
Journal of Artificial Intelligence Research 37 (2010) 99-139 Submitted 08/09; published 02/10

Interactive Cost Configuration Over Decision Diagrams

Henrik Reif Andersen hra@configit.com

Configit A/S

DK-2100 Copenhagen, Denmark

Tarik Hadzic t.hadzic@4c.ucc.ie

Cork Constraint Computation Centre

University College Cork

Cork, Ireland

David Pisinger pisinger@man.dtu.dk

DTU Management

Technical University of Denmark

DK-2800 Kgs. Lyngby, Denmark

Abstract

In many AI domains such as product configuration, a user should interactively specify
a solution that must satisfy a set of constraints. In such scenarios, offline compilation
of feasible solutions into a tractable representation is an important approach to deliver-
ing efficient backtrack-free user interaction online. In particular, binary decision diagrams
(BDDs) have been successfully used as a compilation target for product and service con-
figuration. In this paper we discuss how to extend BDD-based configuration to scenarios
involving cost functions which express user preferences.

We first show that an efficient, robust and easy to implement extension is possible if
the cost function is additive, and feasible solutions are represented using multi-valued de-
cision diagrams (MDDs). We also discuss the effect on MDD size if the cost function is
non-additive or if it is encoded explicitly into MDD. We then discuss interactive configu-
ration in the presence of multiple cost functions. We prove that even in its simplest form,
multiple-cost configuration is NP-hard in the input MDD. However, for solving two-cost
configuration we develop a pseudo-polynomial scheme and a fully polynomial approxima-
tion scheme. The applicability of our approach is demonstrated through experiments over
real-world configuration models and product-catalogue datasets. Response times are gen-
erally within a fraction of a second even for very large instances.

1. Introduction

Interactively specifying a solution that must satisfy a number of combinatorial restrictions
is an important problem in many AI domains related to decision making: from buying a
product online, selling an insurance policy to setting up a piece of equipment. Solutions
are often modeled as assignments to variables over which constraints are imposed. When
assigning variables without sufficient guidance, a user might be forced to backtrack, since
some of the choices he made cannot be extended in a way that would satisfy all of the
succeeding constraints. To improve the usability of interaction it is therefore important
to indicate to a user all values that participate in at least one remaining solution. If a

c©2010 AI Access Foundation. All rights reserved.

99

Andersen, Hadzic, & Pisinger

user is assigning only such values he is guaranteed to be able to reach any feasible solution
while never being forced to backtrack. We refer to the task of computing such values
as calculating valid domains (CVD). Since this is a computationally challenging (NP-hard)
problem, and short execution times are important in an interactive setting, it has been
suggested to compile offline (prior to user interaction) the set of all feasible solutions into a
representation form that supports efficient execution of CVD during online interaction.

Møller, Andersen, and Hulgaard (2002) and Hadzic, Subbarayan, Jensen, Andersen,
Møller, and Hulgaard (2004) investigated such an approach by using binary decision dia-
grams (BDDs) as a compilation target. BDDs are one of the data-structures investigated in
the knowledge compilation community which preprocess original problem formulations into
more tractable representations to enhance solving the subsequent tasks. CVD is just one of
such tasks occurring in the configuration domain. Knowledge compilation has been success-
fully applied to a number of other areas such as planning, diagnosis, model checking etc.
Beside BDDs, a number of other structures, such as various sublanguages of negation nor-
mal forms (NNFs) (Darwiche & Marquis, 2002), AND/OR diagrams (Mateescu, Dechter, &
Marinescu, 2008), finite state automata (Vempaty, 1992; Amilhastre, Fargier, & Marquis,
2002) and various extensions of decision diagrams (Drechsler, 2001; Wegener, 2000; Meinel
& Theobald, 1998) are used as compilation targets. Some of them are suitable for interac-
tive configuration as well. In particular, Vempaty (1992) suggested compiling constraints
into an automaton. However, BDDs are the most investigated data structures with a tool
support unrivaled by other emerging representations. There are many highly optimized
open-source BDD packages (e.g., Somenzi, 1996; Lind-Nielsen, 2001) that allow easy and
efficient manipulation of BDDs. In contrast, publicly available, open-source compilers are
still being developed for many newer representations. In particular, the application of BDDs
to configuration resulted in a patent approval (Lichtenberg, Andersen, Hulgaard, Møller, &
Rasmussen, 2001) and the establishment of the spinoff company Configit A/S1.

The work in this paper is motivated by decision making scenarios where solutions are
associated with a cost function, expressing implicitly properties such as price, quality, fail-
ure probability etc. A user might prefer one solution over another given the value of such
properties. A natural way in which a user expresses his cost preferences in a configuration
setting is to bound the minimal or maximal cost of any solution he is willing to accept.
We therefore study the problem of calculating weighted valid domains (wCVD), where we
eliminate those values that in every valid solution are more expensive than a user-provided
maximal cost. We present a configurator that supports efficient cost bounding for a wide
class of additive cost functions. Our approach is easily implementable and scales well for
all the instances that were previously compiled into BDDs for standard interactive config-
uration. The cornerstone of our approach is to reuse the robust compilation of constraints
into a BDD, and then extract a corresponding multi-valued decision diagram (MDD). The
resulting MDD allows us to label edges with weights and utilize efficient shortest path algo-
rithms to label nodes and filter expensive values on MDD edges. While our MDD extraction
technique is novel, labeling edges in a decision diagram is suggested in other works as well.
In its most generic interpretation (Wilson, 2005), edges of a decision diagram can be labeled
with elements of a semiring to support algebraic computations relevant for probabilistic rea-

1. http://www.configit.com

100

Interactive Cost Configuration Over Decision Diagrams

soning, optimization etc. Amilhastre et al. (2002) suggest labeling edges of an automaton to
reason abut optimal restorations and explanations. In general, many knowledge compilation
structures have their weighted counterparts, many of which are captured in the framework
of valued negation normal forms (VNNFs) (Fargier & Marquis, 2007). These structures
are utilized for probabilistic reasoning, diagnosis, and other tasks involving reasoning about
real-valued rather than Boolean functions. Some of them can in principle be used for wCVD
queries, but the public tool support for weighted variants is less available or is tailored for
tasks outside the configuration domain.

We further extend our approach to support valid domains computation in the presence
of multiple cost functions. A user often has multiple conflicting objectives, that should be
satisfied simultaneously. Traditional approaches in multi-criteria optimization (Figueira,
Greco, & Ehrgott, 2005; Ehrgott & Gandibleux, 2000) typically interact with a user in a
way that is unsuitable in a configuration setting — cost functions are combined in a single
objective and in each interaction step few non-dominated solutions are sampled and dis-
played to a user. Based on user selections a more adequate aggregation of costs is performed
before the next interaction step. We suggest a more configuration-oriented interaction ap-
proach where domains are bounded with respect to multiple costs. We prove that this is a
particularly challenging problem. Computing valid domains over an MDD in the presence of
two cost functions (2-wCVD) is NP-hard, even in the simplest extension of linear inequalities
with positive coefficients and Boolean variables. Despite this negative result, we provide
an implementation of 2-wCVD queries in pseudo-polynomial time and space and develop a
fully polynomial time approximation scheme (FPTAS). We prove that no pseudo-polynomial
algorithm and hence no fully polynomial approximation scheme exists for computing do-
mains in the presence of arbitrarily many cost functions since that is an NP-hard problem
in the strong sense. Finally, we demonstrate through experimental evaluation the applica-
bility of both the wCVD and 2-wCVD query over large real-world configuration models and
product-catalogue datasets. To the best of our knowledge, we present the first interac-
tive configurator supporting configuration wrt. cost restrictions in a backtrack-free and
complete manner. This constitutes a novel addition to both existing product-configuration
approaches as well as to approaches within multi-criteria decision making (Figueira et al.,
2005).

The remainder of the paper is organized as follows. In Section 2 we describe background
work and notation. In Section 3 we describe our approach to implementing wCVD query over
an MDD while in Section 4 we show how to compile such an MDD. In Section 5 we discuss
configuring in the presence of multiple costs. In Section 6 we present empirical evaluation
of our approach. In Section 7 we describe related work and finally we conclude in Section 8.

2. Preliminaries

We will briefly review the most important concepts and background.

2.1 Constraint Satisfaction Problems

Constraint satisfaction problems (CSPs) form a framework for modeling and solving com-
binatorial problems, where a solution to a problem can be formulated as an assignment to

101

Andersen, Hadzic, & Pisinger

variables that satisfy certain constraints. In its standard form, CSP involves only a finite
number of variables, defined over finite domains.

Definition 1 (CSP) A constraint satisfaction problem (CSP) is a triple (X, D, F) where
X is a set of variables {x1, . . . , xn}, D = D1×. . .×Dn is the Cartesian product of their finite
domains D1, . . . , Dn and F = {f1, ..., fm} is a set of constraints defined over variables X.
Each constraint f is a function defined over a subset of variables Xf ⊆ X called the scope
of f . It maps each assignment to the Xf variables into {0, 1} where 1 indicates that f is
satisfied and 0 indicates that f is violated by the assignment. The solution is an assignment
to all variables X that satisfies all constraints simultaneously.

Formally, an assignment of values a1, . . . , an to variables x1, . . . , xn is denoted as a set
of pairs ρ = {(x1, a1), . . . , (xn, an)}. The domain of an assignment dom(ρ) is the set of
variables which are assigned: dom(ρ) = {xi | ∃a ∈ Di.(xi, a) ∈ ρ} and if all variables
are assigned, i.e. dom(ρ) = X, we refer to ρ as a total assignment. We say that a total
assignment ρ is valid if it satisfies all the rules, which is denoted as ρ |= F . A partial
assignment ρ, dom(ρ) ⊆ X is valid if it can be extended to a total assignment ρ′ ⊇ ρ that
is valid ρ′ |= F . We define the solution space Sol as the set of all valid total assignments,
i.e. Sol = {ρ | ρ |= F, dom(ρ) = X}.

2.2 Interactive Configuration

Interactive configuration is an important application domain where a user is assisted in
specifying a valid configuration (of a product, a service or something else) by interactively
providing feedback on valid options for unspecified attributes. Such a problem arises in a
number of domains. For example, when buying a product, a user should specify a number of
product attributes. Some attribute combinations might not be feasible and if no guidance
is provided, the user might reach a dead-end when interacting with the system. He will be
forced to backtrack, which might seriously decrease the user satisfaction.

In many cases, valid configurations can be implicitly described by specifying restrictions
on combining product attributes. We use a CSP model to represent such restrictions, and
each CSP solution corresponds to a valid configuration. Each configurable attribute is
represented with a variable, so that each attribute option corresponds to a value in the
variable domain. In Example 1 we illustrate a simple configuration problem and its CSP
model.

Example 1 To specify a T-shirt we have to choose the color (black, white, red, or blue),
the size (small, medium, or large) and the print (”Men In Black” - MIB or ”Save The
Whales” - STW). If we choose the MIB print then the color black has to be chosen as well,
and if we choose the small size then the STW print (including a large picture of a whale)
cannot be selected as the picture of a whale does not fit on the small shirt. The configuration
problem (X, D, F) of the T-shirt example consists of variables X = {x1, x2, x3} representing
color, size and print. Variable domains are D1 = {0, 1, 2, 3} (black ,white, red , blue), D2 =
{0, 1, 2} (small ,medium, large), and D3 = {0, 1} (MIB ,STW). The two rules translate to
F = {f1, f2}, where f1 is x3 = 0 ⇒ x1 = 0 (MIB ⇒ black) and f2 is (x2 = 0 ⇒ x3 �= 1)
(small ⇒ not STW). There are |D1||D2||D3| = 24 possible assignments. Eleven of these
assignments are valid configurations and they form the solution space shown in Fig. 1. ♦

102

Interactive Cost Configuration Over Decision Diagrams

(black , small ,MIB) (black , large,STW) (red , large,STW)
(black ,medium,MIB) (white,medium,STW) (blue,medium,STW)
(black ,medium,STW) (white, large,STW) (blue, large,STW)
(black , large,MIB) (red ,medium,STW)

Figure 1: Solution space for the T-shirt example.

The fundamental task that we are concerned with in this paper is calculating valid
domains (CVD) query. For a partial assignment ρ representing previously made user as-
signments, the configurator calculates and displays a valid domain VD i[ρ] ⊆ Di for each
unassigned variable xi ∈ X \ dom(ρ). A domain is valid if it contains those and only those
values with which ρ can be extended to a total valid assignment ρ′. In our example, if a
user selects a small T-shirt (x2 = 0), valid domains should be restricted to a MIB print
V D3 = {0} and black color V D1 = {0}.

Definition 2 (CVD) Given a CSP model (X, D, F), for a given partial assignment ρ com-
pute valid domains:

VDi[ρ] = {a ∈ Di | ∃ρ′.(ρ′ |= F and ρ ∪ {(xi, a)} ⊆ ρ′)}

This task is of main interest since it delivers important interaction requirements: backtrack-
freeness (user should never be forced to backtrack) and completeness (all valid configurations
should be reachable) (Hadzic et al., 2004). There are other queries relevant for supporting
user interaction such as explanations and restorations from a failure, recommendations of
relevant products, etc., but CVD is an essential operation in our mode of interaction and is
of primary importance in this paper.

2.3 Decision Diagrams

Decision diagrams form a family of rooted directed acyclic graphs (DAGs) where each node
u is labeled with a variable xi and each of its outgoing edges e is labeled with a value a ∈ Di.
No node may have more than one outgoing edge with the same label. The decision diagram
contains one or more terminal nodes, each labeled with a constant and having no outgoing
edges. The most well known member of this family are binary decision diagrams (BDDs)
(Bryant, 1986) which are used for manipulating Boolean functions in many areas, such
as verification, model checking, VLSI design (Meinel & Theobald, 1998; Wegener, 2000;
Drechsler, 2001) etc. In this paper we will primarily operate with the following variant of
multi-valued decision diagrams :

Definition 3 (MDD) An MDD denoted M is a rooted directed acyclic graph (V, E), where
V is a set of vertices containing the special terminal vertex 1 and a root r ∈ V . Further,
var : V → {1, . . . , n + 1} is a labeling of all nodes with a variable index such that var(1) =
n + 1. Each edge e ∈ E is denoted with a triple (u, u′, a) of its start node u, its end node u′

and an associated value a.

