS yields uninformative

networks with a majority of edges being false positives.

The path connectivity approach introduced here provides a good compromise between structure

and false positive edges. The main characteristic of this approach is that it relies on the shortest

distance between all pairs of nodes. Interestingly, this quantity tends to show a clear changepoint

when studied as a function of λ, at which the structure of the graph changes radically. It typically

produces very informative graphs in all the tested simulated datasets and gives competitive results

for the mean square error between dissimilarity matrices as discussed in Section 5.5.2. In the gene

expression data set it also provides us with a clearly structured informative graph. PC gives an excellent

first choice of λ without additional prior information if we want to find an easily interpretable graph.

The A-MSE, with initial graph structure given by the AGNES selected graph, is the best of all the

approaches in terms of minimizing the MSE between the true distances and the estimated ones in the

simulated data. Also, λamse is generally smaller than λac leading to less complex graphs than the ones

estimated by AGNES. This is a desirable property as we assume only a small proportion of non-zero

elements in Ω and thus with increasing graph density the number of false positive edges grows much

faster than the number of true positives and can make the graph become quite inaccurate. However,

if the aim is to have fewer false negatives, that is, that as many as possible true edges are included at

the expense of a higher number of false positives, then algorithms like AGNES and StARS are more

appropriate.

The analysis of the gene expression data underlines some interesting results. The obtained graphs
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present a cluster-based structure as we can see in Figure 5.6. Our two new approaches of choosing a

regularization parameter, path connectivity and A-MSE, lead to sparse and clustered networks that

are easy to interpret. Closer investigation of the results shows that the clusters overlap significantly

with a number of pre-defined gene sets and regulatory pathways which indicates that our assumption

of a sparse clustered structure rises some biologically meaningful results.

In conclusion, we find that approaches such as PC, A-MSE, AGNES and VUL, which use network

characteristics for parameter selection, can be beneficial in estimating sparse partial correlation

matrices (and graph structures) for high-dimensional biological data. While maintaining good statisti-

cal properties in terms of false discovery rates and mean square error, the results tend to be easier

to interpret in terms of network structure and thus are more useful in applications compared to

parameter selection methods purely based on mathematical/statistical measures such as AIC or BIC.
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Chapter 6

Joint estimation of conditional

dependence structures

6.1 Introduction and motivation

Genomic data produced by high-throughput technology are nowadays easy to collect and store

generating many statistical questions. The statistical estimation problem we study in this chapter

is motivated by the same type of data we considered in Chapter 4 for hypothesis testing: we want

to analyze datasets where genomic profiles are obtained for individuals in two different classes. For

instance, we consider two case studies, which were already presented in Chapter 4, that consist of

patients with psoriasis vulgaris disease and patients with lung cancer, respectively. In both datasets,

there is the genomic profile of more than 19,000 genes for a paired lesional (or tumor) and healthy

tissues. The third case study we explore contains the gene expression and methylation profiling of 25

patients with colon cancer in which two samples, one for a colorectal tumor and one for its healthy

adjacent colonic tissue, are obtained for every individual. In total, there are more than 24,000 genes

and more than 27,000 methyl sites.

The main challenge in the analysis of these data is to understand how genes interact between

each other in a cell as well as to detect which groups of gene connections vary from a healthy to a non-

healthy state. This can be formulated by an estimation problem of sparse conditional dependence

(CD) networks which, under the Gaussian assumption, are fully characterized by their underlying

precision matrices. The estimating of precision matrices when data are high-dimensional (dimension

is larger than the sample size) represents a challenge as maximum likelihood estimators are no longer

suitable (Pourahmadi, 2007). Methods that address this issue to estimate a single precision matrix

include sparsity-penalization approaches known as graphical lasso which are extensively investigated

in Chapter 5. A natural extension is applied to jointly estimated multiple precision matrices by using

an additional penalization term that encourages the similarity between such matrices. For instance,
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Guo et al. (2011) use a group-lasso penalization (GGL) or Danaher et al. (2014) incorporate a fused-

lasso penalization option (FGL). The FGL method yields better graph recovery rates than estimating

the matrices separately when these are expected to be similar. However, it is designed under the

assumption of subject independence in the datasets.

Motivated by real data, here we study the probabilistic interpretation of the algorithm proposed

by Danaher et al. (2014) when data are paired, with the aim to determine which gene associations are

or are not common between two populations (e.g., given by two medical conditions) and relate the

changes to cellular biological processes. We end up proposing a new weighted fused-penalty for the

estimation of marginal conditional dependence structures (WFGL) that accounts for correlation in

the estimators when data are paired. Our analysis shows that the current joint estimation algorithm,

for both FGL and WFGL, overestimates triangular motifs structures, so as second contribution, we

present a method based on hypothesis testing to correct for this issue.

In a similar framework, we develop a method to estimate joint regression coefficient matrices when

data are high-dimensional and possibly paired. This is encouraged by the colon cancer data (Hinoue

et al., 2012), where 4 different datasets are available: methylation for healthy and tumor samples,

and gene expression for healthy and tumor samples. Gadaleta and Bessonov (2015) previously

integrated gene expression and methylation presence for a dataset with 215 individuals affected with

glioblastoma cancer. The authors find two networks using lasso-based estimators: the non-zero

structure of the regression coefficients using gene expression as response variables and methylation

presence as explanatory variables; and the non-zero structure of the precision matrix (using only

gene expression data). Here, we take advantage of having both tumor and healthy samples to jointly

estimate the regression coefficients as well as the gene expression network using fused lasso penalized

marginal likelihood estimators. The analysis of these data is presented separately in Chapter 8.

The chapter is structured as follows. In Section 6.2 we propose a weighted fused graphical lasso

algorithm to estimate joint precision matrices. In the following Section 6.3 we present the analogous

algorithm to estimate multiple regression coefficient matrices. In Section 6.4 we discuss the issues

on overestimating triangular motifs. In Section 6.5 we illustrate the performance of the methods for

simulated datasets given different correlation structures, dimension and sample sizes. Finally, in

Section 6.6 we estimate CD structures for the motivating applications to gene expression data.

6.2 Weighted fused graphical lasso

6.2.1 Fused graphical lasso: assumptions and marginal estimator

Consider the problem setting described in Section 2.2 where n i.i.d. 2p-dimensional random vectors

(Y (1)
k ,Y (2)

k ) are observed, with [Y (1)
k ,Y (2)

k ] ∼ N2p (0,Ω−1), k = 1, . . . ,n. The matrixΩ represents the joint
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CD structure for Y (1) and Y (2), and it is defined by

Ω= R−1 =
 R1 R12

R21 R2

−1

=
ΩJ

1 ΩJ
12

ΩJ
21 ΩJ

2

 . (6.1)

Danaher et al. (2014) assume independence between observations in the two conditions, see eq. (2.5),

where R12 =ΩJ
12 = 0, so Ω1 = R−1

1 =ΩJ
1 and Ω2 = R−1

2 =ΩJ
2, and propose the fused graphical lasso

(FGL) estimator ofΩ

Ω̂λ
FGL = arg max

Ω1,Ω2

[ ∑
m=1,2

logdetΩm − tr(ΩmSm)−PΛ1,Λ2 (Ω1,Ω2)

]
, (6.2)

with

PΛ1,Λ2 (Ω1,Ω2) = ||Λ1 ◦Ω1||1 +||Λ1 ◦Ω2||1 +||Λ2 ◦ (Ω2 −Ω1)||1, (6.3)

where A ◦B is the elementwise product of matrices A and B , Λ1 = [λ(1)
i j ] is a p ×p matrix with the

sparsity tuning parameters andΛ2 = [λ(2)
i j ] is a p ×p matrix with the similarity tuning parameters. The

maximization problem in (6.2) and (6.3) is solved by optimizing its Lagrangian formulation

Lρ =−[
∑

m=1,2
logdetΩm − tr(ΩmSm)+PΛ1,Λ2 (A1, A2)+ ρ

2

∑
m=1,2

||Ωm − Am +Um ||2F ],

using the ADMM-type algorithm (Boyd, 2010) described in Algorithm 8. Here, Um are dual variables,

Am corresponds to Ωm and ρ is a positive constant that is used as a regularization parameter with

default value equal to 1.

Consider now that the independence assumption does not hold, e.g., paired data setting, and so

thatΩJ
12 6= 0. The marginal estimators Ω̂1 = [Ω̂(1)

i j ] and Ω̂2 = [Ω̂(2)
i j ], being the solution of eq. (6.2) (i.e.,

step 3 in the ADMM algorithm), are correlated for some pair of variables (i , j ) (Steiger, 1980). In the

following section we develop the probabilistic interpretation of Algorithm 8, and show that this could

be used, even when data are paired, to estimate the marginal conditional dependence structures

Ω1 = R−1
1 andΩ2 = R−1

2 by considering distinct penalties within matricesΛ1 andΛ2. We should remark

that this method does not find an estimator for the conditional dependence structuresΩJ
1 andΩJ

2. The

precision matrix ΩJ
1 measures linear dependence of Y (1) conditionally on both Y (1) and Y (2) whereas

Ω1 ignores dependence between Y (1) and Y (2) and finds the marginal conditional dependence of

Y (1) instead (and similarly for Y (2)). We find quite useful to characterize the marginal conditional

dependence in our motivating data as the interest is not in understanding gene relationships between

tissues, but only the comparison of gene relationships in tumor and healthy populations separately.

Depending on the mathematical model that we assume that generates the data, using marginal

estimations may induce some spurious coefficients. From the four models proposed in Section 2.2,

independence model, additive model and multiplicative model would not suffer this phenomena

too much. For example in the multiplicative model, we assume that the correlation matrices of Y (1)
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Algorithm 8 Fused Graphical Lasso

1: Input: Λ1,Λ2,ρ
2: Initialization: set iteration t = 0, U (t )

m = 0 and Ŝ(t )
m = Sm corresponding to the sample covariance

matrix for m = 1,2. Repeat 3-5 until convergence.
3: Find a dense estimator of Ω̂(t )

m using a quadratic regularized inverse of matrix Ŝ(t )
m (Witten et al.,

2009). Given the eigenvalue decomposition of Ŝ(t )
m =V (t )

m D (t )
m V

′(t )
m , the inverse is found by

Ω̂(t )
m =V (t )

m D̃ (t )
m V

′(t )
m , D̃ (t )

m j j
= n

2ρ

(
−D (t )

m j j
+

√
(D (t )

m j j
)2 +4ρ/n

)
, (6.4)

4: Find [Â(t )
1 , Â(t )

2 ] by minimizing ρ
2

∑
m=1,2 ||Am −(Ω̂(t )

m +U (t )
m )||F2 +PΛ1,Λ2 (A1, A2) using a thresholding

approach: given {Â
′(t )
m = Ω̂(t )

m +U (t )
m }m=1,2, set equal precision matrix elements if the absolute value

of the estimated differences are smaller than the corresponding elements of [λ(2)
i j /ρ]:

[Â
′′(t )
1i j

, Â
′′(t )
2i j

] =


[.5(Â

′(t )
1i j

+ Â
′(t )
2i j

), .5(Â
′(t )
1i j

+ Â
′(t )
2i j

)] if |Â′(t )
1i j

− Â
′(t )
2i j

| ≤λ(2)
i j /ρ;

[Â
′(t )
1i j

+λ(2)
i j (2ρ), Â

′(t )
2i j

−λ(2)
i j /(2ρ)] if Â

′(t )
1i j

− Â
′(t )
2i j

>λ(2)
i j /ρ;

[Â
′(t )
1i j

−λ(2)
i j /(2ρ), Â

′(t )
2i j

+λ(2)
i j (2ρ)] if Â

′(t )
1i j

− Â
′(t )
2i j

<−λ(2)
i j ρ;

(6.5)

[Notation equivalence Â
′(t )
ki j

= (Â
′(t )
k )i j ]. Then, set elements in [Â

′′(t )
1 , Â

′′(t )
2 ] to zero by soft-

thresholding with threshold given byΛ1: Â(t )
mi j

= sign(Â
′′(t )
mi j

)
(
|Â′′(t )

mi j
|−λ(1)

i j

)
+, m = 1,2.

5: Set t = t +1. Update U (t )
m =U (t−1)

m + (Ω̂(t−1)
m − Â(t−1)

m ) and Ŝ(t )
m = Sm − ρ

n Â(t−1)
m + ρ

n U (t )
m for m = 1,2.

Stop if convergence.
6: Output: Ω̂1 = Â(t−1)

1 , Ω̂2 = Â(t−1)
2 and Ω̂d = Â(t−1)

2 − Â(t−1)
1 .

and Y (2), cor(Y (1)) = R1 and cor(Y (2)) = R2 respectively, do not depend on the specification of the

paired component ∆, so marginal conditional dependence matrices Ω1 and Ω2 would coincide to

the scenario where observations in the two populations are independent. In the direct effect model

though, for instance (ΩJ
1)i j = 0 does not ensure that the marginal Ω(1)

i j = 0 unless either (ΩJ
12)i i = 0 or

(ΩJ
12) j j = 0. Understanding these limitations, in this chapter we only consider the estimation problem

of marginal conditional dependence structures, leaving the estimation problem ofΩJ
1 andΩJ

2 as future

work.

6.2.2 Monotoring error rates and weighted fused graphical lasso

The joint estimation problems described in Section 6.2 and Section 6.3 require the selection of

two regularization parameters: λ1 (sparsity) and λ2 (similarity), and the combination of the two

characterizes the estimated network sizes (both common network and differential network). In

Chapter 5 we discuss different ways of choosing sparsity penalization parameters that encourage

certain network characteristics, i.e., clustering structure or connectivity of the estimated networks.

These could also be applied for the joint estimation algorithm once the parameter λ2 is fixed. In

this section, an alternative procedure is proposed, though, by choosing λ1 and λ2 to control the

expected proportion of false positive edges (EFPR) at level α1 for both the individual matrices and the

difference matrix. This is possible to do directly (without resampling) and fast due to the nature of

the ADMM recursive algorithm presented in Section 6.2.1, that, for every iteration, obtain a dense
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estimation of the precision matrices before thresholding. By having a dense matrix, the distribution

of estimated coefficients whose true values are zero can be approximated. In contrast, other graphical

lasso algorithms threshold the coefficients row by row using a regression based approach (Friedman

et al., 2007), and the EFPR is commonly controlled using subsampling methods (Meinshausen and

Bühlman, 2010), which greatly increase the computational cost.

Define the sets Sm = {(i , j ), i < j : Ω(m)
i j = 0} for m = 1,2, S0 = {(i , j ), i < j : Ω(1)

i j = Ω(2)
i j = 0} and

S′
0 = {(i , j ), i < j : Ω(1)

i j = Ω(2)
i j , Ω(2)

i j 6= 0}. For a set S, denote |S| = Card(S). Let d (1)
i j = I (Ω̂(1)

i j 6= 0),

d (2)
i j = I (Ω̂(2)

i j 6= 0) and d (D)
i j = I (Ω̂(2)

i j −Ω̂(1)
i j 6= 0) determine the estimated graph structures. The objective

is to control the error rates


α1 = |S0|−1 ∑

(i , j )∈S0

∑
m∈{1,2} Pr(d (m)

i j 6= 0)/2,

α2 = |S0|−1 ∑
(i , j )∈S0 Pr(d (D)

i j 6= 0).
(6.6)

For the difference matrix, ideally we would like to set α2 = |S0 ∪S′
0|−1 ∑

(i , j )∈S0∪S′
0

Pr(d (D)
i j 6= 0), but

since the distribution of the estimators under S′
0 depends on the true unknown values of Ω(1)

i j and

Ω(2)
i j , estimation of

∑
(i , j )∈S′

0
Pr(Ω̂(2)

i j 6= Ω̂(1)
i j ) is challenging. In terms of α1, we would like to distinguish

between α11 = |S1|−1 ∑
(i , j )∈S1 Pr(d (1)

i j 6= 0) and α12 = |S2|−1 ∑
(i , j )∈S2 Pr(d (2)

i j 6= 0), but these depend on

cases where Ω(1)
i j = 0 &Ω(2)

i j 6= 0 and Ω(1)
i j 6= 0 &Ω(2)

i j = 0, respectively, and their estimation present

similar problems as for α2. Therefore, we will control the simpler rates represented by elements only

in S0 instead.

To estimate the error rates defined in eq. (6.6), we will use intermediate steps in Algorithm 8,

particularly dense estimators of the precision matrices. In Algorithm 8 at iteration t ,

• Ω̂(m)
i j = 0 if |Â′′(t )

mi j
| ≤λ(1)

i j , m ∈ {1,2}, hence Pr(d (m)
i j 6= 0) = Pr(|Â′(t )

mi j
| >λ(1)

i j );

• Ω̂(2)
i j − Ω̂(1)

i j = 0 if either |Â′(t )
Di j

| ≤λ(2)
i j or {|Â′(t )

Di j
| >λ(2)

i j and |Â′′(t )
1i j

| ≤λ(1)
i j and |Â′′(t )

2i j
| ≤λ(1)

i j }, hence

Pr(d (D)
i j = 0) = Pr(|Â′(t )

Di j
| ≤λ(2)

i j )+Pr(|Â′(t )
Di j

| >λ(2)
i j & |Â′′(t )

1i j
| ≤λ(1)

i j & |Â′′(t )
2i j

| ≤λ(1)
i j )

and Pr(d (D)
i j 6= 0) = 1−Pr(d (D)

i j = 0), where Â
′(t )
Di j

= Â
′(t )
2i j

− Â
′(t )
1i j

(see step 4 in the algorithm for the definitions of Â
′(t )
mi j

and Â
′′(t )
mi j

). Note that there are two possible

ways we can arrive at Ω̂(2)
i j − Ω̂(1)

i j = 0, since there are two thresholding steps in the algorithm.

To simplify the notation, we denote Qi j = Â
′(t )
1i j

and Zi j = Â
′(t )
2i j

. For (i , j ) ∈ S0, we assume that the

majority of the pairs (Qi j , Zi j ) follow a bivariate normal distribution with the following covariance

matrix

Cov(Qi j , Zi j ) =Σl s =
 σ2

Qi j
ψi jσQi jσZi j

ψi jσQi jσZi j σ2
Zi j

 , (6.7)

where the correlation between Qi j and Zi j is denoted byψi j . The assumption of normality is checked

for the real data application in Appendix (B.4). To approximate the rates in eq. (6.6), below we assume
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that σ2
Qi j

= σ2
Zi j

= σ2. However, if σ2
Qi j

6= σ2
Zi j

, then, replacing σ by {(σ2
Qi j

+σ2
Zi j

)/2}1/2 and ψi j by

2ψi jσQi jσZi j /(σ2
Qi j

+σ2
Zi j

) leads to similar expressions.

Probabilities necessary to work out Pr(d (m)
i j 6= 0) and Pr(d (D)

i j 6= 0) under assumption (6.7) are stated

in the following lemma.

Lemma 6.1. For (Qi j , Zi j ) following a bivariate normal distribution with 0 means, variances σ2
Qi j

=
σ2

Zi j
=σ2 and correlation ψi j ,

Pr(Qi j −Zi j >λ(2)
i j ) = P (Qi j −Zi j <−λ(2)

i j ) = 1−Φ(λ(2)
i j /(

p
2σ(1−ψi j )1/2)),

Pr(|0.5(Qi j +Zi j )| >λ(1)
i j | |Qi j −Zi j | ≤λ(2)

i j ) = 2[1−Φ(
p

2λ(1)
i j (1+ψi j )−1/2/σ)],

and for any a < b, c < d ≤ b +λ(2)
i j ,

Pr(Qi j ∈ [c,d ]& Zi j ∈ [a,b]&Qi j −Zi j >λ(2)
i j ) =∫ d

c
σ−1ϕ(x/σ)

Φ
 x(1−ψi j )−λ(2)

i j

σ (1−ψ2
i j )1/2

−Φ
(

a −xψi j

σ (1−ψ2
i j )1/2

)d x,

where ϕ and Φ are the density and the cumulative distribution function of the standard normal

distribution.

Proof. proof is given in Appendix B.1, as well as the derivation of the formulas below.

Corollary 6.1. Define the weights vi j = (1−ψi j )1/2. Following lemma 6.1, we set λ(2)
i j = λ2 vi j , such

that the probability of recovering differential edges is independent of the linear relationship between

variables in the two datasets, i.e., the initial rate

α′
2 = P (|Qi j −Zi j | >λ2(1−ψi j )1/2 | (i , j ) ∈ S0) = 2[1−Φ(λ2/(

p
2σ))].

is the same for all pairs (i , j ) ∈ S0.

The proportion of false rejections of the difference being 0 is

α2 = α′
2 − (|S0|)−1

∑
(i , j )∈S0

Pr(|Qi j −Zi j | >λ2vi j & |Â′′(t )
1i j

| ≤λ(1)
i j & |Â′′(t )

2i j
| ≤λ(1)

i j )

Denote

Iσ(λ(1)
i j ,ψi j ,λ2) =

∫ λ(1)
i j −vi jλ2/2

−λ(1)
i j −vi jλ2/2

σ−1ϕ(x/σ)

[
Φ

(
x(1−ψi j )−λ2vi j

σ (1−ψ2
i j )1/2

)
(6.8)

−Φ
λ2vi j /2−λ(1)

i j −xψi j

σ (1−ψ2
i j )1/2

d x,
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then we can write

α2 = α′
2(1− (|S0|)−1

∑
(i , j )∈S0

Iσ(λ(1)
i j ,ψi j ,λ2). (6.9)

Define the complementary events B0 = {(i , j ) ∈ S0, |Qi j −Zi j | >λ2vi j } and B1 = {(i , j ) ∈ S0, |Qi j −
Zi j | ≤λ2vi j }, so that

λ(1)
i j = λ1σ (α∗

1 ,B0,ψi j )1(i , j )∈B0 +λ1σ (α∗∗
1 ,B1,ψi j )1(i , j )∈B1 , (6.10)

where λ1σ (α∗
1 ,B0,ψi j ) and λ1σ (α∗∗

1 ,B1,ψi j ) are the solution of

α∗
1 = 2[1−Φ(

p
2λ1σ (1+ψi j )−1/2/σ)], (6.11)

α∗∗
1 =

∫
|x+λ2 vi j /2|>λ1σ

σ−1ϕ(x/σ)Φ

(
−x(1−ψi j )1/2 −λ2

σ (1+ψi j )1/2

)
d x, (6.12)

respectively. The proportion of false rejections α1 is then given by

α1 = α∗
1 (1−α′

2)+α∗∗
1 α′

2. (6.13)

Here we assume that α∗
1 = α∗∗

1 = α1, therefore, given α1 and α′
2, we set λ2 =p

2σΦ−1(1−α′
2/2), set

λ1σ (α1,B0,ψi j ) =σΦ−1(1−α1/2)(1−ψi j )1/2/
p

2, solve numerically eq. (6.13) to obtainλ1σ (α1,B1,ψi j ),

and evaluate α2 using (6.9).

In practice, S0, [ψi j ] andσ are unknown, thenα2 is approximated using all pairs {(i , j ), i < j }, [ψi j ]

is estimated as proposed in Section 6.2.3, and σ is estimated by a robust estimator (Rousseeuw and

Croux,1993), i.e., any of the following three estimators could be used: (1) Absolute deviation around

the median (50% breakdown point with |S0| > p (p −1)/4 needed for consistency), σ̂x = 1.483mad(x),

where mad(x) = med(|xi −med(x)|); (2) Interquartile range (25% breakdown point with |S0| > p (p −
1)/8), σ̂x = IQR(x)/1.349, where IQR(x) = q0.75(x)−q0.25(x) with α-quanitle qα(x); (3) Rousseeuw and

Croux (RC) mad alternative (50% breakdown point with |S0| > p (p −1)/4), σ̂x = 1.1926RCmad(x),

where RCmad(x) = medi {med j |xi −x j |}.

Note that the error rate α′
2 is interpreted as the proportion of falsely estimated differential edges

before sparsity thresholding operations are applied. It considers dense estimates of the individual

matrices, which links with the proposed method in Zhao et al. (2014) of directly estimating the

difference matrixΩd since it does not assume sparsity of {Ωm}m=1,2 either. This, as well as numerical

simplicity, motivates us to control α′
2, and estimate α2.

Default values for α1 and α′
2 as 0.01 or 0.05 could be used. An immediate upper bound for α2 is

α2 ≤ 2α1α
′
2 however the numerical integration gives a more precise value.
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6.2.3 Weights in the similarity penalization term

Recall from Corollary 6.1 that we consider λ(2)
i j = λ2vi j = λ2(1−ψi j )1/2. When Y (1) and Y (2) are

independent, then the correlation coefficients ψi j = 0 for all pairs (i , j ), and the penalty coincides for

all elements in the matrix, λ(2)
i j =λ2 for any i 6= j . Otherwise, ψi j are approximated by

ψi j = cor(Ω̂(1)
i j ,Ω̂(2)

i j ) = cor((Ω̂(1)
i i )1/2(Ω̂(1)

j j )1/2ŵ (1)
i j , (Ω̂(2)

i i )1/2(Ω̂(2)
j j )1/2ŵ (2)

i j )
.= cor(ŵ (1)

i j , ŵ (2)
i j ), (6.14)

where Ŵ = [ŵi j ] is the partial correlation matrix determined by the scaled estimated precision matrix

Ω̂. A mathematical expression for cor(ŵ (1)
i j , ŵ (2)

i j ) is derived in Olkin and Finn (1990), among others,

and uses the true partial correlation coefficients by

ψi j
.= 1

(1− (w (1)
i j )2)(1− (w (2)

i j )2)
[w (12)

i i w (12)
j j +w (12)

i j w (12)
j i +w (1)

i j w (2)
i j ((w (12)

i i )2 + (w (12)
j j )2 + (w (12)

i j )2

+ (w (12)
j i )2)/2− {w (1)

i j (w (1)
i j w (12)

i j +w (12)
j i w (2)

i j )+w (2)
i j (w (12)

j i w (12)
i i +w (12)

j j w (12)
i j )} (6.15)

Expression (6.15), which excludes the perfect dependence case where w (1)
i j = 1 and w (2)

i j = 1, is

found to provide a good approximation of cor(Ω̂(1)
i j ,Ω̂(2)

i j ). In particular, if cor(Ω̂(1)
i j ,Ω̂(2)

i j ) = 0 then

cor(ŵ (1)
i j , ŵ (2)

i j ) = 0.

The expression of weights [ψi j ] given in (6.15) depends on ΩJ
12, defined in eq. (6.1), and its

estimation requires higher sample sizes, which is not always possible in practice. Hence, for practical

purposes, its nonzero structure is assumed to be known and the number of unknown elements is

assumed to be relatively small. In Xie et al. (2016), the authors fix the structure of R12 by considering

an additive model. As we do not have such prior information about the data, we assume that ΩJ
12

is a diagonal matrix as proposed by Wit and Abbruzzo (2015) in a similar context, i.e., we assume

that any variable of the first dataset Y (1)
ki is conditionally independent from any variable of the other

dataset Y (2)
k j , if i 6= j , k ∈ {1, . . . ,n}, given the rest of the variables (Y (1)

kh )h 6=i and Y (2)
ki . In such case, the

expression for weights defined in eq. (6.15) can be simplified to

ψi j
.=

w (12)
i i w (12)

j j +w (1)
i j w (2)

i j ((w (12)
i i )2 + (w (12)

j j )2)/2

(1− (w (1)
i j )2)(1− (w (2)

i j )2)
. (6.16)

Under subject-dependence, we propose the following two estimators of ψi j ,

1. Regression-based estimator (Reg-based):

ψ̂i j =
ŵ (12)

i i ŵ (12)
j j + ŵ (1)

i j ŵ (2)
i j ((ŵ (12)

i i )2 + (ŵ (12)
j j )2)/2

(1− (ŵ (1)
i j )2)(1− (ŵ (2)

i j )2)
. (6.17)

where ŵ (1)
i j and ŵ (2)

i j are estimators of w (1)
i j and w (2)

i j , respectively, which are found using eq. (6.4)

on the initial iteration of the ADMM Algorithm 8. Coefficients ŵ (12)
i i and ŵ (12)

j j are computed by

considering a regression-type partial correlation coefficient estimation, i.e., ŵ (12)
i i = ĉor(Y (1)

.i −
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Y (1)
.,−i β̂

(1)
i ,−i ,Y (2)

.i −Y (2)
.,−i β̂

(2)
i ,−i ), with regression coefficients β̂(m)

i ,−i =−/hatΩ(m)
i ,−i /Ω̂(m)

i ,i for m = 1,2.

