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Tag der Promotion: 1.10.2010
Erscheinungsjahr: 2010

ii

http://hss.ulb.uni-bonn.de/diss_online


JINC – A Multi-Threaded Library for Higher-Order
Weighted Decision Diagram Manipulation

Jörn Ossowski

Abstract

Ordered Binary Decision Diagrams (OBDDs) have been proven to be an efficient
data structure for symbolic algorithms. The efficiency of the symbolic methods de-
pends on the underlying OBDD library. Available OBDD libraries are based on
the standard concepts and so far only differ in implementation details. This thesis
introduces new techniques to increase run-time and space-efficiency of an OBDD
library.

This thesis introduces the framework of Higher-Order Weighted Decision Diagrams
(HOWDDs) to combine the similarities of different OBDD variants. This frame-
work pioneers the basis for the new variant Toggling Algebraic Decision Diagrams
(TADDs) which has been shown to be a space-efficient HOWDD variant for sym-
bolic matrix representation. The concept of HOWDDs has been use to implement
the OBDD library JINC. This thesis also analyzes the usage of multi-threading
techniques to speed-up OBDD manipulations. A new reordering framework ap-
plies the advantages of multi-threading techniques to reordering algorithms. This
approach uses an abstraction layer so that the original reordering algorithms are
not touched. The challenge that arise from a straight forward algorithm is that
the computed-tables and the garbage collection are not as efficient as in a single-
threaded environment. We resolve this problem by developing a new multi-operand
APPLY algorithm that eliminates the creation of temporary nodes which could occur
during computation and thus reduces the need for caching or garbage collection.

The HOWDD framework leads to an efficient library design which has been shown to
be more efficient than the established OBDD library CUDD. The HOWDD instance
TADD reduces the needed number of nodes by factor two compared to ordinary
ADDs. The new multi-threading approaches are more efficient than single-threading
approaches by several factors. In the case of the new reordering framework the speed-
up almost equals the theoretical optimal speed-up. The novel multi-operand APPLY

algorithm reduces the memory usage for the n-queens problem by factor 50 which
enables the calculation of bigger problem instances compared to the traditional
APPLY approach.

The new approaches improve the performance and reduce the memory footprint.
This leads to the conclusion that applications should be reviewed whether they
could benefit from the new multi-threading multi-operand approaches introduced
and discussed in this thesis.

Keywords: OBDD, TADD, HOWDD, multi-threading, reordering framework, multi-
operand APPLY, JINC
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Introduction

Chapter 1
Since the introduction of Ordered Binary Decision Diagrams (OBDDs) [21], a still
increasing number of applications [59, 54, 44, 57, 23, 22, 120, 75] are adopting sym-
bolic algorithms (based on OBDDs) to solve problems in symbolic model checking,
computer-aided design (CAD), very large scale integration (VLSI), etc.

From the theoretical point of view no data structure can avoid an exponential-sized
representation for certain functions. Real world applications (combinatory logic,
model checking, multi-level logic, etc.) have shown that wide classes of commonly
used functions can be represented by OBDDs (or their variants) very efficiently. In
the context of these applications various OBDD variants have been developed to en-
able space-efficient representation of the different systems, e.g., in arithmetic appli-
cations FEVBDDs [114] lead to smaller sized representations than regular OBDDs.

Besides the theoretical advantages of different OBDD variants it is essential for
real-world applications to have an efficient OBDD library which provides support
for different variants. This thesis discusses new theoretical concepts for the imple-
mentation of the space- and run-time-efficient OBDD library JINC. Space-efficiency
is JINC’S key requirement because it directly influences the number of representable
systems. The purpose of this thesis is two-fold.

At first we provide a summary of several known OBDD variants. The similarities
of different variants are examined and yield the basis for Output Weighted De-
cision Diagrams (OWDDs) [87]. OWDDs allow transformations on the terminal
values and thus cover variants like OBDDs with negated edges [102], Edge-Valued
Binary Decision Diagram (EVBDD) [119], Factored Edge-Valued Binary Decision
Diagrams (FEVBDDs) [114], etc. To allow augmentation of the the edges with fur-
ther transformation functions like input transformations we expand the definition of
OWDDs to Higher-Order Weighted Decision Diagrams (HOWDDs). The advantage
of this newly developed framework is that it handles any numbers of successors (like
Multi-Valued Decision Diagrams (MDDs) [60]) and allows to augment the edges
with a wide range of transformation functions. HOWDDs identify the minimal set
of requirements needed to define a generic OBDD library. Based on these require-
ments we will discuss the implementation of the OBDD library JINC. The design
of JINC follows the general concept of [19] and adjusts this by a more general ap-
proach, which is influenced by the idea of HOWDDs. With the new need to support
arbitrary transformation functions it is necessary to utilize modern programming
techniques to provide a flexible, efficient, safe and easy to maintain implementation.
The differences to already existing OBDD library implementations (CUDD [109],
BuDDy [72], etc) will be outlined while discussing JINC’s architecture. A more
detailed examination of JINC’s design will be illustrated on the implementation of
the newly developed Toggling Algebraic Decision Diagrams (TADDs). The intended
application for TADDs is matrix representation and manipulation. The OBDD rep-
resentation of a matrix encodes the coordinates of an element by x variables (for
the row) and y variables (for the column). It has been shown that an interleaved
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CHAPTER 1. INTRODUCTION

variable ordering is best suited for matrix operations. The idea behind TADDs is
to combine these variable pairs to one variable to provide a compact representation.
Additionally, a transformation function is used so that the transposition of a matrix
can be performed in constant time.

The second and main part of this thesis presents and discusses new concepts for
OBDD libraries. Besides space-efficiency, run-time-efficiency is important. This
thesis introduces new approaches to increase run-time efficiency and to reduce mem-
ory usage. There have been several approaches to enhance performance. The most
promising is to use more than one processor. There have been several approaches to
enable parallel computation for OBDD packages [111, 123]. The drawback of these
solutions is that they implement parallel computation with distinct memory areas
and communicate progress through a message passing interface (MPI). [111, 78] il-
lustrated that due to the communication costs single-processor OBDD library are
more efficient than multi-processor OBDD libraries. This thesis introduces a novel
approach to benefit from the increasing number of multi-processor architectures [112]
to speed-up OBDD manipulations. JINC makes use of multi-threading architectures
so that the benefit from accessing shared memory areas results in no communication
overhead and thus results in better run-times compared to single-threaded imple-
mentations. The approach of using shared memory does not change the depth-first
traversal character of BDD algorithms. This is an important advantage over multi-
processor implementations as they distribute the task in a breadth-first manner.
The problems occurring with concurrency within shared memory is solved by mod-
ifying the existing non-thread-safe data structures to non-locking thread-safe data
structures. For efficiency reasons it is required to avoid mutex usage wherever pos-
sible.

The advantage of using distinct memory areas is that more memory can be used
compared to a single computer OBDD library. New memory can be appended to in-
crease the available memory by adding a new computer to the system. The usage of
distinct memory areas has its limits as the communication costs grow quadratically.
JINC’s multi-threading approach focuses on increasing the performance but not on
increasing the available memory. This thesis introduces a novel way to face the
challenge of increasing the number of representable systems within the boundaries
of physical memory. The idea is based on two observations. First, frequent oper-
ator calls increase the number of temporary nodes which are needed to compute
the overall result. Second, JINC’s multi-threading approach disabled automatic
garbage collection and automatic reordering because of concurrency. This leads
to the necessity to reduce the number of temporary nodes during computations as
garbage collection calls need synchronization points in a multi-threaded environ-
ment. The new idea presented in this thesis combines any number of operator calls
to one multi-operand APPLY call. This novel multi-operand synthesis approach is
superior to [51, 27] as it does not change the depth-first synthesis of the ordinary
APPLY algorithm, is suitable for multi-threading and is optimal in terms of memory
requirements as it does not create any temporary node.

This thesis also provides a novel reordering system. This system speeds up the re-
ordering phase because it also benefits from multi-processor architectures without

2



increasing the memory footprint. The reordering system is developed in such a way
that there is no need to adjust the already existing reordering algorithms. Existing
parallel reordering systems, like e.g., [81], take advantage of empirical observations
and distribute different instances of a reordering algorithm over a number of com-
puters. This approach does not lead to a significant run-time improvement because
it runs unmodified reordering algorithms on different computers. JINC’s approach
delays the swap operations until needed and identifies parallel swaps. The identi-
fication runs in a separate thread and distributes the swap operations to different
threads. These swap operations run in parallel so that this approach increases the
run-time performance.

Due to the novel approaches and the modern structure we show in many competitive
benchmarks that the theoretical speed improvements prove themselves in real world
examples, making JINC to a space and run-time efficient OBDD library. The result
can be summarized as follows:

• The HOWDD framework leads to an efficient single-threaded OBDD library
design.

• TADDs are superior to ordinary ADDs. The number of nodes is reduced by
almost factor two. The speed-up is around 150%.

• The multi-threaded version of JINC increases the performance by several fac-
tors without increasing the memory usage.

• The novel multi-operand APPLY algorithm increases the performance while
eliminating the creation of temporary nodes. This enables the computation of
larger models.

3
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Ordered Binary Decision Diagrams

Chapter 2
This chapter reminds the main concepts of Ordered Binary Decision Diagrams
(OBDDs) and introduces definitions and notations which are necessary for the devel-
opment of a generic framework which yields the basis for the OBDD library JINC.

Binary Decision Diagrams (BDDs) created by Lee [68] and Akers [3] provide an
efficient method to represent Boolean functions. Bryant [21] introduced Ordered
Binary Decision Diagrams (OBDDs) which are BDDs with a fixed variable order
to assure a canonical form. With this property, the equality of functions can be
checked in constant time. The restriction of a fixed variable ordering enabled Bryant
to develop efficient manipulation algorithms for OBDDs.

2.1 Notations and Definitions

This section will give basic definitions and notations for OBDDs and their variants.

Definition 2.1.1 (Evaluation). Let Z = {z1, . . . , zn} be a finite set of Boolean
variables. An evaluation of Z is a map

η : Z → {0, 1}

that assigns a value η(z) ∈ {0, 1} to each variable z ∈ Z.
Eval(Z) identifies the set of all evaluations of Z.

Let a = (a1, . . . , an) ∈ {0, 1}n and z = (zi1 , . . . , zin) ∈ Zn with pairwise different zij ,
then [z = a] represents the evaluation η ∈ Eval(Z) with

η(zij) = aj, j = 1, . . . , n.

�

Notation 2.1.2 (Assignment). Let Z be defined as in Definition 2.1.1,
a = (a1, . . . , ar) ∈ {0, 1}r and z = (zi1 , . . . , zir) ∈ Zr with pairwise different zij . The
assignment

η [z = a] ∈ Eval(Z)

is defined by

η [z = a] (z) =

{
aj if z ∈ {zi1 , . . . , zir} with z = zij
η(z) otherwise.

Definition 2.1.3 (IK-function). Let IK be a set. A IK-function over Z is a map

f : Eval(Z)→ IK.

5
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The set of all Boolean functions over Z = {z1, . . . , zn} will be called IK(Z) or
IK(z1, . . . , zn). The special cases IK = {0, 1} and IK = IR identify the switching
functions and real-valued functions. The set of all IK-functions, switching functions
and real-valued functions will be called B(Z) and IR(Z), respectively.

�
Definition 2.1.4 (Cofactor). Let z and a be as in Notation 2.1.2 and f ∈ IK(Z).
The cofactor of f related to z is defined by:

f |z=a ∈ IK(Z)

where
f |z=a(η) = f(η [z = a]).

�
Definition 2.1.5 (Composition Operator). Let z = (zi1 , . . . , zir) ∈ Zr with pairwise
different zij , g = (g1, . . . gr) ∈ IK(Z)r and f ∈ IK(Z). The composition operator
{z/g} is defined by:

f{z/g} ∈ IK(Z)

where
f{z/g}(η) = f(η′)

with

η′(x) =

{
gj(η(x)) if x = zij
η(x) otherwise.

�
Definition 2.1.6 (Rename Operator). Let x = (xi1 , . . . , xir) ∈ Zr with pairwise
different xij , z = (zi1 , . . . , zir) ∈ Zr with pairwise different zij and f ∈ IK(Z). The
rename operator {x← z} is defined by:

f{x← z} ∈ IK(Z)

where
f{x← z} = f{x/ẑ}

with
ẑ = (ẑi1 , . . . , ẑir) and ẑij = projection function of zij .

�
Definition 2.1.7 (Variable Ordering). A variable ordering over Z is an ordered
tuple

π = (zi1 , . . . , zin),

that contains every variable zij ∈ Z exactly once. A variable ordering π defines an
order relation over variables in a canonical way. For every two variables zij , zik ∈ π
the following holds:

zij <π zik ⇔ j < k.