We work only with ordered MDDs. A total ordering < of the variables is assumed such
that for all edges (u, u′, a), var(u) < var(u′). For convenience we assume that the variables

103

Andersen, Hadzic, & Pisinger

in X are ordered according to their indices. Ordered MDDs can be considered as being
arranged in n layers of vertices, each layer being labeled with the same variable index. We
will denote with Vi the set of all nodes labeled with xi, Vi = {u ∈ V | var(u) = i}. Similarly,
we will denote with Ei the set of all edges originating in Vi, i.e. Ei = {e(u, u′, a) ∈ E |
var(u) = i}. Unless otherwise specified, we assume that on each path from the root to the
terminal, every variable labels exactly one node.

An MDD encodes a CSP solution set Sol ⊆ D1 × . . . × Dn, defined over variables
{x1, . . . , xn}. To check whether an assignment a = (a1, . . . , an) ∈ D1× . . .×Dn is in Sol we
traverse M from the root, and at every node u labeled with variable xi, we follow an edge
labeled with ai. If there is no such edge then a is not a solution, i.e., a �∈ Sol. Otherwise, if
the traversal eventually ends in terminal 1 then a ∈ Sol. We will denote with p : u1 � u2

any path in MDD from u1 to u2. Also, edges between u and u′ will be sometimes denoted
as e : u → u′. A value a of an edge e(u, u′, a) will be sometimes denoted as v(e). We will not
make distinction between paths and assignments. Hence, the set of all solutions represented
by the MDD is Sol = {p | p : r � 1}. In fact, every node u ∈ Vi can be associated with a
subset of solutions Sol(u) = {p | p : u� 1} ⊆ Di × . . . × Dn.

x1

x2

0

x2

1

x2

2

x2

3

x3

0

x3

1

x3

2

1

0

x3

1

x3

2

x3

1

x3

2

x3

1

x3

2

1 1 1 1 1 10 1 0 1

(a) An MDD before merging.

x1

x2

0

x2

1 2 3

x3

0

x3

2 1

1

0

x3

1 2

10 1

(b) A merged MDD.

Figure 2: An uncompressed and merged MDD for the T-Shirt example.

Decision diagrams can be exponentially smaller than the size of the solution set they
encode by merging isomorphic subgraphs. Two nodes u1, u2 are isomorphic if they encode
the same solution set Sol(u1) = Sol(u2). In Figure 2 we show a fully expanded MDD 2(a)
and an equivalent merged MDD 2(b) for the T-shirt solution space. In addition to merging
isomorphic subgraphs, another compression rule is usually utilized: removing redundant
nodes. A node u ∈ Vi is redundant if it has Di outgoing edges, each pointing to the same
node u′. Such nodes are eliminated by redirecting incoming edges from u to u′ and deleting u
from V . This introduces long edges that skip layers. An edge e(u, u′, a) is long if var(u)+1 <
var(u′). In this case, e encodes the set of solutions: {a}×Dvar(u)+1 × . . .×Dvar(u′)−1. We
will refer to an MDD where both merging of isomorphic nodes and removal of redundant
nodes have taken place as a reduced MDD, which constitutes a multi-valued generalization
of BDDs which are typically reduced and ordered. A reduced MDD for the T-shirt CSP
is shown in Figure 3. In this paper, unless emphasized otherwise, by MDD we always
assume an ordered merged but not reduced MDD, since exposition is simpler, and removal
of redundant nodes can have at most a linear effect on size. Given a variable ordering

104

Interactive Cost Configuration Over Decision Diagrams

there is a unique merged MDD for a given CSP (X, D, F) and its solution set Sol. The
size of MDD depends critically on the ordering, and could vary exponentially. It can grow
exponentially with the number of variables, but in practice, for many interesting problems
the size is surprisingly small.

x1

x2

0

x2

1 2 3

x3

0

1

2 1

0

x3

1 2

1

Figure 3: A reduced MDD for the T-shirt example.

Interactive Configuration over Decision Diagrams. A particularly attractive prop-
erty of decision diagrams is that they support efficient execution of a number of important
queries, such as checking for consistency, validity, equivalence, counting, optimization etc.
This is utilized in a number of application domains where most of the problem description is
known offline (diagnosis, verification,etc.). In particular, calculating valid domains is linear
in the size of the MDD. Since calculating valid domains is an NP-hard problem in the size
of the input CSP model, it is not possible to guarantee interactive response in real-time.
In fact, the unacceptably long worst-case response times have been empirically observed
in a purely search-based approach to computing valid domains (Subbarayan et al., 2004).
Therefore, by compiling CSP solutions off-line (prior to user interaction) into a decision
diagram, we can efficiently (in the size of the MDD) compute valid domains during online
interaction with a user. It is important to note that the order in which the user decides
variables is completely unconstrained, i.e. it does not depend on the ordering of MDD vari-
ables. In our previous work we utilized Binary Decision Diagrams (BDDs) to represent all
valid configurations so that CVD queries can be executed efficiently (Hadzic et al., 2004).
Of course, BDDs might be exponentially large in the input CSP, but for many classes of
constraints they are surprisingly compact.

3. Interactive Cost Processing over MDDs

The main motivation for this work is extending the interactive configuration approach of
Møller et al. (2002), Hadzic et al. (2004), Subbarayan et al. (2004) to situations where in
addition to a CSP model (X, D, F) involving only hard constraints, there is also a cost
function:

c : D1 × . . . × Dn → R.

In product configuration setting, this could be a product price. In uncertainty setting, the
cost function might indicate a probability of an occurrence of an event represented by a

105

Andersen, Hadzic, & Pisinger

solution (failure of a hardware component, withdrawal of a bid in an auction etc.). In
any decision support context, the cost function might indicate user preferences. There is a
number of cost-related queries in which a user might be interested, e.g. finding an optimal
solution, or computing a most probable explanation. We, however, assume that a user is
interested in tight control of both the variable values as well as the cost of selected solutions.
For example, a user might desire a specific option xi = a, but he would also care about how
would such an assignment affect the cost of the remaining optimal solutions. We should
communicate this information to the user, and allow him to strike the right balance between
the cost and variable values by allowing him to interactively limit the maximal cost of the
product in addition to assigning variable values. Therefore, in this paper we are primarily
concerned with implementing a weighted CVD (wCVD) query: for a user-specified maximum
cost K, we should indicate which values in the unassigned variable domains can be extended
to a total assignment that is valid and costs less than K. From now on, we assume that a
user is interested in bounding the maximal cost (limiting the minimal cost is symmetric).

Definition 4 (wCVD) Given a CSP model (X, D, F), a cost function c : D → R and a
maximal cost K, for a given partial assignment ρ a weighted CVD (wCVD) query requires
computation of the valid domains:

VDi[ρ, K] = {a ∈ Di | ∃ρ′.(ρ′ |= F and ρ ∪ {(xi, a)} ⊆ ρ′ and c(ρ′) ≤ K)}

In this section we assume that an MDD representation of all CSP solutions is already
generated in an offline compilation step. We postpone discussion of MDD compilation to
Section 4 and discuss only delivering efficient online interaction on top of such MDD. We
will first discuss the practicability of implementing wCVD queries through explicit encoding of
costs into an MDD. We will then provide a practical and efficient approach to implementing
wCVD over an MDD when the cost function is additive. Finally, we will discuss further
extensions to handling more expressive cost functions.

3.1 Handling Costs Explicitly

An immediate approach to interactively handling a cost function is to treat the cost as any
other solution attribute, i.e. to add a variable y to variables X and add the constraint

y = c(x1, . . . , xn) (1)

to formulas F to enforce that y is equal to the total cost. The resulting configuration model
is compiled into an MDD M ′ and a user is able to bound the cost by restricting the domain
of y.

Assuming the variable ordering x1 < . . . < xn in the original CSP model (X, D, F),
and assuming we inserted a cost variable into the i-th position, the new variable set X ′

has a variable ordering x′
1 < . . . < x′

n+1 s.t. x′
1 = x1, . . . , x

′
i−1 = xi−1, x′

i = y and x′
i+1 =

xi, . . . , x
′
n+1 = xn. The domain D′

i of variable x′
i is the set of all feasible costs C(Sol) =

{c(s) | s ∈ Sol}. We will now demonstrate that the MDD M ′ may be exponentially larger
than M .

Lemma 1 |E′
i| ≥ |C(Sol)|.

106

Interactive Cost Configuration Over Decision Diagrams

Proof 1 For the i-th layer of MDD M ′ corresponding to variable y, for each cost c ∈ C(Sol)
there must be at least one path p : r � 1 with c(p) = c, and for such a path, an edge e ∈ E′

i

at the i-th layer must be labeled with v(e) = c. Hence, for each cost there must be at least
one edge in E′

i. This proves the lemma.

Furthermore, at least one of the layers of nodes V ′
i , V ′

i+1 has a number of nodes greater

than
√
|E′

i|. This follows from the following lemma:

Lemma 2 For the i-th layer of MDD M ′, |V ′
i | · |V

′
i+1| ≥ |E′

i|.

Proof 2 Since there are at most |V ′
i |·|V

′
i+1| pairs of nodes (u1, u2) ∈ V ′

i ×V ′
i+1, the statement

follows from the fact that for each pair (u1, u2) there can be at most one edge e : u1 → u2.
Namely, every solution p3 formed by concatenating paths p1 : r � u1 and p2 : u2 � 1 has
a unique cost c(p3). However, if there were two edges e1, e2 : u1 → u2, they would have to
have different values v(e1) �= v(e2). But then, the same solution c(p3) would correspond to
two different costs v(e1), v(e2).

From the above considerations we see that whenever the range of possible costs C(Sol)
is exponential, the resulting MDD M ′ would be exponentially large as well. This would
result in a significantly increased size |V ′|/|V |, particularly when there is a large number of
isomorphic nodes in M that would become non-isomorphic once the variable y is introduced
(since they root paths with different costs). An extreme instance of such a behavior is
presented in Example 2. Furthermore, even if C(Sol) is not large, there could be orders of
magnitude of increase in the size of M ′ due to breaking of isomorphic nodes in the MDD
as will be empirically demonstrated in Section 6, Table 3, for a number of configuration
instances. This is a major disadvantage as otherwise efficient CVD algorithms become
unusable since they operate over a significantly larger structure.

Example 2 Consider a model C(X, D, F) with no constraints F = {}, and Boolean vari-
ables Dj = {0, 1}, j = 1 . . . , n. The solution space includes all assignments Sol = D1 ×
. . . × Dn and a corresponding MDD M(V, E) has one vertex and two edges at each layer,
|V | = n+1, |E| = 2 ·n. If we use the cost function: c(x1, . . . , xn) =

∑n
j=1 2j−1 ·xj, there is

an exponential number of feasible costs C(Sol) = {0, . . . , 2n − 1}. Hence, |E′
i| ≥ 2n and for

the i-th layer corresponding to variable y, at least one of the layers |V ′
i |, |V ′

i+1| is greater

than
√

2n = 2n/2.

However, if there was no significant node isomorphism in M , adding a y variable does
not necessarily lead to a significant increase in size. An extreme instance of this is an MDD
with no isomorphic nodes, for example when every edge is labeled with a unique value. For
such an MDD, the number of non-terminal nodes is n · |Sol|. By adding a cost variable
y, the resulting MDD would add at most one node per path, leading to an MDD with at
most (n + 1) · |Sol| nodes. This translates to a minor increase in size: |V ′|/|V | = (n + 1)/n.
This property will be empirically demonstrated in Section 6, Table 3, for product-catalogue
datasets. In the remainder of this paper we develop techniques tailored for instances where
a large increase in size occurs. We avoid explicit cost encoding and aim to exploit the
structure of the cost function to implement wCVD.

107

Andersen, Hadzic, & Pisinger

3.2 Processing Additive Cost Functions

One of the main contributions of this paper is a practical and efficient approach to deliver
wCVD queries if the cost function is additive. An additive cost function has the form

c(x1, . . . , xn) =
n∑

i=1

ci(xi)

where a cost ci(ai) ∈ R is assigned for every variable xi and every value in its domain
ai ∈ Di.

Additive functions are one of the most important and frequently used modeling con-
structs. A number of important combinatorial problems are modeled as integer linear pro-
grams where often both the constraints and the objective function are linear, i.e. represent
special cases of additive cost functions. In multi-attribute utility theory user preferences
are under certain assumptions aggregated into a single additive function through weighted
summation of utilities of individual attributes. In a product configuration context, many
properties are additive such as the memory capacity of a computer or the total weight. In
particular, based on our experience in commercially applying configuration technology, the
price of a product can often be modeled as the (weighted) sum of prices of individual parts.

3.2.1 The Labeling Approach

Assuming that we are given an MDD representation of the solution space Sol and a cost
function c, our approach to answering wCVD queries is based on three steps: 1) restricting
MDD wrt. the latest user assignment, 2) labeling remaining nodes by executing shortest
path algorithms and 3) filtering too expensive values by using node labels.

Restricting MDD. We are given a user assignment xi = ai, where xi can be any of the
unassigned variables, regardless of its position in the MDD variable ordering. We initialize
MDD pruning by removing all edges e(u, u′, a), that are not in agreement with the latest
assignment, i.e. where var(u) = i and a �= ai. This might cause a number of other edges
and nodes to become unreachable from the terminal or the root if we removed the last edge
in the set of children edges Ch(u) or parent edges P (u′). Any unreachable edge must be
removed as well. The pruning is repeated until a fixpoint is reached, i.e. until no more
nodes or edges can be removed. Algorithm 1 implements this scheme in O(|V | + |E|) time
and space by using a queue Q to maintain the set of edges that are yet to be removed.

Note that unassigning a user assignment xi = ai can be easily implemented in linear
time as well. It suffices to restore a copy of the initial MDD M , and perform restriction wrt.
a partial assignment ρ \ {(xi, ai)} where ρ is a current assignment. Algorithm 1 is easily
extended for this purpose by initializing the edge removal list Q with edges incompatible
wrt. any of the assignments in ρ.