2. Regression-based simplified estimator (Reg-based-sim):

ψ̂i j = ŵ (12)
i i ŵ (12)

j j (1− (ŵ (1)
i j )2)−1(1− (ŵ (2)

i j )2)−1. (6.18)

for same regression-based estimators of ŵ (12)
i i and ŵ (12)

j j as well as partial correlation estimators

ŵ (1)
i j and ŵ (2)

i j , which are defined in the Reg-based estimator, using the leading term in the

numerator in eq. (6.17).

The performance of the two estimators is compared on simulated data in Appendix B.6.

6.3 Weighted fused regression lasso

6.3.1 Model setting, assumptions and link with joint precision matrices

Consider that n i.i.d. pairs of q-dimensional samples (Y (1),Y (2)) : (Y (1)
1 ,Y (2)

1 ), . . . , (Y (1)
n ,Y (2)

n ) are ob-

served. For the same individuals, we assume there are data measurements of pairs of p-dimensional

vectors of covariates (X (1), X (2)) : (X (1)
1 , X (2)

1 ), . . . , (X (1)
n , X (2)

n ). For the motivating data of colon cancer

(Hinoue et al., 2012) introduced in Section 6.1, Y (1) would correspond to the n ×q matrix with the

gene expression for healthy samples and X (1) would be the n×p matrix with the methylation presence

information for healthy samples. Similarly, Y (2) and X (2) would refer to the gene expression and

methylation presence data for tumor samples.

We take gene expression samples (Y (1),Y (2)) as response variables and methylation presence

samples (X (1), X (2)) as explanatory variables, and we assume these are associated by a joint Gaussian

linear model

(Y (1)
k ,Y (2)

k ) ∼ N2q

X (1)
k β(1)

X (2)
k β(2)

′

,Rε

 , Rε =
 R(1)

ε R(12)
ε

R(21)
ε R(2)

ε

 , q À n, p À n, (6.19)

where β(1) (first condition, i.e., healthy) and β(2) (second condition, i.e., tumor) describe the p ×q

regression coefficient matrices. Define the residual matrices (Y (1)−X (1)β(1),Y (2)−X (2)β(2)), here, Rε is

the joint covariance matrix of the residuals with R(1)
ε being the covariance sub-matrix for the residuals

in samples on the first condition, R(2)
ε being the covariance sub-matrix for residuals in samples on the

second condition and R(12)
ε being the cross-covariance matrix relating residuals in the two conditions.

The regression method we propose in Section 6.3.2 has a rather strict assumption on the non-zero

structure of these matrices: it assumes that R(1)
ε and R(2)

ε are diagonal matrices, and if data are paired,

it assumes that R(12)
ε is also a diagonal matrix. Hence, it considers linear independence between

genes once conditioning for methylation. If this assumption does not hold, especially if residuals are

highly correlated, then the predictive error can increase. Rothman et al. (2010) propose to account

115



for the residual’s linear dependence structure to estimate a regression coefficient matrix in a single

class of observations. We provide some initial insights on a similar approach to jointly estimating

two regression coefficient matrices in Appendix B.2, but the inversion of a pq ×pq matrix is needed,

which can be computationally unfeasible for large dimensions.

Assuming multivariate normal distributions in both X and Y , conditional dependence structures

can be found by jointly estimating two precision matrices

Ω(1) =
Ω(1)

Y Ω(1)
Y X

Ω(1)
X Y Ω(1)

X

 and Ω(2) =
Ω(2)

Y Ω(2)
Y X

Ω(2)
X Y Ω(2)

X

 .

The elements in the cross-precision matrices (Ω(l )
X Y )l=1,2 describe the linear dependence between a

gene and a methylation site once conditioning on the linear dependence between the rest of the genes

and sites. These have a slightly different interpretation to the regression coefficient matrices (β(l ))l=1,2

defined in eq. (6.19) since a regression coefficient finds the linear relationship between a gene and a

methylation site accounting for the rest of methylation sites but ignoring the dependence in the rest

of the genes. In this sense, we consider a directed graphical representation of the non-zero structure

of the regression coefficient matrix which has to be interpreted as methylation presence driving

gene expression. A concern that is raised in the causality literature in which the proposed marginal

regression model may be incurring is known by faithfulness (Robins et al., 2003). Unfaithfulness, or

cancellation of correlations, can occur when ignoring covariates in the model. This can be shown

in a simple example in which the model y1 ∼ N (β1x1 +∑
j 6=1β j y j ,σ2

1) is under consideration. The

correlation between y1 and x1 might be zero even when β1 is large if
∑

j 6=1 cor(x1, y j )β j ≈−β1.

In the following sections we present an initial method to jointly estimate β(1) and β(2). Similarly,

matricesΩ(1)
X Y andΩ(2)

X Y could be estimated employing the joint graphical lasso approach proposed

in Section 6.2. The link between precision matrices and regression coefficient matrices is studied in

Section 2.1.

6.3.2 Estimation of joint regression coefficient matrices

We propose a weighted fused regression lasso estimator (WFRL) to find β̂(1) and β̂(2). This solves the

following penalized marginal least squares optimization problem, which encourages sparsity in the

individual estimated regression coefficient matrices and commonality between the two such matrices,

(β̂(1), β̂(2))Λ1,Λ2
F RL = arg min

β(1),β(2)

[
1

2n

∑
l=1,2

||Y (l ) −X (l )β(l )||22 +PΛ1,Λ2 (β)

]
, (6.20)

with

PΛ1,Λ2 (β) = ||Λ1 ◦β(1)||1 +||Λ1 ◦β(2)||1 +||Λ2 ◦ (β(2) −β(1))||1. (6.21)
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The tuning parameters in the p ×q matrixΛ1 = [λ(1)
i j ] provide a trade off between sparsity and fit to

the data, andΛ2 = [λ(2)
i j ] controls the similarity between β̂(1) and β̂(2).

The maximization problem defined in eq. (6.20) and eq. (6.21) is solved by optimizing its La-

grangian formulation

Lρ =PΛ1,Λ2 (Z (1), Z (2))+ 1

2n

∑
l=1,2

||Y (l ) −X (l )β(l )||22 +
ρ

2
||β(l ) −Z (l ) +U (l )||2F

using the ADMM-type algorithm (Boyd, 2010) described in Algorithm 9. Here, U (l ) are the dual vari-

ables, Z (l ) corresponds to β(l ), for l = {1,2}, and ρ is a positive constant that is used as a regularization

parameter with default value equal to 1.

Algorithm 9 Weighted Fused Regression Lasso

1: Input: Λ1,Λ2,ρ.
2: Initialization: t = 0, U (l )

t = 0 and Z (l )
t = 0, for l = 1,2, repeat 3-5 until convergence.

3: Find β̂(l )
t , β̂(2)

t by solving the minimization problem:

[β̂(1)
t , β̂(2)

t ] =arg min
β(1),β(2)

{ ∑
l=1,2

1

2n
||Y (l ) −X (l )β(l )||22 +

ρ

2
||β(l ) −Z (l )

t−1 +U (l )
t−1||2F

}
.

4: Find Z (1)
t , Z (2)

t such that ∑
l=1,2

ρ

2
||β̂(l )

t −Zl +U (l )
t ||2F +PΛ1,Λ2 (Z (l )

t , Z (l )
t )

is minimized.
5: Set t = t +1. Update dual variables U (l )

t =U (l )
t−1 + β̂(l )

t −Z (l )
t , for l = 1,2. Stop if convergence.

6: Output: β̂(1) = Ẑ (1)
t−1, β̂(2) = Ẑ (2)

t−1 and β̂(d) = Ẑ (2)
t−1 − Ẑ (1)

t−1.

The optimization problem in step 3 of the algorithm is solved by a ridge type matrix inversion. For

l = 1,2,

β̂(l )
t =

(
1

n
X (l )′ X (l ) +ρI

)−1 (
1

n
X (l )′Y (l ) −Z (l )

t−1 +U (l )
t−1

)
, (6.22)

with ρ > 0 such that 1
n X (l )′ X (l ) +ρI is a positive definite matrix. Moreover, step 4 is determined by the

following thresholding operations:

(i) Given Â(1) = β̂(1)
t +U (1)

t−1 and Â(2) = β̂(2)
t +U (2)

t−1, set regression coefficients between two classes to

their average value if |Â(1)
i j − Â(2)

i j | ≤λ(2)
i j /ρ, and furthermore:

[Z
′(1)
ti j

, Z
′(2)
ti j

] =


.5[Â(1)

i j + Â(2)
i j , Â(1)

i j + Â(2)
i j ] if |Â(1)

i j − Â(2)
i j | ≤λ(2)

i j /ρ;

[Â(1)
i j +λ(2)

i j /(2ρ), Â(2)
i j −λ(2)

i j /(2ρ)] if Â(1)
i j − Â(2)

i j >λ(2)
i j /ρ;

[Â(1)
i j −λ(2)

i j /(2ρ), Â(2)
i j +λ(2)

i j (2ρ)] if Â(2)
i j − Â(1)

i j >λ(2)
i j ;

(6.23)

(ii) Set regression coefficients to zero by soft-thresholding (Rothman et al., 2009) with exceedances
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threshold given by λ1:

Z (1)
ti j

= sign(Z
′(1)
ti j

)
(

Z
′(1)
ti j

−λ(1)
i j

)
+ , Z (2)

ti j
= sign(Z (2)

ti j
)
(

Z
′(2)
ti j

−λ(1)
i j

)
+ . (6.24)

Under subject-independence between X (1) and X (2) (and also between Y (1) and Y (2)), we consider

Λ1 =λ1 J andΛ2 =λ2 J , and we refer to the underlying estimator of (β(l ))l=1,2 by fused regression lasso

(FRL). Under the paired data setting, see Section 6.3.1, FRL estimators β̂(1)
i j and β̂(2)

i j might be correlated

for some pairs (i , j ) with i ∈ [1, p] and j ∈ [1, q]. Motivated by the results obtained in Section 6.2.2 for

the estimation of joint precision matrices, here we also consider a weighted procedure (WFRL) where

λ(2)
i j =λ2vi j depends on weights vi j = (1−θi j )1/2 with θi j = cor(β̂(1)

i j , β̂(2)
i j ). Furthermore, Similarly to

the WFGL, error rates α1 α2 and α′
2 could also be adapted to the WFRL method considering β̂(1), β̂(2)

and β̂(d) instead of Ω̂1, Ω̂2 and Ω̂d .

6.3.3 Weights in the similarity penalization term

Weights defined in the p×q matrix V = [vi j ] adjust the similarity penalization term λ2 for every pair of

variables, and we propose to use vi j = (1−θi j )1/2 where θi j = cor(β̂(1)
i j , β̂(2)

i j ) describes the correlation

between estimated regression coefficients in the two conditions. If subject-independence is known,

then θi j can be set to zero for all pairs (i , j ), and the weights are constant for all pairs of variables.

Otherwise, the expression derived in Olkin and Finn (1990), which is used to determine the correlation

of sample correlation coefficients, is applied here to regression coefficients by

θi j
.= 1

(1−ρ(1)2

(Y |X )i j
)(1−ρ(2)2

(Y |X )i j
)

[
ρ(1,2)

(X )i i
ρ(1,2)

(Y |X ) j j
+ρ(1,2)

(X ,Y |X )i j
ρ(2,1)

(X ,Y |X )i j
+ρ(1)

(Y |X )i j
ρ(2)

(Y |X )i j

× (ρ(1,2)2

(X )i i
+ρ(1,2)2

(Y |X ) j j
+ρ(1,2)2

(X ,Y |X )i j
+ρ(2,1)2

(X ,Y |X )i j
)/2− {ρ(1)

(Y |X )i j
(ρ(1)

(Y |X )i j
ρ(1,2)

(X ,Y |X )i j
(6.25)

+ ρ(2,1)
(X ,Y |X )i j

ρ(2)
(Y |X )i j

)+ρ(2)
(Y |X )i j

(ρ(2,1)
(X ,Y |X )i j

ρ(1,2)
(X )i i

+ρ(1,2)
(Y |X ) j j

ρ(1,2)
(X ,Y |X )i j

)}
]

,

where 

ρ(1,2)
(X )i i

= cor(X (1)
i −X (1)

−i β
(1)
X−i ,i

, X (2)
i −X (2)

−i β
(2)
X−i ,i

),

ρ(1,2)
(Y |X ) j j

= cor(Y (1)
j −X (1)β(1)

., j , Y (2)
j −X (2)β(2)

., j ),

ρ(1,2)
(X ,Y |X )i j

= cor(X (1)
i −X (1)

−i β
(1)
X−i ,i

, Y (2)
j −X (2)β(2)

., j ),

ρ(2,1)
(X ,Y |X )i j

= cor(X (2)
i −X (2)

−i β
(2)
X−i ,i

, Y (1)
j −X (1)β(1)

., j ),

ρ(1)
(Y |X )i j

=β(1)
i j var(Y (1)

j −X (1)β(1)
., j ), ρ(2)

(Y |X )i j
=β(2)

i j var(Y (2)
j −X (2)β(2)

., j ).

We estimate the correlation coefficients [θi j ], i ∈ [1, p] and j ∈ [1, q], by plugging in the sample

estimators of ρ’s instead of the true values in eq. (6.25). For instance, we take β̂(1) = β̂(1)
1 and β̂(2) = β̂(2)

1

being the solution of step 3 in Algorithm 9 at the initial iteration, which provides dense estimators of

the regression coefficient matrices. Besides, we approximate ρ(1,2)
(X )i i

considering marginal estimates of

Ω(1)
X andΩ(2)

X , for instance using the proposed estimator in Section 6.2, follow description of ŵ12 in eq.

(6.17).
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For simplicity, we make the further assumption that ρ(1,2)
(X ,Y |X )i j

= ρ(2,1)
(X ,Y |X )i j

= 0 for any i 6= j . This

assumes that there is no direct link between any pair given by a gene and methylation site in which

one is in a normal tissue and the other corresponds to a tumor tissue. The leading term of expres-

sion (6.25) is given by the product ρ(1,2)
(X )i i

ρ(1,2)
(Y |X ) j j

. Thus, both dependence in explanatory variables and

dependence in residuals are needed for θi j to be influential.

The performance of the proposed estimator for [θi j ] is assessed on simulated data in Appendix B.7.

We compare the estimator to an approximated value of cor(β̂(1)
i j , β̂(2)

i j ) using 5000 i.i.d Monte Carlo

instances, so in a way the sensibility of expression (6.25), which is adapted here for regression coeffi-

cients, is also evaluated.

6.4 Overestimation of triangular motifs

6.4.1 Problem and toy example

We have discovered that for the WFGL and FGL estimators, the overestimation of triangles is a

major issue. If there are 3 nodes i , j ,h and it is known that pairs i ,h and j ,h are connected, then

a connection between i and j is more often falsely predicted than expected. The reason for this is

that the Algorithm 8 used to find the estimates, see eq. (6.4), considers a regularization with rate ρ

for the eigenvalues [D j j ]p
j=1 of the covariance/correlation matrix to approximate its inverse denoted

by [D̃ j j ]p
j=1. It can be proved that when D j j À (ρ/n)1/2 then D̃ j j ≈ 1/D j j and when D j j ≤ c(ρ/n)1/2

then D̃ j j ≈ c̃(n/ρ)1/2. In the second such scenario, which happens when eigenvalues [D j j ] are small,

the estimated coefficients are biased.

This is illustrated using a toy graph structure example described by: Gx : (1 ←→ 2), (1 ←→ 3),

(4 ←→;); hence, here the edge 2 ←→ 3 is the one missing to complete a triangle. Assuming that the

correlations between 1 ←→ 2 and 1 ←→ 3 have the same strength r , the correlation matrix and its

inverse are expressed by

R1 =



1

r 1

r r 2 1

0 0 0 1

 , R−1
1 =Ω1 = 1

1− r 2



1+ r 2

−r 1

−r 0 1

0 0 0 1− r 2

 ,

To show the behavior of the regularized precision matrix estimator defined by (6.4) we simulate data

from a multivariate normal distribution with mean vector equal to zero and covariance matrix equal

to R1. Figure 6.1 shows the trend of −Ω̂12 (true edge), −Ω̂14 (false edge) and −Ω̂23 (false triangle edge)

for different sample sizes and over 1000 simulations. Note that Ω̂12 is shrunk towards zero for small

n as expected, also Ω̂14 is centered at zero as expected but Ω̂23 is biased. The trueΩ23 = 0, but for r

large enough, Ω̂23 is different from zero.

The algorithm 8, when weights [vi j = 1], leading to FGL is implemented in R (Danaher et al., 2013).
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Figure 6.1. Average values (times −1 for positive representation) of the estimated precision matrix
elements for true edge, Ω̂12, false triangle edge, Ω̂23 (with confidence intervals), and false edge, Ω̂14. A
bias Ω̂23 is observed as ρ increases.

We have realized that the authors make an additional consideration to the formula (6.4) which finds

dense precision matrices by quadratic inversions, i.e., if the sample sizes of the two datasets are equal,

then D̃ (t )
m j j

= (2ρ)−1[−D (t )
m j j

+ {(D (t )
m j j

)2 +4ρ}1/2] is considered for both m = 1,2. The reason is that even

though using n in expression (6.4) reduces the bias, it also gives much larger variances for edges equal

to zero producing more false positive edges. However, replacing n by 1 in eq. (6.4) causes the principle

problem of detecting too many false positive triangular motifs.

6.4.2 Reducing overestimation of triangular motifs

Consider the three nodes i , j ,h with partial correlation coefficients w (1)
i j = cor(Y (1)

i ,Y (1)
j | Y (1)

h ), w (1)
i h =

cor(Y (1)
i ,Y (1)

h | Y (1)
j ) and w (1)

i h = cor(Y (1)
j ,Y (1)

h | Y (1)
i ). Assume that w (1)

i h 6= 0 and that w (1)
j h 6= 0. Here we

focus on the hypothesis testing problem defined by H0: w (1)
i j = 0 (not a triangle) and H1: w (1)

i j 6= 0

(triangle) using the sample partial correlation matrix Ŵ1 which contains the three variables i , j ,h. The

p-value of the test is given by

p-val = P (|Z | ≥ |g (ŵ (1)
i j )|) .= 2−2Φ

(p
n −5(|g (ŵ (1)

i j )|)
)

, (6.26)

where g : (−1,1) →R, g (z) = log{(1+z)/(1−z)}/2 is the Fisher transformation function, that is applied to

the partial correlation coefficient ŵi j (Fisher, 1924), and Z is the standard normal r.v. with cumulative

distributionΦ.

In practice, the pair (i , j ) with w (1)
i j = 0 might be unknown. Hence, a p-value for the test is approxi-

mated by applying (6.26) on the smallest estimated coefficient in absolute value min(|ŵ (1)
i j |, |ŵ (1)

i h |, |ŵ (1)
j h |).

This results to a conservative p-value, i.e., Pr(|Z | ≥ |g (ŵ (1)
i j )|∪|Z | ≥ |g (ŵ (1)

i h )|∪|Z | ≥ |g (ŵ (1)
j h )|) ≥ Pr(|Z | ≥

|g (ŵ (1)
i j )|). For sufficiently large sample sizes, and large true non-zero partial correlation coefficients,

the equality holds.
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Here we assess the weakest edges of all observed triangular motifs independently for Y (1) and Y (2),

and we eliminate those with large p-values (default threshold equal to α1, see eq. (6.6)). In case an

edge is tested more than once, we only count its smallest p-value. However, multiple testing correction

and another interpretation for triangles overlap could be used instead.

6.5 Simulated data analysis

6.5.1 Generation of joint precision matrices

Simulated data are obtained from multivariate normal distributions with zero mean vector and almost-

block diagonal precision matrices, where each block has a power-law underlying graph structure and

some extra random connections between blocks, i.e., we follow the same strategy proposed in Section

4.5.2. We generate datasets with several dimension sizes p = 200, 300, 400 and sample sizes n = 25,

100, 250, 500 to assess the performance of the WFGL approach and compare it to standard methods in

Sections 6.5.3-6.5.4. Figure 6.2 shows the network representation of some of the simulated non-zero

precision matrix structures. It distinguishes between common edges (blue) and differential edges

(green and red).

(a) Network example p=200 (b) Network example p=300 (c) Network example p=400

Figure 6.2. Graph structure examples: green edges are zero elements in the precision matrix for
second class and non zero for first class; Red edges are zero in first class and non-zero in second class;
Finally, blue edges are non-zero and equal in both conditions.

6.5.2 Generation of joint regression coefficient matrices

Given p-dimensional random vectors X (1) and X (2), which can be obtained as described in Section

6.5.1, we assume a Gaussian linear model to relate explanatory variables X = [X (1), X (2)] and response

variables Y = [Y (1),Y (2)] by

(Y (1)
k ,Y (2)

k ) ∼ N2q

X (1)
k β(1)

X (2)
k β(2)

′

,Rε

 , Rε =
 R(1)

ε R(1,2)
ε

R(2,1)
ε R(2)

ε

 , (6.27)
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where, for the sake of simplicity, we assume same dimension for response and explanatory variables

(q = p). We determine Rε so that R(1)
ε = R(2)

ε = Iσ2 and R(1,2)
ε is a diagonal matrix with R(1,2)

εi i
= 0.6σ2

for bq/2c diagonal elements and R(1,2)
εi i

= 0 for the other dq/2e. Moreover, we distinguish between the

following two patterns for β(1) and β(2):

1. Scenario 1: we assume thatβ(1) = Iκ(1) andβ(2) = Iκ(2) are diagonal matrices which have m = θp

elements equal in the diagonal coefficients κ(1) and κ(2). For the other p(1−θ) elements, we

take κ(1) 6= 0 and κ(2) = 0. We use θ = 0.1,0.4,0.7. This is a simple dependence structure which

might be unrealistic for our application. For instance, note that several methylation sites might

be related to the same gene promoter.

2. Scenario 2: we assume sparse regression coefficient matrices β(1) = ρΩ(1) and β(2) = ρΩ(2) for

some 0 < ρ < 1, in which the linear relationships between response and explanatory variables is

proportional to the conditional linear relationship within explanatory variables. We use several

proportions of differential edges: θ = 0.1,0.4,0.7.

In both scenarios, the proportion of differential edges θ = 0.7 is only added to compare the joint

estimation approach against estimating two separate regression lasso in Section 6.5.5, but we do no

expect such large proportions in the application to genomic data.

6.5.3 Differential network recovery for the precision matrices

In this section we focus on the recovery of differential edges by using two joint graphical lasso algo-

rithms in the simulated datasets: FGL (Danaher et al., 2014) and WFGL -without triangle correction-

(proposed in this chapter). Initially we had though about using ROC curves to compare the two

methods, by keeping fix λ2 and moving λ1 from low to high values. The comparison resulted to be

difficult though, as for instance, the same λ2 might induce different graph structure complexities in

the two approaches. Then differences in the ROC curves might be due to the λ2 specification rather

than real differences among methods.

For this reason, in order to make the structures of the estimated matrices comparable, we select

estimated graphs (or λ1 and λ2) that have the same number of common edges and differential

edges in the two approaches, i.e., we select the pair [λ1,λ2] for the WFGL approach by setting the

expected false positive rate by the parameters [α1 = 0.05,α′
2 = 0.05] following the strategy proposed in

Section 6.2.2, and we find λ’s such that the FGL graphs have the same sizes as WFGL. We compare

the performance of the methods using a simple measure as the Youden’s index, which is defined by

YIM
λ

= TPM
λ
−FPM

λ
, with M = FGL or WFGL, where TPM

λ
=∑

i< j I [Ω̂(1)
i j (M)−Ω̂(2)

i j (M) 6= 0,Ω(1)
i j −Ω(2)

i j 6= 0)]

and FPM
λ

=∑
i< j I [Ω̂(1)

i j (M)− Ω̂(2)
i j (M) 6= 0,Ω(1)

i j −Ω(2)
i j = 0)] are the numbers of true positives and false

positive of the estimated differential graphs with λ = [λ1,λ2] and method M . Then we compute

δ= YIWFGL
λ

−YIFGL
λ

, which defines the Youden’s index differences between the two methods to estimate

the joint networks.
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In Table 6.1 we present the average value of δ (with a Student’s t-test p-value), and also the average

sign of δ (with a Wilcoxon test p-value). In total we use 200 instances for each model, 4 different

sample sizes n = 25,100,250,500 and three dimension sizes p = 200, 300, 400. The proposed method,

that assumes a dependence structure, achieves better TP-FP ratios for the differential network than

the original FGL in most of the models when n is large (≥ 100). For small n (n = 25), the FP-TP are

similar between the two algorithms even if there exists a dependence structure in the data. This may

be due to the lack of data to estimate additional parameters ψi j .

Table 6.1. Youden Index differences between WFGL and FGL algorithm: average (p-value for t-test)
and average sign (p-value for sign test). WFGL finds better estimates than FGL, especially for n ≥ 100.

p= 200 p=300 p=400
n δ̄ (p-val) ¯sg n(δ) (p-val) δ̄ (p-val) ¯sg n(δ) (p-val) δ̄ (p-val) ¯sg n(δ) (p-val)
25 0.3 (.02) .15 (.03) 0.2 (0.22) .07 (.22) 0.2 (.18) .09 (.19)
100 2.0 (<.01) .55 (<.01) 2.6 (<.01) .55 (<.01) 2.4 (<.01) .53 (<.01)
250 3.1 (<.01) .70 (<.01) 5.6 (<.01) .86 (<.01) 5.7 (<.01) .84 (<.01)
500 1.9 (<.01) .54 (<.01) 4.0 (<.01) .68 (<.01) 5.6 (<.01) .77 (<.01)

6.5.4 Tuning parameter selection and testing and removing triangular motifs

In Figure 6.3 we compare the expected proportion of false positive edges determined by the value

of α1 against the observed false positive rate (with median and 95% confidence) using the RCmad

estimator described in Section 6.2.2 to approximate σ1. To construct the confidence interval we

replicate the procedure in 100 simulated datasets using different sample sizes and dimensions. The

approximated false positive rate is close to the true one, given by α1, and it is only for small n (n = 25)

that the true value is not always included in the confidence interval.

Similarly, in Figure 6.4 we compare the expected proportion of false positive edges in the differen-

tial network (as defined in Section 3.2 of the article) determined by the value ofα2 against the observed

false positive rate (with median and 95% confidence) using the RCmad estimator to approximate σ2.

As for α1, the approximated false positive rate is close to the desired α2 and again it is only for the

smallest tested n that the true value is not included in the confidence interval.

As we discussed in Section 6.4, using the eigenvalue decomposition regularization forces an

overestimation of some non existing edges in the true network that complete triangular motifs. In

Table 6.2 we present the average TP-FP behaviour for the weakest edge of estimated triangles for

simulated models with different sample sizes, dimensions and error rates α, distinguishing the

triangles that take part in a common network and triangles in a differential network. The initial

estimated triangles contain more false positives than true positives increasingly with p &n increasing.

