12 research outputs found

    ParaGnosis:A Tool for Parallel Knowledge Compilation

    Get PDF
    ParaGnosis (https://doi.org/10.5281/zenodo.7312034, https://zenodo.org/badge/latestdoi/560170574, Alternative url: https://github.com/gisodal/paragnosis, Demo url: https://github.com/gisodal/paragnosis/blob/main/DEMO.md ) is an open-source tool that supports inference queries on Bayesian networks through weighted model counting. In the knowledge compilation step, the input Bayesian network is encoded as propositional logic and then compiled into a knowledge base in decision diagram representation. The tool supports various diagram formats, including the Weighted-Positive Binary Decision Diagram (WPBDD) which can concisely represent discrete probability distributions. Once compiled, the probabilistic knowledge base can be queried in the inference step. To efficiently implement both steps, ParaGnosis uses simulated annealing to split the knowledge base into a number of partitions. This further reduces the decision diagram size and crucially enables parallelism in both the compilation and the inference steps. Experiments demonstrate that this partitioned approach, in combination with the WPBDD representation, can outperform other approaches in the knowledge compilation step, at the cost of slightly more expensive inference queries. Additionally, the tool can attain 15-fold parallel speedups using 64 cores.</p

    JINC - A Multi-Threaded Library for Higher-Order Weighted Decision Diagram Manipulation

    Get PDF
    Ordered Binary Decision Diagrams (OBDDs) have been proven to be an efficient data structure for symbolic algorithms. The efficiency of the symbolic methods de- pends on the underlying OBDD library. Available OBDD libraries are based on the standard concepts and so far only differ in implementation details. This thesis introduces new techniques to increase run-time and space-efficiency of an OBDD library. This thesis introduces the framework of Higher-Order Weighted Decision Diagrams (HOWDDs) to combine the similarities of different OBDD variants. This frame- work pioneers the basis for the new variant Toggling Algebraic Decision Diagrams (TADDs) which has been shown to be a space-efficient HOWDD variant for sym- bolic matrix representation. The concept of HOWDDs has been use to implement the OBDD library JINC. This thesis also analyzes the usage of multi-threading techniques to speed-up OBDD manipulations. A new reordering framework ap- plies the advantages of multi-threading techniques to reordering algorithms. This approach uses an abstraction layer so that the original reordering algorithms are not touched. The challenge that arise from a straight forward algorithm is that the computed-tables and the garbage collection are not as efficient as in a single- threaded environment. We resolve this problem by developing a new multi-operand APPLY algorithm that eliminates the creation of temporary nodes which could occur during computation and thus reduces the need for caching or garbage collection. The HOWDD framework leads to an efficient library design which has been shown to be more efficient than the established OBDD library CUDD. The HOWDD instance TADD reduces the needed number of nodes by factor two compared to ordinary ADDs. The new multi-threading approaches are more efficient than single-threading approaches by several factors. In the case of the new reordering framework the speed- up almost equals the theoretical optimal speed-up. The novel multi-operand APPLY algorithm reduces the memory usage for the n-queens problem by factor 50 which enables the calculation of bigger problem instances compared to the traditional APPLY approach. The new approaches improve the performance and reduce the memory footprint. This leads to the conclusion that applications should be reviewed whether they could benefit from the new multi-threading multi-operand approaches introduced and discussed in this thesis

    LIMDD A Decision Diagram for Simulation of Quantum Computing Including Stabilizer States

    Get PDF
    Efficient methods for the representation and simulation of quantum states and quantum operations are crucial for the optimization of quantum circuits. Decision diagrams (DDs), a well-studied data structure originally used to represent Boolean functions, have proven capable of capturing relevant aspects of quantum systems, but their limits are not well understood. In this work, we investigate and bridge the gap between existing DD-based structures and the stabilizer formalism, an important tool for simulating quantum circuits in the tractable regime. We first show that although DDs were suggested to succinctly represent important quantum states, they actually require exponential space for certain stabilizer states. To remedy this, we introduce a more powerful decision diagram variant, called Local Invertible Map-DD (LIMDD). We prove that the set of quantum states represented by poly-sized LIMDDs strictly contains the union of stabilizer states and other decision diagram variants. Finally, there exist circuits which LIMDDs can efficiently simulate, but which cannot be efficiently simulated by two state-of-the-art simulation paradigms: the Clifford + T simulator and Matrix-Product States. By uniting two successful approaches, LIMDDs thus pave the way for fundamentally more powerful solutions for simulation and analysis of quantum computing

    Interactive Cost Configuration Over Decision Diagrams

    Get PDF
    Abstract In many AI domains such as product configuration, a user should interactively specify a solution that must satisfy a set of constraints. In such scenarios, offline compilation of feasible solutions into a tractable representation is an important approach to delivering efficient backtrack-free user interaction online. In particular, binary decision diagrams (BDDs) have been successfully used as a compilation target for product and service configuration. In this paper we discuss how to extend BDD-based configuration to scenarios involving cost functions which express user preferences. We first show that an efficient, robust and easy to implement extension is possible if the cost function is additive, and feasible solutions are represented using multi-valued decision diagrams (MDDs). We also discuss the effect on MDD size if the cost function is non-additive or if it is encoded explicitly into MDD. We then discuss interactive configuration in the presence of multiple cost functions. We prove that even in its simplest form, multiple-cost configuration is NP-hard in the input MDD. However, for solving two-cost configuration we develop a pseudo-polynomial scheme and a fully polynomial approximation scheme. The applicability of our approach is demonstrated through experiments over real-world configuration models and product-catalogue datasets. Response times are generally within a fraction of a second even for very large instances

    Learning understandable classifier models.