Computing Node Labels. Remaining edges e(u, u′, a) in each layer Ei are implicitly
labeled with c(e) = ci(a). In the second step we compute for each MDD node u ∈ V an
upstream cost of the shortest path from the root r to u, denoted as U [u], and a downstream
cost of the shortest path from u to the terminal 1, denoted as D[u]:

U [u] = min
p:r�u

{∑
e∈p

c(e)

}
, D[u] = min

p:u�1

{∑
e∈p

c(e)

}
(2)

108

Interactive Cost Configuration Over Decision Diagrams

Algorithm 1: Restrict MDD.
Data: MDD M(V, E), variable xi, value ai

foreach e ∈ Ei, v(e) �= ai do
Q.push(e);

while Q �= ∅ do
e(u, u′, a) ← Q.pop();
delete e from M ;
if Ch(u) = ∅ then

foreach e : u′′ → u do
Q.push(e);

if P (u′) = ∅ then

foreach e : u′ → u′′ do
Q.push(e);

Algorithm 2 computes U [u] and D[u] labels in Θ(|V | + |E|) time and space.

Algorithm 2: Update U, D labels.
Data: MDD M(V, E), Cost function c

D[·] = ∞, D[1] = 0;
foreach i = n, . . . , 1 do

foreach u ∈ Vi do

foreach e : u → u′ do
D[u] = min{D[u], c(e) + D[u′]}

U [·] = ∞, U [r] = 0;
foreach i = 1, . . . , n do

foreach u ∈ Vi do

foreach e : u → u′ do
U [u′] = min{U [u′], c(e) + U [u]}

Computing Valid Domains. Once the upstream and downstream costs U, D are com-
puted, we can efficiently compute valid domains VDi wrt. any maximal cost bound K
since:

VDi[K] = {v(e) | U [u] + c(e) + D[u′] ≤ K, e : u → u′, u ∈ Vi} (3)

This can be achieved in a linear-time traversal Θ(|V | + |E|) as shown in Algorithm 3.

Algorithm 3: Compute valid domains.
Data: MDD M(V, E), Cost function c, Maximal cost K

foreach i = 1, . . . , n do
V Di = ∅;
foreach u ∈ Vi do

foreach e : u → u′ do

if U [u] + c[e] + D[u′] ≤ K then
V Di ← V Di ∪ {v(e)};

Hence the overall interaction is as follows. Given a current partial assignment ρ, MDD is
restricted wrt. ρ through Algorithm 1. Labels U, D are then computed through Algorithm 2
and valid domains are computed using Algorithm 3. The execution of all of these algorithms

109

Andersen, Hadzic, & Pisinger

requires Θ(|V |+ |E|) time and space. Hence, when an MDD representation of the solution
space is available, we can interactively enforce additive cost restrictions in linear time and
space.

3.3 Processing Additive Costs Over Long Edges

Our scheme can be extended to MDDs containing long edges. While for multivalued CSP
models with large domains space savings due to long edges might not be significant, for
binary models and binary decision diagrams (BDDs) more significant savings are possible.
Furthermore, in a similar fashion, our scheme might be adopted over other versions of
decision diagrams that contain long edges (with different semantics) such as zero-suppressed
BDDs where a long edge implies that all skipped variables are assigned 0.

Recall that in reduced MDDs, redundant nodes u ∈ Vi which have Di outgoing edges,
each pointing to the same node u′, are eliminated. An edge e(u, u′, a) with var(u) =
k and var(u′) = l is long if k + 1 < l, and in this case, e encodes a set of solutions:
{a} × Dk+1 × . . . × Dl−1. The labeling of edges can be generalized to accommodate such
edges as well. Let domains D′

j , j = 1, . . . , n represent variable domains updated wrt. the
current assignment, i.e. D′

j = Dj if xj is unassigned, and D′
j = {ρ[xj]} otherwise. An edge

e(u, u′, a), (var(u) = k, var(u′) = l) is removed if a �∈ D′
k in an analogous way to the MDD

pruning in the previous subsection. Otherwise, it is labeled with

c(e) = ck(a) +

l−1∑
j=k+1

min
a′∈D′

j

cj(a
′) (4)

which is the cost of the cheapest assignment to xk, . . . , xl−1 consistent with the edge and
the partial assignment ρ. Once the edges are labeled, the upstream and downstream costs
U, D are computed in Θ(|V |+ |E|) time, in the same manner as in the previous subsection.

However, computing valid domains has to be extended. As before, a sufficient condition
for a ∈ VD i is the existence of an edge e : u → u′, originating in the i-th layer u ∈ Vi such
that v(e) = a and

U [u] + c[e] + D[u′] ≤ K. (5)

However, this is no longer a necessary condition, as even if there is no edge satisfying (5),
there could exist a long edge skipping the i-th layer that still allows a ∈ VD i. We therefore,
for each layer i, have to compute the cost of the cheapest path skipping the layer:

P [i] = min{U [u] + c(e) + D[u′] | e : u → u′ ∈ E, var(u) < i < var(u′)} (6)

If there is no edge skipping the i-th layer, we set P [i] = ∞. Let cmin[i] denote the cheapest
value in D′

i, i.e. cmin[i] = mina∈D′

i
ci(a). To determine if there is a long edge allowing

a ∈ VD i, for an unassigned variable xi, the following must hold:

P [i] + ci(a) − cmin[i] ≤ K (7)

Finally, a sufficient and necessary condition for a ∈ VD i is that one of the conditions (5) and
(7) holds. If variable xi is assigned with a value drawn from a valid domain in a previous
step, we are guaranteed that V Di = {ρ[xi]} and no calculations are necessary. Labels P [i]

110

Interactive Cost Configuration Over Decision Diagrams

Algorithm 4: Update P labels.
Data: MDD M(V, E), Cost function c

P [·] = ∞;
foreach i = 1, . . . , n do

foreach u ∈ Vi do

foreach e : u → u′ do

foreach j ∈ {var(u) + 1, . . . , var(u′) − 1} do
P [j] = min{P [j], U [u] + c(e) + D[u′]};

can be computed by Algorithm 4 in worst-case O(|E| · n) time. Note that this bound is
over-pessimistic as it assumes that every edge in |E| is skipping every variable in X.

Once the auxiliary structures U, D, P are computed, valid domains can be efficiently
extracted using Algorithm 5. For each unassigned variable xi, value a ∈ Di is in a valid
domain VDi[K] iff the following holds: condition (7) is satisfied or for an edge e(u, u′, a) ∈ E
condition (5) is satisfied. For each non-assigned variable i, the algorithm first checks for
each value a ∈ Di whether it is supported by a skipping edge P [i]. Afterwards, it scans the
i-th layer and extracts values supported by edges Ei. This is achieved in Θ(|D|+ |V |+ |E|)
time, where |D| =

∑n
i=1 |Di|.

Algorithm 5: Computing valid domains V Di.
Data: MDD M(V, E), cost function C, maximal cost K

foreach i = 1, . . . , n do
V Di = ∅;
if xi assigned to ai then

V Di ← {ai};
continue;

foreach a ∈ Di do

if P [i] + ci(a) − cmin[i] ≤ K then
V Di ← V Di ∪ {a};

foreach u ∈ Vi do

foreach e : u → u′ do

if U [u] + c[e] + D[u′] ≤ K then
V Di ← V Di ∪ {v(e)};

Again, the overall interaction remains the same. Labels P can be incrementally updated
in worst case O(|E| · n) time. Valid domains are then extracted in Θ(|D|+ |V |+ |E|) time.
In response to changing a cost restriction K, auxiliary labels need not be updated. Valid
domains are extracted directly using Algorithm 5 in Θ(|D| + |V | + |E|) time.

3.4 Handling Non-Additive Cost Functions

In certain interaction settings, the cost function is not additive. For example, user prefer-
ences might depend on an entire package of features rather than a selection of each individual
feature. Similarly, the price of a product need not be a simple sum of costs of individual
parts, but might depend on combinations of parts that are selected. In general, our cost

111

Andersen, Hadzic, & Pisinger

function c(x1, . . . , xn) might be a sum of non-unary cost functions ci, i = 1, . . . , k,

c(x1, . . . , xn) =
k∑

i=1

ci(Xi)

where each cost function ci expresses a unique contribution of combination of features within
a subset of variables Xi ⊆ X,

ci :
∏

j∈Xi

Dj → R.

3.4.1 Non-Unary Labeling

Our approach can be extended to handle non-unary costs by adopting labeling techniques
that are used with other graphical representations (e.g., Wilson, 2005; Mateescu et al.,
2008). Assume we are given a cost function c(x1, . . . , xn) =

∑k
i=1 ci(Xi). Let A(i) denote

the set of all cost functions cj such that xi is the last variable in the scope of cj :

A(i) = {cj | xi ∈ Xj and xi′ �∈ Xj ,∀i′ > i}.

Given assignment a(a1, . . . , ai) to variables x1, . . . , xi, we can evaluate every function cj ∈
Ai. If the scope of cj is a strict subset of {x1, . . . , xi}, we set cj(a) to be the value of
cj(πXj

(a)) where πXj
(a) is a projection of a onto Xj . Now, for every path p : r � u, u ∈

Vi+1, and its last edge (in the i-th layer) e ∈ Ei, we label e with the sum of all cost functions
that have become completely instantiated after assigning xi = ai:

c(e, p) =
∑

cj∈A(i)

cj(p). (8)

With respect to such labeling, a cost of a solution represented by a path p would indeed
be the sum of costs of its edges:

∑
e∈p c(e, p). In order to apply our approach developed for

additive cost functions in Section 3.2, each edge should be labeled with a cost that is the
same for any incoming path. However, this is not possible in general. We therefore have
to expand the original MDD, by creating multiple copies of e and splitting incoming paths
to ensure that any two paths p1, p2 sharing a copy e′ of an edge e induce the same edge
cost c(e′, p1) = c(e′, p2). Such an MDD, denoted as Mc, can be generated using for example
search with caching isomorphic nodes as suggested by Wilson (2005), or by extending the
standard apply operator to handle weights as suggested by Mateescu et al. (2008).

3.4.2 Impact on the Size

The increase in size of Mc relatively to the cost-oblivious version M depends on the ”ad-
ditivity” of the cost function c. For example, for fully additive cost functions (each scope
Xi contains a single variable) Mc = M , since a label on c(e) is the same regardless of the
incoming path. However, if the entire cost function c is a single non-additive component
c1(X1) with global scope (X1 = X), then only the edges in the last MDD layer are labeled,
as in the case of explicit cost encoding into MDD from Section 3.1. There must be at least
C(Sol) edges in the last layer, one for each feasible cost. Hence, if the range of costs C(Sol)

112

Interactive Cost Configuration Over Decision Diagrams

is exponential, so is the size of Mc. Furthermore, even if C(Sol) is of limited size, an in-
crease in Mc might be significant due to breakup of node isomorphisms in previous layers.
In case of explicit cost encoding (Section 3.1) such an effect is demonstrated empirically in
Section 6. A similar effect on the size would occur in other graphical-representations. For
example, in representations exploiting global CSP structure - such as weighted cluster trees
(Pargamin, 2003) - adding non-additive cost functions increases the size of the clusters, as
it is required that for each non-additive component ci(Xi) at least one cluster contains the
entire scope Xi. Furthermore, criteria for node merging of Wilson (2005) and Mateescu
et al. (2008) are more refined, since nodes are no longer isomorphic if they root the same
set of feasible paths, but the paths must be of the same cost as well.

3.4.3 Semiring Costs and Probabilistic Queries

Note that our approach can be further generalized to accommodate more general aggrega-
tion of costs as discussed by Wilson (2005). Cost functions ci need not map assignments
of Xi variables into the set of real numbers R but to any set A equipped with operators
⊕,⊗ such that A = (A,0,1,⊕,⊗) is a semiring. The MDD property that is computed is
⊕p:r�1⊗e∈p c(e). Operator ⊗ aggregates edge costs while operator ⊕ aggregates path costs.
In a semiring ⊕ distributes over ⊗, and the global computation can be done efficiently by lo-
cal node-based aggregations, much as a shortest path is computed. Our framework is based
on reasoning about paths of minimal cost which corresponds to using A = (R+, 0, 1, min,+)
but different semirings could be used. In particular, by taking A = (R+, 0, 1, +,×) we can
handle probabilistic reasoning. Each cost function ci corresponds to a conditional proba-
bility table, the cost of an edge c(e), e : u → u′ ∈ Ei corresponds to the probability of
P (xi = v(e)) given any of the assignments p : r � u. The cost of a path c(p) =

∏
e∈p c(e)

is a probability of an event represented by the path, and for a given value a ∈ Di we can
get the marginal probability of P (xi = a) by computing

∑
e(u,u′,a)∈Ei

(U [u] × c(e) × D[u′]).

4. Compiling MDDs

In the previous section we showed how to implement cost queries once the solution space
is represented as an MDD. In this section, we discuss how to generate such MDDs from a
CSP model description (X, D, F). Our goal is to develop an efficient and easy to implement
approach that can handle all instances handled previously through BDD-based configuration
(Hadzic et al., 2004).

Variable Ordering. The first step is to choose an ordering for CSP variables X. This
is critical since different variable orders could lead to exponential differences in MDD size.
This is a well investigated problem, especially for binary decision diagrams. For a fixed
formula, deciding if there is an ordering such that the resulting BDD would have at most T
nodes (for some threshold T) is an NP-hard problem (Bollig & Wegener, 1996). However,
there are well developed heuristics, that either exploit the structure of the input model or
use variable swapping in existing BDD to improve the ordering in a local-search manner
(Meinel & Theobald, 1998). For example, fan-in and weight heuristics are popular when the
input is in the form of a combinational circuits. If the input is a CSP, a reasonable heuristic
is to choose an ordering that minimizes the path-width of the corresponding constraint graph,

113

Andersen, Hadzic, & Pisinger

as an MDD is in worst case exponential in the path-width (Bodlaender, 1993; Wilson, 2005;
Mateescu et al., 2008). Investigating heuristics for variable ordering is out of the scope of
our work, and in the remainder of this paper we assume that the ordering is already given.
In all experiments we use default orderings provided for the instances.

Compilation Technique. Our approach is to first compile a CSP model into a binary
decision diagrams (BDD) by exploiting highly optimized and stable BDD packages (e.g.,
Somenzi, 1996) and afterwards extract the corresponding MDD. Dedicated MDD packages
are rare, provide limited functionality and their implementations are not as optimized as
BDD packages to offer competitive performance (Miller & Drechsler, 2002). An interesting
recent alternative is to generate BDDs through search with caching isomorphic nodes. Such
an approach was suggested by Huang and Darwiche (2004) to compile BDDs from CNF
formulas, and it proved to be a valuable addition to standard compilation based on pairwise
BDD conjunctions. However, such compilation technology is still in the early stages of
development and an open-source implementation is not publicly available.