�
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2.2. SHARED ORDERED BINARY DECISION DIAGRAMS

2.2 Shared Ordered Binary Decision Diagrams

Ordered Binary Decision Diagrams have been introduced by Bryant [21]. Bryant
also introduced an efficient algorithm to reduce an OBDD. This Reduced OBDDs
(ROBDDs) are of canonical form. The canonical form can be obtained in several
ways. Regarding the implementation of an efficient OBDD library it is not rea-
sonable to apply the reduction algorithm on an OBDD after every manipulation.
The reduction algorithm is therefore integrated into the manipulation algorithms.
The consequence for OBDDs would be to hold isomorphic tables for every OBDD
instance. A further disadvantage of storing OBDDs in disjunctive memory areas is
that subgraph-sharing cannot apply. For that reason Minato [102, 115] introduced
Shared Ordered Binary Decision Diagrams (SOBDDs). The idea is to use one mem-
ory area for all OBDDs. With that approach it is possible to integrate the reduction
algorithm into the manipulation operations in an efficient manner. This also allows
to check for equality of two functions in constant time. In this thesis we will focus
on the idea of SOBDDs as a basis for implementing JINC (see Chapter 4 for more
details).

The disadvantage of the idea of storing all functions in one memory area is that
the fixed variable ordering for all functions could lead to an exponential-sized rep-
resentation whereas storing the functions in several OBDDs with different orderings
would be of linear size. It has been proven that these “bad” functions rarely occur
in real applications. In practice, the advantages of faster algorithms1 and an equiv-
alence test in constant time outweigh the disadvantages so that we will focus on the
idea of Shared Ordered BDDs.

In the following sections we want to show the need for a general framework for
OBDDs with output transformations by means of different OBDD variants. It will
be assumed that the following variants are reduced and canonical. We will recall
the basic ideas and concepts for every variant instead of discussing every detail.
The formal definitions of reducedness and uniqueness are discussed and proven once
for Output Weighted Decision Diagrams (OWDDs) and assigned to every variant
thereafter.

2.2.1 SOBDD with Negative Edges

The idea of sharing all functions in one OBDD leads to a problem when negating
a given function represented in a SOBDD. In the case of OBDDs the values of the
drains have to be negated to negate the represented function (see Figure 2.1). This
is not possible for SOBDDs because changing the values of the drains would negate
all represented functions.

1Algorithms operating on OBDDs with the same variable ordering are generally of lower com-
plexity than algorithms operating on OBDDs with different orderings. This does not mean that
all algorithms on SOBDDs are “faster” than algorithms on OBDDs. In Section 2.2.1 it will be
explained how to avoid the problem of negating a function in a SOBDD – compared to the negation
of an OBDD in constant time.

7
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Figure 2.1: Negation on OBDDs

Figure 2.2: The idea of negative edges

To overcome this drawback, attributed edges [102] were introduced. This means that
additional information can be stored on the edges. In the above example negative
edges are being used. Figure 2.2 illustrates the idea of negative edges. The dot on an
edge means that the function represented by the succeeding node must be negated.
Instead of changing the values of the drains the edges can now be altered to negate
the represented function. The OBDD shown in Figure 2.2 (a) is not reduced. To
reduce the OBDD further, the idea of negative edges must be applied to all nodes
(see (b)) which results in a smaller sized BDD.

In view to implementation it means that all data structures must be able to han-
dle transformation functions. Chapter 4 discusses different approaches to handle
different classes of transformation functions.

2.2.2 Algebraic Decision Diagrams

The above mentioned OBDD variants are used to represent switching functions.
The following OBDD variants are used for algebraic computation, i.e., real-valued
functions.

The former definition of SOBDDs (without negative edges) can be expanded to real-
valued functions so that real values are possible for the drains. Figure 2.3 shows the

8



2.2. SHARED ORDERED BINARY DECISION DIAGRAMS

Figure 2.3: ADD of 3x− 1
2
y + 4

Figure 2.4: EVBDD of 3x− 1
2
y + 4

representation of the function 3x− 1
2
y + 4. This OBDD variant is called Algebraic

Decision Diagram (ADD) or Multi-Terminal BDD (MTBDD) [7, 30].

2.2.3 Edge-Valued Binary Decision Diagrams

The disadvantage of ADDs is that the size of the OBDD representation depends on
the number of different function values. Therefore a similar approach as negative
edges is used. Instead of using a negative point on the edges an additive value is
used. Figure 2.4 shows an example for function 3x− 1

2
y + 4. To calculate the value

of the Edge-Valued Binary Decision Diagram (EVBDD) [119], all the edge-values
on the way to the drain have to be added. To ensure a canonical form the edges of
an EVBDD are restricted in a way so that only the one-successor can have a non-
trivial weight and the zero-successor weight is fixed to zero. With this restriction
only one weight has to be stored and so this approach leads to a more compact
implementation.

Another important advantage of EVBDDs over ADDs is that the addition of a

9
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Figure 2.5: (a) EVBDD and (b) FEVBDD of 3x+ xy + y + 4

constant value to a function can be computed in constant time. In the case of
ADDs this could be done by changing the values of the drain, but that would lead
to the same problems as in the case of SOBDD. The edge attributes of EVBDDs
cannot be handled as efficient as negated edges (see Section 4.1.1.1 for more details).

2.2.4 Factored Edge-Valued Binary Decision Diagrams

The idea of EVBDDs can be expanded further to Factored Edge-Valued Binary De-
cision Diagrams (FEVBDDs) [114]. Instead of just adding a value to the succeeding
represented function a multiplicative and an additive weight are used. This leads to
a more compact representation than EVBDDs and enables the multiplication with
a constant value in constant time. Figure 2.5 shows the EVBDD and FEVBDD for
the function f(x, y) = 3x + xy + y + 4. The first number in brackets is the multi-
plicative weight and the second the additive. The cofactor f |[x=1,y=0] is calculated
with 1 · (2 · (1 · 0 + 0) + 3) + 4 = 7. As in the case of EVBDDs the edge weights
of FEVBDDs are restricted so that only the one-successor can have a non-trivial
weight and the zero-successor weight is fixed to (1, 0).

2.2.4.1 Normalized Algebraic Decision Diagrams

The restrictions of the weights on FEVBDDs2 reduces the number of parameters
that have to be considered. With this restriction the calculation of minima and
maxima needs a full traversing. The idea of Normalized Algebraic Decision Diagrams
(NADDs) [84, 87] is that in addition to the previously mentioned advantages of
FEVBDDs (multiplication and addition of a constant value in constant time) the
calculation of minima and maxima can be calculated in constant time. Instead
of fixing the weights, the functions that are represented by each inner node v is
normalized, i.e., fv : {0, 1}n → [0, 1], min fv = 0 and max fv = 1. With this

2the parameters of the zero-successor are fixed

10
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Figure 2.6: NADD representing 3
2
x+ 3

2
y + 2

x1

y2

y1

0 1




0 0 2 2
1 2 2 2
0 0 1 1
1 2 1 1




x2

2

y2

Figure 2.7: Matrix representation with ADDs

property the minimum and maximum of a NADD function can be calculated using
only the parameters pointing to that node. The disadvantage of that method is
that due to more complex calculations the run-time increases for normal operations.
Figure 2.6 shows an example NADD representing the function 3

2
x+ 3

2
y + 2.

2.3 Matrix Representation and Operations

Key features of an OBDD library are the provided operations. In this section we
will recall the idea of matrix representation with OBDD variants. These operations
yield the basis for the benchmarks provided in Chapter 7. Chapter 4 illustrates the
implementation details for matrix operations.

Matrices can be expressed with OBDD variants as described in [30, 43] (Figure 2.7
illustrates the idea). The representation of a vector can be seen as the representation
of a matrix with dimension n× 1.

11
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Ax = ·A x = ·
A00 A01

A10 A11

x0

x1

= ·
x0

x1

·
x0

x1

+
A00 A01

A10 A110

0

=
A00 x0· + ·A01 x1

x0· + · x1A10 A11

Figure 2.8: Block-wise matrix vector multiplication

We will now discuss methods to solve linear systems of equations that are well suited
for OBDDs. Methods that need arbitrary access to an element of a matrix cannot
be used efficiently with OBDDs. The recursive structure of OBDDs supports very
efficient block-wise access to the elements [43]. In this thesis we just focus on pure
OBDD approaches as we want to see how the different variants perform. For more
details on a hybrid approach combining OBDDs and the sparse matrix representation
see [92].

2.3.1 Direct methods

Direct methods for solving a linear equation system like the Gauss’ method [32]
cannot be used efficiently with OBDDs because they need arbitrary access to the
elements of a matrix. Additionally, the complexity of such methods is higher than
the complexity of iterative methods. Another reason not to use these methods on
OBDDs is that these methods are more vulnerable to arithmetic errors.

2.3.2 Iterative methods

Iterative methods have been established for all kinds of applications. We will only
focus on stationary iterative methods [10], i.e., the same operation is used for all
iterative steps. As mentioned above, block-wise access is well supported by OBDD
structures. With an interleaved variable ordering [42] the calculation of the sub-
structures (blocks) can be performed in constant time. Figure 2.8 illustrates the
idea of block-building on the example of matrix-vector multiplication.

With this approach the matrix-vector multiplication can be performed efficiently
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with OBDDs.

The idea of an iterative method is based on the following observation.

Let A = M +N with appropriate matrices M and N where M is invertible.

Ax = b ⇔ (M +N)x = b (2.1)

⇔ Mx+Nx = b (2.2)

⇔ Mx = b−Nx (2.3)

⇔ x = M−1(b−Nx) (2.4)

⇔ x = M−1b−M−1Nx (2.5)

This leads to the iterative instruction:

x(n+1) = M−1b−M−1Nx(n)

If M is the diagonal matrix of A, this method is called Jacobi method. The condition
that M has to be invertible means that no zero element exists on the diagonal.

13
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Higher-Order Weighted Decision Diagrams

Chapter 3
In the preceding chapter we recalled the main concepts of several OBDD variants.
The basic concept of OBDDs holds for all variants with just a few small modifi-
cations. The definition of reducedness and the proof of canonicity is similar for
every variant. For this reason we introduce the general framework of Higher-Order
Weighted Decision Diagrams (HOWDDs). A generic framework that covers sev-
eral well established OBDD variants also supports the design of an efficient OBDD
library. The observations about similarities of several OBDD variants influenced
JINC’s design.

3.1 Output Weighted Decision Diagrams

In this section we introduce the general framework of Output Weighted Decision
Diagrams (OWDDs) that covers all above mentioned variants to reason about re-
ducedness and canonicity.

Parts of the material of this chapter has been published in [87] (where we used the
notion WDD rather than OWDD).

3.1.1 Definition and Semantics

Notation 3.1.1 (The Φ sets). In the sequel, let Z be a finite set of variables, IK a set
with at least two elements1, and let IF denote the set of functions f : Eval(Z)→ IK.
ΦIF denotes a nonempty set of bijections IK → IK such that

(1) ΦIF is closed under inversion and composition, i.e., if ϕ, ψ ∈ ΦIF then
ϕ−1 ∈ ΦIF and ϕ ◦ ψ ∈ ΦIF . (In particular, ΦIF contains the identity id .)

(2) If f ∈ IF , ϕ ∈ ΦIF and f = ϕ ◦ f then ϕ = id .

In our notion of output weighted decision diagrams the edges will be augmented with
functions ϕ ∈ ΦIF that serve as transformations. The idea is that any ϕ-labelled
edge to (a node for) a function f stands for the function ϕ◦f . Condition (2) will be
important for the uniqueness of the function representation. Note that if ϕ, ψ ∈ ΦIF ,
f ∈ IF and ϕ ◦ f = ψ ◦ f then ϕ = ψ (as we have f = (ϕ−1 ◦ ψ) ◦ f , and hence,
ϕ−1 ◦ ψ = id by (2)).

In some BDD-variants with weighted edges, the constant functions (represented by
the incoming edges of the terminal nodes) require special treatment as there might
be several possibilities for transforming a constant c ∈ IK into another constant

1The requirement IK to be a semi-ring as in [8] could be added, but it is irrelevant as long as
we do not discuss operations on IK.
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c′ ∈ IK via the bijections ϕ ∈ ΦIF . Therefore, we split IF into the sets IF const and
IF non-const of constant and non-constant functions in IF , respectively, and assume that
we are given sets of transformations Φ = ΦIFnon-const for the non-constant functions in
IF and Φconst for the constant functions in IF , such that Φ and Φconst fulfill conditions
(1) and (2) in Notation 3.1.1.