This is corrected by our triangle detection procedure (particularly for common edges), which notably

reduces the number of false positives without losing many true positive edges.
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Figure 6.3. FPR vs α1: average (cross) + CI is plotted together with the expected values (triangle). For
visualization reasons, x-axis and y-axis are not in the same scale (i.e. 2x : y).

6.5.5 Graph recovery for the regression coefficient matrices

In this section we evaluate the performance of the proposed joint regression lasso approach against

the standard lasso regression that finds estimates in the two classes independently. To do so we

consider four values for the similarity tuning parameter α′
2 (see Section 6.2.2 for definition): α′

2 = 0.05,

α′
2 = 0.10, α′

2 = 0.20 and α′
2 = 1. Note that using α′

2 = 1 is equivalent to not penalizing the similarity

of the two regression coefficient matrices. We further consider a sequence of values for α1 that goes

from 0.001 (highly sparse) to 0.5 (dense). For each combination of α1 and α′
2 we fit the weighted fused

regression lasso (WFRL) model and we measure the graph recovery by calculating the false positive

rate and the true positive rate:

T PR =
∑

l=1,2
∑

i , j I (β̂(l )
i j 6= 0 & β(l )

i j 6= 0)∑
l=1,2

∑
i , j I (β(l )

i j 6= 0)
, F PR =

∑
l=1,2

∑
i , j I (β̂(l )

i j 6= 0 & β(l )
i j = 0)∑

l=1,2
∑

i , j I (β(l )
i j = 0)

.

For every α′
2, we approximate the AUC coefficient, which estimates the area under the curve given by

the FPR and TPR relationship as function of α1 (with 1 being perfect recovery and 0.5 being recovery

by chance). We consider 20 instances for each combination of sample size, dimension and scenario

described in Section 6.5.2, and in Table 6.3 we present AUC estimates for the three models with their

respective average ranks: rank = 1 is assigned to the best AUC, and rank = 4 is given to the worst AUC.
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Figure 6.4. FPR vs α2: average (cross) + CI is plotted together with the expected values (triangle). For
visualization reasons, x-axis and y-axis are not in the same scale (i.e. 2x : y).

The ranks are added to directly compare the methods since the AUC levels are close to 1 and similar

for some of the cases. This is due to the strong sparsity levels assumed at matrices (β(l ))l=1,2, which

lead to very small FPR values.

The joint methodology, especially when the number of differential coefficients is small (θ = 0.1

and θ = 0.4), produces better graph recovery levels than the standard lasso regression. In scenario 1,

the joint model with large α′
2 (= 0.20) turns out to achieve better rates than the other joint models

with smaller α′
2 whereas in scenario 2, α′

2 = 0.05 and α′
2 = 0.10 find the best results. In both scenarios,

the best α′
2 tends to increase with θ, and we find that for the setting n = 100, p = 170 and scenario 1,

α′
2 = 1 achieves the highest ranks. AUC levels are found to be quite similar among joint estimators,

and present visible difference against the individual estimates.

6.5.6 Differential network recovery for the regression coefficient matrices

We compare the performance of FRL (fused regression lasso with constant weights) and WFRL (pro-

posed weights for dependent datasets) for data generated as presented in Section 6.5.2 using a

proportion of differential edges equal to θ = 0.4. In order to make the structures of the estimated

matrices comparable, we select estimated graphs (or λ1 and λ2) that have the same number of com-
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Table 6.2. True positives vs false positives for weakest estimated triangle edges using WFGL +
triangular motifs elimination at levels α= 0.01, α= 0.03 and α= 0.05. The results are compared to the
initial estimate, without the triangle correction (labeled as NO row).

common edges differential edges

n 25 100 250 500 25 100 250 500
TP FP TP FP TP FP TP FP TP FP TP FP TP FP TP FP

dimension p=200
NO 3.53 26.40 6.03 40.04 6.39 61.02 5.75 57.06 0.38 3.68 0.76 4.30 0.51 4.75 0.48 5.10
α= .01 0.00 0.00 0.09 0.53 1.72 0.97 3.38 1.26 0.00 0.00 0.00 0.12 0.07 0.48 0.12 0.76
α= .03 0.00 0.02 0.61 1.25 2.93 2.40 4.21 3.21 0.00 0.00 0.03 0.49 0.17 0.94 0.29 1.14
α= .05 0.00 0.08 1.21 1.87 3.67 4.30 4.55 5.37 0.00 0.00 0.09 0.82 0.19 1.27 0.37 1.47

dimension p=300
NO 5.92 60.20 9.43 74.25 8.12 91.25 7.23 114.64 .51 9.13 0.84 8.35 0.67 7.76 0.38 8.20
α= .01 0.00 0.00 0.30 0.71 2.33 1.09 4.37 1.87 0.00 0.00 0.00 0.16 0.09 0.67 0.08 0.92
α= .03 0.00 0.02 1.03 1.60 3.65 3.89 5.19 5.86 0.00 0.00 0.02 0.65 0.25 1.22 0.21 1.43
α= .05 0.04 0.10 1.93 3.28 4.52 7.48 5.63 11.11 0.00 0.02 0.08 1.05 0.36 1.83 0.28 2.09

dimension p=400
NO 11.90 232.4 18.36 241.2 16.43 259.4 13.29 274.3 0.56 17.20 1.14 17.86 0.92 16.69 0.64 17.7
α= .01 0.00 0.08 0.7 1.7 4.31 3.36 7.49 5.46 0.00 0.00 0.00 0.44 0.05 0.98 0.25 1.21
α= .03 0.00 0.12 2.09 5.09 6.74 13.22 9.23 19.8 0.00 0.00 0.02 1.26 0.30 1.79 0.40 2.52
α= .05 0.01 0.37 3.75 12.19 8.30 27.03 9.95 38.5 0.00 0.00 0.14 1.95 0.43 2.85 0.47 4.27

mon edges and differential edges in the two approaches, i.e., we select the pair [λ1,λ2] for the WFRL

approach by setting the expected false positive rate by the parameters [α1 = 0.05,α′
2 = 0.05] following

the strategy proposed in Section 6.2.2, and we find λ’s such that the FRL graphs have the same sizes as

WFRL. In total we use 200 instances for each model, 3 different sample sizes n = {25,50,100}, and two

dimension sizes p = {120,170} with q = p.

The Youden’s index for the estimated regression coefficient matrices is found by YIM
λ

= TPM
λ
−FPM

λ
,

M = FRL,WFRL, where TPM
λ

=∑
i , j I [β̂(1)

i j (M)− β̂(2)
i j (M) 6= 0,β(1)

i j −β(2)
i j 6= 0)] and FPM

λ
=∑

i , j I [β̂(1)
i j (M)−

β̂(2)
i j (M) 6= 0,β(1)

i j −β(2)
i j = 0)] are the number of true positives and false positive of the estimated

differential graphs with λ = [λ1,λ2] and method M . Then we compute δ = YIWFRL
λ

−YIFRL
λ

, which

defines the Youden’s index differences between the two methods to estimate the joint networks. In

Table 6.4 we present the average difference (with a t-test p-value) and also the average sign of the

differences δ (with a Wilcoxon test p-value) for network pattern described in Scenario 1 and Scenario

2. The proposed method, that assumes a dependence structure, achieves better TP-FP ratios for the

differential network than the original FRL for any combination of sample size and dimension, being

highly significant for n ≥ 50. However, these represent very small differences in magnitude as the total

number of possible non-zero coefficients is of O(10000).

6.6 Estimation of sparse networks using gene expression data

We apply the proposed WFGL method with λ1 and λ2 selected by the FDR procedure (Section 6.2.2),

and with triangular motif correction (Section 6.4) to two different real case studies of gene expression

data. We present detailed analysis for the first dataset, which contains the gene expression profiling of

82 patients with the psoriasis vulgaris disease in a paired lesional and non-lesional samples (Suárez-

Fariñas et al., 2012). We also show the main results of the analysis of a gene expression dataset

that represents a paired tumor and healthy samples from 60 female non-smoker patients with lung
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Table 6.3. Average ranks for AUC estimates (and their AUC average value) for models generated as
defined in scenario 1 (diagonal matrices of regression coefficients) and scenario 2 (proportional
coefficients to precision matrix). Rank = 1 corresponds to the best AUC and rank = 4 is for the worst
AUC.

Scenario 1 Scenario 2
θ 0.1 0.4 0.7 0.1 0.4 0.7

n=25, p=120
joint (α′2 = 0.05) 1.8 (.96) 2.1 (.94) 3.8 (.88) 1.5 (.68) 2.1 (.70) 2.5 (.69)
joint (α′2 = 0.10) 2.1 (.96) 2.1 (.94) 2.8 (.89) 1.8 (.68) 1.7 (.70) 2.0 (.69)
joint (α′2 = 0.20) 2.1 (.96) 1.8 (.94) 1.3 (.91) 2.7 (.68) 2.2 (.69) 1.5 (.70)
ind. (α′2 = 1) 4.0 (.91) 4.0 (.89) 2.1 (.90) 4.0 (.65) 4.0 (.67) 4.0 (.67)

n=25, p=170
joint (α′2 = 0.05) 2.1 (.97) 2.9 (.93) 3.9 (.87) 1.8 (.67) 1.5 (.70) 2.1 (.70)
joint (α′2 = 0.10) 1.8 (.97) 2.0 (.94) 2.8 (.89) 1.9 (.67) 2.2 (.70) 1.9 (.70)
joint (α′2 = 0.20) 2.1 (.97) 1.1 (.95) 1.5 (.90) 2.3 (.67) 2.3 (.69) 2.0 (.69)
ind. (α′2 = 1) 4.0 (.91) 4.0 (.91) 1.8 (.90) 4.0 (.65) 4.0 (.68) 4.0 (.68)

n=50, p=120
joint (α′2 = 0.05) 2.4 (.99) 2.9 (.99) 3.7 (.97) 1.8 (.67) 1.5 (.68) 2.1 (.70)
joint (α′2 = 0.10) 1.7 (.99) 2.1 (.99) 2.4 (.98) 1.9 (.67) 2.2 (.68) 1.9 (.70)
joint (α′2 = 0.20) 1.9 (.99) 1.6 (.99) 1.9 (.98) 2.3 (.67) 2.3 (.68) 2.0 (.69)
ind. (α′2 = 1) 4.0 (.98) 3.4 (.98) 2.0 (.98) 4.0 (.65) 4.0 (.66) 4.0 (.68)

n=50, p=170
joint (α′2 = 0.05) 2.0 (.99) 2.8 (.99) 3.7 (.97) 1.3 (.72) 1.8 (.72) 2.0 (.72)
joint (α′2 = 0.10) 1.8 (.99) 2.3 (.99) 2.6 (.97) 1.8 (.71) 1.8 (.72) 1.8 (.72)
joint (α′2 = 0.20) 2.2 (.99) 1.1 (.99) 1.5 (.98) 2.9 (.71) 2.4 (.72) 2.2 (.72)
ind. (α′2 = 1) 4.0 (.98) 3.8 (.97) 2.2 (.98) 4.0 (.68) 4.0 (.69) 4.0 (.70)

n=100, p=120
joint (α′2 = 0.05) 2.5 (.99) 2.8 (.99) 3.4 (.99) 1.3 (.77) 1.3 (.78) 1.6 (.79)
joint (α′2 = 0.10) 2.0 (.99) 2.4 (.99) 2.5 (.99) 2.0 (.77) 2.0 (.78) 1.8 (.79)
joint (α′2 = 0.20) 2.2 (.99) 2.2 (.99) 2.4 (.99) 2.7 (.77) 2.7 (.78) 2.6 (.79)
ind. (α′2 = 1) 3.3 (.99) 2.6 (.99) 1.7 (.99) 4.0 (.71) 4.0 (.73) 4.0 (.75)

n=100, p=170
joint (α′2 = 0.05) 1.8 (.99) 2.7 (.99) 3.4 (.99) 1.2 (.77) 1.3 (.79) 1.9 (.77)
joint (α′2 = 0.10) 2.1 (.99) 2.4 (.99) 3.0 (.99) 2.0 (.77) 1.7 (.79) 1.9 (.77)
joint (α′2 = 0.20) 2.3 (.99) 1.7 (.99) 2.1 (.99) 2.8 (.77) 3.0 (.78) 2.2 (.77)
ind. (α′2 = 1) 3.8 (.99) 3.2 (.99) 1.6 (.99) 4.0 (.71) 4.0 (.73) 4.0 (.73)

cancer (Lu et al., 2010). In both cases, there are 19,507 different genes which have been identified

by the biomaRt R package (Durinck et al., 2005). In the original data, some genes are represented

by more than one probe. These are aggregated at the gene level by taking the average. The main

objective is to make inference about the gene interconnections in the two medical conditions and

relate common and differential estimated networks to functions in biological processes. Moreover,

the WFRL approach is applied to colon cancer data in Chapter 8.

6.6.1 Network analysis of psoriasis vulgaris disease gene expression data

Reduction of the number of genes for network analysis

For computational needs in the joint estimation procedures, we reduce the dimension of the data

set by considering two filters with the objective to keep only the most relevant genes in the gene

dependence networks, i.e., we select highly correlated genes and differentially correlated genes.

As a first filter we use the hypothesis testing problem described in Section 4.4.3 that assesses if a

correlation matrix row is the identity vector. As a second filter we consider the hypothesis testing

problem described in Section 4.4.1 for equality of two correlation rows. In both cases, we employ the

average of squares test statistic. The null distribution is approximated using 300 permuted samples.

We correct the p-values by multiple testing using the false discovery rate (FDR) approach of
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Table 6.4. Youden Index differences δ= YIWFRL
λ

−YIFRL
λ

between WFRL and FRL algorithm for data
generated by scenario 1 (diagonal matrices of regression coefficients) and by scenario 2 (proportional
coefficients to precision matrix). The WFRL method obtains better rates than FRL for n ≥ 50.

Scenario 1 pattern
p = 120 p = 170

n δ̄ (p-val) ¯sg n(δ) (p-val) δ̄ (p-val) ¯sg n(δ) (p-val)
25 .24 (.03) .11 (.03) .06 (0.36) .04 (0.33)
50 1.9 (< .01) .62 (< .01) 2.52 (< 0.01) .69 (< 0.01)
100 4.5 (< .01) .93 (< .01) 6.86 (< 0.01) .95 (< 0.01)

Scenario 2 pattern
p = 120 p = 170

n δ̄ (p-val) ¯sg n(δ) (p-val) δ̄ (p-val) ¯sg n(δ) (p-val)
25 .01 (0.42) .01 (0.43) .04 (0.31) .05 (0.24)
50 .68 (< .01) .32 (< .01) .94 (< 0.01) .34 (< 0.01)
100 1.17 (< .01) .42 (< .01) 1.68 (< 0.01) .46 (< 0.01)

Benjamini and Hochberg (1995). The following genes are selected with the threshold of 0.01

g∗ = {g : p-val(g )N L < 0.001}∪ {g : p-val(g )L < 0.001}∪ {g : p-val(g )D < 0.001},

where p-val(g )N L and p-val(g )L are the adjusted p-values using the first filter for healthy and lesional

datasets respectively, and p-val(g )D are the adjusted p-values for the difference matrix using the

second filter.

The total number of selected genes is 17,967, which is a reduction of the 8% of the original variables

(for extended results see Section 4.6 ). We further use a clustering procedure on the reduced dataset

to estimate joint networks separately for different groups of genes. We consider the hierarchical

clustering algorithm presented in Müllner (2013) since it provides a fast procedure even for large

dimensions. We use 1 minus the matrix of absolute correlations for healthy genes as dissimilarity

matrix to find 6 large clusters of size [5335, 1697, 781, 879, 1017, 4694] genes. Other clusters are found

but their sizes are very small (less than 100 genes) and are not considered for estimation.

1 2 3 4 5 6
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3
4

5
6

cluster of genes

cl
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Figure 6.5. Heatmap of gene clusters linear dependence for psoriasis data: square darkness is related
to the average of absolute correlation within and between clusters.
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Network estimation of lesional and healthy gene expression data

We fit the weighted fused graphical lasso model to each of the 6 clusters of genes defined above, so we

assume conditional independence for genes between clusters, as the estimation of the whole network

requires extremely demanding computational efforts. We use error ratesα1 andα′
2 (defined in Section

6.2.2) to tune the penalization parameters λ1 and λ2. For α1 we set the underlying expected number

of false positive edges (EFP) with EFP = 200,150,100,100,100,200 respectively for each cluster as we

found these represent well the graphical complexity of the observed cluster sizes. Then,α1k = EF P/p ′
k

with p ′
k = pk (pk −1)/2 (pk cluster size for k = 1 : 6). By setting α1 in this way, we permit more false

positives for small dimensions to control the graph complexity. Note that if we were going to consider

equal α1 for all clusters, for the EFP = 100 of cluster 3 we would expect about EFP = 5000 for cluster 1,

which would make the graphical interpretation fairly difficult. Besides, we use three different values

for α′
2 which are specified in Table 6.5.

Table 6.5 provides the number of estimated edges common to the two medical conditions and the

number of differential edges: "healthy only" for edges only present in the network for healthy samples;

and "les only" for edges only present in the network for lesional samples. The total number of edges is

much larger than the expected number of false positives which suggests reasonable confidence in the

results. Moreover, the number of differential edges is remarkably larger for healthy samples than for

lesional samples in cluster 1, 2, 4, 5 and 6, and the other way around for cluster 3.

Table 6.5. Number of edges for common networks and differential edges using similarity tuning
parameters α′

2 = 0.001, α′
2 = 0.01 and α′

2 = 0.05 in psoriasis dataset.

Cluster 1 Cluster 2 Cluster 3
α′2 0.001 0.01 0.05 0.001 0.01 0.05 0.001 0.01 0.05
common 11,771 10,224 8,891 2,413 2,407 2,388 1,028 1,021 1,000
healthy only 3,646 5,621 7,737 0 0 11 7 23 44
les only 4,259 6,339 8,493 2 8 17 4 10 16

Cluster 4 Cluster 5 Cluster 6
α′2 0.001 0.01 0.05 0.001 0.01 0.05 0.001 0.01 0.05
common 946 920 897 1,320 1,320 1,311 7,674 7,633 7,485
healthy only 0 0 4 0 1 5 3 18 69
les only 14 29 55 1 5 10 29 70 136

Figure 6.6 shows the graphical representation of some of the estimated networks. The black edges

are common edges, whereas in orange there are "healthy only" edges and in green there are "les only"

edges. In general, in almost all clusters we detect presence of hub genes (genes with much higher

degree than the rest). Furthermore, we can see a clustered graph structure in each estimated networks,

which could be expected in biological data (Eisen and Spellman, 1998) with some specific groups

of genes that are uniquely present in one medical condition. For instance, the genes with a largest

number of differential edges are ABCC6P2, CALB1, CATSPER3, CYP1A2, IDI2-AS1, JARID2-AS1, KRT3,

NBAS, NPY4R, PHACTR2-AS1, SYT13, TNNC2, TRAV20, UNC13C, XKR6, DICER1-AS1, LYPD5, OSR2,

RIMBP2, SIAE, USH1G , C1orf61, DNMBP, PCDHB11, SNORD38A, BEND7, FOXD3 (for "healthy only")

and BAALC-AS2, C2CD4A, CD244, CDH17, CFLAR-AS1, CPB1, DNAH2, FCRL3, FITM1, FRRS1, IGHD,

KCNK17, LINC00491, LINC00847, PAEP, PRR15, PWRN1, RNF144A-AS1, SLC26A4-AS1, SLC6A18,
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STRA6, SYNPO2L, TAS2R38, TECRL, TRG-AS1, TTTY15, ZFP42, ZNF671, ZNHIT2, ZP4, ARV1, CHERP,

ERICH1, PRKCE, REEP3, SGPP2, ZCCHC10, GSG1L, PSMA7, PKN3, ZNF438, LHFPL2, RNU6-125P,

CCDC168, FNTA, GIPC1 (for "les only"). Most of the genes in this list were not identified as important

genes (differentially expressed analysis) in the study by Suárez-Fariñas et al. (2012) but are found to

be relevant for gene interaction network.
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(a) Network estimation in cluster 1
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(b) Network estimation in cluster 2
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(c) Network estimation in cluster 3
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(d) Network estimation in cluster 4
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(e) Network estimation in cluster 5
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(f ) Network estimation in cluster 6

Figure 6.6. Estimated joint networks for four groups of genes in psoriasis dataset: in black there are
the common edges and in orange ("healthy only") and green ("les only") the differential connections.

Integration with biological pathway lists

We are particularly interested in knowing how standard gene pathways change in different medical

conditions. To assess which biological processes might be linked to changes in the gene connections

we download 1,320 gene sets from the MSig database (Subramanian et al., 2005), which represent

canonical pathways compiled from two sources: KeGG (Kanehisa et al., 2016) and Reactome (Milacic

et al., 2012). To integrate and analyze the estimated networks within the pathway lists, we count

which pairs of connected genes in the estimated networks are both present in a specific pathway list

(see Table 6.6). Using the 17,967 genes as background, we find that approximately 1% of estimated

connections are expected to be included by chance. Thus, we also evaluate how likely it is to obtain at

least the same number of biological relevant connections in a random process. Common network

associations are significantly present in all pathways except cluster 4. Moreover, differential edges

overlapping with the pathway list could be expected by chance in all clusters except for cluster 1
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(significance level of 0.01).

Table 6.6. Total number of estimated edges whose pair of genes are both in the same pathway list
(p-value) using psoriasis data.

Cluster 1 Cluster 2
α′2 0.001 0.01 0.05 0.001 0.01 0.05
common 121 (.35) 111(.17) 97 (.17) 115 (< .01) 115 (< .01) 116 (< .01)
healthy only 26 (.96) 47 (.90) 54 (.86) 0 0 1(.10)
les only 57 (.62) 61 (.64) 67 (.67) 0 0 1 (.16)

Cluster 3 Cluster 4
α′2 0.001 0.01 0.05 0.001 0.01 0.05
common 82 (< .01) 83 (< .01) 82 (< .01) 15 (.06) 15 (.05) 14 (.06)
healthy only 0 0 0 0 0 0
les only 0 1 (.10) 2 (.01) 0 0 0

Cluster 5 Cluster 6
α′2 0.001 0.01 0.05 0.001 0.01 0.05
common 82 (< .01) 82 (< .01) 82 (< .01) 332 (< .01) 332 (< .01) 328 (< .01)
healthy only 0 0 0 0 0 0
les only 0 0 0 0 0 1 (.74)

We perform further investigation for genes in six of the most important canonical pathways: im-

mune system, adaptive immune system, metabolism of proteins, metabolism of lipids and lipoproteins,

signaling by GPCR and GPCR downstream signaling. We estimate joint CD structures only considering

the genes in each of the six pathways. In Figure 6.7 we show the graphical representation of immune

system, metabolism of proteins and signaling by GPCR using α1 so the expected number of false

positive edges is about 100 and we setα′
2 = 0.05. In all cases we observe more "healthy only" estimated

edges than "les only" edges, which is a behavior seen in the previous section exclusively in cluster 3.

A permuted samples based procedure presented in Appendix B.3 is used to assess the uncertainty

in the number of estimated differential edges under the hypothesis of equal conditional dependence

structures using 100 instances in every pathway list. For the immune system, the number of "healthy

only" edges is not expected by chance (with non of the permuted sample estimations exceeding the 29

edges). Similarly for the adaptive immune system, the maximum number of "healthy only" edges in

permuted samples is 5 for the 7 obtained using the original data. In both metabolism pathways, 20%

of the permuted samples statistics exceed the total number of "healthy only" edges. Finally, for both

GPCR pathways "healthy only" edges are much more present than expected by chance. In contrast, in

all pathway lists, the number of "les only" edges is largely exceeded by the replicates.

6.6.2 Network analysis of lung cancer gene expression data

Reduction of the number of genes for network analysis

We applied the same procedure presented in Section 6.6.1 to the lung cancer gene expression data.

The datasets are reduced to a total of 15,459 genes (80% of the original dimension). Clustering is

applied to the reduced data leading to 6 large clusters of size [942, 2302, 1722, 784, 768, 6276] genes

respectively and other small clusters that are not considered for estimation. In Figure 6.8 there is the

heatmap of the average correlation between and within clusters.
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(a) Immune system

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

common =  591 non−lesional =  7 lesional =  0

(b) Adaptive Immune system
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(c) metabolism of proteins
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(d) Metablosim of lipids
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(e) Signaling by GPCR
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(f ) GPCR downstream signaling

Figure 6.7. Estimated joint networks using psoriasis data in pathways (a) Immune system, (b)
Adaptive Immune system (c) metabolism of proteins (d) metabolism of lipids (e) signaling by GPCR
and (f) GPCR downstram signaling. In black there are the common edges and in orange ("healthy
only") and green ("les only") the differential connections.

Network estimation of lesional and healthy gene expression data

We fit a weighted fused graphical lasso to each of the 6 clusters of genes with different values

of error rates α1 and α′
2. We use α1 = EF P/p ′

k , p ′
k = pk (pk − 1)/2 (pk cluster size), with EFP =

100,150,150,100,100,200 respectively for each cluster and several α′
2 specified in Table 6.7.

Table 6.7. Number of edges for common networks and differential edges using similarity tuning
parameters α′

2 = 0.001, α′
2 = 0.01 and α′

2 = 0.05 in lung cancer dataset.

Cluster 1 Cluster 2 Cluster 3
α′2 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10
common 748 738 724 1,788 1,765 1,726 1,646 1,619 1,597
heal only 0 1 3 2 9 16 0 5 8
tum only 0 1 8 12 36 53 4 17 36

Cluster 4 Cluster 5 Cluster 6
α′2 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10
common 610 610 503 678 670 679 10,050 8,912 8,016
heal only 0 1 2 0 0 1 1,143 2,124 2,840
tum only 0 1 2 2 4 9 1,426 2,622 3,444

We observe a common behavior of more "tumor only" differential edges than "healthy only"

differential edges for the six clusters except cluster 4, where not many differential edges are esti-

mated. Figure 6.9 presents the network representation of the estimated precision matrices. Genes

with more than 15 non-common edges are ARHGAP11A, C14orf105, FAM47A, IMPG2, LINC01537,

132
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Figure 6.8. Heatmap of gene clusters linear dependence for for lung cancer data: square darkness is
related to the average of absolute correlation within and between clusters.

LINC01592, MIP, PAPOLB, PIWIL2 and TRIM42 (only healthy network), and C12orf42, LINC00648,

PEX5L, PRR23D2, RELL1, RPTN and SLC30A8 (only tumor network).
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(a) Network estimation in cluster 1
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(b) Network estimation in cluster 2
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(c) Network estimation in cluster 3
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(d) Network estimation in cluster 4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

common =  679 healthy =  1 tumor =  9

(e) Network estimation in cluster 5
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(f ) Network estimation in cluster 6

Figure 6.9. Estimated joint networks for four groups of genes in lung cancer dataset: in black there are
the common edges and in orange ("healthy only") and green ("les only") the differential connections.

Integration with biological pathway lists

We integrate the estimated networks with 1,320 pathway lists by counting the number of estimated

gene associations whose pair of genes is present in a specific pathway list. Common networks have

significant overlap with the pathway lists for all 6 clusters. Differential edges overlap could be observed

by chance in "healthy only" edges (found using testing approach in Appendix B.3). For "tumor only"
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edges, cluster 5 and 6 present significant overlap.

Table 6.8. Total number of estimated edges whose pair of genes are both in the same pathway list
(p-value) using lung cancer data.