4.1 BDD Encoding

Regardless of the BDD compilation method, the finite domain CSP variables X first have
to be encoded by Boolean variables. Choosing a proper encoding is important since the
intermediate BDD might be too large or inadequate for subsequent extraction. In general,
each CSP variable xi would be encoded with ki Boolean variables {xi

1, . . . , x
i
ki
}. Each a ∈ Di

has to be mapped into a bit vector enci(a) = (a1, . . . , aki
) ∈ {0, 1}ki such that for different

values a �= a′ we get different vectors enci(a) �= enci(a
′). There are several standard Boolean

encodings of multi-valued variables (Walsh, 2000). In the log encoding scheme each xi is
encoded with ki = �log|Di|� Boolean variables, each representing a digit in binary notation.
A multivalued assignment xi = a is translated into a set of assignments xi

j = aj such

that a =
∑ki

j=1 2j−1aj . Additionally, a domain constraint
∑ki

j=1 2j−1xi
j < |Di| is added

to forbid those bit assignments (ai
1, . . . , a

i
ki

) that encode values outside domain Di. The
direct encoding (or 1-hot encoding) is also common, and especially well suited for efficient
propagation when searching for a single solution. In this scheme, each multi-valued variable
xi is encoded with |Di| Boolean variables {xi

1, . . . , x
i
ki
}, where each variable xi

j indicates
whether the j-th value in domain aj ∈ Di is assigned. For each variable xi, exactly one
value from Di has to be assigned. Therefore, we enforce a domain constraint xi

1+. . .+xi
ki

= 1
for each i = 1, . . . , n. Hadzic, Hansen, and O’Sullivan (2008) have empirically demonstrated
that using log encoding rather than direct encoding yields smaller BDDs.

The set of Boolean variables is fixed as the union of all encoding variables, Xb =⋃n
i=1{x

i
1, . . . , x

i
ki
} but we still have to specify the ordering. A common ordering that

is well suited for efficiently answering configuration queries is clustered ordering. Here,
Boolean variables {xi

1, . . . , x
i
ki
} are grouped into blocks that respect the ordering among

finite-domain variables x1 < . . . < xn. That is,

xi1
j1

< xi2
j2

⇔ i1 < i2 ∨ (i1 = i2 ∧ j1 < j2).

There might be other orderings that yield smaller BDDs for specific classes of constraints.
Bartzis and Bultan (2003) have shown that linear arithmetic constraints can be represented

114

Interactive Cost Configuration Over Decision Diagrams

more compactly if Boolean variables xi
j are grouped wrt. bit-position j rather than the

finite-domain variable xi, i.e. xi1
j1

< xi2
j2

⇔ j1 < j2 ∨ (j1 = j2 ∧ i1 < i2). However,
configuration constraints involve not only linear arithmetic constraints, and space savings
reported by Bartzis and Bultan (2003) are significant only when all the variable domains
have a size that is a power of two. Furthermore, clustered orderings yield BDDs that
preserve essentially the same combinatorial structure which allows us to extract MDDs
efficiently as will be seen in Section 4.2.

Example 3 Recall that in the T-shirt example D1 = {0, 1, 2, 3}, D2 = {0, 1, 2}, D3 =
{0, 1}. The log encoding variables are x1

1 < x1
2 < x2

1 < x2
2 < x3

1, inducing a variable set
Xb = {1, 2, 3, 4, 5}. The log-BDD with clustered variable ordering is shown in Figure 4(a).
♦

x1

x1

x2x2

x2 x2

x3

1

x2

x3

x2

(a) A log-BDD.

x1

x2

0

x2

1 2 3

x3

0

1

2 1

0

x3

1 2

1

(b) An extracted MDD.

Figure 4: A log-BDD with clustered ordering, and an extracted MDD for the T-shirt ex-
ample. For BDD, we draw only the terminal node 1 while terminal node 0 and
its incoming edges are omitted for clarity. Each node corresponding to a Boolean
encoding variable xi

j is labeled with the corresponding CSP variable xi. Edges
labeled with 0 and 1 are drawn as dashed and full lines, respectively.

4.2 MDD Extraction

Once the BDD is generated using clustered variable ordering we can extract a corresponding
MDD using a method which was originally suggested by Hadzic and Andersen (2006) and
that was subsequently expanded by Hadzic et al. (2008). In the following considerations,
we will use a mapping cvar(xi

j) = i to denote the CSP variable xi of an encoding variable

xi
j and, with a slight abuse of notation, we will apply cvar also to BDD nodes u labeled

with xi
j . For terminal nodes, we define cvar(0) = cvar(1) = n+1 (recall that BDD has two

terminal nodes 0 and 1 indicating false and true respectively). Analogously, we will use a
mapping pos(xi

j) = j to denote the position of a bit that the variable is encoding.
Our method is based on recognizing a subset of BDD nodes that captures the core of

the MDD structure, and that can be used directly to construct the corresponding MDD.

115

Andersen, Hadzic, & Pisinger

In each block of BDD layers corresponding to a CSP variable xi, Li = Vxi
1
∪ . . . ∪ Vxi

ki

, it

suffices to consider only those nodes that are reachable by an edge from a previous block of
layers:

Ini = {u ∈ Li | ∃(u′,u)∈E cvar(u′) < cvar(u)}.

For the first layer we take In1 = {r}. The resulting MDD M(V ′, E′) M contains only nodes
in Ini, V ′ =

⋃n+1
i=1 Ini and is constructed using extraction Algorithm 6. An edge e(u, u′, a)

is added to E′ whenever traversing BDD B from u wrt. encoding of a ends in u′ �= 0.
Traversals are executed using Algorithm 7. Starting from u, in each step the algorithm
traverses BDD by taking the low branch when corresponding bit ai = 0 or high branch
when ai = 1. Traversal takes at most ki steps, terminating as soon as it reaches a node
labeled with a different CSP variable. The MDD extracted from a log-BDD in Figure 4(a)
is shown in Figure 4(b).

Algorithm 6: Extract MDD.
Data: BDD B(V, E)
E′ ← {},V ′ ← {r};
foreach i = 1, . . . , n do

foreach u ∈ Ini do

foreach a ∈ Di do

u′ ← Traverse(u, a);1

if u′ �= 0 then
E′ ← E′ ∪ {(u, u′, a)};
V ′ ← V ′ ∪ {u′}

return (V ′, E′);

Algorithm 7: Traverse BDD.
Data: BDD B(V, E), u, a

i ← cvar(u);
(a1, . . . , aki

) ← enci(v);
repeat

s ← pos(u);
if as = 0 then

u ← low(u);

else
u ← high(u);

until cvar(u) �= i ;
return u;

Since each traversal (in line 1 of Algorithm 6) takes O(�log|Di|�) steps, the running time
for the MDD extraction is O(

∑n
i=1 |Ini| · |Di| · �log|Di|�). The resulting MDD M(V ′, E′)

has at most O(
∑n

i=1 |Ini| · |Di|) edges because we add at most |Di| edges for every node
u ∈ Ini. Since we keep only nodes in Ini, |V

′| =
∑n

i=1 |Ini| ≤ |V |.

4.3 Input Model and Implementation Details

An important factor for usability of our approach is the easiness of specifying the input
CSP model. BDD packages are callable libraries with no default support for CSP-like input
language. To the best of our knowledge, the only open-source BDD-compilation tool that

116

Interactive Cost Configuration Over Decision Diagrams

accepts as an input a CSP-like model is CLab (Jensen, 2007). It is a configuration interface
on top of a BDD package BuDDy (Lind-Nielsen, 2001). CLab constructs a BDD for each
input constraint and conjoins them to get the final BDD. Furthermore CLab generates a
BDD using log-encoding with clustered ordering which suits well our extraction approach.
Therefore, our compilation approach is based on using CLab to specify the input model and
generate a BDD that will be used by our extraction Algorithm 6.

Note that after extracting the MDD, we preprocess it for efficient online querying.
We expand the long edges and merge isomorphic nodes to get a merged MDD. We then
translate it into a more efficient form for online processing. We rename BDD node names
to indexes from 0, . . . , |V |, where root has index 0 and terminal 1 has index |V |. This
allows for subsequent efficient implementation of U and D labels, as well as an efficient
access to children and parent edges of each node. In our initial experiments we got an order
of magnitude speed-up of wCVD queries after we switched from BDD node names (which
required using less efficient mapping for U , D, Ch and P structures).

5. Interactive Configuration With Multiple Costs

In a number of domains, a user should configure in the presence of multiple cost functions
which express often conflicting objectives that a user wants to achieve simultaneously. For
example, when configuring a product, a user wants to minimize the price, while maximiz-
ing the quality, reducing the ecological impact, shortening delivery time etc. We assume
therefore that in addition to the CSP model (X, D, F) whose solution space is represented
by a merged MDD M , we are given k additive cost functions

ci(x1, . . . , xn) =
n∑

j=1

cij(xi), i = 1 . . . , k

expressing multiple objectives. Multi-cost scenarios are often considered within the multi-
criteria optimization framework (Figueira et al., 2005; Ehrgott & Gandibleux, 2000). It
is usually assumed that there is an optimal (but unknown) way to aggregate multiple
objectives into a single objective function that would lead to a solution that achieves the
best balance in satisfying various objectives. The algorithms sample few efficient solutions
(nondominated wrt. objective criteria) and display them to the user. Through user input,
the algorithms learn how to aggregate objectives more adequately which is then used for
the next sampling of efficient solutions etc. In some approaches a user is asked to explicitly
assign weights wi to objectives ci which are then aggregated through weighted summation
c =

∑k
i=1 wici.

While adopting these techniques to run over a compiled representation of solution space
would immediately improve their complexity guarantees and would be useful in many scenar-
ios where multi-criteria techniques are traditionally used, we believe that in a configuration
setting, a more explicit control over variable values is needed. A user should easily explore
the effect of assigning various variable values on other variables as well as cost functions.
We therefore suggest to directly extend our wCVD query so that a user could explore the
effect of cost restrictions in the same way he explores interactions between regular vari-
ables. The key query that we want to deliver is computing valid domains wrt. multiple cost
restrictions:

117

Andersen, Hadzic, & Pisinger

Definition 5 (k-wCVD) Given a CSP model (X, D, F), additive cost functions cj : D → R,
and maximal costs Kj, j = 1, . . . , k, for a given partial assignment ρ, compute:

VD i[ρ, {Kj}
k
j=1] = {a ∈ Di | ∃ρ′.(ρ′ |= F and ρ ∪ {(xi, a)} ⊆ ρ′ and

k∧
j=1

cj(ρ
′) ≤ Kj)}

We are particularly interested in two-cost configuration as it is more likely to occur
in practice and has strong connections to existing research in solving Knapsack problems
and multi-criteria optimization. In the reminder of the section we will first discuss the
complexity of 2-wCVD queries and then develop a practical implementation approach. We
will then discuss the general k-wCVD query.

5.1 Complexity of 2-wCVD query

We assume that as an input to the problem we have a merged MDD M , additive cost
functions c1, c2 and cost bounds K1, K2. The first question is whether it is possible for
some restricted forms of additive cost functions c1, c2 to implement 2-wCVD in polynomial
time. For this purpose we formulate a decision-version of the 2-wCVD problem:

Problem 1 (2-wCVD-SAT) Given CSP (X, D, F) and MDD M representation of its solu-
tion space, and given two additive cost functions ci(x) =

∑n
j=1 cij(xj), i = 1, 2 with cost

restrictions K1, K2, decide whether F ∧ c1(x) ≤ K1 ∧ c2(x) ≤ K2 is satisfiable.

Unfortunately, the answer is no even if both constraints involve only positive coefficients,
and have binary domains. To show this we reduce from the well-known Two-Partition
Problem (TPP) which is NP-hard (Garey & Johnson, 1979). For a given set of positive
integers S = {s1, . . . , sn}, the TPP asks to decide whether it is possible to split a set of
indexes I = {1, . . . , n} into two sets A and I \A such that the sum in each set is the same:∑

i∈A si =
∑

i∈I\A si.

Proposition 3 The 2-wCVD-SAT problem defined over Boolean variables and involving only
linear cost functions with positive coefficients is NP-hard.

Proof 3 We show the stated by reduction from TPP. In order to reduce TPP to two-cost
configuration we introduce 2n binary variables x1, . . . , x2n such that i ∈ A if and only
if x2i−1 = 1 and i ∈ A \ I if and only if x2i = 1. We construct an MDD for F =
{x1 �= x2, . . . , x2n−1 �= x2n} and introduce two linear cost functions with positive coefficients,
c1(x) =

∑n
i=1 si · x2i−1 and c2(x) =

∑n
i=1 si · x2i. The overall capacity constraints are set

to K1 = K2 =
∑

i∈I si/2. By setting A = {i ∈ I | x2i−1 = 1} it is easily seen that
F ∧ c1(x) ≤ K1 ∧ c2(x) ≤ K2 is satisfiable if and only if the TPP has a feasible solution.
Hence, if we were able to solve 2-wCVD-SAT with Boolean variables and positive linear cost
functions in polynomial time, we would also be able to solve the TPP problem polynomially.

5.2 Pseudo-Polynomial Scheme for 2-wCVD

In the previous subsection we demonstrated that answering 2-wCVD queries is NP-hard even
for the simplest class of positive linear cost functions over Boolean domains. Hence, there

118

Interactive Cost Configuration Over Decision Diagrams

is no hope of solving 2-wCVD with guaranteed polynomial execution time unless P = NP .
However, we still want to provide a practical solution to the 2-wCVD problem. We hope
to avoid worst-case performance by exploiting the specific nature of the cost-functions we
are processing. In this subsection we therefore show that 2-wCVD can be solved in pseudo-
polynomial time by extending our labeling approach from Section 3.2. Furthermore, we
show how to adopt advanced techniques used for the Knapsack problem (Kellerer, Pferschy,
& Pisinger, 2004).

5.2.1 Overall Approach

Our algorithm runs analogous to the single-cost approach developed in Section 3.2. After
restricting the MDD wrt. a current assignment, we calculate upstream and downstream
costs U, D (which are no longer constants but lists of tuples), and use them to check for
each edge e, whether v(e) is in a valid domain.