Definition 3.1.2 (Output Weighted Decision Diagram (OWDD)). Let Z, IK, Φ,
Φconst be as above and π a variable ordering for Z. A π-OWDD for (Z, IK,Φ,Φconst)
is a rooted, binary branching, acyclic graph B with several additional information.
For the inner nodes, we have

• a function var that assigns a variable var(v) ∈ Z to any inner node v,

• functions v 7→ succ0(v) and v 7→ succ1(v) that specify the successors of v,

• functions v 7→ φ0(v) and v 7→ φ1(v) that specify the transformations associated
with the outgoing edges from v.

For the terminal nodes, we have a function v 7→ value(v) ∈ IK. If v is an inner
node and ξ ∈ {0, 1} such that succξ(v) is an inner node then we require that var(v)
occurs in π before var(succξ(v)) and φξ(v) ∈ Φ. If succξ(v) is a terminal node then
we require φξ(v) ∈ Φconst.
The root of B is a pair r = 〈φr, vr〉 consisting of a function φr ∈ Φ ∪ Φconst and a
node vr from which all other nodes in B are reachable. As for the edges we require
φr ∈ Φ if vr is an inner node and φr ∈ Φconst if vr is terminal2. �
Notation 3.1.3 (Semantics of OWDDs). The semantics of a OWDD B is formalized
by associating a function

fv ∈ IF = IF const ∪ IF non-const

to any node in B and a function for the root r. Intuitively, an incoming edge of
node v labelled with ϕ stands for the function ϕ ◦ fv. Formally, the function fB
for OWDD B is induced by its root r = 〈φr, vr〉 which is given by fB = φr ◦ fvr
where the function fv for the nodes is defined in a bottom-up fashion. (The level of
a z-node denotes the position of variable z in π. The nodes on the bottom-level are
the terminal nodes.)

The terminal nodes represent constant functions as expected, i.e., fv = value(v) for
any terminal node v. If v is a z-node then fv : Eval(Z)→ IK is defined as follows:
Let η ∈ Eval(Z) and η(z) = ξ ∈ {0, 1} then

fv(η) = φξ(v) ◦ fsuccξ(v)(η).

If IK = {0, 1} we may write fv as

fv = (¬z ∧ φ0(v) ◦ fsucc0(v)) ∨ (z ∧ φ1(v) ◦ fsucc1(v))

and if IK = IR

fv = (1− z) · (φ0(v) ◦ fsucc0(v)) + z · (φ1(v) ◦ fsucc1(v)).

2In this case, vr is the only node in B.

16



3.1. OUTPUT WEIGHTED DECISION DIAGRAMS
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Figure 3.1: Example for OWDDs with multiplicative and additive edge-weights

It is possible to define another kind of expansion on OWDDs to cover OBDD vari-
ants like ZBDDs, BMDs, ... . We will only focus on the Shannon’s Expansion
because it is the most intuitive approach. All following definitions may be adapted
to almost any kind of expansion in a natural way. ZBDDs are an exception and
need a special treatment because non-essential variables occur in a ZBDD as nodes.
Furthermore, skipped levels on a path to the one drain represent an assignment with
zero. Therefore the number of essential variables does not correspond to the number
of occupied levels in the associated ZBDD. The following proofs and definitions are
based on expansions in which the number of essential variables and the number of
occupied levels are equal.

Before discussing the reducedness and canonicity for OWDDs, we must observe that
the notion of OWDDs covers several types of known BDD-variants. For IK = {0, 1}
our notion of a OWDD specializes to an ordinary ordered BDD [21] when dealing
with Φ = {id} and to ordered BDDs with complement bits for the edges [102]
when dealing with Φ = {id ,¬}. For IK = IR (or IK = IN or any other semi-ring)
MTBDDs [8, 31, 43] are obtained through Φ = {id}, while edge-valued BDDs [119]
arise by taking Φ = {x 7→ x + b : b ∈ IK}. In these examples, the incoming edges
of the terminal nodes do not play a special role and we may deal with Φconst = Φ
in either case. Factored edge-valued BDDs (FEVBDDs) are obtained by taking
Φ =

{
x 7→ ax + b : a, b ∈ IK, a 6= 0

}
3 and Φconst the set of functions x 7→ x + b

where b ∈ IK. Fig. 3.1 shows four FEVBDDs where we simply write (a, b) to denote
the function x 7→ ax + b. The OWDD in (1) represents the function 3y + 1, while
the OWDDs in (2.a), (2.b) and (2.c) represent the function f = x(1 + 2y). The
following example shows how the function f represented by the OWDD in (2.a) can
be calculated.

• fy = (1− y) · (1 + 0) + y · (3 + 1) = 3y + 1

• fx = (1− x) · (0 + 0) + x · (1 · fy + 0) = x · (3y + 1)

• f = 1 · fx + 0 = x · (3y + 1)

Note that it is not possible to differentiate between FEVBDDs and NADDs because
they have equal transformation sets.

3a 6= 0 because elements of Φ must be bijections.
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3.1.2 Reducedness and Canonicity

With the definition of OWDDs it is possible to cover all before mentioned OBDD
variants. The remaining questions are how to formalize freedom of redundancies
and how to ensure the unique representation of functions by π-OWDDs.

Intuitively, the freedom of redundancies in OWDDs means that two different nodes
in a OWDD represent transformations of different functions, i.e., if f and g are the
represented functions then f 6∈ {ϕ ◦ g|ϕ ∈ Φ}.
Notation 3.1.4 (The equivalence ≡). Let IF ′ be IF non-const or IF const and Φ′ the
corresponding set of transformations, i.e., Φ′ = Φ if IF ′ = IF non-const and Φ′ = Φconst if
IF ′ = IF const. Let ≡Φ′ be the following equivalence on IF ′ such that:

If f, g ∈ IF ′ then f ≡Φ′ g iff there exists ϕ ∈ Φ′ with f = ϕ ◦ g.4

Capital letters F,G, . . . will be used for the equivalence classes of IF under ≡. �

In the following section, we will use the notation ≡ for both ≡Φ and ≡Φconst if the
meaning can be understood by the context. Additionally, we will adapt that for all
f ∈ IF const and g ∈ IF non-const follows f 6≡ g.

Definition 3.1.5 (Reduced OWDDs). A π-OWDD B is called reduced iff for all
nodes v, w in B we have v 6= w implies fv 6≡ fw. �

For instance, the two π-OWDDs shown in Fig. 3.1 (2.b) and (2.c) are reduced, while
the ones in Fig. 3.1 (1) and (2.a) are not. In (2.a), the two sinks represent (constant)
functions that can be transformed into the other via bijections in Φconst. In (1), the
two y-nodes represent (non-constant) functions that are equivalent.

The term reducedness on OWDDs still leaves freedom to choose the representatives
in the ≡-equivalence classes. Thus, reduced π-OWDDs for the same function need
not to be isomorphic. (We use the notion “isomorphism” for π-OWDDs B and C
in the sense that B and C agree up to renaming of the nodes.) Instead, as we will
see in Theorem 3.1.7, reduced π-OWDDs are weakly isomorphic meaning that they
agree when abstracting away from the names of the nodes and ignoring the weights
for the edges and the root. In particular, weakly isomorphic OWDDs have the same
size (number of nodes).

Lemma 3.1.6. Let f, g ∈ IF and f ≡ g. Then, f and g have the same essential
variables and for all z ∈ Z we have f |z=0 ≡ g|z=0 and f |z=1 ≡ g|z=1.

Proof. Obvious as f = ϕ ◦ g implies f |z=ξ = ϕ ◦ g|z=ξ ≡ g|z=ξ. �

Lemma 3.1.6 yields that cofactors can be built for ≡-equivalence classes. That
is, if F ⊆ IF and ξ ∈ {0, 1} then we may write F |z=ξ to denote the unique ≡-
equivalence class that contains the functions f |z=ξ for all f ∈ F . A similar notation
F |z1=ξ1,...,zk=ξk is used if we consider cofactors for several variables.

4Note that ≡Φ′ is in fact an equivalence as we have f = ϕ ◦ g implies g = ϕ−1 ◦ f . Moreover,
ϕ ◦ f = ψ ◦ g implies f = (ϕ−1 ◦ ψ) ◦ g ≡Φ′ g.
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Theorem 3.1.7. [Weak canonicity of reduced OWDDs] Let π be a variable
ordering and B, C reduced π-OWDDs. Then: If fB ≡ fC then B and C are weakly
isomorphic. In particular, |B| = |C|.

Proof. Let π = (z1, . . . , zn) be the variable ordering. From fB ≡ fC we derive
[fB]≡ = [fC]≡. That together with Lemma 3.1.6 yields that we can argument with
B and get a result for all equivalent π-OWDDs. If FB = [fB]≡ then there is a 1-
1-correspondence between the cofactors FB|z1=ξ1,...,zk=ξk and the nodes in B and C
respectively. (Note that some of these cofactors might agree.) To see why, we may
use an inductive argument starting in the root node. If v is an inner node in B such
that [fv]≡ = FB|z1=ξ1,...,zk=ξk then v is labelled with a variable z` where ` > k and
z` is the first essential variable for fv (and all functions in [fv]≡). Moreover, the
function fv0 for the 0-successor v0 of v is in the equivalence class

[fv]≡
∣∣
z`=0

= FB|z1=ξ1,...,zk=ξk,...,z`=0

for arbitrary assignments of the variables zk+1, . . . , z`−1. A similar condition holds
for the 1-successor of v. Hence, if we ignore the edge-weights then all reduced
π-OWDDs for the same function have the same structure. �

Note that it is still not possible to differentiate between FEVBDDs and NADDs.
Theorem 3.1.7 implies that both OBDD variants have the same structure and thus
the same number of nodes but different weights on the edges.

The next goal is to achieve a criteria for canonicity. We mentioned that there is still
the freedom to choose a representative out of an equivalence class. We also alluded
to several possibilities for ensuring canonicity for different OBDD variants. In the
same manner as in FEVBDDs and NADDs, we now define a selection function
S : IF/ ≡→ IF which “selects” a unique representative S(F ) ∈ IF out of any
equivalence class F ∈ IF/ ≡.

For f ∈ IF , we simply write S(f) rather than S([f ]≡). Thus, f ≡ S(f) for all
f ∈ IF .

Definition 3.1.8 (S-reduced OWDDs). A π-OWDD B is called S-reduced if B is
reduced and fv = S(fv) for all nodes v in B. �

With this selection function it is now possible to proof the canonicity of S-reduced
OWDDs.

Theorem 3.1.9. [Canonicity of S-reduced OWDDs] Let π be a variable or-
dering, S a selection function and let B, C be S-reduced π-OWDDs with fB = fC.
Then, B and C are isomorphic.

Proof. Our argument is by induction on n = |Z| (number of variables). If n = 0
then fB = fC is constant. Let c be the value of fB = fC and c′ = S(c). Then, the
root of B and C consists of a terminal node labelled with c′ together with the unique
transformation ϕ ∈ Φconst such that ϕ(c′) = c.
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In the induction step, we assume that the root nodes of B and
C are inner nodes, say z-nodes. Then, z is the first essential
variable in fB = fC according to the ordering π. Let rB = 〈ϕ, v〉
be the root of B and rC = 〈ψ,w〉 the root of C. Then, ϕ ◦ fv =
fB = fC = ψ ◦ fw. Thus, fv ≡ fw. As B and C are S-reduced

we have fv = fw and ϕ = ψ (by condition (2) of Φ, cf. Notation 3.1.1). For
ξ ∈ {0, 1}, let vξ = succξ(v), wξ = succξ(w), φξ(v) = ϕξ, φξ(w) = ψξ. Then,
ϕξ ◦ fvξ = fv|z=ξ = fw|z=ξ = ψξ ◦ fwξ . Hence, fvξ ≡ fwξ . Again, as B and C are
S-reduced, we get fvξ = fwξ and ϕξ = ψξ (by the conditions for Φ and Φconst).
Applying the induction hypothesis, the sub-OWDD with root nodes vξ and wξ are
isomorphic. Hence, B and C are isomorphic. �

Theorem 3.1.10. [Universality and uniqueness of S-reduced OWDDs] Let
π be a variable ordering, S a selection function and f : Eval(Z) → IK. Then,
there exists a unique S-reduced π-OWDDs B with f = fB. (Uniqueness is up to
isomorphism.)

Proof. It remains to provide the proof of the existence of an S-reduced π-OWDD
for f . The construction is by induction on the number n of essential variables of f .
If n = 0 then f is constant. Let c = S(f). There exists a ϕ ∈ Φconst with ϕ(c) = f .
Thus, we may use an OWDD consisting of the root 〈ϕ, v〉 where v is a terminal node
v labelled with c. In the induction step, we assume that f is not constant.