Cluster 1 Cluster 2
α′2 0.01 0.05 0.10 0.01 0.05 0.10
common 29 (< .01) 29 (< .01) 30 (< .01) 74 (< .01) 72 (< .01) 73 (< .01)
heal only 0 0 0 0 0 0
tum only 0 0 1 (.07) 1 (.13) 2 (.05) 2 (.10)

Cluster 3 Cluster 4
α′2 0.01 0.05 0.10 0.01 0.05 0.10
common 74 (< .01) 72 (< .01) 74 (< .01) 45 (< .01) 45 (< .01) 44 (< .01)
heal only 0 0 0 0 0 0
tum only 0 1 (.16) 3 (.01) 0 0 1 (.01)

Cluster 5 Cluster 6
α′2 0.01 0.05 0.10 0.01 0.05 0.10
common 32 (< .01) 32 (< .01) 31 (< .01) 201 (< .01) 179 (< .01) 167 (< .01)
heal only 0 0 0 7 (.94) 12 (.99) 18 (.99)
tum only 2 (< .01) 2 (< .01) 2 (< .01) 21 (.05) 49 (< .01) 60 (< .01)

As for the psoriasis data, we estimate the gene networks using subgroups of genes determined by

six canonical pathways: immune system, adaptive immune system, metabolism of proteins, metablosim

of lipids and lipoproteins, signaling by GPCR and GPCR downstream signaling. In all estimated pathway

networks except immune system we observe more "healthy only" estimated edges than "tumor only"

edges. This contrasts with the results we obtained for the six estimated networks (by clusters) where

"tumor only" edges are more frequently estimated than "healthy only" edges.

6.7 Discussion

Motivated by genomic data where gene expression is obtained for the same individual in two different

medical conditions, in this chapter we develop a weighted fused graphical lasso method (WFGL) that

jointly estimates two precision matrices. As in the fused graphical lasso (FGL) approach proposed

by Danaher et al. (2014), we consider a penalized maximum marginal likelihood estimator that

assumes both sparsity and similarity between precision matrices. To account for dependence between

observations, we extend FGL by weighting the similarity tuning parameters for each pair of variables.

Our method, WFGL, improves the recovery rates of the original FGL for sufficiently large sample sizes

(n ≥ 100) in simulated data. For small sample size (n = 25) we find similar rates for WFGL and FGL

as the variances of the estimators of the correlation coefficients ψi j , which are needed to weight the

tuning parameters, can be quite high. WFGL also provides a less biased procedure than FGL in the

sense that all differential connections with same magnitude in the differential precision matrix have

approximately the same chance to be recovered (see Appendix B.5.

Furthermore, we propose a method to simultaneously estimate two regression coefficient matrices,

and their underlying graphical structure, corresponding to samples in two different classes, whose

observations can be paired, and where both response and explanatory variables are high-dimensional.

The method, which is called WFRL, finds a penalized marginal least squares estimator with a lasso
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(a) Immune system
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(b) Adaptive Immune system
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(c) metabolism of proteins

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

common =  456 healthy =  14 tumor =  6

(d) Metablosim of lipids
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(e) Signaling by GPCR
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(f ) GPCR downstream signaling

Figure 6.10. Estimated joint networks using psoriasis data in pathways (a) Immune system, (b)
Adaptive Immune system (c) metabolism of proteins (d) metabolism of lipids (e) signaling by GPCR
and (f) GPCR downstram signaling. In black there are the common edges and in orange ("healthy
only") and green ("tumor only") the differential connections.

penalization term to encourage sparsity in the estimated networks as well as a fused penalization

term to favor similarity between regression coefficients, and it is also solved employing an ADMM

based algorithm. The proposed joint estimator is proven to give better network recovery rates than

estimating the two networks separately when the true regression coefficient matrices are fairly similar.

This is not a rare assumption in our application to genomic data where even for such different states

as healthy and tumor tissues, we expect a large part of the gene connections to be equal. Moreover, we

have applied a correction on the fused penalization to account for data settings where observations in

the two classes are paired. This adjustment is found to improve the recovery of differential networks

for paired data using simulations.

We present a method to select the tuning parameters in the two joint estimation algorithms, WFGL

and WFRL, which is motivated by practical needs for controlling the expected false positive rates. We

transform the selection problem to the more intuitive selection of expected proportion of false positive

edges (EPFR) which works well for reasonably sparse graphs. This requires the assumption of normality

in the estimated precision matrix elements and should be tested for other datasets. If the assumptions

hold, we see in the simulated data analysis that the proposed method produces results near the

desired EFPR for a sufficiently large sample size. The numerical integration of expression (6.13) is

computed to control the error rate for sparsity α1. To avoid this computation, we have investigated
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using an upper bound for α1 instead of α1, i.e., see Fayed and Atiya (2014), but the simplification

found gave very crude results. Finding accurate bounds is left as future work.

Finally we address the problems of FGL and WFGL in estimating triangular motif graph structures

using an hypothesis testing approach on the weakest edge in a triangle of variables just after the

estimation process. Using simulated data we corroborate that our proposed strategy reduces the

number of false positive edges without missing many estimated true positives.

The analysis of the motivating gene expression data with healthy and lesional (and also tumor)

classes underlines some interesting results. We estimate 6 joint networks corresponding to 6 clusters

of genes in the two datasets. As a general pattern, we observe that in each cluster, genes interact

between each other in groups, suggesting a clustering sub-structure. Connections between genes in

lesional tissue appear to occur more often than in healthy tissue. Furthermore, pathway integration

analysis suggests that common edges, which are estimated using a larger effective sample size than

the original number of patients, have a strong significant overlap with some of the considered pathway

lists. Main pathways listed such as immune system or GPCR contain more "healthy only" edges than

"lesional/tumor".

We have realized that, recently, Cai et al. (2016) proposed a method to estimate multiple precision

matrices which proved to outperform FGL in graph structure recovery using simulations. As future

work, we will compare our methods to such novel proposal. Besides, we could use these techniques to

other type of similarity penalizations, i.e., the group lasso approach (Guo et al. 2011), and we could

extend the methods to jointly estimating K precision (or regression coefficient) matrices, with K > 2,

for datasets with paired observations.
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Chapter 7

ldstatsHD: an R package for

estimation and testing linear

dependence in high-dimensional data

7.1 Motivation for creating ldstatsHD

Omics datasets obtained as a result of genomic, metabolomic or proteomic experiments produce

generally cases of high-dimensional data, where the dimension (e.g., number of genes) is much larger

than the sample size (e.g., number of patients). The analysis of this particular type of data has been

the focus of attention of many authors in the statistics literature. In Chapter 2, we review some of the

statistical approaches in the context of testing and estimating linear dependence measures related to

the correlation matrix and its inverse matrix when data are high-dimensional. Some of these methods

are implemented in the statistical software R as part of the CRAN (https://cran.r-project.org/)

and Bioconductor (https://bioconductor.org) repositories. Some of the most relevant R packages

are: WGCNA (Langfelder and Horvath, 2008) employs the sample correlation matrix for network

reconstruction, module detection (clustering) and statistical significance; DiffCorr (Fukushima, 2013)

contains an hypothesis testing approach for equality of correlation coefficients with false discovery

rate (FDR) multiple testing significance correction; MixOmics (Lê Cao et al., 2009; González et al.,

2012) consists of different multivariate analysis procedures as principal components analysis (PCA),

partial least square (PLS), independent principal component analysis (IPCA) and other visualization

techniques for high-dimensional datasets; A remarkable R package for the estimation of partial

correlation matrices and their underlying conditional dependence networks is the package huge (Zhao

et al., 2012), which estimates the inverse covariance matrix by lasso penalized maximum likelihood

(Meinshausen and Bühlmann, 2006; Friedman et al., 2007); camel (Li et al., 2013) implements a

sparse precision matrix estimator based on the tiger algorithm presented in Liu and Wang (2012); JGL
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(Danaher et al., 2014) extends the lasso methodology to jointly estimating multiple partial correlation

matrices; Finally, MRCE (Rothman et al., 2010) is an R package that finds a sparse estimator of a

multivariate regression coefficient matrix when both response and predictors are high-dimensional.

In this chapter we present the R package ldstatsHD, which consists of functions with statistical

methods for the estimation and testing of multiple correlation matrices, precision matrices and

regression coefficient matrices from high-dimensional data when these matrices can come from

paired observations. The methodological and algorithmic contributions are mainly discussed in

Chapters 4, 5, and 6. With the creation of this package we intend to document all the generated code

and make it accessible to the R community for its use.

The chapter is organized as follows. In Section 7.2 we separate the package in three modules that

correspond to data simulators, testing methods and estimation methods. In Section 7.3 we describe

the main functions in each of these modules. We complete the description of the package in Section

7.4, where we present the user interface of ldstatsHD by exploiting several simulated data case studies.

7.2 Modules of ldstatsHD

The package ldstatsHD can be installed and loaded from the comprehensive R archive Network

(CRAN) by entering in the R command

R> install.packages("ldstatsHD")
R> library(ldstatsHD)

By doing so, some other packages/functions used in ldstatsHD are automatically downloaded. For

instance, it depends on the packages huge (Zhao et al., 2012) and igraph (Csárdi and Nepusz, 2006).

Moreover, it imports functions from packages evd (Stephenson, 2002), fExtremes (Wuertz, 2013),

corpcor (Schäfer et al., 2015), Matrix (Bates and Maechler, 2016), MASS (Venables and Ripley, 2002),

robustbase (Rousseeuw et al., 2016), VGAM (Yee, 2010), cluster (Maechler et al., 2016), RBGL (Carey

et al., 2016), camel (Li et al., 2013) and qvalue (Storey et al., 2015). Alternatively, the root files are

available at http://cran.r-project.org/packages=ldstatsHD. The package is under the public

license GPL-3 and the code is implemented using the S3 class (which is the most employed class in

the R community).

Below, we introduce the main functions available in ldstatsHD which can be classified in three

modules: data simulators, testing methods and estimation methods.

Module 1. Data simulators: it provides two functions for generating positive definite partial cor-

relation matrices. The first is pcorSimulator, which simulates a single partial correlation

matrix in which the underlying graph structure can be defined by power-law, hub-based or

random graphs (see Section 5.5.1). The second function is pcorSimulatorJoint, which ex-

tends pcorSimulator for generating a joint partial correlation matrix that relates two classes
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of observations. Several paired data structures, which are discussed in Section 2.2, are proposed

to account for dependence between the two datasets.

Module 2. Testing methods: this includes statistical methods that test global dependence character-

istics. It implements a test for equality of two correlation matrices as well as a test for identity

correlation matrix. These methods are described in Section 4.2 and Section 4.4.2 respectively

and are coded in the function eqCorrMatTest. Moreover, it provides a test for equality of

two correlation matrix rows as well as a test to determine if a variable is not correlated to any

other variable in a dataset. These approaches are presented in Section 4.4.1 and Section 4.4.3

respectively and can be found in the function eqCorTestByRows.

Module 3. Estimation methods: joint estimation of two precision matrices is implemented in the

function wfgl and joint estimation of two regression coefficient matrices is found in function

wfrl. These use a weighted-fused lasso penalized maximum likelihood estimator that enforces

both sparsity and similarity between estimated matrices (see Chapter 6). ldstatsHD also con-

tains approaches to select the sparsity tuning parameter of graphical lasso estimators (which

can be found by packages huge or camel.tiger). Several risk functions based on characteristics

of the estimated networks are available (see Chapter 5). Among others, statistics that measure

clustering structure or network connectivity are used to choose an estimated network for its

analysis in function lambdaSelection.

All considered approaches permit cases where datasets come from paired observations. For visualiza-

tion purposes, S3 methods like plot and print are also implemented for objects created using these

functions.

7.3 The ldstatsHD R package

In this section we present the main functions available in ldstatsHD. We only describe some of the

most relevant arguments and values of the functions. A more detailed explanation and use of all the

other arguments/values is given in the documentation of the package. The functions are grouped in

three blocks corresponding to the three modules specified in Section 7.2.

7.3.1 Module 1 functions: data simulators

Description of pcorSimulator

The function pcorSimulator creates an (almost) block diagonal positive definite precision matrix

with three possible graph structures: hub-based, power-law (default) or random. It allows for a

percentage of connections between blocks to increase the complexity of the networks and make it

closer to real applications in biological data. It also generates samples from a multivariate normal

139



distribution with covariance matrix given by the inverse of such precision matrix. The function is

called in R using the following arguments

pcorSimulator(nobs, nclusters, nnodesxcluster, pattern = "powerLaw",
low.strength = 0.5, sup.strength = 0.9, nhubs = 5,
degree.hubs = 20, nOtherEdges = 30, alpha = 2.3, plus = 0,
prob = 0.05, perturb.clust = 0, mu = 0,
probSign = 0.5, seed = 2313)

The parameter nclusters defines the number of block diagonal matrices with nnodesxcluster

nodes/variables for each block. The seed argument permits simulations to be reproducible by setting

the random number generator.

Hub-based networks (pattern = "hubs") are graphs where only a small number (defined in

nhubs) of nodes have a much higher degree (or connectivity) than the rest (degree.hubs). For a

power-law network (pattern = "powerLaw"), the degree of the nodes follows a power-law distribu-

tion determined by the exponent alpha. Both hub-based and power-law networks are described in

Section 5.5.1. Random networks are included (pattern = "random") for their mathematical interest,

though real networks are usually non-random (Newman, 2003). These networks consider that the

degree of the nodes follows a binomial distribution where the success probability determines the

probability of existing an edge connecting two nodes and is specified in argument prob.

The function returns an object of class pcorSim containing the generated positive definite preci-

sion matrix and a dataset with nobs observations. The plot function for an object of class pcorSim

produces the graphical representation of the network using the igraph package style (Csárdi and

Nepusz, 2006).

Description of pcorSimulatorJoint

The function pcorSimulatorJoint is an extension of pcorSimulator for the more general case

of creating two similar positive definite precision matrices. It allows for three types of differential

graph structures: random differences, clustered differences (default) or a mixture of the two. Then, it

generates datasets from a multivariate normal distribution defined by the inverse of such precision

matrices with the possibility of considering linear dependence between datasets. The function is

called in R by

pcorSimulatorJoint(nobs, nclusters, nnodesxcluster, pattern = "hubs",
diffType = "cluster", dataDepend = "ind", low.strength = 0.5,
sup.strength = 0.9, pdiff = 0, nhubs = 5, degree.hubs = 20,
nOtherEdges = 30, alpha = 2.3, plus = 0, prob = 0.05,
perturb.clust = 0, mu = 0, diagCCtype = "dicot",
diagNZ.strength = .5, mixProb = 0.5, probSign = 0.5,
exactZeroTh = 0.05, seed = 2313)

The argument dataDepend determines the model used to characterize paired/independent sample

design. If dataDepend = "ind", it assumes independence. It offers three models with a paired

data structure: "diagOmega" , "mult" or "add" which correspond to a diagonal cross-partial cor-
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relation matrix, a multiplicative model and an additive model, respectively (see Section 2.2 for de-

scription). The argument diagCCtype defines the relationship between the same variable in the

two datasets. Following the notation in Section 2.2, this corresponds to the diagonal elements in

matrix ∆ if dataDepend = "mult" or dataDepend = "add", or diagonal elements in matrixΩJ
12 if

dataDepend = "diagOmega". Two options are available: diagCCtype="dicot", where half of the

variables are assumed to be independent between the two datasets, and the other half are assumed to

be linearly dependent by a magnitude defined in diagNZ.strength; diagCCtype="beta", where

the dependence between variables in the two datasets is randomly generated by a beta(1,3).

When diffType = "cluster", differential edges are included using two additional block diago-

nal structures. For instance, letΩ(0) be a common structure generated by pcorSimulator and let D1

and D2 be two unique partial correlation matrices also simulated by pcorSimulator. Following the

notation in Section 2.2,ΩJ
1 = diag(Ω(0),D1, I ) andΩJ

2 = diag(Ω(0), I ,D2) determine the two precision

matrices. When diffType = "random", connections between pairs of variables (in the initialΩ(0)

generated by pcorSimulator) are removed randomly with probability pdiff in only one condition.

The value of the function is an object of class pcorSimJoint with two simulated datasets that

follow a multivariate normal distribution determined by the generated joint precision matrix. The S3

plot function provides the network visualization of the common network (corresponding to non-zero

partial correlation coefficients in the two matrices) as well as the differential edges (zero partial

correlation coefficients in one matrix and non-zero in the other matrix).

7.3.2 Module 2 functions: testing methods

Description of eqCorrMatTest

The function eqCorrMatTest performs hypothesis testing (HT) of equality of two correlation matrices

coming from two Gaussian datasets, that can possibly be high dimensional and linearly dependent. It

also contemplates the simpler hypothesis testing problem of a correlation matrix being the identity

matrix, thus testing linear independence between any pair of variables in a dataset. Three test statistics

are available: AS (average squares), max (extreme value test), exc (sum of exceedances). The function

is called in R by

eqCorrMatTest(D1, D2 = NULL, testStatistic = c("AS", "max", "exc"),
testNullDist = c("asyIndep","asyDep", "np"), nite = 500,
paired = FALSE, threshold = 2.3, excAdj = FALSE, exact = FALSE,
conf.level = 0.95, saddlePoint = FALSE, MINint = 2, MAXint = 100, ...)

By default, equality of two correlation matrices HT is performed. The arguments D1 and D2 have to

have the same number of columns (defining variables), and in case paired = TRUE, they must also

contain the same number of rows (defining samples). The identity correlation matrix HT is employed

when D2 is NULL. The parameter testNullDist is used to select the method to determine the null

distribution. For "asyIndep", it considers an asymptotic null distribution for the test statistics

assuming independence between elements in the sample differential correlation matrix (see Section
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4.2). Dependence is accounted by "asyDep" (which also takes parametric distributions) or by "np"

(that uses permuted-based samples to approximate an empirical null distribution). The sum of

exceedances test statistic depends on a weight w (Section 4.3.3) where w = 0 if excAdj = FALSE and

w = 1 if excAdj = TRUE, and also requires the threshold of exceedances u which is specified by the

argument threshold.

The function returns an object of class eqCorrMatTest containing the value of the test statistic

with the underlying hypothesis testing p-values and confidence intervals at an specified conf.level.

For this function, only the print S3 function is provided.

Description of eqCorTestByRows

The function eqCorTestByRows performs hypothesis testing to assess whether the g th row (for all

g ∈ [1, p]) of a correlation matrix is equal or not to the same row of another correlation matrix. It also

considers the simpler hypothesis testing that checks if the g th row of a correlation matrix (except the

g th element) contains only zero coefficients, thus testing linear independence of a variable against

all the rest of the variables. In this case, it provides AS (average squares) and max (maximum) test

statistics. Both tests are conducted as permutation tests to assess significance. The complete call of

the function in R is defined by

eqCorTestByRows(D1, D2 = NULL, testStatistic = c("AS", "max"), nite = 200,
paired = FALSE, exact = TRUE, whichRows = NULL, conf.level = 0.95)

By default all rows are tested which can be computationally intensive for large dimensions. Through

the argument whichRows, the function allows to perform HT in only the variables defined in such

argument. Even though it is not implemented in the function, parallel computations could be done,

e.g., using function mclapply from package parallel. The aim of this function is the screening of

global dependence levels for each variable, thus adjustments for multiple testing are not included but

can be applied to the resulting p-values a posteriori, for instance using R function p.adjust.

The function returns an object of class eqCorTestByRows containing test statistics, p-values and

confidence intervals. The plot of an object of this class shows the confidence intervals for all computed

test statistics corresponding to all tested rows.

7.3.3 Module 3 functions: estimation methods

Description of wfgl

The function wfgl provides a joint estimator of two precision matrices corresponding to the condi-

tional dependence structure of two sets of multivariate normal distributed observations which can be

linearly dependent. It uses the ADMM algorithm presented in Section 6.2. The function is called in R

by

wfgl(D1, D2, lambda1, lambda2, paired = TRUE, automLambdas = TRUE,
sigmaEstimate = "CRmad", pairedEst = "Reg-based-sim", maxiter = 30,
tol = 1e-05, nsubset = 10000, weights = c(1,1), rho=1, rho.increment = 1,
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triangleCorrection = TRUE, alphaTri = 0.01, temporalFolders = FALSE,
notOnlyLambda2 = TRUE, roundDec = 4, burst = 0, lambda1B = NULL,
lambda2B = NULL)

It accounts for linear dependence between observations in the two datasets when paired = TRUE.

Tuning parameters can be selected by setting error rates for individual and difference matrices when

automLambdas = TRUE (see Section 6.2.2). Otherwise, the parameters lambda1 and lambda2 are

equivalent to the interpretation in Algorithm 8. In case lambda2 is a single value and lambda1

is a vector with several values, then lambda selection approaches implemented in the function

lambdaSelection (defined below) can also be used. As studied in Section 6.4, the algorithm to esti-

mate joint precision matrices recovers more triangular motifs than expected by chance. Hypothesis

testing for the weakest edges of these estimated triangular motifs is performed iftriangleCorrection

= TRUE with rejection level determined by alphaTri.

The function returns an object of class wfgl containing the two estimated precision matrices. The

plot function is the same as the one defined for objects of class pcorSimJoint and represents the

non-zero structures of both common and differential estimated precision matrices.

Description of wfrl

The function wfrl permits the joint estimation of two regression coefficient matrices from multivari-

ate normal distributed samples using an ADMM based algorithm (see Section 6.3). As for wfgl, it

accounts for cases where observations from the two datasets are paired. The function is called in R by

wfrl(D1, D2, lambda1, lambda2, automLambdas = TRUE, paired = TRUE,
sigmaEstimate = "CRmad", maxiter=30, tol=1e-05, nsubset = 10000,
rho = 1, rho.increment = 1, notOnlyLambda2 = TRUE)

Here D1 and D2 are lists containing two matrices: response variables and explanatory variables for the

first condition in D1 and response variables and explanatory variables for the second condition in

D2. The tuning parameter selection options are equivalent to the ones explained above for the wfgl

function.

The function returns an object of class wfrl containing the two regression coefficient matrices.

The plot function is similar to the one for objects of class pcorSimJoint or wfrl. The only difference

is that here the networks are directed (edges going from explanatory variables to response variables).

Description of lambdaSelection

The function lambdaSelection is designed to select the sparsity regularization parameter λ in

graphical models. Eight different criteria are available to select λwith risk functions based on network

characteristics: path connectivity (PC), AGlommerative NESted (AGNES), Augmented-MSE (A- MSE),

Vulnerability (VUL), AIC/BIC/eBIC and StARS (from the huge package). The algorithms for all these

options are described in Chapter 5. The function is called by
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lambdaSelection(obj, criterion = c("PC","AGNES","A-MSE","VUL","STARS",
"AIC", "BIC", "eBIC"), ...)

Depending on each criterion, several parameters are specified:

pcLambdaSelection(obj)
agnesLambdaSelection(obj, way = "direct", nite = 10, subsvec = NULL,

eps = 0.05, until = NULL, minNodes = 30,
distF = c("correlation","shortPath"))

amseLambdaSelection(obj, pathIni, y, generator = c("subsampling",
"montecarlo"), pB = 0.7, nite = 10, method = "mb", from = 1,
until = NULL, distF = c("correlation","shortPath"),
oneByone = FALSE, many = 3)

vulLambdaSelection(obj, loo = FALSE, subOut = 10, nite = 50)
icLambdaSelection(obj, y, criterion = c("AIC", "BIC", "eBIC"))

The argument obj must be an object generated by functions huge, camel.tiger, wfgl or wfrl, and

has to contain at least five different estimated precision/adjacency matrices for five different tuning

parameters. For AIC, BIC and eBIC criterion, neighborhood selection ("mb" option in function huge)

is not a suitable object since precision matrix elements are not explicitly estimated and therefore

likelihoods cannot be calculated.

The function returns an object of class lambdaSelection describing the selected tuning parame-

ter. The plot function for an object of class lambdaSelection reproduce the observed values of the

selected risk function for all the tuning parameters that are used.

7.4 User interface in simulated data

In this section we present a brief tutorial on the functionality and capability of the ldstatsHD package.

As in Section 7.3, we organize the functions in three different modules: data simulators, testing

methods and estimation methods. Simulated data examples described in the first module are used to

illustrate the usage of testing and estimation functions in second and third modules.

7.4.1 Module 1 functions: data simulators

Example of pcorSimulator use

We simulate three precision matrices using the function pcorSimulator corresponding to power-law,

hubs and random graph structures. We set a seed in each one of them to make all results reproducible.

We give a vector of values to be consistent with an early version of the package but declaring a single

value is also possible. For power-law networks we take a 3 block diagonal matrix with 200, 140 and

60 variables each block. We use the power-law parameter alpha to be 2.3 (Peng et al., 2009). The R

command and print is given by

R> EX1 <- pcorSimulator(nobs = 70, nclusters = 3, nnodesxcluster = c(200,
140,60), pattern = "powerLaw", alpha = 2.3, seed = c(5,22,50))

R> EX1
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pattern: "powerLaw", Number of nodes = 400, Number of edges = 356,
Sparsity = 0.99555

Sparsity levels in the print function are defined by the proportion of zero elements in the lower

triangular precision matrices. For instance in EX1, 356 non-zero partial correlation elements are

considered from a total of 400×399/2 = 79,800 possible edges. Similarly, for hub-based networks

we define 5, 3 and 1 hub nodes for the three clusters respectively with degree 20, 20 and 5. The other

generated edges in the three clusters (100, 50, 40) are selected randomly. The R command and print is

given by

R> EX2 <- pcorSimulator(nobs = 70, nclusters = 3, nnodesxcluster = c(100,80,
60), pattern = "hubs", nhubs = c(5,3,1), degree.hubs = c(20,20,5),
nOtherEdges = c(100,50, 40), seed = c(10,20,20))

R> EX2
pattern: "hubs", Number of nodes = 240, Number of edges = 355,

Sparsity = 0.98767

The generated graph structure for EX2 is denser than the one for the first example in EX1. Finally, for

random networks, we use two clusters with the same size (100 nodes each) and edge probabilities

0.05 and 0.02. The R command and print is given by

R> EX3 <- pcorSimulator(nobs = 70, nclusters = 2, nnodesxcluster = c(100,
100), prob=c(0.05,0.02), perturb.clust = 0.05, pattern = "random",
seed = c(3,4))

R> EX3
pattern: "random", Number of nodes = 200, Number of edges = 356,

Sparsity = 0.9822

This generated network is the densest of the three. Plots for each of the three examples are shown in

Figure 7.1 and can be obtained typing plot(EX1), plot(EX2) and plot(EX3) in the R prompt.

(a) Power law graph example (b) Hub-based graph example (c) Random graph example

Figure 7.1. Graphical representation of generated precision matrices using function pcorSimulator.