For a given edge e : u → u′, labeled with costs c1(e), c2(e), it follows v(e) ∈ V Di iff
there are paths p : r � u, and p′ : u′

� 1 such that c1(p) + c1(e) + c1(p
′) ≤ K1 and

c2(p) + c2(e) + c2(p
′) ≤ K2. At each node u it suffices to store two sets of labels:

U [u] = {(c1(p), c2(p)) | p : r � u}

D[u] = {(c1(p), c2(p)) | p : u� 1}

Then, for given cost restrictions K1, K2, and an edge e : u → u′, u ∈ Vi, domain V Di[K1, K2]
contains v(e) if for some (a1, a2) ∈ U [u] and (b1, b2) ∈ D[u] it holds

a1 + c1(e) + b1 ≤ K1 ∧ a2 + c2(e) + b2 ≤ K2 (9)

5.2.2 Exploiting Pareto Optimality

While in the single-cost case it was sufficient to store at U [u], D[u] only the minimal value
(the cost of the shortest path to root/terminal), in multi-cost case we need to store multiple
tuples. The immediate extension would require storing at most K1 ·K2 tuples at each node.
However, we need to store only non-dominated tuples in U and D lists. If there are two
tuples (a1, a2) and (a′1, a

′
2) in the same list such that

a1 ≤ a′1 and a2 ≤ a′2

then we may delete (a′1, a
′
2) as if test (9) succeeds for (a′1, a

′
2) it will also succeed for (a1, a2).

The remaining entries are the costs of pareto-optimal solutions. A solution is pareto-optimal
wrt. solution set S and cost functions c1, c2 if it is not possible to find a cheaper solution
in S with respect to one cost without increasing the other. Path p : r � 1 represents a
pareto-optimal solution in Sol iff for each node u on the path, both sub-paths p1 : r � u
and p2 : u � 1 are pareto-optimal wrt. the sets of paths {p : r � u} and {p : u � 1}
respectively. Hence, for each node u it suffices to store:

U [u] = {(c1(p), c2(p)) | p : r � u, ∀p′:r�u(c1(p) ≤ c1(p
′) ∨ (c2(p) ≤ c2(p

′))}

D[u] = {(c1(p), c2(p)) | p : u� 1,∀p′:u�1(c1(p) ≤ c1(p
′) ∨ (c2(p) ≤ c2(p

′))}

119

Andersen, Hadzic, & Pisinger

Note that due to pareto-optimality, for each a1 ∈ {0, . . . , K1} and each a2 ∈ {0, . . . , K2}
there can be at most one tuple in U or D where the first coordinate is a1 or the second
coordinate is a2. Therefore, for each node u, U [u] and D[u] can have at most min{K1, K2}
entries. Hence, the space requirements of our algorithmic scheme are in worst case O(|V |·K)
where K = min{K1, K2}.

5.2.3 Computing U and D Sets

We will now discuss how to compute the U and D sets efficiently by utilizing advanced
techniques for solving Knapsack problems (Kellerer et al., 2004). We recursively update U
and D sets in a layer by layer manner as shown in Algorithm 8. The critical component of
each recursion step in the algorithm is merging lists in lines 2 and 4. In this operation a
new list is formed such that all dominated tuples are detected and eliminated. In order to
do this efficiently, it is critical to keep both U and D lists sorted wrt. the first coordinate,
i.e.

(a1, a2) ≺ (a′1, a
′
2) ≡ a1 < a2.

If U and D are sorted, they can be merged in O(K) time using the list-merging algorithm
for Knapsack optimization from (Kellerer et al., 2004, Section 3.4).

Algorithm 8: Update U, D labels.

Data: MDD M , Cost functions c1, c2, Bounds K1, K2

U [·] = {(∞,∞)}, U [r] = {(0, 0)};
foreach i = 1, . . . , n do

foreach u ∈ Vi do
foreach e : u → u′ do

S ← ∅;
foreach (a1, a2) ∈ U [u] do

if a1 + c1(e) ≤ K1 ∧ a2 + c2(e) ≤ K2 then
S ← S ∪ (a1 + c1(e), a2 + c2(e));1

U [u′] ← MergeLists(S,U [u′]);2

D[·] = {(∞,∞)}, D[1] = {(0, 0)};
foreach i = n, . . . , 1 do

foreach u ∈ Vi do
foreach e : u → u′ do

S ← ∅;
foreach (a1, a2) ∈ D[u′] do

if a1 + c1(e) ≤ K1 ∧ a2 + c2(e) ≤ K2 then
S ← S ∪ (a1 + c1(e), a2 + c2(e));3

D[u] ← MergeLists(S,D[u]);4

The time complexity is determined by populating list S (in lines 1 and 3) and merging
(in lines 2 and 4). Each of these updates takes O(K) in worst case. Since we perform these
updates for each edge e ∈ E, the total time complexity of Algorithm 8 is O(|E| · K) in the
worst case.

120

Interactive Cost Configuration Over Decision Diagrams

5.2.4 Valid Domains Computation

Once the U, D sets are updated we can extract valid domains in a straightforward manner
using Algorithm 9. For each edge e : u → u′ the algorithm evaluates whether v(e) ∈ V Di in
worst case O(|U [u]| · |D[u′]|) = O(K2) steps. Hence, valid domain extraction takes in worst
case O(|E| · K2) steps.

Algorithm 9: Compute valid domains.

Data: MDD M , Cost functions c1, c2, Cost bounds K1,K2, Labels U ,D
foreach i = 1, . . . , n do

VDi ← ∅;
foreach u ∈ Vi do

foreach e : u → u′ do
foreach (a1, a2) ∈ U [u], (b1, b2) ∈ D[u′] do

if a1 + c1(e) + b1 ≤ K1 ∧ a2 + c2(e) + b2 ≤ K2 then
VDi ← VDi ∪ {v(e)};
break;

However, we can improve the running time of valid domains computation by exploiting
(1) pareto-optimality and (2) the fact that the sets U, D are sorted. It is critical to observe
that given an edge e : u → u′, for each (a1, a2) ∈ U [u] it suffices to perform the validity
test (9) only for a tuple (b∗1, b

∗
2) ∈ D[u′], where b∗1 is a maximal first coordinate satisfying

a1 + c1(e) + b1 ≤ K1, i.e.

b∗1 = max{b1 | (b1, b2) ∈ D[u′], a1 + c1(e) + b1 ≤ K1}.

Namely, if the test succeeds for some (b′1, b
′
2) where b′1 < b∗1, it will also succeed for (b∗1, b

∗
2)

since due to pareto-optimality, b′1 < b∗1 ⇒ b∗2 < b′2 and hence a2+c2(e)+b∗2 < a2+c2(e)+b′2 ≤
K2. Since the lists are sorted, comparing all relevant tuples can be performed efficiently by
traversing U [u] in increasing order, while traversing D[u′] in decreasing order. Algorithm
10 implements the procedure.

Algorithm 10: Extract edge value.

Data: MDD M , Cost constraints c1, c2, Bounds K1, K2, Edge e : u → u′ in Ei

a(a1, a2) = U [u].begin();
b(b1, b2) = D[u′].end();
while a �= � ∧ b �= ⊥ do

if a1 + c1(e) + b1 > K1 then
b(b1, b2) ← D[u′].previous();
continue;

else if a1 + c1(e) + b1 ≤ K1 ∧ a2 + c2(e) + b2 ≤ K2 then1

VDi ← VDi ∪ {v(e)};
return;2

a(a1, a2) ← U [u].next();

The algorithm relies on several list operations. Given list L of sorted tuples, operations
L.begin() and L.end() return the first and the last tuple respectively wrt. the list ordering.

121

Andersen, Hadzic, & Pisinger

Operations L.next() and L.previous() return the next and the previous element in the
list wrt. the ordering. Elements � and ⊥ indicate two special elements that appear after
the last and before the first element in the list respectively. They indicate that we have
passed beyond the boundary of the list. The algorithm terminates (line 2) as soon as the
test succeeds. Otherwise, it keeps iterating over tuples until we have processed either the
last tuple in U [u] or the first tuple in D[u′]. In that case the algorithm terminates as
it is guaranteed that v(e) �∈ V Di. In each step, we traverse at least one element from
U [u] or D[u′]. Hence, in total we can execute at most U [u] + D[u′] ≤ 2K operations.
Therefore, the time complexity of single edge traversal is O(K) and the complexity of valid
domains computation of Algorithm 9 (after replacing the quadratic loop with Algorithm
10) is O(|E| · K) where K = min{K1, K2}.

In conclusion, we have developed a pseudo-polynomial scheme for computing valid do-
mains wrt. two cost functions (2-wCVD). The space complexity is dominated by storing U
and D sets at each node. In worst case we have to store O(|V | · K) entries. The time
complexity to compute U and D labels and extract valid domains takes O(|E| · K) steps.
The overall interaction is similar to the single-cost approach. After assigning a variable,
we have to recompute the labels as well as extract domains. If we tighten cost restrictions
K1, K2 to K ′

1 ≤ K1, K
′
2 ≤ K2 we only need to extract domains. However, if we relax either

of the cost restrictions, such as K ′
1 > K1 we need to recompute the labels as well. More

precisely, labels U, D need to be recomputed only if K1 > Kmax
1 where Kmax

1 was the initial
cost restriction after the last assignment.

5.2.5 Further Extensions

Note that our approach can, in principle, be extended to handle general k-wCVD query for a
fixed k. Lists U and D would contain the set of non-dominated k-tuples, ordered such that:
(a1, . . . , ak) ≺ (a′1, . . . , a

′
k) iff for the smallest coordinate j for which aj �= a′j it holds aj < a′j .

Both the list merging as well as valid domains extraction would be directly generalized to
operate over such ordered sets, although the time complexity for testing dominans will
increase. The worst-case complexity would depend on the size of an efficient frontier, which
for k cost functions with cost bounds K is bounded by O(Kk−1). In practice however, we
could expect that the number of non-dominated tuples be much smaller, especially for cost
functions over smaller scopes and with smaller coefficients. Note that our approach can
also be extended to accommodate non-additive cost functions by expanding the MDD to
accommodate non-unary labels in the same fashion as discussed in Section 3.4.

5.3 Approximation Scheme for 2-wCVD

In this subsection we analyze the complexity of answering 2-wCVD queries in approximative
manner, i.e. how can we improve running time guarantees by settling for an approximate
solution. Assume that one of the constraints K2 is fixed while the second constraint may be
exceeded with a small tolerance (1+ε)K1. For example, a user might be willing to tolerate a
small increase in price as long as strict quality restrictions are met. In this section we present
a fully polynomial time approximation scheme (FPTAS) for calculating valid domains in
time O(En1

ε
) for this problem. The FPTAS should satisfy that no feasible solution with

respect to the original costs should be fathomed, and that any feasible configuration found

122

Interactive Cost Configuration Over Decision Diagrams

by use of the FPTAS in the domain restriction should satisfy the cost constraint within
(1 + ε)K1. Finally, the FPTAS should have running time polynomial in 1/ε and the input
size.

In order to develop the FPTAS we use a standard scaling technique (Schuurman &
Woeginger, 2005) originally presented by Ibarra and Kim (1975). Given an ε, let n be
the number of decision variables. Set T = εK1/(n + 1) and determine new costs c̃1(e) =
�c1(e)/T � and new bounds K̃1 = �K1/T �. We then perform the valid domains computation
(label updating and domain extraction) as described in Section 5.2, using the scaled weights.
The following propositions prove that we obtained a FPTAS scheme.

Proposition 4 The running time of valid domains computation is O(1
ε
En)

Proof 4 We may assume that K̃1 < K2 as otherwise we may interchange the two costs.
The running time becomes

O(EK̃1) = O(EK1/T) = O(EK1
n + 1

εK1
) = O(En

1

ε
)

since n ≤ V this is polynomial in the input size O(V + E) and the precision 1
ε
.

Proposition 5 If a solution was feasible with respect to the original costs, then it is also
feasible with respect to the scaled costs.

Proof 5 Assume that
∑

e∈p c1(e) ≤ K1. Then∑
e∈p

c̃1(e) =
∑
e∈p

�c1(e)/T � ≤
1

T

∑
e∈p

c1(e) ≤
1

T
K1 ≤ �

1

T
K1� = K̃1

Proposition 6 Any solution that was feasible with respect to the scaled costs c̃1(e) satisfies
original constraints within (1 + ε)K1.

Proof 6 Assume that
∑

e∈p c̃1(e) ≤ C̃1. Then∑
e∈p c1(e) = T

∑
e∈p c1(e)/T ≤ T

∑
e∈p(�c1(e)/T � + 1) ≤ T

∑
e∈p c̃1(e) + Tn

≤ TK̃1 + Tn = T �K1/T � + Tn ≤ T (K1/T + 1) + Tn

= K1 + T (n + 1)

Since T = εK1/(n + 1) we get∑
e∈p

c1(e) ≤ K1 + (n + 1)εK1/(n + 1) = (1 + ε)K1

which shows the stated.

The time complexity can be further improved using techniques from Kellerer et al. (2004)
for the Knapsack Problem, but we are here only interested in showing the existence of a
FPTAS.

By the considerations in previous subsections we have fully analyzed the complexity
of answering 2-wCVD queries. We first showed that this is an NP-hard problem. We then
developed a pseudo-polynomial scheme for solving it, and finally we devised a fully polyno-
mial time approximation scheme. Even though we cannot provide polynomial running-time
guarantees, based on these considerations, we can hope to provide a reasonable performance
for practical instances, as it will be demonstrated in Section 6.

123

Andersen, Hadzic, & Pisinger

5.4 Complexity of k-wCVD Query

We conclude this section by discussing complexity of general k-wCVD queries. While our
practical implementation efforts are focused on implementing 2-wCVD queries, or other wCVD
queries where the number of cost constraints is known in advance, for completeness we
consider a generic problem of delivering k-wCVD for arbitrary k, i.e. where k is part of the
input to the problem.

We will prove now that for such a problem there is no pseudo-polynomial scheme unless
NP=P. We will show that decision version of such problem k-wCVD-SAT is NP-hard in the
strong sense (Garey & Johnson, 1979) by reduction from the bin-packing problem (BPP)
which is strongly NP-hard (Garey & Johnson, 1979). In the decision form the BPP asks
whether a given set of numbers s1, . . . , sn can be placed into k bins of size K each. Notice,
that we cannot use reduction below for showing NP-hardness of 2-wCVD-SAT, since k is a
part of the input in BPP.