B0

v0

v

ϕ

ϕ0 ϕ1

z

v1

B1

Let z be the first essential variable of f according to π and let
g = S(f) and f = ϕ ◦ g where ϕ ∈ Φ. For ξ ∈ {0, 1}, let
gξ = S(g|z=ξ) and g|z=ξ = ϕξ ◦ gξ where ϕξ ∈ Φ if g|z=ξ is
not constant and ϕξ ∈ Φconst if g|z=ξ is constant. By induction
hypothesis there exist S-reduced π-OWDDs B0 and B1 for g0

and g1 respectively. We may assume w.l.o.g. that B0 and B1

share the same nodes for common cofactors. More precisely, we
may assume that if w0 is a node in B0 and w1 a node in B1 such
that fw0 = fw1 then w0 = w1. (Otherwise the nodes in B1 can
be renamed as there is an isomorphism between the sub-OWDDs

with root nodes w0 and w1, cf. Theorem 3.1.9.) We then may compose B0, B1 to a
S-reduced π-OWDD for f as shown in the picture on the left. �

3.1.3 Examples

In the section above we showed how to define reducedness and canonicity on OWDDs
by means of a selection function. We will now show how the selection function for
different already known OBDD variants may be chosen.

OBDDs

The ordinary OBDDs have no other transformation than the identity, so that the
equivalence classes only contain one function. From this point of view there is no
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⇒

⇒

Figure 3.2: Transformation rules for negative edges

freedom to choose a selection function, i.e.,

S(f) = f ∀f ∈ IF .

OBDDs with negative edges In the case of OBDDs with negative edges every
equivalence class contains two functions. The constant functions IF const are in the
same equivalence class, i.e., we have the freedom to choose the terminal node. In
much of the literature the one drain is used, so that S(f) = 1 ∀f ∈ IF const.

The non-constant functions need a different kind of selection. We will assume that
only the zero-successor can have a non-trivial weight. Figure 3.2 shows that we can
transform a OBDD with negative edges without any restriction to a valid5 OBDD.
This leads to the following selection function:

S(f)(1, . . . , 1) = 1 ∀f ∈ IF

ADDs

As in the case of OBDDs (without negative edges) we have no freedom to choose a
selection function and thus

S(f) = f ∀f ∈ IF .

EVBDDs

Edge-valued BDDs have Φ = {x 7→ x+ b : b ∈ IK} as transformation set. To ensure
canonicity the zero-successors always have the identity as a weight. This restriction
leads to a unique selection function

S(f)(0, . . . , 0) = 0 ∀f ∈ IF

and thus ensures canonicity for EVBDDs.

5Only zero-successors can have a non-trivial weight.
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FEVBDDs

In all previous examples the transformation sets Φ and Φconst were the same. This
made the definition of a selection function much easier than in the case of FEVBDDs
(and NADDs). FEVBDDs are the first variant with different transformation sets
Φ and Φconst. The constant functions have the same transformations as EVBDDs
so that this case is handled in the same manner, i.e., S(c) = 0 ∀c ∈ IF const. The
non-constant functions must be treated differently. As previously mentioned we
restrict FEVBDDs so that the identity function is assigned to the zero-successor.
This is similar to SOBDDs with negative edges as every FEVBDD node can be
transformed into a restricted one. Unfortunately, this is not enough to define a
unique selection function. Figure 3.3 shows that there is still freedom to choose
different representation for the same function.

Figure 3.3: Two different zero-successor-restricted FEVBDDs representing the same
function

The shown case is the only exception that is not covered by restricting the zero-
successor. Let z be the first essential variable6 of a non-constant function f with
f |z=0 6∈ IF const. Then, this restriction can be formalized as follows:

S(f) = g such that g|z=0 = S(g|z=0)

The remaining case if f is a non-constant function and f |z=0 ∈ IF const can be handled
by fixing the multiplicative weight of the one-successor. This leads to the following
selection function: S(f) = g such that:

• g|z=0 = S(g|z=0)

• g|z=1 = S(g|z=1) + b with capable b ∈ IR

Note that the second condition is similar to the EVBDD equivalence.

NADDs NADDs and FEVBDDs just differ in in the selection function. With
Theorem 3.1.7 it follows that the NADD and FEVBDD representation of a function
have the same node-structure and thus the same size. This is an important result
from the OWDD framework concept.

6with respect to the given variable ordering
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As previously noted, NADDs and FEVBDDs have different selection functions. The
constant functions are the same as in the case of FEVBDDs, i.e., S(c) = 0 ∀c ∈
IF const. At first it seems that normalization makes the definition of the selection func-
tion more straightforward. But unfortunately this is not the case. Before discussing
this in detail we will first define conditions for the selection function.

Let f be a non-constant function. S(f) = g such that:

• g ∈ ({0, 1}n → [0, 1])

• min g = 0

• max g = 1

It is easy to see why S cannot select a unique representative out of every equivalence
class. Let us assume g fulfills all conditions above, then 1 − g would also fulfill all
conditions. The next goal is to establish additional conditions for S, so that S is
well-defined in the end.

Let f be a non-constant function and let z be the first essential variable with f |z=0 6∈
IF const and S(f) = g. Lemma 3.1.6 implies that

g|z=0 ≡ S(g|z=0)

which is equivalent to

λ0 · g|z=0 + τ0 = S(g|z=0) λ0 ∈ IR\{0}, τ0 ∈ IR.

To select a unique function we demand that λ0 > 0.

Analogously, if f |z=0 ∈ IF const we demand that λ1 > 0 for

λ1 · g|z=1 + τ1 = S(g|z=1) λ1 ∈ IR\{0}, τ1 ∈ IR.
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3.2 Higher-Order Weighted Decision Diagrams

In the last section we demonstrated how the different known OBDD variants com-
pare in several applications. We will focus on the fact that every previously in-
troduced OBDD variant is based on output transformations. Each variant was
introduced to overcome a special problem, e.g., OBDDs with negative edges were
introduced to negate a function in constant time. JINC is supposed to support a
wide range of transformation sets so it is necessary to discuss if the supported trans-
formation sets could be expanded without loosing the general concept of OWDDs.

The goal of this chapter is to develop a more general framework than OWDDs to
support a wider range of transformation functions.

This framework influenced JINC’s design described in Chapter 4. The necessity to
support a wider range of transformation functions can be seen on the example of a
variant that is no instance of OWDDs but an instance of the more general framework
in Chapter 5.

3.2.1 Definition and Semantics

The definitions for this framework are similar to the definitions of OWDDs.

The main difference is that it is now possible to handle non-boolean variables (com-
parable to MDDs [60]).

Definition 3.2.1 (Evaluation). Let Zm = {z1, . . . , zn} be a finite set of variables
over {0, 1, . . . ,m− 1} with m ≥ 2.

An evaluation of Zm is a function

η : Zm → {0, 1, . . . ,m− 1}

that assigns a value η(z) ∈ {0, 1, . . . ,m− 1} to each variable z ∈ Zm.
Eval(Zm) identifies the set of all evaluations of Zm.

Let a = (a1, . . . , an) ∈ {0, 1, . . . ,m − 1}n and z = (zi1 , . . . , zin) ∈ Znm with pairwise
different zij , then [z = a] represents the evaluation η ∈ Eval(Zm) with

η(zij) = aj, j = 1, . . . , n.

�

At first it is important to define which kind of transformations can be used.

Recall that IF is the set of functions f : Eval(Z)→ IK. The definition of Zm applies
analogously to IF (m).

Notation 3.2.2 (The Ψ sets). Let IF (m)′ ⊆ IF (m) denote a nonempty set of func-
tions. ΨIF (m)′ denotes a nonempty set of bijections IF (m)′ → IF (m)′ such that
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(1) ΨIF (m)′ is closed under inversion and composition, i.e., if ψ1, ψ2 ∈ ΨIF (m)′ then
ψ−1

1 ∈ ΨIF (m)′ and ψ1 ◦ψ2 ∈ ΨIF (m)′ . (In particular, ΨIF (m)′ contains the identity
id .)

(2) If f ∈ IF (m)′, ψ1 ∈ ΨIF (m)′ and f = ψ1(f) then ψ1 = id . �

As in the case of OWDDs we will assess the edges of higher-order weighted decision
diagrams (HOWDDs) with transformation functions.

As seen in the example of FEVBDDs and NADDs, the constant functions in some
OBDD variants with weighted edges require special treatment as there might be
several possibilities to transform a constant function into another constant function
via the bijections ψ ∈ ΨIF (m)′ . For these OBDD variants IF (m) must be partitioned
into constant and non-constant functions. With this definition of transformation the
restriction of only two function sets would limit possible transformations, e.g., the
compose operator f 7→ f{z/(1−z)} would not fulfill condition (2) as x{z/(1−z)} =
id(x) = x. To overcome this shortage, we partition IF (m) into several function sets
with corresponding transformation sets.

Notation 3.2.3 (System). In the following let IF
(m)
1 , . . . , IF

(m)
k a partition of IF (m)

and
F(m) =

{
(IF

(m)
1 ,Ψ

IF
(m)
1

), . . . , (IF
(m)
k ,Ψ

IF
(m)
k

)
}

a system that fulfills the following conditions:.

(a) IF
(m)
i ∩ IF (m)

j = ∅ for i 6= j

(b)
⋃
i

IF
(m)
i = IF (m)

(c) Every IF
(m)
i has its corresponding transformation set Ψ

IF
(m)
i

satisfying condi-

tions (1) and (2) in Notation 3.2.2.

(d) For every tuple (IF
(m)
i ,Ψ

IF
(m)
i

) the following condition must hold:

∀ψ ∈ Ψ
IF

(m)
i
, f ∈ IF (m)

i ⇒ ψ(f) ∈ IF (m)
i

�

Conditions (a) and (b) ensure that every function has exactly one corresponding

function set. While condition (d) assures that all function sets IF
(m)
i are closed

under their transformations Ψ
IF

(m)
i

. With this constrain it becomes reasonable to

define equivalence classes on IF (m).

Notation 3.2.4 (The equivalence ≡). Let ≡ be the following equivalence on IF (m)

such that:

If f ∈ IF (m) and g ∈ IF i then f ≡ g iff there exists ψ ∈ Ψ
IF

(m)
i

with f = ψ(g).7 �

7Note that ≡ is in fact an equivalence as condition (c) ensures symmetry and transitivity.
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This definition of equivalence implies that if f ∈ IF (m)
i then [f ]≡ ⊆ IF

(m)
i for a system

F(m). From this it is clear that every non-empty function set IF
(m)
i contains at least

one equivalence class.

Note, that constant functions and non-constant functions can be contained in the
same equivalence class.

Definition 3.2.5 (Higher-Order Weighted Decision Diagram (HOWDD)). Let Zm,
IK, F(m) be as above and π a variable ordering for Zm. A π-HOWDD higher-order
weighted decision diagram for (Zm, IK,F(m)) is a finite rooted, m-ary branching,
acyclic graph B with additional information. For the inner nodes, we have

• a function var that assigns a variable var(v) ∈ Zm to any inner node v,

• functions v 7→ succi(v) with i ∈ {0, 1, . . . ,m − 1} that specify the successors
of v,

• functions v 7→ Ψi(v) with i ∈ {0, 1, . . . ,m−1} that specify the transformations
associated with the outgoing edges from v.

For the terminal nodes, we have function v 7→ value(v) ∈ IK. If v is an inner
node and ξ ∈ {0, 1, . . . ,m− 1} such that succξ(v) is an inner node, then we require

that var(v) occurs in π before var(succξ(v)). If fsuccξ(v) ∈ IF
(m)
i , then we require

Ψξ(v) ∈ Ψ
IF

(m)
i

8.

The root of B is a pair r = 〈Ψr, vr〉 consisting of a function Ψr ∈
⋃
i ΨIF

(m)
i

and a

node vr from which all other nodes in B are reachable. As for the edges we require
Ψr ∈ Ψ

IF
(m)
i

if fvr ∈ IF (m)
i . �

If m is clear from the context we will leave this parameter out.

The semantics of a HOWDD is formalized in the same way as in OWDDs.

Notation 3.2.6 (Semantics of HOWDDs). The semantics of a HOWDD B is for-
malized by associating a function

fv ∈ IF (m)

to any node in B and a function for the root r. Intuitively, an incoming edge of
node v labelled with ψ stands for the function ψ ◦ fv. Formally, the function fB
for HOWDD B is induced by its root r = 〈ψr, vr〉 which is given by fB = ψr ◦ fvr
where the function fv for the nodes is defined in a bottom-up fashion. (The level of
a z-node denotes the position of variable z in π. The nodes on the bottom-level are
the terminal nodes.)

8See Notation 3.2.6 for a formulation of fv with terminal or inner node v.
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The terminal nodes represent constant functions as expected, i.e., fv = value(v) for
any terminal node v. If v is a z-node then fv : Eval(Zm)→ IK is defined as follows:
Let η ∈ Eval(Zm) and η(z) = ξ ∈ {0, 1, . . . ,m− 1} then

fv(η) = ψξ(v) ◦ fsuccξ(v)(η).