Example of pcorSimulatorJoint use

We simulate joint precision matrix structures using different definitions for the parameters of the

model. We first generate a joint power-law graph structure where the difference matrix is clustered.
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For the paired data, here we use a diagonal cross-partial correlation matrix where the diagonal

components are generated by a beta distribution (with parameters 1 and 3)

R> EXJ1 <- pcorSimulatorJoint(nobs = 80, nclusters = 3, nnodesxcluster = c(30,
30,30), pattern = "pow", diffType = "cluster", dataDepend = "diag",
pdiff = 0.5, perturb.clust = 0.2, mixProb = 0.5,
diagCCtype = "beta", seed = c(20,3,50,52,23))

R> EXJ1
Pattern: "powerLaw", DataDepend = "diagOmega", DiagCCtype = "beta13"
Number of nodes = 134, Common edges = 92, Sparsity common network = 0.98975
Differential edges = 38, Sparsity differential network = 0.99577

In the print, the number of edges and sparsity levels are specified for both common and differential

networks. In this case, 92 edges are common in the two conditions, whereas 38 edges are only

present in either one of the two conditions. A second example is considered when the differential

edges are randomly generated (diffType = "random") and the paired structure is determined by a

multiplicative model. In this case, a two-block precision matrix with 160 and 60 nodes each is used

R> EXJ2 <- pcorSimulatorJoint(nobs = 50, nclusters = 2,
nnodesxcluster = c(160, 60), pattern = "pow", diffType = "random",
dataDepend = "mult", pdiff = 0.2, perturb.clust = 0.2, mixProb = 0.5,
seed = 56)

R> EXJ2
Pattern: "powerLaw", DataDepend = "mult", DiagCCtype = "dicot"
Number of nodes = 220, Common edges = 78, Sparsity common network = 0.9968
Differential edges = 119, Sparsity differential network = 0.9951

In EXJ2, a larger number of differential edges than EXJ1 is observed for the same number of common

edges. We also generate data by assuming a mixture of random (80%) and clustered (20%) differential

edges and paired structure determined by an additive model

R> EXJ3 <- pcorSimulatorJoint(nobs = 50, nclusters = 2,
nnodesxcluster = c(160, 130), pattern = "pow", diffType = "mixed",
dataDepend = "add", pdiff = 0.4, perturb.clust = 0, mixProb = 0.8,
seed = 43)

R> EXJ3
Pattern: "powerLaw", DataDepend = "add", DiagCCtype = "dicot"
Number of nodes = 382, Common edges = 73, Sparsity common network = 0.999
Differential edges = 186, Sparsity differential network = 0.99745

In this last object, there are more differential edges than common edges. Plots for each of the three

examples are shown in Figure 7.2.

7.4.2 Module 2 functions: testing methods

Example of eqCorrMatTest use

We consider simulated data defined in object EXJ1, which is the first example declared in Section 7.4.1

for function pcorSimulatorJoint. We test whether the correlation matrix that generates the data

for the first class D1 is equal to the correlation matrix for the second class D2. We initially consider

all test statistics (with w = 0 in the sum of exceedances test) and also the three ways to describe the
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(a) Clustered differences (b) Random differences (c) Mixed differences

Figure 7.2. Graphical representation of generated precision matrices using the plot function for
objects obtained by pcorSimulatorJoint. Blue edges are common edges in the two conditions. Red
edges are only present in the first condition and green edges are only present in the second condition.

null distribution. We use 500 permuted samples to estimate dependence parameters in asymptotic

dependence null distributions and to approximate the non-parametric null distributions. The R call

and print are given by

R> (test1 <- eqCorrMatTest(EXJ1$D1, EXJ1$D2, testStatistic = c("AS",
"max", "exc"), testNullDist = c("asyIndep","asyDep", "np"), nite= 500,
paired = TRUE, threshold = 2.3, excAdj = FALSE, exact = FALSE,
conf.level = 0.95))

Test for equality of two correlation matrices using independent data
asyIndep Tas = 0.013, pval = 0.198, 95 percent CI: -0.012 0.067
asyDep Tas = 0.016, pval = 0.198, 95 percent CI: -0.015 0.082
np Tas = 0.016, pval = 0.19, 95 percent CI: -0.013 0.072

asyIndep Tm = 0.276, pval = 0.25, 95 percent CI: -0.395 0.778
asyDep Tm = 0.458, pval = 0.214, 95 percent CI: -0.349 0.85
np Tm = 0.197, pval = 0.212, 95 percent CI: -0.363 0.847

asyIndep thr = 2.3, Texc = 5.037, pval = 0.48,
95 percent CI: -159.399 376.828

asyDep thr = 2.3, Texc = 25.563, pval = 0.399,
95 percent CI: -157.886 440.342

np thr = 2.3, Texc = 25.563, pval = 0.404,
95 percent CI: -161.363 340.44

The print of test1 shows the value for the test statistics, p-values and confidence intervals. None

of the tests shows any evidence against the null hypothesis. We also perform the same hypothesis

testing on the object EXJ2. In this case, only the exceedances-based test (with w = 1) is used with an

asymptotic dependence null distribution and three different thresholds: threshold = c(0,1,2),

R> (test2 <- eqCorrMatTest(EXJ2$D1, EXJ2$D2, testStatistic = "exc",
testNullDist = "asyDep", nite= 300, paired = TRUE,
threshold = c(0,1,2), excAdj = TRUE, exact = FALSE,
conf.level = 0.95))

Test for equality of two correlation matrices using paired data
asyDep thr = 0, Texc = 151.777, pval = 0.25, 95 percent CI: -219.8 991.9
asyDep thr = 1, Texc = 86.879, pval = 0.133, 95 percent CI: -41.1 376.4
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asyDep thr = 2, Texc = 27.014, pval = 0.061, 95 percent CI: -1.1 90.7

For the three tested thresholds, the p-values are small, especially when thr = 2. To show the usage of

the HT for identity correlation matrix, we consider the dataset generated in object EX3. Here we leave

the argument D2=NULL and we use a non-parametric null distribution. We change the confidence

level at 99%. The R call and print are given by

R> (test3 <- eqCorrMatTest(EX3$y, NULL, testStatistic = c("AS", "max",
"exc"), testNullDist = "np", nite= 300, threshold = 2,
excAdj = FALSE, conf.level = 0.99))

Test for non-Identity correlation matrix
np Tas = 0.522, pval = 0, 99 percent CI: 0.495 0.553
np Tm = 5.931, pval = 0, 99 percent CI: 5.111 6.474
np thr = 2, Texc = 9095.521, pval = 0, 99 percent CI: 8729.044 9483.248

The confidence intervals do not include zero in any of the three test statistics and null hypothesis

could be rejected at 0.01 significance level.

Example of eqCorTestByRows use

In the first example of usage of the function eqCorTestByRows we intend to test the equality of

correlation rows between the two datasets defined in object EXJ1. We use both test statistics, AS and

max, and 200 permuted samples:

R> (testr1 <- eqCorTestByRows(EXJ1$D1, EXJ1$D2, testStatistic = c("AS",
"max"), nite = 200, paired = TRUE, exact = FALSE, whichRows = NULL,
conf.level = 0.95))

Test for equality of correlation matrix rows using paired data
number of significant rows for Tas: 13 at 0.95 conf.level, expected 6.7
number of significant rows for Tm: 6 at 0.95 conf.level, expected 6.7

The print gives the number of tested rows with a p-value smaller than 1−conf.level against the

expected number of significant rows under H0. In this case, expected is much lower than observed in

only Tas. We also perform similar tests for the datasets in object EXJ3. We only test the rows 100 to

200 by setting whichRows = c(100:200),

R> (testr2 <- eqCorTestByRows(EXJ3$D1, EXJ3$D2, testStatistic = c("AS",
"max"), nite = 1000, paired = TRUE, exact = FALSE,
whichRows = c(100:200), conf.level = 0.95))

Test for equality of correlation matrix rows using paired data
number of significant rows for Tas: 2 at 0.95 conf.level, expected 5.05
number of significant rows for Tm: 8 at 0.95 conf.level, expected 5.05

In contrast to the first tested dataset, for EXJ3, Tm gives more significant rows than Tas. The plots

for testr1 and testr2 are presented in Figure 7.3. The confidence intervals are shown for all tested

rows and, in green, the significant tests at 0.05 significance level are highlighted.

We finally provide an example for the HT problem of linear independence between a variable and

all the rest using the dataset in object EX2. We only use the average of squares test statistic here with a

99% confidence level,
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(b) Object testr2

Figure 7.3. Confidence intervals for tested rows in objects testr1 and testr2. Green lines
correspond to variables whose confidence intervals do not include zero.

R> (testr3 <- eqCorTestByRows(EX2$y, NULL, testStatistic = "AS", nite = 200,
paired = TRUE, exact = FALSE, whichRows = NULL,
conf.level = 0.99))

Test for non-zero correlation matrix rows
number of significant rows for Tas: 78 at 0.99 conf.level, expected 2.4

In the print we observe that 78 of the rows have a p-value smaller than 0.01, when only 2.4 where

expected by chance.

7.4.3 Module 3 functions: estimation methods

Example of wfgl use

First of all, we show using data defined in object EXJ1, that wfgl, when arguments paired = FALSE,

automLambdas = FALSE, and triangleCorrection = FALSE, coincides with function JGL (Dana-

her et al., 2014),

R> fgl1 <- wfgl(EXJ1$D1, EXJ1$D2, lambda1=0.2, lambda2=0.1, paired = FALSE,
automLambdas = FALSE, maxiter = 30, tol = 1e-05,
triangleCorrection = FALSE)

R> fgl2 <-JGL(list(scale(EXJ1$D1), scale(EXJ1$D2)), penalty="fused",
lambda1=0.2, lambda2=0.1, return.whole.theta=TRUE, maxiter=31,
penalize.diagonal = FALSE)

R> c(sum(abs(fgl2$theta[[1]]-fgl1$omega[[1]])), sum(abs(fgl2$theta[[2]]-
fgl1$omega[[2]])))
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[1]0.0004 0.0003

Otherwise, controlling the error rates to select tuning parameters, adjusting for paired data and

correcting for triangular motifs, the R call is

R> (wfgl1 <- wfgl(EXJ1$D1, EXJ1$D2, lambda1 = 0.05, lambda2 = 0.05,
paired = TRUE, automLambdas = TRUE, maxiter = 30, tol = 1e-05,
triangleCorrection = TRUE, alphaTri = 0.05))

joint partial correlation estimator using paired data
Number of nodes = 134, Total number of possible edges = 8911
Est. common edges = 331, Sparsity est. common network = 0.96285
Est. differential edges = 25, Sparsity est. differential network = 0.99719
Est. edges for only pop.1 = 12, Est. edges for only pop.2 = 13
alpha2 = 0.0043

R> plot(wfgl1, col = c("blue","red","green"), vertex.size = 3,
edgesThickness = TRUE, zoomThick = 10)

The print shows some basic information about the estimated network sizes. It also provides an

approximation of the error rateα2 defined in Section 6.2.2. A useful visualization tool for the estimated

network is provided with the plot function of a wfgl object (see Figure 7.4). By setting the attribute

edgesThickness to TRUE, we account for different widths in the estimated edges that are proportional

to the magnitude of their underling estimated precision matrix elements.

Figure 7.4. Estimated network using function wfgl for data example EXJ1. Blue edges are common
edges in the two conditions. Red edges are only present in the first condition and green edges are only
present in the second condition. The thickness of the edges is proportional to the underlying
estimated precision matrix elements.

Keeping lambda2 fix (our α′
2 defined in Section 6.2.2), we give several values for lambda1,

R> (wfgl1 <- wfgl(EXJ1$D1, EXJ1$D2, lambda1 = c(0.01, 0.05, 0.1),
lambda2 = 0.05, paired = TRUE, automLambdas = TRUE,
maxiter = 30, tol = 1e-05, triangleCorrection = TRUE, alphaTri = 0.05))

joint partial correlation estimator using paired data
lambda1 sequence of length 3
Est. com. edges : 122 -> 360, Sparsity est. com. network : 0.9596 -> 0.9863
Est. diff. edges : 10 -> 45, Sparsity est. diff. network : 0.995 -> 0.999
Est. edges for only pop.1 : 5 -> 22, Est. edges for only pop.2 : 10 -> 46
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In this case, the print provides the range of number of estimated edges in common and differential

networks, from the smallest to the largest λ1. Differential networks only change in two estimated

edges whereas common network goes from 122 edges (lambda1 = 0.01) to 360 edges (lambda1=0.1).

Example of wfrl use

We design a simple example to show the usage of wfrl. We consider the data created in object EXJ1

that contains 135 variables as our explanatory variables. We consider the same number of response

variables linking covariates by a linear model with regression coefficient matrices being diagonal

matrices. We employ tuning parameter selection by setting the underlying error rates in lambda1

and lambda2 (denoted by α1 and α′
2 in Chapter 6). Besides, we account for paired data and stop the

ADMM algorithm in a maximum of 10 iterations to avoid high computational burden.

R> P <- EXJ1$P
R> q <- P
R> N <- dim(EXJ1$D1)[1]
R> BETA1 <- array(0, dim = c(P, q))
R> diag(BETA1) <- rep(0.35,q)
R> BETA2 <- BETA1
R> diag(BETA2)[c(1:floor(q/2))] <- 0
R> sigma2 <- 1.3
R> Q <- scale(EXJ1$D1)
R> W <- scale(EXJ1$D2)
R> set.seed(231)
R> X <- Q%*%BETA1 + mvrnorm(N,rep(0,q),diag(rep(sigma2,q)))
R> set.seed(2234)
R> Y <- W%*%BETA2 + mvrnorm(N,rep(0,q),diag(rep(sigma2,q)))
R> D1 <- list(scale(X), scale(Q))
R> D2 <- list(scale(Y), scale(W))

R> (wfrl1 <- wfrl(D1, D2, lambda1=0.01, lambda2=0.05, automLambdas = TRUE,
paired = FALSE, sigmaEstimate = "CRmad", maxiter=10, tol=1e-05,
nsubset = 10000, rho = 1, rho.increment = 1, notOnlyLambda2 = TRUE))

joint regression coefficients estimator using independent data
Number of response variables = 134, Number of explanatory variables = 134,

Number of possible edges = 17956
Estimated common edges = 221, Sparsity estimated common network = 0.9877
Estimated differential edges = 15, Sparsity estimated diff. network = 0.99916
Estimated edges for only pop.1 = 13, Estimated edges for only pop.2 = 2

The print reflects the graphical representation of the estimated networks, both common (221 edges)

and differential (15 edges) networks. Note that the expected number of false positive edges in each

of the two networks under the specified lambda1 (or α1) is 179. We also consider setting a vector of

values for lambda1 keeping lambda2 fixed at 0.05. The R call is defined by

R> (wfrl2 <- wfrl(D1, D2, lambda1 = c(.001,.01,.04), lambda2=0.10,
automLambdas = TRUE, paired = FALSE, sigmaEstimate = "mad",
maxiter=30, tol=1e-05, nsubset = 10000, rho = 1, rho.increment = 1,
notOnlyLambda2 = TRUE))

joint regression coefficients estimator using independent data
lambda1 sequence of length 3
Number of response variables = 134, Number of explanatory variables = 134,
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Number of possible edges = 17956
Est. com. edges: 63 -> 647, Sparsity est. com. network: 0.96397 -> 0.99649
Est. diff. edges: 3 -> 95, Sparsity est. diff. network: 0.99471 -> 0.99983
Est. edges for only pop.1 : 3 -> 55, Est. edges for only pop.2 : 0 -> 40

The number of estimated common edges ranges from 63 (lambda1=0.001) to 670 (lambda1=0.04).

The plots of object wfrl2 are shown in Figure 7.5.

(a)α1 = 0.001 (b) α1 = 0.01 (c) α1 = 0.04

Figure 7.5. Graphical representation of the nonzero structure of regression coefficient matrices
defined in object wfrl2. Blue edges are common edges in the two conditions. Red edges are only
present in the first condition and green edges are only present in the second condition.

Example of lambdaSelection use

We first select the optimal hyper-parameter of graphical lasso models (employing neighborhood

selection) with data defined in object EX1. We use the following risk functions: PC, AGNES, A-MSE

(with AGNES estimate), VUL and STARS. Note that the outcome of the huge function is the non-zero

structure of the estimated precision matrix, thus likelihood-based methods as AIC and BIC are not

well defined.

R> y <- EX1$y
R> Lambda.SEQ <- seq(.25,0.70,length.out = 40)
R> out3 <- huge(y, method = "mb", lambda = Lambda.SEQ)
R> (lamPC <- lambdaSelection(out3, criterion = c("PC")))

lambda selection by optimizing PC risk function
optimal lambda = 0.3769, Sparsity graph structure = 0.9969
R> (lamAG <- lambdaSelection(out3, criterion = c("AGNES")))

lambda selection by optimizing AGNES risk function
optimal lambda = 0.3423, Sparsity graph structure = 0.9945
R> (lamAAG <- lambdaSelection(out3, criterion = c("A-MSE"), y=y,

pathIni =out3$path[[which(lamAG$opt.lambda == Lambda.SEQ)]] ))
lambda selection by optimizing A-MSE risk function
with subsampling generator

optimal lambda = 0.4692, Sparsity graph structure = 0.9987
R> (lamVUL <- lambdaSelection(out3, criterion = c("VUL"))) # do not run

#(computationally intensive)
lambda selection by optimizing VUL risk function

optimal lambda = 0.4, Sparsity graph structure = 0.9977
R> (lamST <- lambdaSelection(out3, criterion = c("STARS")))
optimal paramter: 0.25, sparsity level: 0.02382206.
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The print shows the selected lambda by the given criterion as well as the sparsity level of the selected

graph structure. In this case, STARS produce the densest estimated graph structure, followed by

AGNES, PC, VUL and finally A-MSE. The plots for the latter four risk functions are shown in Figure 7.6.
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(d) Vulnerability

Figure 7.6. Obtained coefficients for the tuning parameter selection risk functions path connectivity,
agnes, A-MSE and vulnerability using data in object EX1.

The lambda selection function can also be used for objects of class wfgl and wfrl. For instance

here we use PC for selecting lambda1 in jointly estimating two precision matrices,

R> wfgl1 <- wfgl(EXJ1$D1, EXJ1$D2, lambda1 = seq(0.001,0.05,length.out=30),
lambda2 = 0.05, paired = TRUE, automLambdas = TRUE, maxiter = 5)

R> (lam1PC <- pcLambdaSelection(wfgl1))
lambda selection by optimizing PC risk function

optimal lambda = 0.0061, Sparsity graph structure = 0.988

The optimal tuning parameter is 0.0061, which is one of the sparsest estimated graph structures.

7.5 Discussion

In this chapter we have presented the R package ldstatsHD which consists of data simulators, testing

methods for two correlation matrices, and joint estimation methods for two conditional dependence
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structures as precision matrices and regression coefficient matrices. It also contains functions to select

the sparsity tuning parameter in graphical models. These implemented approaches are especially

useful when the two datasets are high-dimensional and come from paired observations.

The algorithms are efficiently implemented in R by taking advantage, when possible, of sparsity

properties. Nevertheless, the computational time and memory used is still a major issue when

analyzing datasets with very large dimensions (order of thousands). Particularly, joint estimation

methods implemented in functions wfgl and wfrl, due to estimating dense matrices in every iteration

of the ADMM recursive algorithms (see Chapter 6), turn out to be computationally intensive when the

dimension is larger than 5,000. Regularization parameter selection methods as A-MSE and VUL (see

Chapter 5) are also slow for similar dimension sizes. As future work, the algorithms and code could be

refined to speed up the procedures.

The user interface of the proposed functions tries to mirror other leading R functions in the topic.

For instance, all the attributes in wfgl that have the same meaning to the analogous attributes in

the function JGL (Danaher et al., 2014) can be identified by the same name. The S3 method print is

available for all the methods to summarize the output of the functions. Moreover, when required, the

plot function is also implemented for visualization purposes.
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Chapter 8

Testing and estimation of linear

dependence structures for colon

cancer data

8.1 Introduction

The main idea of this chapter is to present the data analysis of a real case study employing the

developed methods in this thesis. Our motivating data are presented in Hinoue et al. (2012) and are

freely available at the Gene Expression Omnibus (GEO) database (Edgar et al., 2002) with accession

numbers GSE25070 and GSE25062. In total there are 50 samples from 25 patients, a tumor and a

normal colon tissue samples from each subject, which contain the gene expression information in

24,526 genes as well as methylation presence in 27,578 sites. The aims of this analysis are (a) finding

known biological processes which can be linked to changes in the gene linear dependence structures

between the two sample populations (healthy and tumor), (b) finding common and unique gene-to-

gene networks among the two classes of observations, and (c) integration of the two types of omics

data to find connections between genes and specific methylation sites.

8.1.1 Methylation and gene expression

DNA Methylation is an epigenetic process that occurs when a methyl (CH3) group is bounded to

DNA. In humans, this is mostly found when the cytosine nucleotide is followed by the guanidine

nucleotide (creating CpG-sites) and can be associated with the start of the gene (the promoter). In the

data, the 27,578 CpG sites are located at the promoter regions of about 15,000 protein-coding genes.

Regions with large concentration of CpG-sites are called CpG-islands and are expected to be strongly

negatively correlated with the expression of the gene promoter due to silencing. We aim to investigate
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this biological behaviour in our data.

Methylation presence is measured in a continuous scale that ranges from 0 -not present at all-

to 1 -100% present-, where something in between indicates the strength of methylation. We apply a

logit transformation of methylation presence so the values are defined in the whole real line and are

closer to Gaussianity (Wahl et al., 2014). Besides, the gene expression data are log2-transformed and

normalized using robust spline normalization (Schmid et al., 2010).

8.1.2 Summary of the chapter

The advances in technology in the field of omics (i.e., genomics, metabolomics or proteinomics)

have allowed the collection and storage of different data profiles on the same individual. This has

encouraged the development of integration techniques to incorporate all data for a joint analysis

(Kislinger et al., 2006; Fagan et al., 2007; Lê Cao et al., 2008; Depuydt et al., 2009). Particularly, integra-

tion and analysis of methylation with gene expression data have been recently studied in Gadaleta

and Bessonov (2015), who integrate gene expression and methylation presence for a dataset with 215

individuals affected with glioblastoma cancer. The authors apply lasso-penalized maximum likelihood

approaches to estimate two networks: the non-zero structure of the regression coefficients using

gene expression as response variables and methylation presence as explanatory variables; and the

non-zero structure of the precision matrix (inverse of covariance matrix) using only gene expression

data. Other related contributions include Wang et al. (2014), who employ biological knowledge of

gene interactions to estimate associations between methylation presence and gene expression on

individuals with primary ovarian tumours; Renner et al. (2013), who analyze the behaviour of DNA

methylation in different sarcoma subtypes; Wagner et al. (2014), who study the relationship between

the two types of data in healthy human cells, or List et al. (2014), who combine methylation and gene

expression data to classify several breast cancer subtypes.

In this chapter we employ the methodology presented in Chapters 4, 5 and 6 to fully analyze

and integrate both gene expression and methylation presence datasets. In Section 8.2 we perform

an exploratory analysis of the datasets in which we visualize the differences between samples in

the two medical conditions and we relate gene expression and methylation presence using some

basic summary statistics. In Section 8.3 we consider hypothesis testing for the equality of correlation

matrices on subgroups of genes determined by 1,320 biological pathway lists. We also test if each of

the 24,526 measured genes interact similarly in the two conditions considering both sum of squares

and extreme value test statistics. This is used to reduce the number of genes prior to estimation, which

is done separately for healthy and tumor gene expression datasets in Section 8.4. In Section 8.5 and

Section 8.6 we refine the estimations by applying joint graphical lasso techniques (for both precision

matrices and regression coefficient matrices) to find common and unique conditional dependence

structures among the two classes of observations. In Section 8.7 we integrate all estimated networks

and we compare the estimated edges with some of the most relevant pathway lists in Section 8.8.
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8.2 Exploratory analysis of the data

An initial summary table with measures of central tendency, range and dispersion for the gene

expression and methylation presence datasets are presented in Table 8.1. The differences between

tumor and healthy samples in both average and variance are in the third decimal for gene expression

data whereas tumor samples contain substantially larger average/variance than normal samples

for methylation presence data. Figure 8.1 shows the relationship between gene expression (and

methylation presence) mean vectors on the two classes of observations, healthy and tumor. For

visualization purposes, note that the number of genes/sites is huge, we approximate a bivariate

density distribution by diving the plot space in equidistant hexagon bins whose colors are related to

the number of points that occur in each bin, i.e., see R package hexbin (Carr et al., 2015). In the figure,

in spite of observing a clear positive correlation between mean vectors in the two medical conditions,

some genes/sites are located away from the common tendency.

Table 8.1. Summary for gene expression and methylation presence (logit transformed) datasets.
Basics statistics as the minimum, maximum, quantiles, median, mean and variance are presented for
both healthy and tumor samples.

Min. 1st Qu. Median Mean 3rd Qu. Max. Var.
Gene expression

Healthy 6.378 7.081 7.714 8.426 9.360 17.240 3.090
Tumor 6.363 7.081 7.716 8.427 9.362 17.040 3.083

Methylation presence
Healthy -4.595 -3.925 -2.885 -2.300 -0.924 4.595 4.276
Tumor -4.595 -3.977 -2.913 -2.246 -0.580 4.595 4.556
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Figure 8.1. Global relationship between normal and tumor tissues for (a) gene expression and (b)
methylation presence: mean vectors for gene expression (or methylation presence) on healthy
samples are in the x-axis and the ones on tumor samples are on the y-axis; Hexagon bin colors
indicate the frequency of points in that region going from white (low frequency) to black (high
frequency). A positive linear relationship is observed for the majority of genes and methylation sites.
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A sparse principal component analysis (Zou et al., 2006) is applied to the two datasets, and Figure

8.2 illustrates the individual projections of the first two components which explain the 46% (for

gene expression) and 42% (for methylation) of variability in the data. The first component in either

methylation or gene expression distinguishes between tumor (red) or normal (green) samples. It also

shows a potential outlier in the methylation subfigure that corresponds to observation 11 for tumor

samples. To obtain a good representation of the differences between the two classes of observations

we do not consider this sample for estimating regression coefficient matrices in Section 8.6 and 8.8.
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Figure 8.2. Projections on the first two sparse principal components for (a) gene expression dataset
and (b) methylation presence dataset. The samples are colored by disease, tumor in red and healthy
in green, in the first component.

In order to measure the relationship between methylation presence and gene expression in the 50

samples, methylation sites are matched to their gene promoters. The average correlation between

gene expression and methylation presence of those matched genes and sites is −0.04, for healthy, and

−0.08, for tumor (both values being significantly smaller than zero -using a t-test-). This negative

correlation is stronger when looking at the linear relationship between the gene expression and

methylation presence mean vectors (−0.27 for healthy and −0.33 for tumor), as shown in Figure 8.3.

While for low methylation presence (from -4 to -2), the gene expression often reaches high values

(≥ 10), these are rarely exceeded when the methylation is high (from 0 to 2).

Finally, we compare the four sample correlation matrices that correspond to the four datasets

filtered by genes and sites that are matched: these are the gene expression with healthy or tumor

samples, and methylation presence with healthy or tumor samples. Considering only pairs of genes

whose sample correlation coefficient in the gene expression dataset is larger than 0.5 in absolute

value, it turns out that the proportion of correlation coefficients whose signs are the same in both

gene expression and methylation presence is about 0.52 for healthy and 0.54 for tumor. Even though

this rate is significant, it does not seem to be highly informative. For instance, the same coefficient

computed matching normal and tumor gene expression correlations is approximately 0.75.
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Figure 8.3. Global relationship between gene expression and logit transformed methylation presence
for (a) healthy and (b) tumor tissues in which the average gene expression over 25 samples is matched
with the average methylation presence of a site near the gene promoter. Silencing is observed with
higher gene expression values for low methylation.