Theorem 7 The k-wCVD-SAT problem with variable k, is strongly NP-hard.

Proof 7 For a given instance of BPP we reduce it to a k-wCVD-SAT instance as follows:
We construct an MDD for a CSP (X, D, F) over n variables X = {x1, . . . , xn} each with
a domain of size k, Di = {1, . . . , k}, i = 1, . . . , n. We set F = ∅, so that resulting MDD
allows all assignments. It has n nonterminal nodes u1, . . . , un corresponding to the numbers
s1, . . . , sn. Between two nodes ui, ui+1 we have k edges with costs (c1(e), c2(e), . . . , ck(e))
set to

(si, 0, . . . , 0), (0, si, 0, . . . , 0), (0, 0, si, 0, . . . , 0), . . . , (0, . . . , si),

The first node u1 is the root u1 = r while the last node un is connected to the terminal
un+1 = 1. The overall capacity constraints are (K1, . . . , Kk) = (K, . . . , K).

It is easily seen that we may find a path from r to 1 if and only if the BPP has a
feasible solution. Since the BPP is strongly NP-hard we have shown that k-wCVD-SAT also
is strongly NP-hard.

6. Experimental Evaluation

We implemented our compilation scheme and the algorithms for wCVD and 2-wCVD queries.
We performed a number of experiments to evaluate the applicability of our approach as
well as to confirm various hypotheses made throughout the paper. We used two sets of
instances whose properties are presented in Table 1. The first set corresponds to real-world
configuration problems available at configuration benchmarks library CLib2. These are CSP
models with configuration constraints. They correspond to highly structured configuration
problems with a huge number of similar solutions. The second set of instances represents
product-catalogue datasets used by Nicholson, Bridge, and Wilson (2006). These catalogues
are defined explicitly, as tables of solutions. They represent a much smaller and sparser set
of solutions.

2. http://www.itu.dk/research/cla/externals/clib/

124

Interactive Cost Configuration Over Decision Diagrams

Instance Sol X dmin dmax davg

ESVS 231 26 2 61 5
FS 224 23 2 51 5
Bike2 226 34 2 38 6
PC2 220 41 4 34 9
PC 220 45 2 33 8
Big-PC 283 124 2 66 12
Renault 241 99 2 42 4

Travel 1461 7 4 839 134
Laptops 683 14 2 438 42
Cameras 210 9 5 165 40
Lettings 751 6 2 174 45

Table 1: First seven instances are real-world configuration problems available at configura-
tion benchmarks library CLib. Remaining four instances are product catalogues
used by Nicholson et al. (2006). For each instance we provide the number of so-
lutions Sol, number of variables X, the minimal, maximal and average domain
size.

6.1 MDD Size

In the first set of experiments, for each instance we generated a log-encoded BDD B using
CLab (Jensen, 2007). We then extracted a corresponding MDD M from B. Finally, we
expanded long edges in M and merged isomorphic nodes to generate a merged MDD M ′.
We compare the sizes of B, M and M ′ in Table 2. For each structure we provide the number
of nodes V and edges E. We also provide the size of the BDD B. We conclude from the
table that both BDDs and MDDs are exponentially smaller than the size of the solution
space for configuration instances while not as significantly smaller for more diverse product
configuration catalogues. Furthermore, we can see that the number of edges in merged
MDDs M ′ is not significantly larger in comparison to extracted MDDs M . Hence, due to
simpler online algorithms, using merged MDDs seems well suited for online reasoning. We
can also see that multi-valued encoding in many cases reduces the number of nodes and
edges in comparison to BDDs. Even though compilation times are less important since the
generation of the MDD is performed offline, it is worth noting that for the largest instance,
Renault, it took around 2min and 30sec to compile the instance into a BDD and extract an
MDD.

6.1.1 Encoding Cost Explicitly

We also investigated the impact of encoding cost information explicitly into an MDD.
For each instance we compared the size of the MDD without and with cost variables (M
and M c respectively). For configuration benchmarks we introduce an additional variable
y ∈ [0, 10000] such that y =

∑n
i=1 aixi where coefficients ai are randomly drawn from the

interval [0, 50]. We put variable y as the last in the ordering since for other positions we
get MDDs of similar size, and putting y at the end allows easier theoretical analysis. Since

125

Andersen, Hadzic, & Pisinger

Instance VB EB KB VM EM VM′ EM′

ESVS 306 612 5 87 202 96 220
FS 3,044 6,088 41 753 1,989 767 2017

Bike2 3,129 6,258 56 853 1,726 933 1886
PC2 13,332 26,664 237 3,907 6,136 3907 6136
PC 16,494 32,988 298 4875 7989 4875 7989

Big-PC 356,696 713,392 7,945 100,193 132,595 100,272 132,889
Renault 455,796 911,592 9,891 283,033 334,008 329,135 426,212

Travel 8479 16,958 154 1469 2928 1469 2928
Laptops 9528 19,056 172 2033 2713 2033 2713
Cameras 4274 8,548 71 791 999 791 999
Lettings 2122 4,244 36 351 1099 351 1099

Table 2: Comparison between BDDs and MDDs for instances from Table 1. The second,
third and fourth column give the number of non-terminal BDD nodes VB, the
number of edges EB and the size on disk of the BDD in kilobytes KB. The fifth
and the sixth column give the number of vertices VM and edges EM in an MDD
M extracted from the BDD using Algorithm 6 on page 116. The final two columns
provide the number of nodes and edges in a merged MDD (M ′) where all long
edges from extracted MDD M have been expanded.

product catalogues already contain the cost variable y (price), we produce a cost-oblivious
version M by existentially quantifying y, M = ∃yM

c.

In Table 3 we compare the MDDs M and M c. For both structures we provide the number
of edges as well as the representation size in kilobytes. We also show the size of cost range
C(Sol). We observe that for configuration instances that have a high level of sharing and
compression, introducing cost information explicitly induces an order of magnitude increase
in size even when the cost range C(Sol) is limited (400 times increase for Bike2 instance).
MDDs for the two largest instances could not be generated. However, for product catalogues
which have much less sharing, removing cost information does not have a dramatic effect.
In the worst case, the number of edges in M c is two times larger than in M . Hence, the
experimental results confirm that introducing cost explicitly could have a dramatic effect
for MDD representations of highly compressed solution spaces, usually implicitly defined
through conjunction of combinatorial constraints. However, the effect of adding explicit cost
information might be modest when the solution space is defined explicitly, as a (sparse) list
of database entries, such as the case for product catalogues. Furthermore, the size of the
cost range C(Sol) needs not be significant for a large increase in size to take place.

6.2 Response Times for wCVD Queries

In the second set of experiments, we evaluated the performance of wCVD queries over merged
MDD representations of configuration instances. We report the running times for both
computing U and D labels (Algorithm 2) as well as computing valid domains (Algorithm 3).
In Table 4 we report both average and worst-case running times over initial merged MDDs

126

Interactive Cost Configuration Over Decision Diagrams

Instance E KB Ec KB C(Sol)

ESVS 202 5 129,514 4,408 1,966
FS 1,989 41 407,662 12,767 1,497

Bike2 1,726 56 693,824 31,467 3,008
PC2 6,136 237 1,099,842 57,909 2,000
PC 7,989 298 1,479,306 70,900 2,072

Big-PC 132,595 7,945 - - -
Renault 334,008 9,891 - - -

Travel 1640 45 2928 154 839
Laptops 1592 80 2713 172 438
Cameras 725 44 999 71 165
Lettings 496 9 1099 36 174

Table 3: Effect of explicitly encoding cost information. The second and third column indi-
cate the number of edges and the representation size in kilobytes for cost-oblivious
MDD, while the fourth and fifth column show the same for the MDD containing
cost information. Column C(Sol) indicates the range of available costs over all
solutions.

from Table 2. We also report the time necessary to restrict the MDD wrt. an assignment
(Algorithm 1). We randomly create an additive cost function c by assigning for each variable
xi and each value a ∈ Di a cost ci(a) from [0, 50]. Valid domains are computed wrt. the
maximal cost restriction K that is set to a value larger than the the length of the longest
MDD path wrt. cost function c. This ensures the longest execution time of Algorithm 3.
Each data-point in the table is an average or a maximum over 1000 executions on a Fedora
9 operating system, using dual Quad core Intel Xeon processor running at 2.66 GHz. Only
one core is used for each instance. Empirical evaluation demonstrates that response times
are easily within acceptable interaction bounds even for the largest instances, where in worst
case the MDD nodes are labeled within 0.13 seconds, valid domains are computed within
0.07 seconds and MDD is restricted wrt. an assignment within 0.28 seconds.

6.3 Response Times for 2-wCVD Query

We generated analogous statistics for 2-wCVD in Table 5. We tested the performance of
our algorithms under the computationally most demanding circumstances: we operate over
the original (fully-sized) MDD, even though during interaction it would be reduced due
to user assignments. Furthermore, both cost functions c1, c2 have a global scope, and we
use no cost restrictions when computing U and D labels (i.e. we ignore the condition in
line 1 of Algorithm 10 and hence, U [1] and D[r] correspond to an entire efficient frontier).
Normally, cost functions would involve only a subset of variables and only a fraction of the
labels on the efficient frontier (within restrictions K1, K2) would be relevant for the user. We
generate cost functions c1, c2 by drawing costs ci(a) randomly from [0, 50]. For computing
valid domains, we use restrictions K1, K2 larger than the lengths of corresponding longest

127

Andersen, Hadzic, & Pisinger

Labeling U, D Valid domain Restrict
Instance avg max avg max avg max

ESVS 0.0001 0.01 0.0001 0.01 0.0001 0.01
FS 0.0001 0.01 0.0001 0.01 0.0002 0.01

Bike2 0.0002 0.01 0.0001 0.01 0.0010 0.01
PC2 0.0002 0.01 0.0002 0.01 0.0010 0.02
PC 0.0003 0.01 0.0003 0.01 0.0010 0.01

Big-PC 0.0210 0.04 0.0110 0.03 0.0400 0.08
Renault 0.0590 0.13 0.0310 0.07 0.1600 0.28

Table 4: Interaction time in seconds for wCVD queries. We report time required for com-
puting U and D labels, valid domain computation and restriction wrt. a single
assignment.

paths, so that all possible solutions in the efficient frontier are allowed. This would lead to
the longest execution time of Algorithm 9.

Our algorithms can easily handle the first five instances. For the largest two instances,
if U and D labels are known, calculating valid domains can be done within a fraction of a
second. Hence, a user can efficiently explore the effect of various cost restrictions K1, K2 wrt.
a fixed partial assignment. After a user assigns a variable, recomputing U and D labels
takes in total on average less than 0.85 seconds, or in worst case less than 1.4 seconds.
While this is already within acceptable interaction times, the usability of the system can be
further enhanced, e.g. by using a layered display of information: always reacting with the
information that is fastest to compute (such as CVD or wCVD), and while the user is analyzing
it, execute more time consuming operations. In particular, the entire efficient frontier is
known as soon as U labels are generated — in worst case within 0.64 seconds. At this
stage, a user can explore the ”cost-space” while D labels are computed (on average within
the next 0.79 seconds). Note that the running times can be reduced through a number of
additional schemes, e.g. by computing U and D labels in parallel, if two or more processors
are present.

Labeling U Labeling D Valid domain
Instance avg max avg max avg max

ESVS 0.0001 0.01 0.0002 0.01 0.0001 0.01
FS 0.0010 0.01 0.0020 0.02 0.0001 0.01

Bike2 0.0010 0.02 0.0020 0.01 0.0001 0.01
PC2 0.0030 0.02 0.0030 0.02 0.0005 0.01
PC 0.0050 0.02 0.0040 0.02 0.0008 0.01

Big-PC 0.2070 0.45 0.3160 0.60 0.0300 0.04
Renault 0.3470 0.64 0.4700 0.79 0.0700 0.08

Table 5: Interaction time in seconds for 2-wCVD query.

128

Interactive Cost Configuration Over Decision Diagrams

Our empirical evaluation demonstrates the practical value of our approach. Even the
NP-hard 2-wCVD query can be implemented with response times suitable for interactive use,
when applied to huge configuration instances. Note, however, that in order to achieve such
performance it is critical to optimize MDD implementation as well as to utilize advanced
list operation techniques. Our initial implementation efforts that failed to do so, led to
response times measured in tens of seconds for the largest instances.

7. Related Work

There are several directions of related work. There is a large variety of representations
investigated in the area of knowledge compilation that might be suitable for supporting
interactive decision making with cost restrictions. There are also a number of approaches
to handle multiple cost functions in multi-criteria optimization.

7.1 Compiled Knowledge Representation Forms

In this paper we used binary decision diagrams (BDDs) and multi-valued decision diagrams
(MDDs) as compiled representations of our CSP model. However, there might be other com-
piled representations that might be more suitable for supporting interactive configuration.
Any compiled representation that supports efficient consistency checking and conditioning
would in theory support polytime interactive configuration. To calculate valid domains it
suffices for each value to restrict the representation and check if it is consistent. Any rep-
resentation that supports efficient optimization and conditioning would support polytime
cost restrictions. It would suffice to restrict the representation with a value and check if the
minimum is smaller than a threshold value. We will therefore briefly survey some of the
related compiled representations and evaluate their suitability for our framework.

Knowledge-Compilation Structures. Probably the most well known framework for
comparing various compiled forms of propositional theories is based on viewing them as
special classes of negation normal form (NNF) languages (Darwiche & Marquis, 2002).
NNFs are directed acyclic graphs where internal nodes are associated with conjunctions (∧)
or disjunctions (∨), while leaf nodes are labeled with literals (x,¬x) or constants true or
false. By imposing various restrictions we get subclasses of NNF languages that support
efficient execution of various queries and transformations. More restrictive representations
are less succinct i.e. they can be exponentially larger for some instances, but they support
a larger number of queries and transformations in polytime. A comprehensive overview of
such representations is presented by Darwiche and Marquis (2002).