That is, if IK = IR then we may write fv as

fv =
m−1∑

i=0

δi(z) · (Ψi(v)(fsucci(v)))

with δi(z) =

{
1 if z=i

0 otherwise
and

fv = (¬z ∧Ψ0(v)(fsucc0(v))) ∨ (z ∧Ψ1(v)(fsucc1(v)))

if IK = {0, 1} and m = 2.

However with this definition of F(m) it is not guaranteed that the cofactors of two
equivalent functions are equivalent. Thus, unlike OWDDs (see Theorem 3.1.7),

HOWDDs over the same system F
(m)
k and for the same function f might not be

structural equivalent.

Example 3.2.7. Let m = 2, IK = {0, 1}, f = ¬x ∧ y, g = x ∧ y, ψ = {x/y, y/¬x},
ΨIF ′ = {ψ, ψ−1, id} and IF ′ = {f, g}. f ≡ g because f = ψ(g). It is obvious
that f |x=0 = y 6≡ g|x=0 = 0. If f |x=0 is transformed via ψ−1 = {y/x, x/¬y} then
ψ−1(f |x=0) = x = g|y=1, although f |x=0 = y 6≡ x = g|y=1 then. �

3.2.2 Reducedness and Canonicity

The term reducedness is defined the same way as for OWDDs:

Definition 3.2.8 (Reduced HOWDDs). A π-HOWDD B is called reduced iff for
all nodes v, w in B we have v 6= w implies fv 6≡ fw. �

Canonicity is not guaranteed without further restrictions. The main problem in
the case of HOWDDs are transformations that alter the variables of a function. It
is possible that a transformation increases the number of essential variables of a
formula or renames the variables in it. Both cases make it more difficult to define a
selection function akin to guaranteeing canonicity with OWDDs.

The next example illustrates the problem with essential variable increasing trans-
formations.

Example 3.2.9. Let m = 2, IK = B, IF 1 = {x ∧ y, y} and IF 2 = IF\IF 1. The
corresponding transformation sets are:
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0 1

y

id id

ψ

(a)

0

id

ψ

id

x x xψ · · ·

id id

(b)

0

id
ψ

id

x

(c)

Figure 3.4: Different HOWDDs for x ∧ y.

• Ψ1 = {id , ψ} with ψ(f) =





x ∧ y if f = y

y if f = x ∧ y
f otherwise

Note that ψ : IF 1 → IF 1 is bijective (see Notation 3.2.2) and ψ−1 = ψ.

• Ψ2 = {id}

It is clear that F = {(IF 1,Ψ1), (IF 2,Ψ2)} builds a transformation system (as in
Notation 3.2.3).

We now follow the same idea as in the proof of Theorem 3.1.10 to construct HOWDDs
for the function f = x ∧ y. We use the variable ordering π = (x, y).

Now we have two possible choices for a representative g out of [f ]≡ = IF 1.

(1) We assume that g = y, i.e., f = ψ(g) and y is the first essential variable
of f according to π. The cofactors g|y=0 and g|y=1 are functions of IF 2. All
functions in IF 2 build their own equivalence class and thus the representation
of f should look like Figure 3.4(a).

(2) We assume that g = x ∧ y, i.e., x is the first essential variable of f according
to π. The cofactor g|x=0 ∈ IF 2 and g|x=1 ∈ IF 1. We assumed that x ∧ y is the
representative of IF 1. Therefore the function g|x=1 = y must be represented by
ψ(y) = x∧ y 9. This leads to a repeating or cyclic behavior (see Figure 3.4(b)
or (c)10) and thus this function cannot be represented by a HOWDD with
this specific selection function. The mentioned behavior would also violate
the ordering conditions of HOWDDs.

�

The next example shows the problem with permutations.

Example 3.2.10. Let IK = B, IF 1 = {x, y} and IF 2 = IF\IF 1 be the function sets
and π = (x, y) the variable ordering. The corresponding transformation sets are:

9This is because otherwise two different nodes representing equivalent functions would exist.
10Both cases are not possible because HOWDDs have to be finite and acyclic.
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• Ψ1 = {id , ψ} with ψ(f) = f{x ← y, y ← x} Then ψ is a bijection and
ψ = ψ−1.

• Ψ2 = {id}

It is clear that F = {(IF 1,Ψ1), (IF 2,Ψ2)} builds a transformation system (as in
Notation 3.2.3) with essential variable conserving transformations, i.e., the transfor-
mations do not change the number of essential variables.

We will now define a selection function S for the equivalence classes of F.

All functions in IF 2 build their own equivalence class and thus we do not have a
choice for a selection (S([f ]≡) = f if f ∈ IF 2). The only choice remains in the
equivalence class [x]≡ = [y]≡ = IF 1 (S(IF 1) = x or S(IF 1) = y).

If we choose x as a representative, i.e., S(IF 1) = x, there are functions that cannot
be represented by a reduced HOWDD with selection function S. Let f = x ∧ y be
the function we want to represent with a π-HOWDD. We will follow the same steps
as in Theorem 3.1.10 to try to construct the π-HOWDD.

0

id

ψ

id

x x

id

1

id

We start with f = x ∧ y. The first essential variable with respect
to π is x. The negative cofactor of f is the constant zero function,
i.e., f |x=0 = 0. The positive cofactor f |x=1 = y cannot be represented
directly because x and y lie in the same equivalence class and S selects
x as representative. Again x is the first essential variable and thus
this would lead to a HOWDD that violates the ordering conditions
(see the picture on the right).

0

id

id

x

id

1

id
y

id

In the other case, if we choose y as a representative for the equiva-
lence class IF 1, we can construct the π-HOWDD for f = x ∧ y. The
positive cofactor f |x=1 = y can be represented directly and thus this
HOWDD does not violate the ordering conditions (see the picture on
the right for a valid reduced π-HOWDD for x ∧ y).

�

For both examples above the order condition can be met by a suitable a selection
function S. The key for solving the problems shown in Example 3.2.9 and 3.2.10 is
to regard the index of the equivalence classes.

Definition 3.2.11 (Index of a function). Let π = (zi1 , . . . , zin) be a variable ordering

over Zm = {z1, . . . , zn}, F(m) =
{

(IF
(m)
1 ,Ψ

IF
(m)
1

), . . . , (IF
(m)
k ,Ψ

IF
(m)
k

)
}

a transforma-

tion system and f ∈ IF (m) a function. The index α(f) of f with respect to π is
defined by

α : IF (m) → (N ∪ {∞})
with

α(f) = min{j| f |zij=k 6= f |zij=l with l, k ∈ {0, 1, . . . ,m− 1} and l 6= k}
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where

min ∅ =∞,
i.e., α(f) is the index of the first essential variable or infinity if f is constant.

The index of an equivalence class [f ]≡ is defined by

α : IF (m)/ ≡→ (N ∪ {∞})

with
α([f ]≡) = max

g∈[f ]≡
α(g),

i.e., the maximum index of all functions in [f ]≡. �

As seen in Example 3.2.10, further restrictions for the selection function are required.
The reason why the first selection function S failed is that it chooses the represen-
tative g ∈ [f ]≡ which has a lower index than the other function in the equivalence
class [f ]≡, i.e., α(g) < α([f ]≡). To ensure canonicity for HOWDDs we require that
S chooses a function with the highest index out of every equivalence class.

Definition 3.2.12 (Selection Function). A selection function S : IF (m)/ ≡→ IF (m)

is defined as for OWDDs (in Section 3.1.1) with the additional condition that:

α(S(F )) = α(F ) for all F ∈ IF (m)/ ≡ .

�

Remind that, for f ∈ IF , we simply write S(f) rather than S([f ]≡).

In the case of the Shannon expansion on ordinary BDDs, the represented function
fv of an inner node v has a lower index than fsuccξ(v) ∀ξ ∈ {0, 1, . . . ,m − 1}. This
can be generalized for HOWDDs with a selection function S as defined above.

Lemma 3.2.13. Let π = (z1, . . . , zn) be the given variable ordering, f ∈ IF (m) a
non-constant function, z = zα(f) the first essential variable of f and S defined as
above. Then,

α(S([f |z=ξ]≡)) > α(f)

for all ξ ∈ {0, 1, . . . ,m− 1}.

Proof. It is obvious that the cofactor f |z=ξ has a higher index than f .

α(f |z=ξ) > α(f) (3.1)

The cofactor is contained in its equivalence class.

f |z=ξ ∈ [f |z=ξ]≡ (3.2)

This, together with Definition 3.2.11, yields that the index of the equivalence class
is greater or equal to the index of the function itself.

α([f |z=ξ]≡) ≥ α(f |z=ξ) (3.3)
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Definition 3.2.12 implies that the index of the equivalence class is equal to the index
of the selected function.

α([f |z=ξ]≡) = α(S([f |z=ξ]≡)) (3.4)

From 3.3 and 3.4 we get:

α(S([f |z=ξ]≡)) ≥ α(f |z=ξ) > α(f)︸ ︷︷ ︸
3.1

(3.5)

�

With definition of the selection function for HOWDDs and the result from Lemma
3.2.13, it is possible to implement the same concepts to ensure canonicity as for
OWDDs.

Definition 3.2.14 (S-reduced HOWDDs). A π-HOWDD B is called S-reduced if
B is reduced and fv = S(fv) for all nodes v in B. �

In contrast to OWDDs, HOWDDs do not provide a weak canonicity for all in-
stances (compare Theorem 3.1.7). This is due to the fact that there is in general
no 1-1-correspondence between the cofactors and the nodes. If there is a direct
correspondence between cofactors and nodes (e.g., all OWDD instances represented
as HOWDD instances) the same property can be proven for those special HOWDD
instances.

Theorem 3.2.15. [Canonicity of S-reduced HOWDDs] Let π be a variable
ordering, S a selection function and let B, C be S-reduced π-HOWDDs with fB = fC.
Then, B and C are isomorphic.

Proof. Our argument is by induction on the height of the function. The height of
function f is the number h of possible lower variables according to first essential
variable index of S(f) and π plus one, i.e., h = |Z| −min{α(S(f)), |Z|+ 1}+ 1. If
h = 0 then fB = fC is constant. Let c be the value of fB = fC and c′ = S(c). Then,
the root of B and C consists of a terminal node labelled c′ together with the unique
transformation ψ ∈ Ψi such that fB ∈ IF i and ψ(c′) = c.

In the induction step, the root nodes of B and C are inner nodes, say z-nodes. Then,
z is the first essential variable in S(fB) = S(fC) according to the ordering π. Let
rB = 〈ψB, v〉 be the root of B and rC = 〈ψC, w〉 the root of C.

ψB ψC

ψC0 ψCm−1ψBm−1

B C

v w

w0v0 vm−1

z

ψB0 . . .

z

. . .

wm−1

Then, ψB(fv) = fB = fC = ψC(fw). Thus, fv ≡ fw. As B and
C are S-reduced we have fv = fw and ψB = ψC (by condition
(2) of Ψ, cf. Notation 3.2.2). For ξ ∈ {0, 1, . . . ,m − 1}, let
vξ = succξ(v), wξ = succξ(w), Ψξ(v) = ψBξ , Ψξ(w) = ψCξ .
Then, ψBξ (fvξ) = fv|z=ξ = fw|z=ξ = ψCξ (fwξ) (by Definition

3.2.12 and Lemma 3.2.13). Hence, fvξ ≡ fwξ . Again, as B and C are S-reduced, we
get fvξ = fwξ and ψBξ = ψCξ (by the conditions for Ψi). By induction hypothesis,
the sub-HOWDD with root nodes vξ and wξ are isomorphic. Hence, B and C are
isomorphic. �
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Theorem 3.2.16. [Universality and uniqueness of S-reduced HOWDDs]
Let π be a variable ordering, S a selection function and f : Eval(Zm)→ IK. Then,
there exists a unique S-reduced π-HOWDDs B with f = fB. (Uniqueness is up to
isomorphism.)

Proof. The need remains to provide proof for the existence of a S-reduced π-
HOWDD for f . The construction is by induction on the height of the function. The
height of function f is the number h of possible lower variables according to first es-
sential variable index of S(f) and π plus one, i.e., h = |Z|−min{α(S(f)), |Z|+1}+1.
If h = 0 then f is constant, i.e., α(S(f)) =∞. Let c = S(f). There exists a ψ ∈ Ψi

with f ∈ IF (m)
i and ψ(c) = f . Thus, we may use a HOWDD consisting of the root

〈ψ, v〉 where v is a terminal node v labelled with c. In the induction step, we assume
that f is not constant.

. . .