8.3 Hypothesis testing problems in gene expression data

8.3.1 Testing differentially expressed genes

We test whether, in average, the expression of a gene g in healthy samples (denoted by Y (1)
g ) is equal or

not to the expression of the same gene g in tumor samples (denoted by Y (2)
g ). We assume a Gaussian

likelihood on the gene expression differences

(Y (1)
g −Y (2)

g ) ∼ N (µg ,σ2
g ),

where µg is the parameter of interest that describes the differential expression mean for a specific

gene g . We test the hypothesis

H0 :µg = 0, vs H1 :µg 6= 0,

independently for all genes g ∈ [1, p]. We consider the hiereachical Bayesian model described in

Bochkina and Richardson (2007), who place a N(0,104) distributed prior for µg and a lognormal

distributed prior LN (a,b) onσg . The hypeparameters a and b follow, independently, a,b ∼ Γ(ε,ε) with

ε= 10−4. We compile the model in the R package jags (Plummer, 2016) and we generate 10,000 MCMC

samples from the posterior distribution of µg . We approximate the probability pg = P (µg > 0|Xg ,Yg ),

and in Figure 8.4 we show, for all g ∈ [1, p], the tail probabilities tg = 2(1−max(pg ,1−pg )). The 26%

of the genes have a tail probability smaller than 0.01. Among them, the ten genes with the smallest tail

probabilities are E2F5, CSF3R, CEP72, CKS2, IDH3A, PLXNA1, ODF2, WDR53, KIAA0513 and PHYH.
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Besides, the distribution for non-significant tail probabilities resembles to the uniform distribution,

which is expected when H0 is true.
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Figure 8.4. Evidence on differential expression tests: tail probabilities (tg )p
g=1 for the posterior

distribution of the mean vector (µg )p
g=1.

8.3.2 Testing the equality of gene expression correlation matrices

In this section we employ the hypothesis testing of equality of two correlation matrices (see Chapter

4) to assess differences in tumor/normal linear dependence structures for multiples subgroup of

genes (of the total 25×103 that consists our data). These correspond to 1,320 standard gene pathways

obtained from the MSig database (http://www.broadinstitute.org/gsea/msigdb/index.jsp).

In Figure 8.5(a) we present the permutation-approximated p-values using average of squares,

extreme value and sum of exceedances test statistics. In the sum of exceedances test, we give the

results for w = 0, though they are very similar to the p-values found for w = 1. 18% of the average

of squares test p-values, 9% of the extreme value test p-values and 19% of the sum of exceedances

test p-values are smaller than 0.01 and under H0 we were expecting only 1%. About 4% of the lists

have the three tests with p-values smaller than 0.01. Moreover, about 35% of the lists have the three

p-values larger than 0.10, indicating some similarity in the correlation matrices even with conditions

as different as cancer and healthy.

We further adjust the p-values for multiple testing by using a Benjamini-Hochberg (BH) correction

(Benjamini and Hochberg, 1995), and in Figure 8.5(b) we present a Venn’s diagram of the adjusted p-

values smaller than 0.05. Among others, some of the pathway lists that had highly significant adjusted

p-values (0.0003 significance level) in the three tests are: [1] "KEGG SPLICEOSOME", [2] "KEGG JAK

STAT SIGNALING PATHWAY", [3] "BIOCARTA INFLAM PATHWAY" , [4] "BIOCARTA ERYTH PATHWAY",

[5] "BIOCARTA STEM PATHWAY", [6] "REACTOME SIGNALING BY GPCR", [7] "REACTOME GPCR
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DOWNSTREAM SIGNALING", [8] "REACTOME SIGNALING BY ILS", [9] "REACTOME CYTOKINE

SIGNALING IN IMMUNE SYSTEM" and [10] "REACTOME TELOMERE MAINTENANCE". Of these 10

significant pathways lists, more than 50% of the genes within list [3] and [5] are also present in list [2].
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Figure 8.5. Evidence representation of equality of correlation matrices testing for 1,320 pathway list.
In (a) there are the test p-values for each pathway list. In (b) Venn’s diagram shows the number of
rejected lists with an adjusted p-value smaller than 0.05.

8.3.3 Testing correlation matrix rows and reducing the number of genes

The two omic datasets analysed in this chapter are typical cases of very high dimensional data where

the number of variables p is of order of thousands. The statistical analysis of the whole data (e.g.,

estimation of precision matrices) involves dealing with matrices of size p × p which supposes a

challenge for both number of operations and memory space. In this section we use the hypothesis

testing procedures for correlation matrix rows studied in Section 4.4 on the gene expression dataset

to reduce the dimension of the data by only keeping both highly correlated genes as well as highly

differentially (tumor - normal) correlated genes.

We apply both adjusted average of squares and maximum test statistics to assess the evidence

of highly correlated genes independently for all 24,526 genes and then we adjust the p-values to

account for multiple testing using a BH correction. Figure 8.6 shows the adjusted average of squares

test statistic in each gene, distinguishing between healthy and tumor samples as well as an histogram

with the p-values of the underlying hypothesis testing procedure. In general, it seems that normal

samples have larger correlations than tumor samples. For instance, 12,992 genes (53% of the total)

have an adjusted p-value smaller than 0.01 for healthy samples whereas only 8,637 of the p-values for

tumor samples genes (35%) are smaller than 0.01. Similarly, for the maximum test, 11,142 genes (45%)

and 6,361 (26%) have adjusted p-values smaller than 0.01 for healthy and tumor samples, respectively.

Hence, as for testing equality of correlation matrices, average of squares test finds a larger number of
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genes with small p-values than maximum test. The ten genes with largest test statistics for healthy

and tumor are: FAM96A, M-RIP, RRAGA, PITPNB, B2M, TGFB3, SULF1, CHST3, SCARA3 and DTNA

for healthy; ATP8B2, PLEKHO1, KIAA0495, HOM-TES-103, MBNL1, PRMT2, GIMAP8, NNMT, CAST

and RHOJ.
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(d) P-value tumor samples

Figure 8.6. Adjusted average square correlation test statistic and p-values for the 24,526 genes in the
the two datasets that distinguish between healthy and tumor samples.

Hypothesis testing to assess the evidence of differentially correlated genes is done using the

permutation method for the average of squares test statistic. The p-values are also adjusted by the

BH multiple testing correction. In total, 1,573 genes (6%) have adjusted p-values smaller than 0.01

of whose, only 87 genes were not highly significant in the non-zero correlation test described above.

Among the differentially correlated genes, ten genes with largest test statistics are PCBD1, TMEM185B,

RPL8, PPIL1, BYSL, SNRPC, EIF3S1, RALGDS, DDX21 and GCNT2. The correlation between the p-

values found by testing differential expressed genes (in Section 8.3.1) and differentially correlated

genes is 0.14. This is a significant but low level of dependence between the two hypothesis testing

procedures.

In the following three sections we consider the problem of estimating conditional dependence

structures for both tumor and healthy samples. The algorithms used are computationally demanding

so to speed up the process we reduce the dimension size of the datasets such that we only select highly
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correlated genes and differentially correlated genes. Let p-val(g )H and p-val(g )T be the adjusted

p-values for healthy and tumor datasets respectively, and let p-val(g )D be the adjusted p-values for

the difference matrix, we keep genes g∗ such that

g∗ = {g : p-val(g )H < 0.01}∪ {g : p-val(g )T < 0.01}∪ {g : p-val(g )D < 0.01},

where the three sets of p-values are found using average of squares test statistics.

The total number of remaining genes is 14,978 which is a reduction of the 39% of the data. We

further use a hierarchical clustering procedure described in Müllner (2013) on the reduced dataset to

separate the genes in different clusters. We use 1 minus the matrix of correlations for healthy genes

as dissimilarity matrix to find 4 large clusters of size 1900, 5728, 5984 and 437 genes respectively.

Other clusters are found but their sizes are very small (less than 100 genes) and are not considered for

estimation. Figure 8.7 shows the heat map of the average squared correlation between and within

clusters. Note that the darkest squares are given in the diagonal indicating large within cluster cor-

relation magnitudes in comparison to between correlation magnitudes. Estimation of conditional

dependence structures are done in the following sections within clusters, thus assuming conditional

independence for genes between clusters. The only reason is the huge computational needs of the

proposed joint estimation methods which make implausible the estimation of the whole network.
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Figure 8.7. Heat-map that represents a measure of linear dependence between and within gene
clusters, i.e., the darkness of the bins is proportional to the the average squared pairwise correlation
between genes.

8.4 Graphical lasso to estimate network of genes

We estimate four gene expression conditional dependence structures separately for samples in the

two medical conditions corresponding to genes within the four clusters found in Section 8.3.3. To do

so, we use the neighbourhood selection lasso-penalized maximum likelihood approach (Meinshausen

and Bühlmann, 2006) which is presented in Section 5.2. For each cluster and class of observations, we

estimate 70 different graphs corresponding to different values for the tuning parameter λ following
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an equidistant sequence that ranges between 0.5 and 0.95. Values of λ lower than 0.5 produce

fully connected graphs and values above 0.95 produce no edges in the graph. We use AGNES, path

connectivity (PC), A-MSE (subsampling) and vulnerability (VUL) regularization parameter selection

approaches, see Chapter 5, to choose only few graphs, from the initial 70, to be analyzed. Table 8.2

shows the number of estimated edges in each of these graph structures. AGNES provides the densest

graphs, PC and VUL find similar network sizes and A-MSE achieves the sparsest estimators. Besides,

estimated networks for healthy samples tend to be denser than estimated networks for tumor samples

in the VUL and PC approaches. AGNES and A-MSE are approaches that optimize risk functions based

on clustering characteristics, but here hierarchical clustering is previously applied to separate the

data in four groups of genes for estimation. Thus, the two selection methods turn out to produce

uninformative networks (either too dense or too sparse).

Table 8.2. Number of estimated edges for either healthy or tumor selected graph structures by PC,
AGNES, A-MSE and VUL. The number of healthy edges is larger than the number of tumor edges,
especially for the PC and VUL estimated networks.

Cluster 1 Cluster 2
method PC AGNES A-MSE VUL PC AGNES A-MSE VUL
healthy 700 2,351 0 700 1,706 7,580 85 1,018
tumor 377 2,209 1 591 1,023 7,809 130 752

Cluster 3 Cluster 4
method PC AGNES A-MSE VUL PC AGNES A-MSE VUL
healthy 2,900 7,510 117 1,183 395 458 2 409
tumor 1,916 8,391 75 509 86 400 4 233

Figure 8.8 illustrates the joint graphical representation of some of the estimated networks (only

employing VUL and PC approaches) by finding the common edges and unique edges for each medical

condition. Even though the number of common edges is small in comparison to the number of

differential edges, it is still much larger than expected by chance (this is assessed by a resampling

approach). As our analysis looks into healthy and tumor samples separately it is not well suited

to establish how the network actually changes between the two conditions. This require a more

refined approach that models both networks and their differences simultaneously and it is the focus

of attention in the following sections.

Important genes, i.e., genes that interact with at least 7 other genes, include ADH6, ATP2B4,

CHST9, CSEN, CYP2C9, FLJ20125, HAPLN4, HTRA3, MAP1LC3C, MAWBP, NR1H4, SCN3B, SMUG1,

STX5A, TYROBP and VWCE.

8.5 Estimation of joint gene expression networks

We estimate four fused-lasso precision matrices (following methodology described in Section 6.2)

and their underlying gene-to-gene networks corresponding to the 4 clusters of genes described in
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(b) PC best graph for cluster 2
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(c) VUL best graph for cluster 3
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(d) VUL best graph for cluster 4

Figure 8.8. Estimated gene expression networks distinguishing between healthy edges (red), tumor
edges (green) and common edges (blue). Only some of the PC and VUL estimated graphs are shown
for visualization purposes.

Section 8.3.3 for only gene expression samples (Y (1): healthy and Y (2): tumor). We use significant

levels α1 (which determines sparsity of the estimates) and α′
2 (which determines similarity of the

non-zero estimates) to tune the penalization parameters. For α1 we set the underlying expected

number of false positive edges (EFP) with EFP = 150,200,200,50 respectively for each cluster, with

α1 = 2EF P/p(p −1). In terms of α′
2 (see interpretation in Section 6.2.2) we use three different levels:

α′
2 = {0.01,0.05,0.1}.

Table 8.3 provides the number of estimated edges common to the two medical conditions and

the number of estimated differential edges: “healthy only” for edges only present in the network for

healthy samples; and “tumor only” for edges only present in the network for tumor samples. The

total number of estimated edges is much larger than the expected number of false positives which

suggests certain strength in the results. Moreover, we observe that the number of differential edges is

remarkably greater for healthy samples than for tumor samples in cluster 2 and cluster 3 whereas it is
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slightly larger for tumor samples in cluster 1. Figure 8.9 shows the graphical representation of some

of the estimated gene-to-gene networks, where black, orange and green edges differentiate between

common, “healthy only” and “tumor only” edges respectively.

Table 8.3. Joint estimation of gene-to-gene networks in four clusters of genes: number of estimated
edges, both common and differential edges, using several similarity tuning parameters α′

2.

Cluster 1 Cluster 2
α′

2 0.01 0.05 0.10 0.01 0.05 0.10
common 459 441 414 2,791 2,487 2,263
healthy only 0 4 7 357 765 1,036
tumor only 2 16 41 92 272 421

Cluster 3 Cluster 4
α′

2 0.01 0.05 0.10 0.01 0.05 0.10
common 4,001 3,340 3,027 107 107 109
healthy only 670 1,410 1,719 0 0 0
tumor only 294 921 1,193 0 0 0

8.6 Estimation of joint regression coefficient matrices

We consider the four sets of genes/sites described by the four clusters in Section 8.3.3. For each

one of them, we match genes and methylation sites that are closeby so the analysis can be done at

gene level. Besides, there are some methylation sites with variance equal to zero that are eliminated

from the analysis. We consider gene expression samples as response variables (Y (1): healthy; and

Y (2): tumor) and methylation presence samples as explanatory variables (X (1): healthy; and X (2):

tumor). We estimate four fused-lasso regression coefficient matrices and their underlying site-to-gene

directed networks following the methodology described at Section 6.3. We use different combinations

of the tuning parameters α1 (for sparsity) and α′
2 (for similarity of non-zero estimates). For α1 we set

the expected number of false positive edges (EFP) with EFP = 150,200,200,50 for the four clusters,

respectively. Then, α1 = EF P/(pq). For α′
2 (see interpretation in Section 6.3.2) we use the following

three levels: α′
2 = {0.01,0.05,0.10}. Table 8.4 provides the estimated number of site-to-gene edges

distinguishing among common, ”’healthy only” and ”tumor only” as defined previously in Section 8.5.

The results resemble the estimated graph structures found in Table 8.3, i.e. ”healthy only” edges are

more frequent than ”tumor only” in the large clusters 2 and 3 and less present in cluster 1.

Figure 8.10 shows the graphical representation of four of the estimated site-to-gene directed

networks corresponding to the four clusters of genes with α′
2 = 0.05. Nodes in blue represent genes

and nodes in white are methylation sites. Moreover, black, orange and green edges going from

methylation sites to genes differentiate between common, ”healthy only” and ”tumor only” edges

respectively. We identify several hub-methylation sites which are connected to many different genes.

Moreover, ”healthy only” and ”tumor only” edges are found in clusters where almost all connections

from one methyl site to genes are either black, green or orange.
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(b) Cluster 2
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Figure 8.9. Graph structure for the estimated gene-to-gene networks: in black there are the common
edges, and in orange (”healthy only” ) and green (”tumor only” ) the differential connections.

8.7 Integration of estimated gene-to-gene and site-to-gene networks

In this section we consider a joint analysis using both gene-to-gene networks found in Section 8.5 and

site-to-gene directed networks found in Section 8.6. Recall that methylation sites can be matched to

genes that are nearby. These matching elements are expected to be negatively related. We corroborate

this using data by counting the number of estimated edges in the site-to-gene network that link

methylation sites with their matching genes. In Table 8.5 we separate the number of such estimated

non-zero elements by the sign of their underlying regression coefficients. For instance, using the most

conservative α′
2 = 0.01, summing up all clusters, a total of 17, for healthy, and 20, for tumor, matching

genes and methylation sites are non-zero with 15 and 18 of them, respectively, being with a negative

coefficient. Although the percentage of these estimated edges is very small, it is much larger (about 4,

12, 10 and 185 times for healthy and 4, 15, 17 and 185 for tumor) than expected by chance (whose

levels can be found considering the estimated sparsity levels in the whole network).

We integrate the gene-to-gene networks with the site-to-gene directed networks by using the

ANDnet approach (Gadaleta and Bessonov, 2015). This corresponds to the network where edges in
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Table 8.4. Joint estimation of site-to-gene directed networks in four clusters of genes: number of
estimated edges, both common and differential edges, using several similarity tuning parameters α′

2.

Cluster 1 Cluster 2
α′

2 0.01 0.05 0.10 0.01 0.05 0.10
common 746 714 663 2,339 2,097 1,892
healthy only 6 40 79 398 943 1,395
tumor only 11 76 137 66 193 305

Cluster 3 Cluster 4
α′

2 0.01 0.05 0.10 0.01 0.05 0.10
common 2,880 2,487 2,218 57 55 56
healthy only 556 1,196 1,633 0 5 7
tumor only 282 646 943 0 2 3

Table 8.5. Number of estimated edges that match methyl site (for explanatory variables) and gene
nearby (for response variables). In + positive estimated regression coefficients, in − negative
estimated regression coefficients.

Cluster 1 Cluster 2
α′

2 0.01 0.05 0.10 0.01 0.05 0.10
healthy −1, +0 −0, +0 −0, +0 −4, +1 −4, +1 −4, +1
tumor −1, +0 −0, +0 −0, +0 −4, +1 −4, +1 −4, +1

Cluster 3 Cluster 4
α′

2 0.01 0.05 0.10 0.01 0.05 0.10
healthy −5, +1 −4, +1 −4, +1 −5, +0 −5, +0 −5, +0
tumor −8, +1 −8, +2 −8, +2 −5, +0 −5, +0 −5, +0

the gene-to-gene network and edges in the site-to-gene network coincide, i.e., the methylation sites

are matched to the genes that are nearby so both networks are at gene-to-gene level. It turns out that

the total number of coincidences between the two types of networks is low but larger than expected

by chance in clusters 3 and 4. We use an exact Fisher test to assess the significance of the common

links. Cluster 3 has at most 3/8 (healthy/tumor) shared associations (p-val = 0.09/ p-val ¿ 0.001) and

cluster 4 has at most 4/4 shared associations (p-val ¿ 0.001 in both cases). For clusters 1 and 2, the

number of shared edges is very low and could be obtained by chance.

8.8 Integration with biological pathway lists

We download 314 gene sets from the MSig database (Subramanian et al., 2005), which represent

canonical pathways compiled from two sources: KeGG (Kanehisa et al., 2016) and Reactome (Milacic

et al., 2012), and that contain at least 50 genes. For every gene set we estimate its gene-to-gene and site-

to-gene joint networks. In order to determine which biological processes might be linked to changes

in the gene/site associations between healthy and colon cancer samples, we use the hypothesis testing

procedure described in Appendix B.3 which assesses whether the conditional dependence structures

(i.e, gene-to-gene and site-to-gene) vary or do not vary in the presence of tumor cells. In terms of the

gene-to-gene network, out of the 314 lists of genes, 119 and 19 contain more “healthy only" edges and
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(d) Cluster 4

Figure 8.10. Graph structure for the estimated site-to-gene directed networks: in black there are the
common edges, and in orange (”healthy only” ) and green (”tumor only” ) the differential
connections. Methylation sites in blue circles map genes in whites circles.

“tumor only" edges, respectively, than expected by chance (at significance level 0.01). Not as many

important pathway lists are present for the site-to-gene directed network where 11 out of the 314

pathway list are significant for “healthy only" edges and 5 lists are significant for “tumor only" edges

(also at significance level 0.01). Especially for“healthy only” networks, there are more significant lists

than expected under the null hypothesis of equality of the edges in the two medical conditions (where

only 3 lists are expected to have a significance level lower than 0.01 under some mild independence

conditions).

Table 8.6 presents some the most important lists that show enough evidence against the null

hypothesis of equality of gene-to-gene networks between healthy and tumor samples. Among the

significant lists, metabolism of proteins, cell cycle, immune system or signaling by GPCR are expected

to change in carcinogen processes. Genes that are connected to many other genes in these statistically

relevant networks are JAK1, KPNA4, DEFB103A, CD46, PRKCSH, PRSS2, SOS1, PFDN4, NUDC, EIF4G2

and TIAM2 (for “healthy only" edges, gene-to-gene network), MAPK12, MAPK11, GNB3, SLC3A1,

SLC6A12, SLC24A6, HIST1H2BI, OR2B11 and OR2L8 (for “tumor only" edges, gene-to-gene network).
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Table 8.6. Pathway lists with “tumor only" edges (T.) or “healthy only" edges (H.) being significantly
different from zero (significance level 0.01) in gene-to-gene jointly estimated network.

----------------------------------------------------------------------
[T1] "KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY"
[T2] "REACTOME_TRANSMEMBRANE_TRANSPORT_OF_SMALL_MOLECULES"
[T3] "REACTOME_TRANSCRIPTION"
[T4] "PID_IL12_2PATHWAY"
[T5] "REACTOME_SIGNALING_BY_GPCR"
[H1] "REACTOME_IMMUNE_SYSTEM"
[H2] "REACTOME_METABOLISM_OF_PROTEINS"
[H3] "REACTOME_ADAPTIVE_IMMUNE_SYSTEM"
[H4] "REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM"
[H5] "REACTOME_CELL_CYCLE"
[H6] "REACTOME_INTERFERON_SIGNALING"
[H7] "REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS"
[H8] "REACTOME_METABOLISM_OF_RNA"
----------------------------------------------------------------------

In Table 8.7 there are the top significant lists for the site-to-gene directed networks. These include

gene sets as Tgf-beta signaling alterations which have been widely associated to colorectal cancer

(Drabsch and Ten Dijke, 2012). Others as Gaba receptor acitivation, mRNA splicing or EGFR path-

ways are also link to have roles in tumor cells. Among the highly connected genes there are EGFR,

TGFB1, TGFBR1, PIK3R1, PRKACA, SNRPB2, SNRPE and GNG8 (for “healthy only" edges, site-to-gene

network), ITGA4, MYD88, IFNGR2 and FZD6 (for “tumor only" edges, site-to-gene network).

Table 8.7. Pathway lists with “tumor only" edges (T.) or “healthy only" edges (H.) being significantly
different from zero (significance level 0.01) in site-to-gene jointly estimated network.

----------------------------------------------------------------------
[T1] "KEGG_HEDGEHOG_SIGNALING_PATHWAY"
[T2] "KEGG_COMPLEMENT_AND_COAGULATION_CASCADES"
[T3] "WNT_SIGNALING"
[H1] "ST_FAS_SIGNALING_PATHWAY"
[H2] "PID_TGFBRPATHWAY"
[H3] "REACTOME_SIGNALING_BY_ERBB2"
[H4] "REACTOME_SIGNALING_BY_EGFR_IN_CANCER"
[H5] "REACTOME_RECRUITMENT_OF_MITOTIC_CENTROSOME_PROTEINS_AND_COMPLEXES"
[H6] "REACTOME_MRNA_SPLICING"
[H7] "REACTOME_GABA_RECEPTOR_ACTIVATION"
[H8] "REACTOME_SIGNALING_BY_TGF_BETA_RECEPTOR_COMPLEX"
----------------------------------------------------------------------

8.9 Discussion

In this chapter we have considered both hypothesis testing and estimation methods to analyze

two types of genomic data: gene expression and methylation presence. We have used hypothesis

testing approaches on the gene expression data with the aim to reduce the number of genes for
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estimation. Given the reduced datasets, we have estimated two types of networks, gene-to-gene

network (employing WFGL on gene expression data) and site-to-gene network (employing WFRL to

map methylation presence to gene expression). In general, these estimated networks contain more

“healthy only” edges than “tumor only” edges, which may indicate that some of the gene-to-gene

(site-to-gene) associations vanish on the appearance of the disease.

Focusing on the site-to-gene networks, we have confirmed in data the hypothesis that methylation

presence can silence the expression of its gene promoter. Besides, we have observed that the estimated

networks tend to present hub-based structures in which methylation sites are connected to many

different genes. This can be due to genes (in gene expression level) being highly correlated between

each other, and might suggest to find more accurate estimators that also account for the residuals

linear dependence structure (see discussion in Chapter 6). Finally, we have estimated the same

two types of networks using more than 300 gene sets that are known to have functions in biological

processes. Particularly interesting is the comparison of differential network sizes for the studied

pathway lists that corroborates previous findings in the literature that relate Tgf-beta signaling, Gaba

receptor acitivation or mRNA splicing to colon cancer mutations.
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Chapter 9

Conclusions

The objectives of this work were to develop statistical methodology for the testing and estimation

of linear dependence structures such as correlation matrices, precision matrices and regression

coefficient matrices when data are both paired and high-dimensional. This is motivated by the

application to genomic data, where high-throughput technology is able to measure the whole genome

profile of an organism for a specific location/tissue leading to datasets with large dimensions. Besides,

the paired data setting is due to experimenting with samples on different tissues, that can be under

different medical conditions (e.g., cancer and normal states), for the same individual.

Testing and estimation methods for gene interactions using high-dimensional data have been

extensively studied in the literature in the past 20 years. Firstly, testing methods for global dependence

structures are proposed in Li and Chen (2012) and Cai et al. (2016), among others, to assess whether

two correlation matrices, which can represent the linear dependence structure of a group of genes on

healthy and unhealthy tissues, are equal or not. Secondly, penalized maximum likelihood estimation

approaches like lasso (Tibshirani, 1996; Lauritzen, 1996) are applied to infer (conditional dependence)

gene associations in high-dimensional data by encouraging sparse graphical structures. The extension

of these techniques to jointly estimating multiple matrices are considered in Danaher et al. (2014) or

Lam et al. (2016), and can be relevant to finding gene interactions that distinguish between samples

under several medical conditions. These methods in the literature are suitable when data are high-

dimensional but ignore the dependence structure between datasets, which can be present when

analyzing paired data. In this thesis, the main goal was to design convenient global testing approaches

and joint estimation techniques that accounted for cases where there are two high-dimensional

datasets whose observations can be paired.

In Chapter 4 we studied the hypothesis testing problem of equality of two correlation matrices for

high-dimensional data with paired observations. We proposed test statistics that are based on the

average of squares, maximum and sum of exceedances using the element-wise difference of Fisher

transform sample correlation coefficients. The sum of exceedances test is a novel approach in this

hypothesis testing problem that was introduced to link maximum test (which only uses the largest
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magnitude of these transformed coefficients) and average of squares (which uses all the elements

no matter their magnitude). For a threshold close to zero, the sum of exceedances test achieves

similar powers to the average of squares test, whereas as the threshold increases, it finds powers

that are closer to the maximum test. The null distributions of the three suggested test statistics were

approximated by their limiting parametric distributions as well as by non-parametric distributions

based on permutations. When determining the parametric distributions we considered both the

assumption of asymptotic independence among correlation coefficients and a correction to account

for dependence among elements in the differential sample correlation matrix. Although asymptotic

independence distributions are remarkably fast to obtain, we developed dependence-corrections

since we showed that estimates of the empirical size assuming asymptotic independence can be

strongly biased.

In Chapter 5 and 6 we studied the related problem of estimating conditional dependence between

variables when data are high-dimensional. In Chapter 5 we considered the estimation of sparse

precision matrices in a single dataset whereas in Chapter 6 we extended the methodology for the more

challenging problem of simultaneously estimating two precision matrices whose samples come from

paired observations. Moreover, we also developed joint estimation methods for regression coefficient

matrices which can be used for both independent and paired observations. The design of appropriate

algorithms to estimate sparse precision matrices for single datasets was already well studied in the

literature and we did not provide any other competitive method. However, in Chapter 5 we focused on

the crucial issue of selecting the tuning parameter λ in the lasso estimator which totally controls the

complexity of the non-zero structure of the estimated precision matrix. We suggested to use several

risk functions that optimize network characteristics as graph connectivity or clustering for selecting λ.

These approaches only consider the graphical structures of the precision matrices, thus ignoring the

value of such estimated matrices, and contrast to widely used likelihood based procedures like AIC,

BIC (or its high-dimensional extension eBIC) and RIC which we found that tend to overestimate the

size of the non-zero structures.