The critical restriction that makes NNF languages more tractable is decomposability.
It exploits variable independencies by enforcing that children of an ∧-node have non-
overlapping variable scopes. Hence, for a propositional formula F = F1 ∧ F2 such that
var(F1)

⋂
var(F2) = ∅, to evaluate satisfiability of F it suffices to independently evaluate

F1 and F2. A resulting language is decomposable negation normal form (DNNF) which
already supports in polytime two operations critical for calculating valid domains: con-
sistency checking and conditioning. However, no general DNNF compiler exists. Current
compilation approach based on exhaustive DPLL search with caching isomorphic nodes
(Huang & Darwiche, 2005) constructs subsets of DNNF that satisfy an additional property

129

Andersen, Hadzic, & Pisinger

of determinism. Any two children of an ∨-node are mutually exclusive. The resulting struc-
ture is called deterministic decomposable negation normal form (d-DNNF). This structure
would be an interesting target for cost-configuration. For Boolean CSP models, additive
cost functions could be efficiently optimized over d-DNNFs. For multi-valued models how-
ever, more research is necessary on how to encode finite-domain values in a way that allows
efficient cost processing. The tool support for compiling d-DNNFs so far takes as an input
only CNF formulas, and we are unaware of extensions allowing direct compilation of general
CSP models.

Other known knowledge representation forms can be retrieved by enforcing additional
properties. For example, by further enforcing that all nodes are decision nodes and that
each variable is encountered at most once on each path (read-once property) we get free
BDDs (FBDDs). After enforcing that all decision nodes appear wrt. fixed ordering we get
ordered BDDs (OBDDs). In fact, the d-DNNF compiler of Huang and Darwiche (2005) can
be specialized to compile OBDDs, which proved to be a valuable alternative way to BDD
compilation.

Weighted and Multi-Valued Knowledge Compilation Structures. Most of the com-
piled representations for propositional theories have valued counterparts. Many of them can
be seen as special cases of valued NNFs (VNNF) (Fargier & Marquis, 2007). Roughly, every
valued counterpart is obtained by changing the semantics of nodes, from logical operators
(such as ∧, ∨) to general operators ⊗ (that could be arithmetic, such as + and ∗). Values
of functions represented by these structures are no longer in {0, 1} but in R. Furthermore,
functions need not be defined over Boolean domains, but could take finite-domain values. In
general, subsets of VNNF that satisfy decomposability and operator distributivity support
efficient optimization (Fargier & Marquis, 2007) and could, in principle, be used to support
cost configuration.

Construction of MDDs based on encoding into BDDs has been discussed by Srinivasan,
Kam, Malik, and Brayton (1990). Amilhastre et al. (2002) augmented automata of Vem-
paty (1992) with edge weights to reason about optimal restorations and explanations. These
weighted extensions correspond closely to our weighted MDDs since the variant of automata
used by Vempaty (1992) is equivalent to merged MDDs (Hadzic et al., 2008). However, the
weights are used to compute different queries and while we generate MDDs based on widely
available BDD-packages, Vempaty (1992) does not report compilation tools used. Semiring
labeled decision diagrams (SLDDs) (Wilson, 2005) label edges of an (unordered) MDD with
values from a semiring and allow computation of a number of queries relevant for reasoning
under uncertainty. Due to relaxed ordering, SLDDs are more succinct than our weighted
MDDs and are therefore an attractive target for cost-based configuration. However, the
proposal for now seems to be theoretic, and does not seem to be implemented. Arithmetic
circuits are directed acyclic graphs where internal nodes are labeled with summation and
multiplication operators while leaf nodes are labeled with constants or variables (Darwiche,
2002). They could be seen as a valued extension of d-DNNFs and hence are more succinct
than SLDDs. Furthermore, they support efficient optimization when all coefficients are
positive (in Bayesian context - they support efficient computing of most probable explana-
tions). Compilation technology for ACs is not directly applicable to general CSP models, as
it is used primarily for representing Bayesian networks. It is based on compiling d-DNNFs
or tree clustering approaches (Darwiche, 2002, 2003). In our context, ACs might be use-

130

Interactive Cost Configuration Over Decision Diagrams

ful when optimizing non-additive objective functions with multiplicative coefficients such
as multi-linear functions induced by Bayesian networks. However, for purely propositional
constraints over which an additive cost function should be optimized, a purely propositional
representation form (such as d-DNNF) would be more adequate. Furthermore, efficient op-
timization queries based on ACs implicitly assume that all constants (at leaf nodes) are
positive, which is the case when modeling Bayesian networks, but does not hold for general
cost functions.

Global Structure Approaches. A number of techniques based on tree-clustering (Dechter
& Pearl, 1989) and variable-elimination (Dechter, 1999) exploit variable independencies that
are present globally in a CSP model. Both time and space complexity of these techniques
turn out to be bounded exponentially in the size of an important graph-connectivity notion
of tree-width (Bodlaender, 1993). While most of these techniques are geared towards en-
hancing search for a single (optimal) solution (adaptive consistency, bucket elimination etc),
the same concepts can be utilized for compiling representations of all solutions. AND/OR
MDDs (Mateescu et al., 2008) when restricted to Boolean variables are a subset of d-DNNF
formulas, where variable labeling respects a pseudo-tree obtained by a variable elimination
order. Due to utilization of variable independencies through ∧-nodes, they are more suc-
cinct than MDDs and are therefore an attractive compilation target for cost-configuration.
Furthermore, they are already extended to handle weighted graphical models to support
Bayesian reasoning. However, publicly available tool support is limited and does not allow
processing weighted CVD queries. Tree-driven-automata (Fargier & Vilarem, 2004) utilize
tree clustering (Dechter & Pearl, 1989), to generate a partial variable ordering that is used
to generate an automaton. Tree-driven-automata are equivalent to AND/OR MDDs and
when restricted to the Boolean case they represent a subset of d-DNNF languages called
strongly ordered decomposable decision graphs (SO-DDG) (Fargier & Marquis, 2006). Like
AND/OR MDDs they are more succinct than MDDs and therefore are an interesting target
for cost-configuration. However, tools for compiling tree-driven-automata are yet to be-
come publicly available, and so far they have not been extended to handle costs. Weighted
cluster trees of Pargamin (2003) are a weighted extension of cluster trees used to support
interactive configuration with preferences. However, there is no publicly available compila-
tion tool (an internal company-based implementation was presented), and the clusters are
represented explicitly without utilizing compressions based on local structure through deci-
sion diagrams or other compiled representations. Tree-of-BDDs (ToB) (Subbarayan, 2008)
directly exploit tree clustering by representing each cluster as a BDD. However, they do not
support conditioning in polytime which is a fundamental transformation in supporting user
interaction (assigning variables). However, they can be compiled for instances for which
d-DNNF compilation fails, and empirical evaluation shows that on average conditioning
times are short.

BDD Extensions. There is a large variety of weighted extensions of binary decision dia-
grams, that represent real-valued functions f : {0, 1}n → R rather than Boolean functions
f : {0, 1}n → {0, 1}. These extensions are limited to Boolean variables and their adoption in
future would have to consider encoding techniques of multi-valued variables that avoid ex-
plosion in size and support cost processing. Comprehensive overviews of these extensions are
presented by Drechsler (2001), Wegener (2000), and Meinel and Theobald (1998). An imme-
diate extension is in the form of algebraic decision diagrams (ADDs) (Bahar, Frohm, Gaona,

131

Andersen, Hadzic, & Pisinger

Hachtel, Macii, Pardo, & Somenzi, 1993), also known as multi-terminal BDDs (MTBDDs),
that are essentially BDDs with multiple terminal nodes - one for each cost value. This is a
structure-oblivious approach to encoding cost, much as our approach of explicitly encoding
cost as a variable. The size grows quickly with increase of the number of terminals. There-
fore a number of BDD extensions are introduced based on labeling edges with weights. They
differ mostly on cost operators and decomposition types associated with nodes. Edge-valued
BDDs (EVBDDs) (Lai & Sastry, 1992) label every edge with an additive cost value c(e) so
that for an edge e : u → u′, the value val(u) = c(e) + val(u′) when v(e) = 1 (otherwise
val(u) = val(u′)). Factored EVBDDs (FEVBDDs) (Tafertshofer & Pedram, 1997) intro-
duce multiplicative weights, so that when v(e) = 1, value val(u) = c(e) + w(e) · val(u′)
(otherwise val(u) = val(u′)). Affine ADDs (AADDs) of Sanner and McAllester (2005)
further introduce additive and multiplicative edge weights for any edge (regardless of v(e)).
Then val(u) = c(e) + w(e) · val(u′) for every edge. It has been shown that AADDs are a
special case of valued NNFs (Fargier & Marquis, 2007).

An orthogonal extension of BDDs is to change decomposition type of nodes. OBDDs are
based on Shannon decomposition fu = xifu0

∨ ¬xifu1
. We can change this decomposition

type to positive Davio (pD) decomposition fu = f0 ⊕ xif1 or negative Davio(nD) decom-
position fu = f0 ⊕ ¬xif1. By using pD decomposition we get ordered functional decision
diagrams (OFDDs) (Kebschull & Rosenstiel, 1993). These structures are incomparable to
OBDDs, i.e. they might be exponentially larger or smaller than OBDDs depending on the
instance. However, ordered Kronecker functional decision diagrams (OKFDDs)(Drechsler,
Sarabi, Theobald, Becker, & Perkowski, 1994) allow all three decomposition types, thus gen-
eralizing both OBDDs and OFDDs. Extending OFDDs with additive edge weights leads
to binary moment diagrams (BMDs) (Bryant & Chen, 1995), adding also multiplicative
edge weights leads to multiplicative binary moment diagrams (∗BMDs). Analogously, by
extending OKFDDs with additive and multiplicative edge weights we get Kronecker binary
moment diagrams (KBMDs) and K∗BMDs respectively (Drechsler, Becker, & Ruppertz,
1996).

It is unclear whether Boolean structures with advanced cost labeling schemes can be
used directly to represent multi-valued CSP models with cost functions. However, we could
compare the generalizations of such labeling schemes to multi-valued structures. A multi-
valued generalization of EVBDDs would correspond roughly to our weighted MDDs. How-
ever, introducing both additive and multiplicative weights as in AADDs would correspond
to a generalization of our labeling scheme that could prove to be useful for labeling multi-
linear cost functions. Namely, through introduction of multiplicative weights there would
be more subgraph sharing, and not as many nodes would have to be refined to accommo-
date non-additive costs. However, due to multiplicative factors, it is not obvious if our
cashing technique based on computing U, D can be directly extended, especially if some of
the coefficients are negative. In case of additive cost functions though, all of these schemes
would correspond to our labeling scheme. Most of these structures pay the price in less
efficient operators (such as apply operator) and larger memory requirements as they main-
tain more information. Therefore, for compiling Boolean functions, using these structures
would pose an unnecessary overhead in comparison to OBDDs. Hence, for models with
a large number of propositional (configuration) constraints, and an additive cost function,
we would not gain from compiling using these structures even in the Boolean case. When

132

Interactive Cost Configuration Over Decision Diagrams

the cost function is non-additive, introducing more elaborate cost representations might
prove beneficial for reducing memory requirements, but might make our label computing
technique unapplicable. From a practical point of view, while there are implementations
supporting Boolean versions of these structures, we are not aware of any tool supporting
multi-valued generalizations of these structures nor input language format that can be used
for specifying general propositional constraints.

7.2 Multi-Objective Cost Processing

Our multiple-cost configuration is close to approaches within a framework of multi-criteria
optimization where a decision maker should find a solution subject to multiple (often con-
flicting) objectives (Figueira et al., 2005; Ehrgott & Gandibleux, 2000). In particular, our
MDD-based algorithms are very close to the approaches for solving multiobjective shortest
path problem, where for a given graph (V, E) each arc is labeled with multiple costs, and the
goal is typically to compute the set of Pareto-optimal (efficient, non-dominated) solutions
(Ehrgott & Gandibleux, 2000; Müller-Hannemann & Weihe, 2001; Tarapata, 2007; Rein-
hardt & Pisinger, 2009). It has been shown that the multi-objective shortest path problem
is intractable. In particular, the number of Pareto-optimal solutions can grow exponen-
tially with the number of vertices |V |, but a FPTAS (fully polynomial time approximation
scheme) has been developed for approximating the set of Pareto-optimal solutions. How-
ever, the way in which the solution space of multi-criteria optimization problems is explored
is significantly different from our approach. Typically, in each interaction step a subset of
Pareto-optimal solutions is computed and afterwards a decision maker interactively navi-
gates through the set in order to reach the satisfying compromising solution. Interactive
methods in multi-criteria optimization usually compute a subset of solutions on the efficient
frontier, suggest it to the user for evaluation, and based on his input compute a new set of
solutions (Figueira et al., 2005, Chapter 16). These techniques would use the user input to
better estimate the way to aggregate multiple objectives, and some of them would require
the user to explicitly assign weights of importance to objectives. In contrast, instead of be-
ing primarily driven by the costs of solutions, our interactive approach supports reasoning
about the variable assignments in the solutions themselves through valid domains computa-
tion. It is an inherently different way of exploring the solution space which is more adequate
for users that want explicit control over variable assignments and not just indicating the
importance of cost functions.

Most of the approaches in the CSP community model preferences as soft constraints
(Meseguer, Rossi, & Shiex, 2006) that can be partially satisfied or violated, with a goal to
find the most satisfying or the least violating solution. This usually presupposes that pref-
erences can be aggregated via algebraic operators, and as such is more related to single-cost
optimization problems. However, the approach by Rollón and Larrosa (2006) deals with
multiple costs explicitly. It utilizes global structure (i.e. variable independencies) of the
weighted CSP model to compute an efficient frontier through bucket-based variable elimi-
nation. A highly related approach that utilizes global structure of the generalized additive
independence (GAI) network is presented by Dubus, Gonzales, and Perny (2009). In order
to compute the efficient frontier, the authors use a message passing computation mecha-
nism which is analogous to computing buckets. In addition, the authors develop a fully

133

Andersen, Hadzic, & Pisinger

polynomial approximation scheme to approximate the efficient frontier and demonstrate
the significant improvement in performance. However, neither of these methods can exploit
the fact that the solution space of hard constraints is available in a compiled representation.
Instead, these methods operate only over an unprocessed model specification (whether it is
a weighted CSP or a GAI network) treating both the hard and soft constraints uniformly
and hence allowing the scope of hard constraints to decrease the variable independencies in
the model (and thus decrease the performance of the algorithms). Furthermore, the result
of computation of these methods does not allow a full exploration of efficient solutions. For
each value on the frontier only a single supporting efficient solution is maintained while we
maintain for each efficient value the set of all supporting efficient solutions. Hence, it is not
possible to efficiently retrieve valid domains even after the algorithms terminate. It would
be interesting to see however, whether these methods could be adopted to work over MDD
representations of a solution space.