    Get PDF
    The topic of this dissertation is the automation of the process of extracting understandable patterns and rules from data. An unprecedented amount of data is available to anyone with a computer connected to the Internet. The disciplines of Data Mining and Machine Learning have emerged over the last two decades to face this challenge. This has led to the development of many tools and methods. These tools often produce models that make very accurate predictions about previously unseen data. However, models built by the most accurate methods are usually hard to understand or interpret by humans. In consequence, they deliver only decisions, and are short of any explanations. Hence they do not directly lead to the acquisition of new knowledge. This dissertation contributes to bridging the gap between the accurate opaque models and those less accurate but more transparent for humans. This dissertation first defines the problem of learning from data. It surveys the state-of-the-art methods for supervised learning of both understandable and opaque models from data, as well as unsupervised methods that detect features present in the data. It describes popular methods of rule extraction from unintelligible models which rewrite them into an understandable form. Limitations of rule extraction are described. A novel definition of understandability which ties computational complexity and learning is provided to show that rule extraction is an NP-hard problem. Next, a discussion whether one can expect that even an accurate classifier has learned new knowledge. The survey ends with a presentation of two approaches to building of understandable classifiers. On the one hand, understandable models must be able to accurately describe relations in the data. On the other hand, often a description of the output of a system in terms of its input requires the introduction of intermediate concepts, called features. Therefore it is crucial to develop methods that describe the data with understandable features and are able to use those features to present the relation that describes the data. Novel contributions of this thesis follow the survey. Two families of rule extraction algorithms are considered. First, a method that can work with any opaque classifier is introduced. Artificial training patterns are generated in a mathematically sound way and used to train more accurate understandable models. Subsequently, two novel algorithms that require that the opaque model is a Neural Network are presented. They rely on access to the network\u27s weights and biases to induce rules encoded as Decision Diagrams. Finally, the topic of feature extraction is considered. The impact on imposing non-negativity constraints on the weights of a neural network is considered. It is proved that a three layer network with non-negative weights can shatter any given set of points and experiments are conducted to assess the accuracy and interpretability of such networks. Then, a novel path-following algorithm that finds robust sparse encodings of data is presented. In summary, this dissertation contributes to improved understandability of classifiers in several tangible and original ways. It introduces three distinct aspects of achieving this goal: infusion of additional patterns from the underlying pattern distribution into rule learners, the derivation of decision diagrams from neural networks, and achieving sparse coding with neural networks with non-negative weights

    Factored edge-valued binary decision diagrams

    No full text
    : : : : : : : : : : 4

    Factored Edge-Valued Binary Decision Diagrams

    No full text
    Factored Edge-Valued Binary Decision Diagrams form an extension to Edge-Valued Binary Decision Diagrams. By associating both an additive and a multiplicative weight with the edges, FEVBDDs can be used to represent a wider range of functions concisely. As a result, the computational complexity for certain operations can be significantly reduced compared to EVBDDs. Additionally, the introduction of multiplicative edge weights allows us to directly represent the so-called complement edges which are used in OBDDs, thus providing a one to one mapping of all OBDDs to FEVBDDs. Applications such as integer linear programming and logic verification that have been proposed for EVBDDs also benefit from the extension. We also present a complete matrix package based on FEVBDDs and apply the package to the problem of solving the Chapman-Kolmogorov equations

    Probabilistic Inference Using Partitioned Bayesian Networks:Introducing a Compositional Framework

    Get PDF
    Probability theory offers an intuitive and formally sound way to reason in situations that involve uncertainty. The automation of probabilistic reasoning has many applications such as predicting future events or prognostics, providing decision support, action planning under uncertainty, dealing with multiple uncertain measurements, making a diagnosis, and so forth. Bayesian networks in particular have been used to represent probability distributions that model the various applications of uncertainty reasoning. However, present-day automated reasoning approaches involving uncertainty struggle when models increase in size and complexity to fit real-world applications.In this thesis, we explore and extend a state-of-the-art automated reasoning method, called inference by Weighted Model Counting (WMC), when applied to increasingly complex Bayesian network models. WMC is comprised of two distinct phases: compilation and inference. The computational cost of compilation has limited the applicability of WMC. To overcome this limitation we have proposed theoretical and practical solutions that have been tested extensively in empirical studies using real-world Bayesian network models.We have proposed a weighted variant of OBDDs, called Weighted Positive Binary Decision Diagrams (WPBDD), which in turn is based on the new notion of positive Shannon decomposition. WPBDDs are particularly well suited to represent discrete probabilistic models. The conciseness of WPBDDs leads to a reduction in the cost of probabilistic inference.We have introduced Compositional Weighted Model Counting (CWMC), a language-agnostic framework for probabilistic inference that partitions a Bayesian network into subproblems. These subproblems are then compiled and subsequently composed in order to perform inference. This approach significantly reduces the cost of compilation, yet increases the cost of inference. The best results are obtained by seeking a partitioning that allows compilation to (barely) become feasible, but no more, as compilation cost can be amortized over multiple inference queries.Theoretical concepts have been implemented in a readily available open-source tool called ParaGnosis. Further implementational improvements have been found through parallelism, by exploiting independencies that are introduced by CWMC. The proposed methods combined push the boundaries of WMC, allowing this state-of-the-art method to be used on much larger models than before
    corecore