In Chapter 6 we employed joint estimation procedures to obtain conditional dependence rela-

tionships among variables for samples on two different classes. These procedures considered a larger

sample size than n for the estimation of a common network of variables in which edges coincide in

the two classes. Besides, they were found to improve graph recovery rates when the two dependence

structures that generate the data are similar, i.e., when many non-zero elements in the conditional

dependence matrix for the first class of observations are equal to the same elements in the conditional

dependence matrix for the second class of observations. The main contribution of the work in this

chapter is that we adapted a current joint estimation algorithm to account for paired observations

which led to better estimates of connections that vary between the two types of samples. Tuning

parameters in these joint estimation problems were selected by controlling error rates related to the

expected number of false positive edges in individual and differential networks. We argued that this is

more informative than the initial selection problem as, for example, the number of estimated edges
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can be compared to the expected number of false positive edges.

We find that the proposed methods complement well previous work done in the statistical litera-

ture for testing and estimation problems in high-dimensional data, and that these can be particularly

useful to assess the dependence structures of multiple types of genomic data when observations

are paired. This is not a rare situation in real data, and throughout the thesis we have provided the

analysis of three different cases studies (examining colon cancer, lung cancer and psoriasis vulgaris

disease) in which our techniques can help to answer questions that arise from biological processes.

For instance, for the colon cancer data, in Chapter 8 we fully analyzed and integrated two types of

genomic data representing gene expression and methylation presence for patients with colon cancer

in which samples were provided for both tumor and healthy tissues.

The methodology and application work has been completed with the implementation of an R

package, called ldstatsHD, which consists of functions that permit to conveniently employ the testing

and estimation methods developed throughout the thesis. We though this could be an important

contribution for the R scientific community so we have made it available in the CRAN repository for

its use.

The presented methods have some limitations: (a) Testing methods are fast when assuming

asymptotic null distributions without accounting for dependence between elements in the sample

correlation matrices. However, these are only useful when the correlation matrices that generate the

data are very sparse, which is not always verifiable in practice. For this reason, we presented methods

that account for dependence employing permuted samples. While this assures correct representations

of the p-values’ distribution under the null hypothesis, it greatly increases the computational time.

(b) In terms of the regularization parameter selection methods, we found that measuring network

characteristics was useful to select a graph structure, as the interpretation of the network could be

directly linked to the features used. However, we shall remark that the corresponding risk functions

do not optimize the differences between true and estimated network characteristics, e.g., see A-MSE

in Section 5.3.2, which would be the oracle solution. (c) For the joint estimation procedures, the main

problem of the presented ADMM recursive procedures (Boyd, 2010) can be the lack of memory space

in the machine. For each iteration of the algorithm, a dense estimator of two precision matrices (or

also two regression coefficient matrices) is needed temporarily, which for large dimensions (more

than 5,000) requires the storage of numerical vectors of order of the square of the dimension and can

slow down the computations.

Continuing the line of research of the thesis, there are some statistical problems that could be

considered for a future work. In the testing methodology, we want to contemplate the usage of the sum

of exceedances test statistic for higher criticism testing (Donoho and Jin, 2004), which would avoid the

threshold selection problem, that is extensively discussed in Section 4.3.3, whilst obtaining optimal

(or near optimal) power for the test. For sparsity tuning parameter selection methods we suggest to

employ some network characteristics defining clustering, graph connectivity or graph vulnerability.

However, other features of interest like the Estrada index (Estrada, 2011) or the degree distribution
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(Costa and Rodrigues, 2007) could also be implemented. For the joint estimation methods proposed

in Chapter 6, a logical extension would be considering a more general case when K datasets, K ≥ 2,

are available and may also be dependent among each other. Moreover, to avoid memory issues when

doing intensive computations we intend to employ efficient tools for big matrix storage as proposed

in the package bigmemory (Kane et al., 2013).
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Acronyms

AD asymptotic-dependence

ADMM alternating direction method of multipliers

AI asymptotic-independence

AIC Akaike information criterion

A-MSE augmented mean square error for regularization parameter selection

BIC Bayesian information criterion

CCA canonical correlation analysis

CD conditional dependence

CI confidence interval

CIA co-inertia analysis

CLIME constrained L1-minimization for inverse (covariance) matrix estimation

CV cross-validation

eBIC extended Bayesian information criterion

EFP expected number of false positives

EFPR expected false positive rate

FGL fused graphical lasso

FRL fused regression lasso

GEO gene expression omnibus

GGL group graphical lasso

HD high dimensional

HT hypothesis testing
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ICA independent components analysis

JGL joint graphical lasso

LASSO least absolute shrinkage and selector operator

LARS least angle regression

LSE least squares estimator

MB Meinshausen and Buhlmann neighborhood selection approach

MCMC Markov chain Monte Carlo

MLE maximum likelihood estimator

MRCE multivariate regression with covariance estimation

NP non-parametric

PC path connectivity for regularization parameter selection

PCA principal component analysis

PLS partial least squares

RCON row-column overlap norm

SCAD smoothly clipped absolute deviation

StARS stability approach to regularization selection

TIGER tuning-insensitive graph estimation and regression

VUL graph vulnerability for regularization parameter selection

WFGL weighted fused graphical lasso

WFRL weighted fused regression lasso
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Appendix A

Proofs and derivations of hypothesis

testing methods

A.1 Variance of mean of squares for dependent samples

Here we proof the result in Lemma 1 that gives the expression of the variance of the average of squares

for dependent random variables. Consider n dependent random variables Z = (z1, . . . , zn) which

marginally follow a standard normal distribution. Take E[z2
i ] = µ2 = 1 and E[z4

i ] = µ4 = 3 for any

zi ∈ Z and γ̄2 = 2(n(n −1))−1 ∑
i< j cov(z2

i , z2
j ) which is function of the dependence structure between

variables.

The mean square of elements in Z is found by S2 = n−1 ∑n
i=1 z2

i and has variance var[S2] = E[S4]−
E[S2]2. The second term is determined by µ2 such that E[S2]2 = µ2

2. Moreover, the first term is

expressed as

E[S4] = E[n−2(
n∑

i=1
z2

i )2] =µ4/n + (γ̄2 +µ2)(n −1)/n.

Hence, var[S2] = (µ4 −µ2
2)/n + γ̄2(n −1)/n.

A.2 First and second order statistics for estimated exceedances

We show the expected value and variance of (|d̂t |−wuu)2|d̂ 2
t > u2 for a general case of dt being any

value. This is used in the paper to obtain the lower bound of the power of the sum of exceedances test,

and also to select the threshold u.
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Scenario wu = 0

Take xt = d̂t ∼ N (dt ,1). Expected value is determined by

E [x2
t | x2

t > u2] =
∫ ∞

u x2
t (2π)−1/2e−

(xt −dt )2

2 d xt +
∫ −u
−∞ x2

t (2π)−1/2e−
(xt −dt )2

2 d xt

Φ(dt −u)+Φ(−dt −u)

= 1+d 2
t +

(u −dt )ϕ(u −dt )

Φ(dt −u)+Φ(−dt −u)
+ (u +dt )ϕ(−u −dt )

Φ(dt −u)+Φ(−dt −u)

+2dt
ϕ(u −dt )−ϕ(−u −dt )

Φ(dt −u)+Φ(−dt −u)

= 1+d 2
t + A+B ,

(A.1)

where A = u{ϕ(u−dt )+ϕ(u+dt )}/{Φ(dt −u)+Φ(−dt −u)} and B = dt {ϕ(u−dt )−ϕ(u+dt )}/{Φ(dt −
u)+Φ(−dt −u)}. If |dt | > u, then E [x2

t | x2
t > u2] ≥ d 2

t +1. Under H0, where dt = 0, µ0 = 1+u ϕ(u)
1−Φ(u) .

The expression for the variance is

var[x2
t | x2

t > u2] = (2π)−1/2[
∫ ∞

u x4
t e−

(xt −dt )2

2 d xt +
∫ −u
−∞ x4

t e−
(xt −dt )2

2 d xt ]

Φ(dt −u)+Φ(−dt −u)
−E [x2

t | x2
t > u2]2

= d 4
t +d 3

t D +d 2
t (6+uC )+dt (u2 +5)D + (u3 +3u)C +3

−E [x2
t | x2

t > u2]2,

(A.2)

where C = {(ϕ(u +dt )+ϕ(u −dt )}/{Φ(dt −u)+Φ(−dt −u)} and D = {(ϕ(u +dt )−ϕ(u −dt )}/{Φ(dt −
u)+Φ(−dt −u)}. Under H0, σ2

0 = 3+ (u3 +3u) ϕ(u)
1−Φ(u) −µ2

0.

Scenario wu = 1

Take xt = d̂t ∼ N (dt ,1). Expected value is determined by

E [(|x|−u)2
t | x2

t > u2] = 1p
2π

∫ ∞
u (xt −u)2e−

(xt −dt )2

2 d xt +
∫ −u
−∞(−xt −u)2e−

(xt −dt )2

2 d xt

Φ(dt −u)+Φ(−dt −u)


= E [x2

t | x2
t > u2]+u2 −2u

ϕ(dt −u)+ϕ(−dt −u)

Φ(dt −u)+Φ(−dt −u)

−2dt u
Φ(dt −u)−Φ(−dt −u)

Φ(dt −u)+Φ(−dt −u)

= 1+d 2
t +u2 + A+B −E ,

(A.3)

where A and B are defined above, and

E = 2u
ϕ(dt −u)+ϕ(−dt −u)

Φ(dt −u)+Φ(−dt −u)
−2dt u

Φ(dt −u)−Φ(−dt −u)

Φ(dt −u)+Φ(−dt −u)
.

Note that if |dt | > u, then E [(|x|−u)2
t | x2

t > u2] ≥ (|dt |−u)2 +1 can be used as a lower bound. Under

H0, µ1 = (u2 +1)−u ϕ(u)
1−Φ(u) .
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The expression for the variance is

var[(|x|−u)2
t | x2

t > u2] = 1p
2π

∫ ∞
u (xt −u)4e−

(xt −dt )2

2 d xt +
∫ −u
−∞(−xt −u)4e−

(xt −dt )2

2 d xt

Φ(dt −u)+Φ(−dt −u)


−E [(|x|−u)2

t | x2
t > u2]2

=E [x4
t | x2

t > u2]+6uE [x2
t | x2

t > u2]+u4 +4u3(dt C −D)−F,

(A.4)

where

F = 8uC +12ud 2
t C + (4ud 3

t +12dt u)(Φ(dt −u)−Φ(−dt −u))/{Φ(dt −u)+Φ(−dt −u)}

+ 4u{(u −dt )2ϕ(u −dt )+ (u +dt )ϕ(u +dt )}+12dt u{(u −dt )ϕ(u −dt )− (u +dt )ϕ(u +dt )}

Φ(dt −u)+Φ(−dt −u)
.

Under H0, σ2
0 = 3+u4 +6u2 − (5u +u3) ϕ(u)

1−Φ(u) −µ2
1.

A.3 Gumbel approximation of extreme value test statistic

Let Vt j = cov(d̂t , d̂ j ) be the covariance between two elements in the matrix D̂. For op ∈ {=, 6=}, we

define

ν
op
t = ∑

j∈A
I (Vt j op 0), A = M \ {t },

so ν=t +ν6=t = m −1. Following sparsity constrains in Meinshausen and Bühlmann (2006), the sparsity

level ν6=t is assumed to be

ν6=t =O(mη
t ) = L(m)mηt ,

where 0 ≤ ηt < 1 and L(m) is a slowly varying function, i.e., lim
m→∞L(mx)/L(m) → 1. Moreover,

ν=t = m −1−O(mη
t ) = m (1−m−1 −L(m)mηt−1) = m (1+o(1)) = L(m)m.

Assume that maxi< j |Vt j | < 1 and that there exists a permutation D̂∗ of elements in D̂ such that V ∗ =
[cov(d̂∗

t , d̂∗
j )] is block diagonal. Then for all rows in V ∗ there exists h such that for all j > h : V ∗

t j = 0.

Let εn ∈ o(1/logn) and take ε any positive number such that maxi< j |V ∗
i j |+ε< 1. Define

ρn =


maxt< j |Vt j |+ε, n < | j − t |

εn , n ≥ |k − t |.

It then follows that |V ∗
t j | < ρ| j−t |, and ρn logn → 0 as n →∞. This is a sufficient condition (Leadbetter

et al., 1983) for the distribution of TM AX = max
t∈M

|d̂t | to converge weakly to a Gumbel distribution.
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A.4 Sub-asymptotic model for structured non-stationary processes

A.4.1 Heuristic

The heuristic approach proposed in this section follows results and notation from Aldous (1989). Let

Sx = {t ∈ M : |d̂t | ≥ x} be a random set that, for large x, defines a sparse mosaic on the sub-integer

latticeZ2 corresponding to the lower triangular matrix M (defined in eq.(4.2)). We assume a structured

dependence structure on the process (d̂t : t ∈ M) such that Sx contains several (near) independent

clusters defined by a compound Bernoulli process with cluster intensity λx (t ). Let Cx (t ) denote the

cluster area (or cardinality) at point t , and assume that as the number of variables increase, Cx (t),

in any position t ∈ M , is finite and does not exceed a given constant κ. Besides, assume that λx (t)

and Cx (t ) do not vary much as t moves around the same cluster. For x(m) =µ(m)+σ(m) x, x ∈R, the

distribution of TM = maxt∈M |d̂t | can be approximated by

Pr(TM < x(m)) = Pr(Sx(m) ∩M empty)

.= exp

(
−

∫
M
λx(m)(t ) dt

)
.= exp

{
−

∫
M

Pr(|d̂ | > x(m))

E(C x(m)
t )

dt

}

= exp

{
−Pr(|d̂ | > x(m))

∫
M

1

E(C x(m)
t )

dt

}

= exp

{
−Pr(|d̂ | > x(m))

∑
t∈M

1

E(C x(m)
t )

}
,

where d̂ ∼ N (0,1), E(C x
t ) is the expected cluster area at cell t and threshold level x. The result obtained

above is equivalent to the cumulative distribution function of the cluster maxima for sub-asymptotic

models ( u < sup{|d̂t | :Φ(|d̂t |) < 1}) in a stationary process (Eastoe and Tawn, 2012),

Pr(TM < x) = exp
{−mθx Pr(|d̂t | > x)

}
.= exp

[−mpuθx exp{−(x −u)/σu}
]

, (x ≥ u)

when mθx =∑m
t=1

1
E(C x

t ) and with pu = Pr(|d̂t | > u).

A.4.2 Exceedances for simulated data using block diagonal correlation matrices

We consider a simple toy example to show the behavior of sparse mosaics Sx over different values

x. We use a block-diagonal correlation matrix with 5 blocks of 10 variables each. We take the same

structure within every block so off-diagonal elements are equal to 0.7 (this can be varied to see the

impact on Sx ). For first condition Y (1), we generate data by a multivariate normal distribution with

zero mean and the correlation matrix specified above. We do the same and independently for Y (2).

Figure A.1 shows some of the observed sparse mosaics Sx for a single realization of the process, where
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exceedances (highlighted by white squares) are clustered in the lower-triangular matrix M .
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(d) x = 2.3

Figure A.1. Observed sparse mosaic Sx for several threshold values x = 1,1.5,2,2.3. In red there are elements that have not
exceed x, whereas in white there are the exceedances over x.

A.5 Saddle point approximation for sum of exceedances test

We propose to use a saddle point approximation for the distribution of (T w
E (u) < x | H0, Nu = k) when

the E [Nu] is low, in which case normal approximations might fail, with pdf

fT (w)
E |H0,Nu=k (x) ≈ f̂

T (wu )
E |H0,Nu=k

(x) ≡ 1

(2πK ′′
w (t̂ ))1/2

ekKw (t̂ )−t̂ x

where Kw (t̂ ) is the cumulant moment generating function evaluated at point t = t̂ , K ′′
w (t̂ ) is the second

derivative of Kw (t) at point t̂ with first derivative K ′
w (t̂) = x/k. The saddle point approximation is

suitable when there always exist t̂ such that K ′
w (t̂) = x/k. This is proven to work well for w = 0 but

might be undefined for high values x/k when w = 1. The cdf of T (w)
E | Nu = k is found by numerical

integration. Moments and cumulants generating functions are provided below.
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Scenario wu = 0. Take yt = d̂ 2
t so yt ∼χ2

1. The moment generating function of y is defined by

My = 1

(1−2t )1/2

1−Φ{u(1−2t )}

1−Φ(u)
,

with cumulant generating functions

Ky =−1

2
log(1−2t )+ log[Φ{−u(1−2t )}]− log{Φ(−u)},

K ′
y =

1

1−2t
+ Φ′{−u(1−2t )}

Φ{−u(1−2t )}
= 1

1−2t
+u

1

(1−2t )1/2

ϕ′{u(1−2t )}

Φ{−u(1−2t )}
,

and

K ′′
y = 2

(1−2t )2 + u

(1−2t )1/2

ϕ′{u(1−2t )}

Φ{−u(1−2t )}

[
u2 + 1

1−2t
− u

(1−2t )1/2

ϕ′{u(1−2t )}

Φ{−u(1−2t )}

]
.

Scenario wu = 1. Take (|d̂t |−u)2/u2 = xt , so |d̂t | = ux1/2
t +u and fx (x) = f|d̂t |(s)

∣∣∣ d x
dd̂t

∣∣∣. The moment

generating function of x is defined by

Mx = 2ue
1
2

u4

u2−2t
1

(u2 −2t )1/2

1−Φ{u2(u2 −2t )−1/2}

1−Φ(u)
,

with cumulant generating functions

Kx = log(2u)− 1

2

u4

u2 −2t
− 1

2
log(u2 −2t )+ log(1−Φ{u2(u2 −2t )−1/2})− log(Φ(−u)),

K ′
y =

u4

(u2 −2t )2 + 1

u2 −2t
− u2

(u2 −2t )3/2

ϕ{u2(u2 −2t )−1/2}

Φ{−u2(u2 −2t )−1/2}
,

and

K ′′
x = u2

(u2 −2t )3/2

[
− ϕ{u2(u2 −2t )−1/2}

Φ{−u2(u2 −2t )−1/2}

u4

(u2 −2t )2 + ϕ2{u2(u2 −2t )−1/2}

Φ2{−u2(u2 −2t )−1/2}

u2

(u2 −2t )3/2

]
.

A.6 Threshold selection for sum of exceedances test

A.6.1 Optimizing the asymptotic power

The threshold u is key to find the test statistic that maximizes the power and its selection is the focus

of attention of this section. Under notation in Theorem 3, take

f (δt , s,u,n,m, w) =
∑

t∈Sd
µtwηt − sη0µw − zα[mη0{(1−η0)µ2

w +σ2
w }]1/2

[
∑

t∈Sd
ηt {(1−ηt )µ2

tw
+σ2

tw
}+ (m − s)η0{(1−η0)µ2

w +σ2
w }]1/2

, (A.5)

so the lower bound for the asymptotic power is 1−exp(− f (δt , s,u,n,m, w)2/2), where f (δt , s,u,n,m, w)

depends on parameters n,m, w,u (known), and s,δt (unknown). Let ρs = s/m be the proportion of
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non-zero elements in R2 −R1. To show the influence that ρs has in the asymptotic power, the function

f , defined in eq. (A.5), is evaluated for several values of ρs , u, with fixed sizes n = 100, m = 10000 and

generating values of δt from a Gamma(a,b) distribution with parameters a = 3 and b = 10. In Figure

A.2, the optimal threshold, defined by the value of u that maximizes f (δt , s,u,n,m, w), is decreasing

with ρs for both w = 0 and w = 1.
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Figure A.2. Relative power of sum of exceedances test with respect to threshold (u) and proportion of
non-zero correlation differences (ρs ) for (a) w = 0 and (b) w = 1. The black line corresponds to the
threshold with highest power.

Moreover, in panels (a) and (b) of Figure A.3, the optimal values for u using a range of sample sizes

and three different values for ρs ∈ {0.01,0.1,0.3} are obtained. We also considered several dimension

sizes, but their impact on the threshold selection was very low and for simplicity we only show the

cases for m = 1000, which corresponds to p ≈ 43−44. For w = 0, the optimal threshold increases with

the sample size, whereas for w = 1, the optimal threshold decreases with the sample size. In panel

(c) of Figure A.3, we show the lower bound of the power differences between w = 0 and w = 1. We

consider the best power for both w = 0 and w = 1 and then we take the difference between the two. In

the figure we present the average sign of such power differences over 1000 simulations for the set of

parameters (δt : t ∈Sd ). Only for small sample sizes (n < 100) and low ρs , w = 1 reaches better rates

than w = 0. Otherwise, w = 0 dominates the asymptotic power.

As Figure A.2 and Figure A.3 show, the fraction of zero elements in R2−R1 denoted by ρs is essential

to find the best threshold. We propose to find an estimator for ρs using the q-values approach of Storey

et al. (2015) where the input are approximated p-values 2(1−Φ(|d̂t |)) for all t ∈ M . Even though testing

if ρs = 0 is the same as our hypothesis testing of R1 = R2, here we only use this testing procedure to

find a first crude estimation of ρs . This estimator is shown to be asymptotically unbiased with n →∞
but biased downwards when δt

p
n −3 is small for all t ∈Sd under mild dependence assumptions.

However, in the application to biological data we generally have a relatively small n and we have seen

that the dependence process in (d̂t : t ∈ M) can bias quite heavily the testing procedures in simulated
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Figure A.3. Optimal threshold in sum of exceedances test with respect to several values of the sample
size for (a) w = 0 and (b) w = 1. In (c) is shown the average sign for the difference between best power
using w = 1 and best power using w = 0 over 1000 simulated sets of differential correlation
coefficients.

data (see Section 4.5).

The other unknown parameters are the Fisher transform correlation differences δt , for all t ∈Sd .

Below we propose a prior specification for δt to control the amount of elements that might be masked

by the coefficients d̂k , k 6∈Sd , when δk = 0. However, other distributions or other specifications for

the hyper-parameters could be employed instead. We assume that (δt ) are i.i.d. random variables with

a known distribution, for instance we explore δt ∼ gamma(a,b), with hyper-parameters satisfying

mode = (a −1)/b = Zα (n −3)−1/2, so the mode is assumed to be at the 1−α quantile of the marginal

distribution of d̂t (n −3)−1/2 under H0. Moreover, we set the variance of the prior, var = a/b2, so a

and b are fully defined.

We numerically integrate out δt from the function f (δt , s,u,n,m, w) defined in eq. (A.5) for thresh-

old selection, i.e.,

ûw = argmax
u

∫
Ωδt

f (δt ,mρ̂s ,u,n,m, w)p(δt )dδt .

As final estimate we use the minimum between the optimal threshold and the 1−α quantile of

a standard normal distribution with default value α = 0.05 in order to prevent cases with infinite

thresholds.

A.6.2 Threshold selection on simulated data

In Section A.6.1 we propose to select the threshold that maximizes the lower bound of the power

by integrating out some of the unknown parameters. We use a q-values approach to estimate the

important parameter ρs , which (as detailed in Section A.6.1) it defines the proportion of correlation

coefficients that are different in the two matrices. In table A.1 we show the relative bias levels of the

estimator for several sample sizes and true ρs . The bias is generally negative and it decreases with the
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sample size for all ρs levels.

Table A.1. Relative bias for estimator ρ̂s given by ((ρ̂s −ρs )/ρs ) using a q-values approximation.
Several values for the sample size and true value of ρs are employed.

n 50 100 200 500
ρs =0.01 -0.227 -0.168 0.040 -0.022
ρs =0.08 -0.350 -0.209 -0.104 -0.047
ρs =0.16 -0.358 -0.213 -0.113 -0.037
ρs =0.23 -0.364 -0.218 -0.110 -0.038
ρs =0.30 -0.364 -0.215 -0.114 -0.044

In Table A.2 we compare the power (at 0.05 rejection level) of the sum of exceedances test using

both estimated threshold and best threshold (found employing the true parameters) when δt deviates

from the chosen prior distribution. For instance we generate δt values by a gamma(3,10) and then

divide the resulting replicates by 2, 1, 2/3, and 1/2. In the table we show a measure of efficiency given

by the ratio between the power of the test using the estimated threshold and the power for the optimal

threshold. Only for small sample sizes (see n = 25), as we deviate from the δt prior distribution, the

proportion of explained power decreases substantially.

Table A.2. Efficiency of the test defined as the explained power of the sum of exceedances test using
estimated threshold against the sum of exceedances test using the optimal threshold.

n=25 n=50 n=100
ρs 0.01 0.08 0.15 0.23 0.01 0.08 0.15 0.23 0.01 0.08 0.15 0.23
δ/2 99 100 100 100 100 100 100 100 100 100 100 100
δ 100 100 100 100 100 100 100 100 100 100 100 100
3δ/2 98 92 94 99 100 100 100 100 100 100 100 100
2δ 94 86 79 85 98 97 99 100 100 100 100 100

A.7 Asymptotic power

Let’s first acknowledge the Mill’s ratio which approximatesΦ(−x)
.= ϕ(x)

x , where ϕ(x) = e−
1
2 x2

, when x

is large. We recall that we use the set of variables (d̂t : t ∈ M), with m = card(M) such that Sd = {t ∈
M : dt 6= 0} and s = Card(Sd ) is the sparsity level. We assume that |g (r2t )− g (r1t )| = δt for all t ∈Sd

with dt =
p

n −3δt . Moreover, we consider normality for the Fisher transform correlation differences

such that for all t ∈Sd , d̂t ∼ N (δt , (n −3)−1) and for all t 6∈Sd , d̂t ∼ N (0, (n −3)−1).

The power of the test is given by the probability of rejecting the null hypothesis when the H1 is true.

Hence, the objective is to find the test that provides the maximum power. For all tests (q = s,m,e), we

define a rejecting level tq,α such that we reject the null hypothesis when the observed test statistic is

larger than tq,α at significance level α.

A.7.1 Asymptotic power of the average of squares test

Here we assume that the test statistic TS defined in eq. 4.6 of the main paper is well approximated

by a normal distribution under both H0 and H1. We define µH0 and σ2
H0

as the expected value and
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variance of TS when H0 holds. Moreover, µH1 and σ2
H1

are the correspondent expected value and

variance of TS when H1 holds. The power of the average of squares test is

Pr(TS ≥ tS,α | H1)
.= Pr

Z ≥ µH1 − tS,α√
σ2

H1

 , (A.6)

approximated using the Mill’s ratio, with rejecting level given by tS,α =µH0 + zα
√
σ2

H0
.

Denote δ2
0 =

∑
t∈Sd

δ2
t and recall that γ̄2 = 2(m2−m)−1 ∑

t<h cov(d̂ 2
t , d̂ 2

h | H0). Under H0, the param-

eters µH0

.= 1 and σ2
H0

.= 2
m {1+ (m−1)γ̄2/2}. The expected value of TS under H1 is found by a weighted

average µH1 = (m − s)µ0/m + sµ1/m with µ0 = E[d̂ 2
t | t 6∈Sd ]

.= 1 and µ1 = var[d̂t | t ∈Sd ]+E[d̂t | t ∈
Sd ]2 .= 1+d 2

t . Similarly, the parameter σ2
H1

can be found by the variance of a weighted average, so

σ2
H1

= 2/m(1+2s(n −3)δ2
0/m + (m −1)γ̄′2/2) where γ̄′2 = 2(m2 −m)−1 ∑

t<h cov(d̂ 2
t , d̂ 2

h | H1). Note that

γ̄′2 is different to γ̄2 as it depends on the values (dt , t ∈Sd ). Plugging in the expressions for tS,α, µH1

and σ2
H1

in (A.6), we obtain the stated expression for the power.