ψ

z

ψ0 ψm−1

B0 Bm−1

v0 vm−1

v

Let g = S(f) and f = ψ(g) where ψ ∈ Ψi if g ∈ IF i. Let
z be the first essential variable of g according to π. For ξ ∈
{0, 1, . . . ,m − 1}, let gξ = S(g|z=ξ) and g|z=ξ = ψξ(gξ) where

ψξ ∈ Ψi if g|z=ξ ∈ IF
(m)
i . Definitions 3.2.11 and 3.2.12 ensure

that α(S(g|z=ξ)) = α([g|z=ξ]≡). This together with Lemma 3.2.13
implies that α([g|z=ξ]≡) = α(S(g|z=ξ)) = α(gξ) > α(g) and thus
by induction hypothesis there exist S-reduced π-HOWDDs B0, . . . ,
Bm−1 for g0, g1, . . . , gm−1 which are of lower height. We may assume

w.l.o.g. that B0,B1, . . . ,Bm−1 share the same nodes for common sub-functions. More
precisely, we may assume that if vi is a node in Bi and vj a node in Bj such that
fvi = fvj then vi = vj

11. (Otherwise the nodes in Bj can be renamed as there is an
isomorphism between the sub-HOWDDs with root nodes v0, v1, . . . , vm−1, cf. Theo-
rem 3.2.15.) We then may compose B0,B1, . . . ,Bm−1 to a S-reduced π-HOWDD for
f as shown in the picture on the left. �

3.2.3 Examples

The HOWDD framework identifies the minimal set of requirements needed to guar-
antee canonicity and uniqueness. These observations influenced the design of JINC,
which is described in Chapter 4.

It also eases the development of new OBDD variants. Chapter 5 shows how the
development process of a new variant. It starts with the conceptional idea and
finishes with its implementation.

This section introduces some further ideas for new variants which can be expressed
as instances of HOWDDs.

Input inverters [102] cannot be expressed as an OWDD instance but as a HOWDD
instance. A MDD variant with input inverters could be defined as:

• Transformation function: ϕI = {x/g} with g = (m−x1−1, . . . ,m−xn−1)

11with i, j ∈ {0, 1, . . . ,m− 1} and i 6= j
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• Partitions: F1 = {f |f ∈ F and ϕI ◦ f = f} and IF 2 = IF\IF 1

It is also possible implement any kind of input permutation for MDD variants.
Toggling Algebraic Decision Diagrams (TADDs) which are defined in Chapter 5 are
a special instance of input permutations.

Another example is to enrich MDDs with edge weights as in the case of FEVBDDs.
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JINC – Basic Concept

Chapter 4
The observations of similarities of different OBDD variants have made it possible
to define a general framework. The same observations can help to implement an
efficient OBDD library. We will use the principles of HOWDDs to define data
structures that are common for all OBDD variants. The alternative implementation
of a BDD package based on multi-operand synthesis [51] stands in no contrast with
this design because in JINC each operator has its own efficient implementation so
that the MORE operator could also be implemented besides the existing algorithms.
The idea of implementing the HOWDD concept is more general as it yields the basis
for all kinds of algorithms. The HOWDD concept is the minimal set of requirements
that is needed to develop common data structures which can be used for a wide
range of variants. Besides the theoretical approach, we will also discuss how a
new HOWDD instance can be implemented (see Chapter 5). The data structures
defined with the concept of HOWDDs in mind can also be used for non-HOWDD
variants. In this case it is not guaranteed that JINC’s complete functionality can
be used1. Information about a non HOWDD variant which is also supported by
JINC is illustrated in Section 4.2.2. In Section 6.7 we will discuss a multi-operand
synthesis which is superior to the MORE concept.

The description of JINC’s concept is two-fold. All relevant concepts of [19], like
computed-tables, hash maps, etc. and their modifications to commonly used ap-
proaches are described in this chapter and afterwards expanded to the requirements
of a multi-threaded environment in Chapter 6. This chapter shows the concept and
design of JINC [85]. The single-threaded design is a modification of [88].

4.1 Basic Concept

As JINC is based on the HOWDD concept it is designed to be flexible in almost any
way. JINC provides a clean object oriented API [116, 74] and uses state of the art
programming techniques [113, 1, 4, 98, 106] to provide an efficient and easy to use
OBDD library. JINC makes extensive use of template programming [98, 106] in the
context of policy-based design [4] to ensure compile-time optimized data structures
and algorithms besides readable, maintainable, safe, correct and compact code.

Figure 4.1 shows the concept behind JINC’s function API. The function object pro-
vides a feature-rich API and encapsulates details like reference counting, i.e., the
object is assignable and takes care of increasing and decreasing the embedded refer-
ence counter. The algorithms use the computed-table to increase the performance
and the unique-table to find or add nodes. The unique-table uses the memory pool to
request new nodes. Every part of the overall concept will be discussed in more detail
in the following sections. Details about the implementation concept of algorithms

1or requires additional implementation effort
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Figure 4.1: The concept of the function API

will be described in Section 5.2.

4.1.1 Data Structures

This section describes the data structures provided by JINC.

4.1.1.1 Nodes

The transformation functions of different HOWDD variants have to be stored in a
generic node structure. An ADD node has to store its successors without any further
information. A FEVBDD node also has to store the weights for its successors. In
HOWDDs these variations are represented by the tuple< ϕ, v > with transformation
function ϕ and node v. Besides the implementation of the different node types, there
has to be an implementation of this tuple. In this thesis, we will discuss the case
where the transformation functions are non-trivial, i.e., there must be transformation
functions besides the identity function id . For non-trivial transformations it is not
necessary to make use of the tuple. JINC’s data structures are optimized to use
either the tuple implementation or the node implementation (depend of the used
OBDD variant). In the case that the transformation function can be represented by
a Boolean value (e.g., negated edges) the node implementation could also be used
(see Section 5.2 for an example implementation).

The traditional approach to implement nodes (e.g., in CUDD [109], BuDDy [72],
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etc.) is that there is no different implementation for different node types, e.g terminal
and inner nodes. The HOWDD framework differentiates between function partitions
and this is reflected by JINC. JINC follows the approach of a uniform base node
implementation which is common for every variant. It contains the reference counter,
a pointer to the corresponding unique-table (or zero if it is a terminal node) and
a next pointer2. The different node types are then derived from this base node.
These types have to be specified for every new variant. Figure 4.2 illustrates this
concept for two node types (inner and terminal node). This approach does not
require more memory than the other approaches3 and eases the development process
for new variants.

For variants that uses non-trivial transformation functions, JINC provides a generic
tuple implementation to store node and transformation function.

Figure 4.3 shows a typical HOWDD node and its implementation in JINC. Based
on the inner node implementation a tuple is created by combining a successor and
its corresponding transformation function.

The specific node classes (e.g., inner and terminal node) yield the core of the imple-
mentation. The next sections will discuss the data structures provided by JINC to
implement a HOWDD instance based on the node classes.

4.1.1.2 Unique-table

The unique-table is the data structure that ensures uniqueness and reducedness of
the HOWDD instance. The unique-table is used to find if a node already exists or if
it must be created and initialized. This operation is used very frequently so that an
efficient implementation of the unique-table is essential for the overall performance.
JINC uses a hash-table with unlimited collision list4 to ensure fast access to an

2the different uses are explained later
3In fact, it could reduce the memory usage (see Section 4.1.1.2).
4because all elements have to be stored
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Figure 4.3: A HOWDD node and its implementation in JINC

existing node. The transformation function has to be hashable5. The next pointer
of the base node implementation is used to build the collision list. Figure 4.4 shows
how a look-up is performed. At first, the method to get a hash value is called for all
tuples6. With these numbers a general hash value h is generated. If a node with the
requested successor tuples exists it must be an element in the list at slot number h.
To find the requested node the list must be traversed.

The presented technique can be improved if the list is sorted. This means that the
search can be stopped if the current examined node is greater than the requested
one7. A further optimization that is implemented in JINC is a flexible hash-table
size, i.e., the hash-table is resized if the collision lists get too long. This is a com-
monly used method to implement an efficient unique-table with small memory over-
head.

The concept of HOWDDs support any kind of terminal values. It is for example
possible to define a HOWDD variant which operates on strings. For this reason it
is important for an efficient library design to support any kind of hash function.
JINC provides a unique-table implementation for every node type. This enables
to use specialized hash functions for every node type, e.g., CUDD uses the same
kind of hash function for inner nodes and terminal nodes, i.e., the value will be
handled as two pointers and is therefore not corresponding to the value of the node
but to the IEEE representation [89]. This approach uses the assumption that two
pointers have the same size as one double value. If two pointers are bigger than one
double value it could lead to uninitialized memory. The usage of one implementation
of terminal and inner node leads to an overhead of memory per terminal node8.
Another disadvantage is that there is no control (other than the normalized IEEE

5usually this has to be implemented for every new kind of transformation functions
6as JINC’s unique-table can handle any number of successors
7The order of a node is completely defined by its successor tuples.
8the same is true for systems if two pointers are smaller than one double value
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Figure 4.4: A unique-table look-up

representation) how the hash value is generated. JINC’s approach can treat all kinds
of node types and has full control over the hashing mechanism.

4.1.1.3 Variable Ordering

The variable ordering is implemented and optimized in JINC for a large number
of variables. Variables can be inserted and removed at any point of the ordering.
Common variable order implementations support the adherence of variables at the
end in constant time. JINC’s idea is to support adherence at the beginning and the
end in constant time while reducing the needed copy operations for insertion and
deletion. This technique uses an array of fixed size which will be resized if no free
slots are available. The overhead of the resize operation compared to a linked list
implementation is in practice negligible as the initial array size could be appropri-
ately chosen to avoid resizing. The reason to choose an array implementation over
a linked list implementation is due to the fact that the most frequent operation of
a variable ordering is to get the variable level. In a linked list implementation this
operation requires O(n) steps compared to O(1) with the array implementation.

Figure 4.5 shows how the variable ordering is implemented in JINC. The base class
is the variable. It consists of the name of the variable and a pointer to its unique-
table9. The pointer to its group will be described later. The variable ordering
itself is implemented as a large array. The problem of inserting (or removing) a
variable at any place of the ordering is that all other variables have to be copied and
the level information (inside the unique-table) must be updated. The idea behind
JINC’s approach is that inserting (or removing) variables at the beginning or end

9Every variable gets its own unique-table to increase performance.
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Figure 4.5: The variable ordering implemented in JINC

of the variable ordering can be performed in constant time. For that reason, a
skip value10 is also stored in the variable ordering. The approach for prepending
variables in constant time is to reserve additional slots for variables at the beginning
of the variable ordering. Whenever a variable is prepended, a free slot can be
used. Additionally, the skip value is decreased by one. The real level of a variable
is calculated by subtracting the skip value from the slot position of the variable.
Another positive effect of this approach is that the removal of a variable needs at
most n

2
copy operations, compared to n copies required without skip values.

Usual OBDD packages just provide the appending of variables in constant time.
[117] shows one application where inserting at the beginning increases the perfor-
mance. This application also uses a lot of variables, which is uncommon for OBDDs.
Therefore, JINC can be configured to deal with a great number of variables.

The insertion of variables inside the variable ordering also benefits from this concept
as it uses at most n

2
copy operations compared to n − 1 copy operations for the

traditional concept. Figure 4.8 shows the necessary steps to perform an insertion.

If a variable is prepended to the variable ordering and the skip value is positive the
skip value has to be decreased by one. Figure 4.6 illustrates the idea.

Appending a variable to the variable ordering is shown in Figure 4.7.

Removing variables can be performed analogously.

10i.e., a counter for the array positions not yet used for some variables

40



4.1. BASIC CONCEPT

Level

Skip value=2

2

Real level=Level-Skip value

2-2=0
Insert variable

Skip value=2

New variable

Level 3 3-2=1

Level

Level

1

3

Level 2

1-1=0

2-1=1

3-1=2

1

Figure 4.6: Prepending a variable to the variable ordering

Level

Skip value=2

2

Real level=Level-Skip value

2-2=0

Insert variable

Skip value=2

New variable

Level 3 3-2=1

Level

Level

2

4

Level 3

2-2=0

3-2=1

4-2=2

Figure 4.7: Appending a variable to the variable ordering

41



CHAPTER 4. JINC – BASIC CONCEPT

Level

Skip value=2

2

Real level=Level-Skip value

2-2=0
Insert variable

Skip value=1

New variable

Level 3 3-2=1

Level

Level

1

3

Level 2

1-1=0

2-1=1

3-1=2

Figure 4.8: Inserting a variable

Groups Grouping variables is also supported by the variable ordering template
in JINC. To support this, each variable has a pointer to its group. The group class
stores the first element and the last element in the group. Access to variables inside
the group is possible through the random access of the variable ordering. With
these information, it is possible to manage group operations in a natural way. For
instance, if a new variable is inserted, it could easily be determined if it belongs to
a group or if it is independent.