Knapsack constraints are special case of two-cost configuration problems over a uni-
versally true MDD. Trick (2001) used dynamic programming to propagate Knapsack con-
straints during CSP search. Fahle and Sellmann (2002) presented an approximated filtering
algorithm, based on various integer programming bounds for the Knapsack problem. Sell-
mann (2004) presented a fully polynomial time approximation algorithm for approximated
filtering. However, these techniques were considered in constraint propagation context and
none of them considered processing over existing MDD structure.

8. Conclusions and Future Work

In this paper we presented an extension of BDD-based interactive configuration to config-
uring in the presence of cost restrictions. We guarantee polynomial-time cost configuration
when the cost function is additive and feasible solutions are represented using multi-valued
decision diagram. We process cost restrictions over an MDD which is extracted from an
underlying BDD. We therefore strictly extend BDD-based configuration of Hadzic et al.
(2004) to support cost-bounding of additive cost functions without incurring exponential
increase in complexity. Our implementation delivers running times that easily satisfy inter-
active response-time requirements. Furthermore, our approach can be extended to support
bounding in the presence of non-additive and semiring-based costs.

We further extended our approach by considering cost bounding wrt. multiple costs.
We proved that this is an NP-hard problem in the input MDD size even when processing
only two linear inequalities with positive coefficients and Boolean variables. However, we
provided a pseudo-polynomial scheme and fully polynomial approximation scheme for two-
cost configuration (which, in principle, can be extended to any k-cost configuration for a
fixed k). Our empirical evaluation demonstrated that despite inherent hardness of this
problem we can still provide satisfying performance in interactive setting. Our interaction
based on computing valid domains wrt. multiple cost restrictions is a novel addition to
interaction modes within multiple-criteria decision making (Figueira et al., 2005). We
provide an explicit control over variable assignments as well as cost functions.

In the future we plan to investigate other compiled representations over which delivering
cost configuration might be efficient and to investigate practical approaches to processing
non-unary cost functions. In particular, we plan to examine whether existing methods to

134

Interactive Cost Configuration Over Decision Diagrams

multiobjective non-unary optimization (e.g., Rollón & Larrosa, 2006; Dubus et al., 2009)
can be adopted to operate over MDD representation of a solution space.

Acknowledgments

We would like to thank the anonymous reviewers for their extensive comments that helped
us improve the paper. We would also like to thank Erik van der Meer for providing the
T-shirt example. The first version of this paper was created while Tarik Hadzic was at the
IT University of Copenhagen, while the updated version was made at the Cork Constraint
Computation Centre with a support from an IRCSET/Embark Initiative Postdoctoral Fel-
lowship Scheme.

References

Amilhastre, J., Fargier, H., & Marquis, P. (2002). Consistency Restoration and Explanations
in Dynamic CSPs-Application to Configuration. Artificial Intelligence, 135 (1-2), 199–
234.

Bahar, R., Frohm, E., Gaona, C., Hachtel, E., Macii, A., Pardo, A., & Somenzi, F. (1993).
Algebraic decision diagrams and their applications. In IEEE/ACM International Con-
ference on CAD, pp. 188–191.

Bartzis, C., & Bultan, T. (2003). Construction of efficient BDDs for bounded arithmetic
constraints. In Garavel, H., & Hatcliff, J. (Eds.), TACAS, Vol. 2619 of Lecture Notes
in Computer Science, pp. 394–408. Springer.

Bodlaender, H. L. (1993). A tourist guide through treewidth. Acta Cybernetica, 11, 1–23.

Bollig, B., & Wegener, I. (1996). Improving the variable ordering of OBDDs is NP-complete.
Computers, IEEE Transactions on, 45 (9), 993–1002.

Bryant, R. E. (1986). Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, 35, 677–691.

Bryant, R. E., & Chen, Y.-A. (1995). Verification of Arithmetic Circuits with Binary
Moment Diagrams. In In Proceedings of the 32nd ACM/IEEE Design Automation
Conference, pp. 535–541.

Darwiche, A., & Marquis, P. (2002). A Knowledge Compilation Map. Journal of Artificial
Intelligence Research, 17, 229–264.

Darwiche, A. (2002). A Logical Approach to Factoring Belief Networks. In Fensel, D.,
Giunchiglia, F., McGuinness, D., & Williams, M.-A. (Eds.), KR2002: Principles
of Knowledge Representation and Reasoning, pp. 409–420 San Francisco, California.
Morgan Kaufmann.

Darwiche, A. (2003). A differential approach to inference in Bayesian networks. Journal of
the ACM, 50 (3), 280–305.

135

Andersen, Hadzic, & Pisinger

Dechter, R. (1999). Bucket Elimination: A Unifying Framework for Reasoning. Artificial
Intelligence, 113 (1-2), 41–85.

Dechter, R., & Pearl, J. (1989). Tree-Clustering for Constraint Networks. Artificial Intelli-
gence, 38 (3), 353–366.

Drechsler, R., Sarabi, A., Theobald, M., Becker, B., & Perkowski, M. A. (1994). Efficient
representation and manipulation of switching functions based on ordered Kronecker
functional decision diagrams. In DAC ’94: Proceedings of the 31st annual conference
on Design automation, pp. 415–419 New York, NY, USA. ACM.

Drechsler, R. (2001). Binary decision diagrams in theory and practice. International Journal
on Software Tools for Technology Transfer (STTT), 3 (2), 112–136.

Drechsler, R., Becker, B., & Ruppertz, S. (1996). K*BMDs: A New Data Structure for
Verification. In EDTC ’96: Proceedings of the 1996 European conference on Design
and Test, p. 2 Washington, DC, USA. IEEE Computer Society.

Dubus, J.-P., Gonzales, C., & Perny, P. (2009). Multiobjective Optimization using GAI
Models. In Boutilier, C. (Ed.), IJCAI, pp. 1902–1907.

Ehrgott, M., & Gandibleux, X. (2000). A Survey and Annotated Bibliography of Multiob-
jective Combinatorial Optimization. OR Spektrum, 22, 425–460.

Fahle, T., & Sellmann, M. (2002). Cost Based Filtering for the Constrained Knapsack
Problem. Annals of Operations Research, 115, 73–93.

Fargier, H., & Marquis, P. (2006). On the Use of Partially Ordered Decision Graphs in
Knowledge Compilation and Quantified Boolean Formulae. In Proceedings of AAAI
2006, pp. 42–47.

Fargier, H., & Marquis, P. (2007). On Valued Negation Normal Form Formulas. In Pro-
ceedings of IJCAI 2007, pp. 360–365.

Fargier, H., & Vilarem, M.-C. (2004). Compiling CSPs into Tree-Driven Automata for
Interactive Solving. Constraints, 9 (4), 263–287.

Figueira, J. R., Greco, S., & Ehrgott, M. (2005). Multiple Criteria Decision Analysis: State
of the Art Surveys. Springer Verlag, Boston, Dordrecht, London.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability-A Guide to the Theory
of NP-Completeness. W H Freeman & Co.

Hadzic, T., Subbarayan, S., Jensen, R. M., Andersen, H. R., Møller, J., & Hulgaard, H.
(2004). Fast Backtrack-Free Product Configuration using a Precompiled Solution
Space Representation. In In Proceedings of PETO Conference, pp. 131–138. DTU-
tryk.

Hadzic, T., & Andersen, H. R. (2006). A BDD-based Polytime Algorithm for Cost-Bounded
Interactive Configuration. In Proceedings of AAAI 2006, pp. 62–67.

136

Interactive Cost Configuration Over Decision Diagrams

Hadzic, T., Hansen, E. R., & O’Sullivan, B. (2008). On Automata, MDDs and BDDs in
Constraint Satisfaction. In Proceedings of the ECAI 2008 Workshop on Inference
Methods based on Graphical Structures of Knowledge.

Huang, J., & Darwiche, A. (2004). Using DPLL for efficient OBDD construction. In
Proceedings of SAT 2004, pp. 127–136.

Huang, J., & Darwiche, A. (2005). DPLL with a trace: From SAT to knowledge compilation.
In Kaelbling, L. P., & Saffiotti, A. (Eds.), IJCAI, pp. 156–162. Professional Book
Center.

Ibarra, O., & Kim, C. (1975). Fast approximation algorithms for the knapsack and sum of
subset problem. Journal of the ACM, 22, 463–468.

Jensen, R. M. (2007). CLab: A C++ library for fast backtrack-free interactive product
configuration. http://www.itu.dk/people/rmj/clab/.

Kebschull, U., & Rosenstiel, W. (1993). Efficient graph-based computation and manipu-
lation of functional decision diagrams. Design Automation, 1993, with the European
Event in ASIC Design. Proceedings. [4th] European Conference on, 278–282.

Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack Problems. Springer, Berlin,
Germany.

Lai, Y.-T., & Sastry, S. (1992). Edge-valued binary decision diagrams for multi-level hi-
erarchical verification. In DAC ’92: Proceedings of the 29th ACM/IEEE conference
on Design automation, pp. 608–613 Los Alamitos, CA, USA. IEEE Computer Society
Press.

Lichtenberg, J., Andersen, H. R., Hulgaard, H., Møller, J., & Rasmussen, A. S. (2001).
Method of configuring a product. US Patent No: 7,584,079.

Lind-Nielsen, J. (2001). BuDDy - A Binary Decision Diagram Package.
http://sourceforge.net/projects/buddy.

Mateescu, R., Dechter, R., & Marinescu, R. (2008). AND/OR Multi-Valued Decision Dia-
grams (AOMDDs) for Graphical Models. Journal of Artificial Intelligence Research,
33, 465–519.

Meinel, C., & Theobald, T. (1998). Algorithms and Data Structures in VLSI Design.
Springer.

Meseguer, P., Rossi, F., & Shiex, T. (2006). Soft constraints. In Rossi, F., van Beek,
P., & Walsh, T. (Eds.), Handbook of Constraint Programming, Foundations of Artifi-
cial Intelligence, chap. 9, pp. 281–328. Elsevier Science Publishers, Amsterdam, The
Netherlands.

Miller, D. M., & Drechsler, R. (2002). On the Construction of Multiple-Valued Decision
Diagrams. In Proceedings of the 32nd International Symposium on Multiple-Valued
Logic (ISMVL’02), p. 245 Washington, DC, USA. IEEE Computer Society.

137

Andersen, Hadzic, & Pisinger

Møller, J., Andersen, H. R., & Hulgaard, H. (2002). Product configuration over the internet.
In INFORMS Conference on Information Systems and Technology.

Müller-Hannemann, M., & Weihe, K. (2001). Pareto Shortest Paths is Often Feasible in
Practice. In WAE ’01: Proceedings of the 5th International Workshop on Algorithm
Engineering, pp. 185–198 London, UK. Springer-Verlag.

Nicholson, R., Bridge, D. G., & Wilson, N. (2006). Decision Diagrams: Fast and Flexible
Support for Case Retrieval and Recommendation. In Proceedings of ECCBR 2006,
pp. 136–150.

Pargamin, B. (2003). Extending Cluster Tree Compilation with non-Boolean variables in
Product Configuration: a Tractable Approach to Preference-based Configuration. In
IJCAI’03 Workshop on Configuration.

Reinhardt, L. B., & Pisinger, D. (2009). Multi-Objective and Multi-Constrained Non-
Additive Shortest Path Problems. Computers and Operations Research. Submitted.
Technical report version available at: http://man.dtu.dk/upload/institutter/
ipl/publ/publikationer%202009/rapport%2016.pdf.

Rollón, E., & Larrosa, J. (2006). Bucket elimination for multiobjective optimization prob-
lems. Journal of Heuristics, 12 (4-5), 307–328.

Sanner, S., & McAllester, D. A. (2005). Affine Algebraic Decision Diagrams (AADDs) and
their Application to Structured Probabilistic Inference. In Proceedings of IJCAI 2005,
pp. 1384–1390.

Schuurman, P., & Woeginger, G. J. (2005). Approximation schemes — a tutorial. In
Moehring, R., Potts, C., Schulz, A., Woeginger, G., & Wolsey, L. (Eds.), Lectures on
Scheduling. Forthcoming.

Sellmann, M. (2004). The Practice of Approximated Consistency for Knapsack Constraints.
In McGuinness, D. L., & Ferguson, G. (Eds.), AAAI, pp. 179–184. AAAI Press / The
MIT Press.

Somenzi, F. (1996). CUDD: Colorado university decision diagram package. ftp://vlsi

.colorado.edu/pub/.

Srinivasan, A., Kam, T., Malik, S., & Brayton, R. K. (1990). Algorithms for discrete
function manipulation. In International Conference on CAD, pp. 92–95.

Subbarayan, S., Jensen, R. M., Hadzic, T., Andersen, H. R., Hulgaard, H., & Møller, J.
(2004). Comparing two implementations of a complete and backtrack-free interactive
configurator. In Proceedings of CP’04 CSPIA Workshop, pp. 97–111.

Subbarayan, S. M. (2008). On Exploiting Structures for Constraint Solving. Ph.D. thesis,
IT University of Copenhagen, Copenhagen.

Tafertshofer, P., & Pedram, M. (1997). Factored edge-valued binary decision diagrams. In
Formal Methods in System Design, Vol. 10, pp. 243–270. Kluwer.

138

Interactive Cost Configuration Over Decision Diagrams

Tarapata, Z. (2007). Selected multicriteria shortest path problems: An analysis of complex-
ity, models and adaptation of standard algorithms. International Journal of Applied
Mathematics and Computer Science, 17 (2), 269–287.

Trick, M. (2001). A dynamic programming approach for consistency and propagation for
knapsack constraints. In 3rd international workshop on integration of AI and OR
techniques in constraint programming for combinatorial optimization problems CP-
AI-OR, pp. 113–124.

Vempaty, N. R. (1992). Solving constraint satisfaction problems using finite state automata.
In Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 453–
458.

Walsh, T. (2000). SAT v CSP. In Dechter, R. (Ed.), Proceedings of CP 2000, Lecture Notes
in Computer Science, pp. 441–456.

Wegener, I. (2000). Branching Programs and Binary Decision Diagrams. Society for Indus-
trial and Applied Mathematics (SIAM).

Wilson, N. (2005). Decision diagrams for the computation of semiring valuations. In
Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence
(IJCAI-05), pp. 331–336.

139