A.7.2 Asymptotic power of the extreme value test

We assume (d̂t ) ∼ MV N , t ∈ M under both H0 and H1. Hence, the maximum TM = maxt∈M |d̂t |, in

the limit, is well represented by a Gumbel distribution. We further define the parameters µt = E[d̂t |
t ∈Sd ], σ2

t = var[d̂t | t ∈Sd ] with |µt | being sufficiently large. Assume independence on the sequence

(d̂t ), the power of the extreme value test is defined by

Pr(TM ≥ tM ,α | H1) = 1−Pr(|dt | < tM ,α, ∀t ) ≥ 1−Pr(|dt | < tM ,α : t ∈Sd )

= 1−Pr

(−tM ,α−µt

σt
< Zt <

tM ,α−µt

σt
, t ∈Sd

)
≥ 1−Pr

(
Zt <

tM ,α−|µt |
σt

, t ∈Sd

)
,

where Zt = (|dt |−µt )/σt . The rejecting level tM ,α is found using the quantile function of the Gumbel

distribution that in the limit ascertains that

QG (α)
.= (2log2m)1/2 − loglog2m + log(4π log2 2)

2(2log2m)1/2
− log(− log(α))

(2log2m)1/2
.

We use the main term of the expression to find QG (α) such that

tM ,α = (2log2m)1/2 − log(− log(α))

(2log2m)1/2
>QG (α).

For the expected value of the test statistic under H1 we use |µt | .= δt
p

n −3, and for the variance we

approximate σ2
t

.= var(d̂t )
.= 1, for all t ∈Sd .

If s = |Sd |→∞ and the conditions of the Gumbel approximation described in Section A.3 hold

(namely that the maximum correlation between pairs of dt , t ∈Sd , is bounded above by a constant

200



strictly less than 1), we have

Pr(TM ≥ tM ,α | H1) ≥ 1−Pr

(
Zt <

tM ,α−mint∈Sd |µt |
σt

, t ∈Sd

)
≥ 1−exp{−exp{−(2log2s)1/2[(n −3)1/2 min

t∈Sd

δt − (2log2m)1/2 + (2log2s)1/2]}}

≈ 1−exp{−exp{−(2log2s)1/2[(n −3)1/2 min
t∈Sd

δt − (2log2m)1/2]}}.

If s = |Sd | is a constant, then, using the Mill’s ratio to approximate the normal probabilities,

Pr(TM ≥ tM ,α | H1) ≥ 1−Pr

(
Zt <

tM ,α−|µt |
σt

, t ∈Sd

)
≥ 1−min

t∈Sd

Pr

(
Zt <

tM ,α−|µt |
σt

)
≥ 1−min

t∈Sd

exp

[
−1

2

{
(n −3)1/2δt −

(
(2log2m)1/2 − log(− log(α))

(2log2m)1/2

)}2]
≈ 1−min

t∈Sd

exp

[
−1

2

{
(n −3)1/2δt − (2log2m)1/2}2

]
.

A.7.3 Asymptotic power of the exceedances test

We set an arbitrary large threshold u, such that we define set Su = {t ∈ M : |d̂t | > u}. We define the

probabilities η0 = Pr(t ∈ Su | t 6∈ Sd ) and ηt = Pr(t ∈ Su | t ∈ Sd ) as well as the standard normal

distribution density function at quantile u which we denote by ϕ(u). Under both H0 and H1, we

approximate the test statistic T (w)
E described in eq. (4.8) by a normal distribution. We define µH0 (m, w)

and σ2
H0

(m, w) as the expected value and variance of T (w)
E when H0 holds. Moreover, µH1 (m, w) and

σ2
H1

(m, w) are the correspondent expected value and variance of T (w)
E when H1 holds. To find both

µH1 (m, w) and σ2
H1

(m, w), we redefine the measures in eq.(4.20) by assuming that the expected value

of d̂t can be different from zero for some t ∈ M :

γ(H1,w)
ut j

= cov((|d̂t |−uw)2, (|d̂ j |−uw)2 | d̂ 2
t > u, d̂ 2

j > u),

ηt = Pr(|d̂t | > u),

φH1
t j = Pr(d̂ 2

t > u2, d̂ 2
j > u2),

The power is described by

Pr(T (w)
E ≥ t (w)

E ,α | H1)
.= Pr

Z ≥
µH1 (m, w)− t (w)

E ,α√
σ2

H1
(m, w)

 ,

where µ(w)
H1

= (m − s)η0µw +∑
t∈Sd

ηtµtw , rejecting level t (w)
E ,α =µ(w)

H0
+ zα

√
σ2

H0
(m, w), and

σ2
H1

(m, w) = ∑
t∈Sd

ηt {(1−ηt )µ2
tw

+σ2
tw

}+ (m − s)η0{(1−η0)µ2
w +σ2

w }+Cw ,
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where Cw =∑
t ,h∈M ,t 6=h(γ(H1,w)

uth
+µtwµhw )φH1

th −ηtµtwηhwµhw is different from zero if elements in D̂2

are dependent. Let µH0 (m, w) =µ(m, w) and σ2
H0

(m, w) =σ2(m, w) defined by eq. (4.21). The lower

bound for the asymptotic power of sum of exceedances test, with w = {0,1}, is

Pr(T (w)
E ≥ t (w)

E ,α | H1) ≥ 1−exp

{
−1

2

(∑
t∈Sd

µtwηt − sη0µw − zασH0 (m, w)

σH1 (m, w)

)2
}

.

Let Sdu = {t ∈ M , |dt |À u} with su = |Sdu |. For w = 0, when (n,m,u) →∞, under weak indepen-

dence, i.e., Cw ¿σ2
H1

(m, w), the asymptotic power leading terms ares

∑
t∈Sdu

d 2
t −B0(sη1/2

0 + zα(2m)1/2)√∑
t∈Sdu

d 2
t +mB 2

0

,

where B0 = u2η1/2
0 . Let δ2

00 = s−1
u

∑
t∈Sdu

d 2
t , asymptotic recovery condition is

δ2
00 À

u2

n

max(1, sη0, (2mη0)1/2)

su
,

If su = k max(1, sη0, (2mη0)1/2), for any positive integer k, and d 2
t /u2 →∞, for any t ∈Sdu , Pr(T (0)

E ≥
t (0)

E ,α | H1) → 1.

Similarly for w = 1, when (n,m,u) → ∞, µ1 ≈ 2/(u2 + 1) and σ2
1 ≈ 4/(u2 + 1)2 (these rates can

be found using L’Hospital rule), and similar weak independence conditions, the asymptotic power

leading terms are ∑
t∈Sdu

|dt |−u2 −B1(suη
1/2
0 + zα(2m)1/2)√∑

t∈Sdu
|dt |−u2 +2mB 2

1

,

where B1 = 2η0/(u2 +1). Let δ2
01 = s−1

u
∑

t∈Sdu
(|dt |−u)2, asymptotic recovery condition is

δ2
01 À 2/(u2 +1)

max(1, sη0, (2mη0)1/2)

sdu
,

If su = k max(1, sη0, (2mη0)1/2), for any positive integer k, and d 2
t /u2 →∞, for any t ∈Sdu , Pr(T (1)

E ≥
t (1)

E ,α | H1) → 1.
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Appendix B

Proofs and supplementary material of

joint estimation methods

B.1 Approximating error rates for tuning parameter selection

Expressions in Lemma 6.1 are found as follows. Under assumption 6.7, Pr(Qi j − Zi j > λ2vi j ) =
1−Φ(λ2/(

p
2σ)). In the non-differentially connected event, B0, where |Qi j − Zi j | ≤ vi jλ2, since we

assume that σ2
Qi j

= σ2
Zi j

= σ2, then cov(Qi j + Zi j ,Qi j − Zi j ) = 0. Assumption 6.7 in the main paper

implies that

0.5(Qi j +Zi j ) | (|Qi j −Zi j | ≤ vi jλ2) ∼ N (0,σ2(1+ψi j )/2),

and so Pr(|0.5(Qi j +Zi j )| >λ1 | |Qi j −Zi j | ≤ vi jλ2) = 2[1−Φ(
p

2λ(1)
i j (1+ψi j )−1/2/σ)].

The relationship between Qi j and Zi j can be expressed by a linear model

Zi j =Qi jψi j +εi j , where Qi j ∼ N (0,σ2) and εi j ∼ N (0,σ2 (1−ψ2
i j )).

Hence, for any a < b, c < d ≤ b+vi jλ2, Pr(Qi j ∈ [c,d ]& Zi j ∈ [a,b]&Qi j−Zi j > vi jλ2) can be expressed

in terms of Qi j and εi j by Pr(Qi j ∈ [c,d ]&εi j ∈ [a −Qi jψi j ,Qi j (1−ψi j )−λ2vi j ]). Since Qi j and εi j

are independent, then

Pr(Qi j ∈ [c,d ]& Zi j ∈ [a,b]&Qi j −Zi j > vi jλ2) =

Pr(Qi j ∈ [c,d ]&εi j ∈ [a −Qi jψi j ,Qi j (1−ψi j )−λ2vi j ]) =∫ d

c
σ−1ϕ(x/σ)

[
Φ

(
x(1−ψi j )−λ2(1−ψi j )1/2

σ (1−ψ2
i j )1/2

)
−Φ

(
a −xψi j

σ (1−ψ2
i j )1/2

)]
d x =

∫ d

c
σ−1ϕ(x/σ)

[
Φ

(
x(1−ψi j )1/2 −λ2

σ (1+ψi j )1/2

)
−Φ

(
a −xψi j

σ (1−ψ2
i j )1/2

)]
d x.
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For any A = [c,d ] and a =−∞ and b =+∞, Lemma 1 implies that

Pr(Qi j ∈ A &Qi j −Zi j > vi jλ2) =
∫

x∈A
σ−1ϕ(x/σ)Φ

(
x(1−ψi j )1/2 −λ2

σ (1+ψi j )1/2

)
d x,

Pr(Qi j ∈ A &Qi j −Zi j <−vi jλ2) =
∫

x∈A
σ−1ϕ(x/σ)Φ

(
−x(1−ψi j )1/2 −λ2

σ (1+ψi j )1/2

)
d x.

Expression for Iσ(λ(1)
i j ,ψi j ,λ2) in eq. (6.8) can be derived as follows:

Iσ(λ(1)
i j ,ψi j ,λ2) = Pr(|Â′′(t )

1i j
| ≤λ(1)

i j & |Â′′(t )
2i j

| ≤λ(1)
i j | Â

′′(t )
1i j

− Â
′′(t )
2i j

> vi jλ2)

= Pr(|Â′′(t )
1i j

| ≤λ(1)
i j & |Â′′(t )

2i j
| ≤λ(1)

i j | Â
′′(t )
1i j

− Â
′′(t )
2i j

<−vi jλ2)

= Pr(|Qi j + vi jλ2/2| ≤λ(1)
i j & |Zi j − vi jλ2/2| ≤λ(1)

i j |Qi j −Zi j > vi jλ2)

=
∫ λ(1)

i j −vi jλ2/2

−λ(1)
i j −vi jλ2/2

σ−1ϕ(x/σ)

Φ(
x(1−ψi j )−λ2vi j

σ (1−ψ2
i j )1/2

)
−Φ

λ2vi j /2−λ(1)
i j −xψi j

σ (1−ψ2
i j )1/2

d x.

In Figure B.1 we present the values of λ(1)
i j obtained as function of ψi j (see eq. 6.10) when σ= 1,

α1 = 0.1 and α2 = 0.05. This distinguishes between events in B0 and events in B1, which recall are

defined by B0 = {(i , j ) ∈ S0, |Qi j − Zi j | > λ2vi j } and B1 = {(i , j ) ∈ S0, |Qi j − Zi j | ≤ λ2vi j }. In our data,

we use estimated values for ψi j , which are found to range between −0.1 and 0.4. Note that in that

range of values, λ(1)
i j can be approximated well by a linear function of ψi j . Moreover, as expected,

i.e., the variance of 0.5(Qi j +Zi j ) is smaller than the variance of Qi j +λ2vi j /2, then λ1σ (α1,B1,ψi j ) ≥
λ1σ (α1,B0,ψi j ) for any ψi j ∈ (−1,1).
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Figure B.1. Obtained values for λi j as function of ψi j . In red it is considered λ1σ (α1,B0,ψi j ) whereas
in black it is considered λ1σ (α1,B1,ψi j ).

204



B.2 Joint estimation of regression coefficient matrices with linear

dependent residuals

In order to find a joint estimation of regression coefficient matrix β = [β(1),β(2)], we consider an

optimization problem that minimizes the standardized least square errors, i.e.,

(β̂,Ω̂e )Λ1,Λ2
W F RL = argmin

β,Ωe

[
1

2n

∑
l=1,2

tr
{

(Y (l ) −X (l )β(l ))ᵀ(Y (l ) −X (l )β(l ))Ω(l )
e

}
+PΛ1,Λ2 (β,Ωe )

]
, (B.1)

whereΩe = [Ω(1)
e ,Ω(2)

e ] refers to the errors conditional dependence structure and

PΛ1,Λ2 (β) = ||Λ1◦β(1)||1+||Λ1◦β(2)||1+||Λ2◦(β(2)−β(1))||1+||Λ1◦Ω(1)
e ||1+||Λ1◦Ω(2)

e ||1+||Λ2◦(Ω(2)
e −Ω(1)

e )||1.

(B.2)

We simplify the notation be assuming that the same tuning parameters Λ1 and Λ2 are applied to β

andΩe . Nevertheless, different penalization parameters for the two type of conditional dependence

structures could be employed instead with no major changes in the solution.

The optimization problem in eq. (B.1) is only convex if either β or Ωe is known. Let β̂0 be an

initial estimate for β, which could be found by WFRL (Section 6.3.2). A common strategy is finding

Ω̂et and β̂t iteratively, for t = 1, . . . ,T , fixing the other to the solution on the current iteration until

convergence. A solution for Ω̂e can be obtained by weighted fused graphical lasso (Section 6.2) applied

to q-dimensional residual vectors [Y (1)−X (1)β̂(1)] and [Y (2)−X (2)β̂(2)]. Besides, following approaches

described in Chapter 6, β̂ is found by optimizing the Lagrangian formulation of expression (B.1)

Lρ =PΛ1,λ2V (Z (1), Z (2))+
[

1

2n

∑
l=1,2

tr
{

(Y (l ) −X (l )β(l ))ᵀ(Y (l ) −X (l )β(l ))Ω(l )
e

}
+ ρ

2
||β(l ) −Z (l ) +U (l )||2F

]
.

using the ADMM-type algorithm (Boyd, 2010) described in Algorithm 10. Here, U (l ) are the dual vari-

ables, Z (l ) corresponds to β(l ), for l = {1,2}, and ρ is a positive constant that is used as a regularization

parameter with default value equal to 1.

The main difference with respect to Algorithm 9, whereΩe was not contemplated, is in step 3 of

the algorithm. Let X be any X (l ), Y be any Y (l ),Ωe be anyΩ(l )
e and β be any β(l ), for l = 1,2. Solving

by β eq. (B.3), the following solution can be obtained:

X ᵀXβΩe −X ᵀY βΩe +ρβ−ρZ +ρU = 0

X ᵀXβ+ρβΩ−1
e = X ᵀY −ρ(Z +U )Ω−1

e

vec(β) = [(1q ⊗ΣX )+ρ(Ω−1
R ⊗1p )]−1vec(X ᵀY −ρ(Z +U )Ω−1

e ).

[Going from line 2 to 3 can be done following eq.(2) of Jameson (1968)]. Hence, we consider as dense
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Algorithm 10 Weighted Fused Regression Lasso

1: Input: Λ1,λ2,ρ,V ,Ωe .
2: Initialization: t = 0, U (l )

t = 0 and Z (l )
t = 0, for l = 1,2, repeat 3-5 until convergence.

3: Find β̂(l )
t , β̂(2)

t by solving the minimization problem:

[β̂(1)
t , β̂(2)

t ] = arg min
β(1),β(2)

[
1

2n

∑
l=1,2

tr
{

(Y (l ) −X (l )β(l ))ᵀ(Y (l ) −X (l )β(l ))Ω(l )
e

}
+ ρ

2
||β(l ) −Z (l ) +U (l )||2F

]
.

(B.3)
4: Find Z (1)

t , Z (2)
t such that ∑

l=1,2

ρ

2
||β̂(l )

t −Zl +U (l )
t ||2F +PΛ1,λ2V (Z (l )

t , Z (l )
t )

is minimized.
5: Set t = t +1. Update dual variables U (t )

l =U (l )
t−1 + β̂(l )

t −Z (l )
t , for l = 1,2. Stop if convergence.

6: Output: β̂(1) = Ẑ (1)
t−1, β̂(2) = Ẑ (2)

t−1 and β̂(d) = Ẑ (2)
t−1 − Ẑ (1)

t−1.

estimator for β in step 3,

vec(β̂) = [(1q ⊗ΣX )+ρ(Ω−1
R ⊗1p )]−1vec(X ᵀY −ρ(Z +U )Ω−1

e ). (B.4)

Thresholding operations in step 4 of the Algorithm are the same as described in Section 6.3.2.

B.3 Hypothesis testing for the number of differential edges

Differential network estimators incorporate the variability of the two individual estimated networks

and tend to be much more uncertain than the underlying estimated common network. Define

the set Sd = {(i , j ), i < j : Ω(1)
i j −Ω(2)

i j 6= 0} with |Sd | = card(Sd ). To check if there is any differential

edges, we propose to test hypothesis H0: |Sd | = 0 against H1: |Sd | > 0 by employing the test statistic

Td =∑
i< j I (Ω̂(1)

i j 6= Ω̂(2)
i j ).

A permuted samples based approach is used to assess the uncertainty in the number of esti-

mated differential edges under the hypothesis of equality in the two precision matrices H0. Data

are permuted as follows to ensure that the dependence structure between datasets is maintained:

[(Zπ1
1 , . . . , Zπn

n ), (Z π̄1
1 , . . . , Z π̄n

n )] where π̄i = 1−πi and Zπi
i = Y (1)

i if πi = 0 and Zπi
i = Y (2)

i if πi = 1, with

Pr(πi = 1) = 0.5. Given the new permuted data, a weighted fused graphical lasso estimate is found

by solving eq. (6.2) using the same combination for λ’s as for the original estimate, and the number

of estimated differential edges is recorded. By repeating this permutation and estimation process

B times with (T (b)
d )B

b=1 being the obtained test statistics, the p-value of the test is computed, i.e.,

p-val = B−1 ∑B
b=1 I (T (b)

d ≥ Td ). Similar tests are applied to real data in Section 6.5.4 to assess the

evidence of "healthy only" edges or "unhealthy only" edges. These would consider test statistics

TdT =∑
i< j I (Ω̂(1)

i j 6= 0&Ω̂(2)
i j = 0) or TdH =∑

i< j I (Ω̂(1)
i j = 0&Ω̂(2)

i j 6= 0) instead of Td .

The same procedure is done for the regression coefficient matrices, i.e., change Ω(1)
i j and Ω(2)

i j for

β(1)
i j and β(1)

i j above and solve eq. (6.20) for new permuted data.
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B.4 Normality assumption for estimated precision matrix elements

In section 6.2.2 we discuss a way to select the regularization parameters λ’s based on setting their

correspondent error ratesα1 andα2. We make an assumption of normality for the estimated precision

matrix elements in each iteration of the joint estimation algorithm. Figure B.2 shows some of the

obtained normality qqplots employing all the estimated coefficients [Â
′(0)
1i j

, Â
′(0)
2i j

] using simulated

datasets with p = 300 and n = 25,100,200. This represents a general observed behavior in many tested

datasets. We shall see that for sufficiently large n the Gaussian assumption is well justified.

(a) n=25 (b) n=100 (c) n=200

Figure B.2. qqnorm plots for several examples of estimated precision matrices coefficients. We
distinguish among three sample sizes n.

B.5 Showing fairness of WFGL in simulated data

Assuming that differential edges can occur with same probability independently of the values [ψi j ],

WFGL produces, even for small n, a less biased procedure than FGL in which edges with high correla-

tion have similar chances to be recovered as edges with low correlation. We illustrate this using the

model defined in Section 6.5.1 with dimension p = 300 and several sample sizes. We divide pairs of vari-

ables (i , j ) in two groups: L = {(i , j ) :ψi j < 0.1} and U = {(i , j ) :ψi j > 0.1}. Consider partial estimates

in the ADMM algorithm 8 Ω̂(0)
m for m = 1,2. For all pairs (i , j ), we compute hi j = v−1

i j |(Ω̂(0)
2 )i j − (Ω̂(0)

1 )i j |
using vi j = 1 (Indep.) as well as vi j = (1− ψ̂i j )1/2 (paired) with [ψ̂i j ] estimated by the Reg-based-sim

method discussed in Section 6.2.2. Denote the ranks of hi j by ki j in the decreasing order (ki j = 1

for the largest hi j and ki j = p (p −1)/2 for the smallest hi j ). In Figure B.3 we show the differences

between the average ranks in the two groups, i.e., |L|−1 ∑
(i , j )∈L ki j −|U |−1 ∑

(i , j )∈U ki j . We can see that

the independent method encourages recovery of differential edges with small ψi j (seen in the plot by

large negative rank differences) and this bias is corrected by the dependent data adjustment, which

for relatively large sample size gives very similar ranks in the two groups.
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Figure B.3. Differences between average ranks ofΩd among large ψi j and small ψi j over 50
simulations in the first iteration of the ADMM algorithm correcting for weights vi j = 1 (Indep.) and
weights vi j = (1− ψ̂i j )1/2 (paired).

B.6 Estimation of weights in simulated data for WFGL

The performance of the two estimators (Reg-based and Reg-based-sim) described in Section 6.2.3 is

analyzed using simulation. We calculate the mean square error of [ψ̂i j ] against [ψi j ] as well as the

correlation cor(ψ,ψ̂). We compare the Reg-based and Reg-based-sim estimator results with [ψ̂i j = 0]

(which assumes independence between samples). The values ψi j are approximated by the sample

correlation using 5,000 i.i.d. Monte Carlo replicates of the theoretical model. Table B.1 provides the

average ranks (average MSE) for the mean square error and Table B.2 gives the average ranks (average

correlation) for the correlation levels. Rank = 1 is assigned to the best estimator and Rank = 3 is given

to the worst estimator.

For very small sample sizes (n = 25), the estimators’ MSE are very large, and can even find worse

results than assuming independence. However, for all other investigated sample sizes, the Reg-based

and its simplified version find the lowest MSE. Correlation-wise, the two proposed estimators give

large positive correlations consistently for large p/n ratios.

Table B.1. Ranks and average for the sum of MSE.

n 25 50 150 300 500
dimension p=50

Reg-based 2.04 (0.86) 1.83 (0.42) 1.52 (0.16) 1.40 (0.09) 1.28 (0.06)
Reg-based-sim 1.04 (0.86) 1.17 (0.41) 1.48 (0.16) 1.60 (0.09) 1.72 (0.06)
Independence 2.91 (1.24) 3.00 (1.30) 3.00 (1.38) 3.0 (1.41) 3.00 (1.42)

dimension p=170
Reg-based 2.74 (0.74) 2 (0.33) 1.17 (0.13) 1.01 (0.08) 1.06 (0.06)
Reg-based-sim 1.74 (0.74) 1.00 (0.33) 1.83 (0.13) 1.99 (0.08) 1.94 (0.06)
Independence 1.52 (0.77) 3.00 (0.70) 3.00 (0.65) 3.00 (0.67) 3.00 (0.69)

dimension p=290
Reg-based 2.30 (0.74) 2.00 (0.33) 1.00 (0.13) 1.00 (0.08) 1.00 (0.06)
Reg-based-sim 1.30 (0.74) 1.00 (0.33) 2.00 (0.13) 2.00 (0.08) 2.00 (0.06)
Independence 2.40 (0.77) 3.00 (0.70) 3.00 (0.65) 3.00 (0.67) 3.00 (0.69)

dimension p=500
Reg-based 2.80 (0.72) 2.00 (0.32) 1.00 (0.13) 1.00 (0.09) 1.00 (0.06)
Reg-based-sim 1.79 (0.72) 1.00 (0.32) 2.00 (0.13) 2.00 (0.09) 2.00 (0.06)
Independence 1.42 (0.68) 3.00 (0.64) 3.00 (0.58) 3.00 (0.59) 3.00 (0.61)
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Table B.2. Ranks and average for the average correlations between approximated and estimated ψ.

n 25 50 150 300 500
dimension p=50

Reg-based 1.16 (0.63) 1.23 (0.80) 1.5 (0.93) 1.67 (0.96) 1.57 (0.97)
Reg-based-sim 1.84 (0.63) 1.77 (0.80) 1.5 (0.93) 1.33 (0.96) 1.43 (0.97)
Independence 3.00 (0) 3.00 (0) 3.00 (0) 3.00 (0) 3.00 (0)

dimension p=170
Reg-based 1.04 (0.57) 1.09 (0.69) 1.34 (0.86) 1.55 (0.92) 1.94 (0.95)
Reg-based-sim 1.96 (0.57) 1.90 (0.69) 1.66 (0.86) 1.45 (0.92) 1.05 (0.95)
Independence 3.00 (0) 3.00 (0) 3.00 (0) 3.00 (0) 3.00 (0)

dimension p=290
Reg-based 1.07 (0.62) 1.03 (0.72) 1.51 (0.86) 1.90 (0.92) 1.94 (0.95)
Reg-based-sim 1.92 (0.62) 1.97 (0.72) 1.49 (0.86) 1.10 (0.92) 1.05 (0.95)
Independence 3.00 (0) 3.00 (0) 3.00 (0) 3.00 (0) 3.00 (0)

dimension p=500
Reg-based 1.28 (0.61) 1.08 (0.73) 1.06 (0.85) 1.16 (0.91) 1.47 (0.94)
Reg-based-sim 1.72 (0.61) 1.92 (0.73) 1.94 (0.85) 1.84 (0.91) 1.53 (0.94)
Independence 3.00 (0) 3.00 (0) 3.00 (0) 3.00 (0) 3.00 (0)

B.7 Estimation of weights in simulated data for WFRL

In Section 6.3.3 we propose a way to estimate the correlation between same coefficients in β̂(1) and β̂(2)

for similarity penalization. Here we analyze the performance of the estimator using simulations. We

calculate the mean square error of [θ̂i j ] against [θi j ] as well as the correlation cor(θ, θ̂). We compare

the performance of our proposed estimator against setting θ̂i j = 0, for all pairs i , j , which assumes

independence between samples. The values θi j are approximated by the sample correlation using

5,000 i.i.d. Monte Carlo replicates of the theoretical model. In Table B.3 we present the average mean

square error and also the average correlation over 100 instances of simulations. For all investigated

sample sizes (even for n = 25) the proposed estimator finds the lowest MSE. Besides, the proposed

estimator gives large positive correlations consistently for large p/n ratios.

Table B.3. Average mean square errors (average correlation) over 100 instances between
approximated ψ (using 5,000 i.i.d. Monte Carlo replicates of the true model) and estimated ψ
(proposed -found following Section 6.3.3 approach). These statistics are also obtained by considering
ψ̂= 0 (Independence).

n 25 50 75 100
dimension p=120

Proposed 0.0042 (0.86) 0.0023 (0.90) 0.0018 (0.93) 0.0015 (0.94)
Independence 0.0181 (-) 0.0145 (-) 0.0142 (-) 0.0135 (-)

dimension p=200
Proposed 0.0050 (0.86) 0.0025 (0.91) 0.0019 (0.93) 0.0016 (0.94)
Independence 0.021 (-) 0.0173 (-) 0.0150 (-) 0.0151 (-)
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