4.1.2 Algorithms

JINC provides a framework to implement operations for every HOWDD instance.
Besides generic APPLY and ABSTRACT algorithm implementations (and efficient compile-
time specializations for every operator), JINC provides several additional algorithms
for e.g., matrix manipulations. With this rich set of functions it is possible to im-
plement symbolic applications in an efficient manner. Examples for projects using
JINC are [14, 75, 62, 86].

Figure 4.9 shows the generic algorithm framework. Listing 4.1 shows pseudo code
for the generic APPLY algorithm. The concept relies on a template implementa-
tion that provides the terminal cases implementation and the look-up ID needed for
caching (see Section 4.1.2.1 for more details). Every algorithm can be categorized to
be commutative or non-commutative. This is illustrated by common objects which
influence the caching behavior11 of the algorithms. The terminal cases have to be
implemented for every algorithm. The findOrAdd function is the key function in
this implementation. It checks for the equality of the tuples (don’t care semantics
of the Shannon’s expansion) and calculates the unique representative of the equiv-

11the cache look-up for commutative algorithms is automatically optimized
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Figure 4.9: JINC’s algorithm concept

alence class. It also acts like the selection function S in the HOWDD framework.

. . .

ψ

z

ψ0 ψm−1

v0 vm−1

v

The tuples w0, . . . , wm−1 (from Listing 4.1) are translated to the tu-
ples 〈ψ0, v0〉 . . . 〈ψm−1, vm−1〉 (see the picture on the left). This is the
parameter normalization phase as in the cases of FEVBDDs, NADDs,
SOBDDs with negative edges, etc. With these normalized parameters
a unique-table look-up is performed. The returned node v stands for
the unique representative function. The result is expressed by the tu-
ple 〈ψ, v〉 (or node as in Listing 4.1). It follows the same principles as
described in Theorem 3.2.15. The algorithm framework eases the de-

velopment but cannot be presented here in all details as e.g., the selection function
and cofactor calculation is variant specific. Section 5.2.2 illustrates JINC’s algorithm
concept in a concrete implementation context.

The idea behind this framework is that algorithms like e.g., addition, multiplica-
tion, less, greater, logical and, logical or, etc. can be implemented by providing one
specialized implementation of Listing 4.112 and terminal case template implemen-
tations for every algorithm. Other algorithms like e.g., cofactor calculation have a
different recursive structure and thus cannot be represented in this framework. As a
consequence these algorithms have to be implemented as in other OBDD libraries.

JINC uses the same technique for the ABSTRACT algorithm, i.e., by providing a
terminal case template for plus, the sum algorithm can be used as it is derived from
it.

4.1.2.1 Computed-table

Computed-tables [19] have an dramatic impact on the run-time behavior of manip-
ulating algorithms. Usually, we measure the complexity of OBDD operations in the
number of nodes. This is often reasonable because the size of the resulting OBDD
is limited to |B| · |C| if B and C are the corresponding OBDDs. To measure the

12the details for cofactor calculation and normalization of the tuples differ from variant to variant
so that JINC could only support the framework
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Figure 4.10: Look-up in the computed-table

run-time complexity in a non-theoretical environment, it is reasonable to count the
number of possible paths in all involved OBDDs. From the theoretical point of view,
both approaches are equal because every request is calculated only once. This can
be accomplished by using perfect computed-tables, although it would increase the
memory usage significantly and the advantage of a compact representation would
be annihilated. For this reason, a dynamic hash-table (similar to the unique-table
in Section 4.1.1.2) is used. The difference between this hash-table and the one used
for the unique-table is that the size of the collision list is limited. In JINC’s case, it
is limited to one to reduce the look-up time. The concept of a hash-table look-up is
illustrated in Figure 4.10. The parameters for an operation invocation are packed
inside an entry class. This class must provide a method to generate a number that
is used for hashing. An advantage of this abstraction layer is, that the computed-
table template can be used for any kind of operand. To handle different operands,
a new entry class has to be implemented. Another advantage of this casing is that
the parameters can be normalized to increase the number of computed-table hits.
The used techniques simplify the development of OBDD operations and provide an
efficient and easy way to use the framework for computed-tables.

4.1.3 Iterators

JINC provides an iterator class which can be used similar to the Standard Template
Library (STL) iterators [20]. The concept is based on a generic TraversalHelper.

JINC’s iterator concept bases on the implementation of the TraversalHelper. The
TraversalHelper is used to identify the paths of a HOWDD function. A path
represents the way from the root node to a terminal node. As HOWDDs support
arbitrary branch ranges a Path class must represent this. JINC’s Path class is im-
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1 template <typename T>

2 NodeWeightTuple comp(NodeWeightTuple v1, NodeWeightTuple v2){

3 if(NodeWeightTuple comp=T:: terminalCase(v1 ,v2)) return comp;

4
5 T:: cacheOpt(v1,v2);

6
7 if(NodeWeightTuple comp=computedTable.find(Common :: calcPtr(v1 ,T::ID),v2))

8 return comp;

9
10 if(v1.getLevel ()<=v2.getRealLevel ()){

11 minTable=v1.getUniqueTable ();

12 if(v2.getUniqueTable ()== minTable ){

13 w0=comp <T>(v1.getSucc (0),v2.getSucc (0));

14 w1=comp <T>(v1.getSucc (1),v2.getSucc (1));

15 ...

16 } else {

17 w0=comp <T>(v1.getSucc (0),v2);

18 w1=comp <T>(v1.getSucc (1),v2);

19 ...

20 }

21 } else {

22 minTable=v2.getUniqueTable ();

23 w0=comp <T>(v1,v2.getSucc (0));

24 w1=comp <T>(v1,v2.getSucc (1));

25 ...

26 }

27
28 NodeWeightTuple node=findOrAdd(minTable ,w0 ,w1 ,...);

29
30 computedTable.insert(Common :: calcPtr(v1 ,T::ID),v2,node);

31
32 return node;

33 }

Listing 4.1: APPLY for HOWDD instances

1 template <>

2 struct TraversalHelper <BaseNode >{

3 TraversalHelper(const BaseNode* n);

4 TraversalHelper getSucc(const unsigned short succX) const;

5 const BaseNode* getSuccPtr(const unsigned short succX) const;

6 bool isDrain () const;

7 double getValue () const;

8 const BaseNode* getPtr () const;

9 VariableIndexType getLevel () const;

10
11 static const unsigned short N=0;

12 };

Listing 4.2: TraversalHelper
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plemented as a template which depends on an integer template argument specifying
the branch range m. Path represents the assignments of all variables. The assign-
ment of each variable can be set to any number ranging from 0 to m− 1 or specified
as don’t care.

This Path class can also be used to construct the representation of a path into
a HOWDD instance. Each HOWDD variant implementation in JINC provides a
conversion from Path to a HOWDD function.

JINC also provides an Iterator class which can be used to iterate overall paths of a
HOWDD function. This functionality is provided for every HOWDD instance which
implements the specialization of the TraversalHelper class. Listing 4.2 shows the
interface which has to be implemented. The getSucc() method is used within the
Iterator template class to provide access to the logical paths. The getSuccPtr()

method is used for size calculation (as transformation functions can be ignored
for size calculation). The static variable N specifies the branch range which is
respected during iterator calculation. Note that this approach utilizes the idea of
the Shannon’s expansion as every call to getSucc() represents an assignment of the
variable. All non-appearing variables are handled as don’t cares. For example for
zero-suppressed variants the algorithms working with the TraversalHelper have to
be modified. This is because non-appearing variables which are zero-assigned and
don’t cares, where all successor pointers are pointing to the same node, must be
handled differently.

Each HOWDD instance which implements a specialized TraversalHelper class pro-
vides methods to access the first path of a HOWDD function. The Iterator class
implements operator++() and thus access to all paths of a HOWDD function. Sim-
ilar to the STL iterators, end() is provided. Listing 4.3 shows the iterator usage.

1 BDDFunction :: iterator it=function.begin ();

2 while(it!= function.end ()){

3 ++it;

4 }

Listing 4.3: Iterator Usage

JINC also enriches this concept by an generic Assignment Iterator class which
iterates over all paths and replaces all don’t care symbols with an concrete assign-
ment. This is implemented on top of the Iterator class and needs no modifications.
Figure 4.11 illustrates the complete iterator concept of JINC.

4.1.4 Memory Management

A crucial feature of an OBDD package is the memory management. All above men-
tioned techniques have minor influence on the performance. The heaviest influence
on the performance has the garbage collection and efficient computed-tables. In
a non-theoretical environment it is also important to have fast access to memory
without any memory fragmentation.
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Figure 4.11: JINC’s iterator concept

4.1.4.1 Memory Fragmentation

Allocating and freeing memory can cause memory fragmentation. The operating
system does not store all references to freed memory. After a short time it will give
the user a new block of memory instead of reusing old memory.
We solved this problem with a ’memory pool’. A memory pool allocates a lot of
memory at once and enqueues the allocated objects. The memory pool uses the
linked objects to reuse old memory. Whenever memory is freed it will be traced
back to the memory pool. JINC uses the next pointer because it is not needed
for a deleted node anymore. As a result, no additional memory is used to prevent
memory fragmentation.

4.1.4.2 Garbage collection

Currently there is no mechanism to decide whether a node can be deleted or not. The
commonly used technique in OBDD packages is the reference counter in which every
node keeps track of the number of predecessors. Figure 4.12 shows an OBDD with
the reference counter values for every node. Note that in this example two functions
are represented. Every root node of a function increases the reference counter.
JINC uses a function class to implement a garbage collection. This function class
increases and decreases the reference counter of a node whenever a function is added
or removed. It also covers the access to the nodes. The function class provides all
operands that are needed to work with OBDDs.

Delayed garbage collection The computed-table is important for the efficiency
of a OBDD package. As mentioned above, deleted nodes can be restored and used
in another context. For this reason, all entries that refer to deleted nodes must
be removed from the computed-tables. The costs for this operation would almost
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eliminate the advantages of computed-tables.

JINC’s solution to solve this is a delayed garbage collection. Whenever a node and
its corresponding subtree can be deleted, JINC marks the root node as deletable.
When the number of deletable nodes reaches a configurable number, the garbage
collection takes place. The approach of just marking the root nodes is different than
the commonly used approach to mark all deletable nodes. The advantage of marking
all nodes is that it is known how much memory will be freed during the garbage
collection. The disadvantage is that every deleting operation requires a traversal of
the subtree. The same is true when a as deletable masked node is used again (either
through calculation or as a result from the computed-table). Figure 4.13 shows how
marking all nodes works for the former example. At first, the root node is marked
as deletable. After that step all successor reference counters are decreased. If a
successor reference counter reaches zero, it will be marked also and the process will
repeat for its subtrees.

JINC’s garbage collection requires additional work when the marked nodes have to
be removed. It is necessary to start at the highest variable level with marked nodes
in it13. Every marked node can be deleted. Before that happens the subtree has to be
traversed. It is quite similar to the other approach with the only difference that the
node can be deleted instead of just marking it. The costs for the garbage collection
are slightly higher in this approach. On the other hand, it is much faster to deleted
and reuse a node with its subtrees. Practice shows that this kind of operation has
more effect on the performance than the slightly increased costs for the garbage
collection. Figure 4.14 illustrates the garbage collection process in JINC.

Both approaches require that the unique-table can be traversed to find the marked
nodes. As discussed above, the unique-table is implemented as a hash-table. This

13Every variable level stores the number of marked nodes to increase the performance of the
garbage collection
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Figure 4.13: Garbage collection with marking all deletable nodes
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Figure 4.14: The garbage collection of JINC
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means that every slot has to be investigated. If the number of empty slots is high
this means that the garbage collection is very slow. For that reason, JINC uses
a bitmask to easily identify non empty slots. Whenever a slot is filled, it will be
masked as non empty and whenever the last node of a slot is removed, it will be
masked as empty. The cost for masking the slots can be neglected.

4.1.5 Reordering

Reordering the variable ordering can have a great impact on the size of the repre-
sented OBDDs [108]. Searching for an optimal variable ordering is not appropriate
for a real world applications [107, 18, 115]. Reordering heuristics like window per-
mutation, sifting, etc. [37, 28, 55, 25, 101, 90, 100, 38, 17] have been developed
to find a good variable ordering within a reasonable time. JINC provides a clean
template system to implement reordering methods without caring about the used
OBDD variant. The system uses the observation that all reordering methods are
based on the swap function. JINC derives commonly used functions like the shift of
a variable to a given position from the swap function. Every variant that uses the
reordering system implements the swap function and all reordering methods can be
used immediately without any further work. The variable ordering template pro-
vides a swap function for variables so that the reordering template can synchronize
the change of the ordering. As mentioned above, the variable ordering template also
provides grouping of variables. The reordering system has been designed to handle
variables and groups (while keeping the order inside the groups). This means that
an algorithm can be used for variables and groups without rewriting the algorithm.
Figure 4.15 illustrates the concept behind the reordering system.

The idea behind this new concept is that a ReorderHelper provides the generic re-
ordering algorithms with information about number of elements, size of the OBDD
and the swap function. This ReorderHelper encapsulates all differences14 so that
the reordering algorithms can be used for any kind of element (variables or groups).
The ReorderHelper itself only provides the methods which are used in the reorder-
ing algorithms. The specific behavior for groups or variables are implemented via
a policy-based-design [4]. The given strategy encapsulates all implementation de-
tails for variables or groups. It is possible to implement an own ReorderHelper or
strategy if the reordering behavior is different for a new HOWDD variant.

4.2 Further Details

In this section, we will discuss further important details that are used in JINC.

14e.g., between variable reordering and group reordering
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4.2.1 Cube Sets

Many operations on OBDDs (like existential quantification) require a set of variables
as parameters. Usual set operations are not well suited to be used with computed-
tables. The equality of two sets must be checked efficiently to use computed-tables
with this kind of operations. JINC uses cube sets [102]15 to handle sets of variables
and to solve the problem of the equality check. Cube sets are a conjunction of the
variables that are stored in the set. The concatenation of these variables is stored as
an OBDD function and thus the equality check can be performed in constant time.
Figure 4.16 shows the cube set representing {x, y}. This approach also simplifies the
handling of variable sets inside the OBDD algorithms, e.g., the test if the variable
of the current level is inside the variable set can be done on-the-fly16.

4.2.2 Zero-suppressed Algebraic Decision Diagrams

As mentioned above JINC also supports OBDD variants with a different expansion
rule than the Shannon’s expansion. Although this leads to BDD variants that do
not met the conditions of HOWDDs, the internal treatment in JINC is similar to
the realization of HOWDDS. We will now show how zero-suppressed OBDD variants
can be used in a HOWDD based framework like JINC.

Zero-suppressed Algebraic Decision Diagrams (ZADDs) are the adaption of Minato’s
ZBDDs [105, 56]. All above defined data structures can be used for ZADDs as for
any other variant. The iterator concept presented in Section 4.1.3 cannot be used
for ZADDs as zero-assigned variables do not appear on the Path. A complete differ-
ent TraversalHelper concept is needed to support Iterators for zero-suppressed
variants. JINC’s design is based on the HOWDD concept and therefore there is cur-
rently only iterator support for variants based on the Shannon’s expansion. Lampka
[65, 67] introduced partially shared ZADDs (p-ZADDs) which attempt to avoid the
explicit representation of don’t care variables. The idea is that, besides the nodes of
a function, a set of variables is stored. Every variable inside the variable ordering

15like many other OBDD packages
16Therefore, the variable set must be traversed in parallel to the algorithm – which is equivalent

to ordering consistent cofactor building.
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Figure 4.17: Partially shared ZADDs with different variable sets representing the
function x · (1− y) (a) and x (b)

that is not included in the set has to be interpreted as a don’t care variable17. This
approach combines the advantages of zero-suppressed variants and Shannon based
variants. JINC uses the former introduced cube sets with a standard ZBDD imple-
mentation. The cube sets define how an overleaped level has to be interpreted (as
a don’t care or zero-assigned). Figure 4.17 shows one BDD structure with different
variable sets. Partially shared ZADD (a) represents the function x · (1− y). In this
case the overleaped level is interpreted as zero-assigned. The other partially shared
ZADD (b) represents the function x. In this case the overleaped level is interpreted
as don’t care. Figure 4.17 explains why it is necessary for algorithms on partially
shared ZADDs to deal with different variable sets. Different cube sets require a spe-
cial treatment. Algorithm 1 shows how the APPLY algorithm can be implemented.
This implementation does not use the fact that operations on p-ZADDs with equal
cube sets can be handled as standard ZADD operations. The main difference to
ordinary OBDD algorithms is the calculation of the cofactors. The other difference
relies in the usage of variable sets. It is important to understand that ZADDs do
not yield a unique data structure if the variable sets are not minimal. The search
for a minimal variable set cannot be performed efficiently18. Thus, JINC uses the
variable set that is the union of both variable sets. In special cases like quantifica-
tion, JINC eliminates the quantified variables from the variable set19. The APPLY
algorithm has a completely different recursive structure than the HOWDD APPLY
algorithm described in Section 4.1.2. As a consequence, a completely different algo-
rithm framework has been implemented for ZADDs.

17Note, the represented function has no node on this level.
18the calculation needs a complete traversal of the OBDD structure
19because they should be interpreted as don’t care variables
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Algorithm 1 Partially shared ZADD operations (APPLY)

Input: Operator ◦, tuples < n1, S1 > and < n2, S2 >
Output: Tuple < n, S > representing f<n1,S1> ◦ f<n2,S2>

if S1 = S2 = ∅ then
//terminal case
return value(n1) ◦ value(n2)

end if
v =minimal variable out of S1 ∪ S2

if v ∈ S1 then
if var(n1) = v then

//Shannon expansion
n10 = succ0(n1)
n11 = succ1(n1)

else
//zero-suppressed
n10 = zeroDrain
n11 = n1

end if
else

//don’t care
n10 = n1

n11 = n1

end if
if v ∈ S2 then

if var(n2) = v then
//Shannon expansion
n20 = succ0(n2)
n21 = succ1(n2)

else
//zero-suppressed
n20 = zeroDrain
n21 = n2

end if
else

//don’t care
n20 = n2

n21 = n2

end if
r0 = APPLY (< n10 , S1\{v} >,< n20 , S2\{v} >)
r1 = APPLY (< n11 , S1\{v} >,< n21 , S2\{v} >)
if r1 = zeroDrain then

//zero-suppressed
return < r0, S1 ∪ S2 >

else
return < findOrAdd(v, r0, r1), S1 ∪ S2 >

end if
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JINC – Toggling Algebraic Decision Diagrams

Chapter 5
This section introduces a new HOWDDs instance that has been developed with the
focus on matrix representation. Afterwards JINC’s implementation of this variant
will be discussed as an example of the flexibility of JINC’s design.

Efficient matrix representation with OBDD variants involves an interleaved variable
ordering [30, 43]. The idea behind Toggling Algebraic Decision Diagrams (TADDs)
is that these variable pairs are store-space efficient and that renaming of those pairs
can be performed in constant time. The renaming of variable pairs is equivalent
to matrix transposition. In the context of symbolic reachability computation after
each step a renaming operation is performed.

5.1 Definition

The key idea of this new variant is that the variables xi and yi are always grouped
together. This is a very important requirement for the graph and matrix repre-
sentation1. The approach is a very good example of a HOWDD which cannot be
represented with OWDDs. The disadvantage of this approach is that all algorithms
have to deal with two level cofactors. We will define a HOWDD with m = 4 to
combine xi and yi

2. Figure 5.1 illustrates the idea how the two levels are combined
to one level.

In the sequel we assume that m = 4 and π = (xy1, . . . , xyn) over
Z4 = {xy1, . . . , xyn}.
Similar to the former definition we define the transformation function.

1used e.g., in the application of model checking
2this follows the idea of calculating 2 · xi + yi to identify the successor

xi

yi yi

xi

yi yi

0 1 2 3

Figure 5.1: Idea of combining two levels into one level
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z ϕS
0 0
1 2
2 1
3 3

Table 5.1: The multi-valued swap function

Definition 5.1.1 (Swapping Function). Let xy = (xy1, . . . , xyn) the variable tuple,

gi = xyi(2− xyi)(3− xyi) +
xyi(xyi − 1)(3− xyi)

2
+
xyi(xyi − 1)(xyi − 2)

2

the toggling function and g = (g1, . . . , gn) the function tuple.

The swapping function ϕS is defined by:

ϕS = {xy/g}.

�

The swapping function ϕS is now treated like an input inverter3 [102]. Table 5.1
illustrates the concept of the swapping function.

The first partition of IF (4) is defined by:

IF
(4)
1 = {f |f ∈ IF and ϕS ◦ f = f}.

The second partition holds the rest of IF , i.e.,

IF
(4)
2 = IF (4)\IF (4)

1 .

The transformation sets are defined as follows:

Φ
IF

(4)
1

= {id}

and
Φ
IF

(4)
2

= {id , ϕS}.

ϕS is self inverse and for every function f ∈ IF (4)
2 it holds that ϕS ◦ f ∈ IF (4)

2 . With
this observation it is clear that

F
(4)
k =

{
(IF

(4)
1 ,Φ

IF
(4)
1

), (IF
(4)
2 ,Φ

IF
(4)
2

)
}

builds a system (see Notation 3.2.3).

The only freedom for the definition of a selection function exists for the situation
illustrated in Figure 5.2. This is solved by defining an order on the functions.

3another example of a HOWDD variant that cannot be represented by a OWDDs
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0 1 2 3
0 2 1 3

Figure 5.2: Two possible functions to be picked by a selecting function

Definition 5.1.2 (Selection Function). Let f ∈ IK(Z4) and z the first essential
variable4 of f . The selection function STADD is defined by:

STADD(f) =





f if f ∈ IF (4)
1

f if f ∈ IF (4)
2 and f |z=1 < f |z=2)

ϕS ◦ f if f ∈ IF (4)
2 and f |z=1 > f |z=2

f if f ∈ IF (4)
2 , f |z=1 = f |z=2 and f |z=0 < f |z=3

ϕS ◦ f otherwise

�

After defining the selection function we now have a new HOWDD instance that
performs the swap of neighboring variables in constant time. At the same time,
Toggling Algebraic Decision Diagrams (TADDs) provide a unique and canonical
form.

5.2 Implementation

We will now focus on some facts that are important for an efficient implementa-
tion. All necessary algorithms will be presented in this section. The main difference
between this variant and all others mentioned before is that it uses four succes-
sor pointers. For every successor pointer a flag is used to identify if the swap
function is active or not. Only one Boolean flag is needed because the function
is self inverse5. An active swap flag changes the way successors are calculated6.
As mentioned in Section 4.1.1.1 we can use the pure node rather than the tuple
implementation to increase the system’s performance. The idea relies on the fact
that objects are aligned to word sized chunks [24]. That means that the last bit

4Remember, that this variable represents all possible combinations of xi and yi.
5comparable to OBDDs with negative edges
6see Table 5.1 for more information

59



CHAPTER 5. JINC – TOGGLING ALGEBRAIC DECISION DIAGRAMS

of the memory addresses used in the operating system is always zero. For a com-
pact representation of a node we use the successor pointers to store the Boolean
flag7. JINC utilizes the TraversalHelper approach described in Section 4.1.3 to
eliminate most of the occurrences of programming errors accompanied with pointer
arithmetic. The Helper module defines all methods needed to access the appropriate
pointer8 and the Boolean flag. The TraversalHelper can easily be provided with
the use of JINC’s helper classes. Listing 5.1 shows the complete implementation of
the TraversalHelper for TADDs.

1 template <>

2 struct TraversalHelper <TADDBaseNode > {

3 TraversalHelper(const TADDBaseNode* n) : node(n) {}

4 TraversalHelper getSucc(const unsigned short succX) const {

5 if(Common :: bitSet(node.ptr)){

6 TADDBaseNode* succ;

7 if((succX ==1) || (succX ==2)){

8 succ=node ->getSucc(3-succX);

9 } else {

10 succ=node ->getSucc(succX);

11 }

12
13 if(Common :: SmartAccess <TADDBaseNode >(succ)->isSymmetric ()){

14 return TraversalHelper(succ);

15 } else {

16 return TraversalHelper(Common :: flipBit(succ ));

17 }

18 } else {

19 return TraversalHelper(node ->getSucc(succX ));

20 }

21 }

22 const TADDBaseNode* getSuccPtr(const unsigned short succX) const {

23 return getSucc(succX). getPtr ();

24 }

25 bool isDrain () const {return node ->isDrain ();}

26 double getValue () const {return node ->isDrain ()?node ->getValue ():0.0;}

27 const TADDBaseNode* getPtr () const {return node.getPtr ();}

28 VariableIndexType getLevel () const {return node ->getLevel ();}

29
30 static const unsigned short N=4;

31 Common :: SmartAccess <TADDBaseNode > node;

32 };

Listing 5.1: TraversalHelper〈TADD〉

One of the most important features a HOWDD instance has to provide is that the
partition of a function can be easily identified (otherwise the identification phase
would be a serious performance issue). Line 13 uses the isSymmetric() method
which identifies the equivalence class membership of the function represented by
this node9. The partitions of TADDs can be recognized with the observations that
every path of the representation of a IF

(4)
2 function leads to a IF

(4)
1 function10 and

that no node representing a IF
(4)
2 function can be reached by a node representing a

IF
(4)
1 function.

These observations lead to the following criteria to identify whether a non-terminal
node v (with first essential variable z) is representing a IF

(4)
1 function.

(a) fv|z=1 = fv|z=2

(b) For all η ∈ {0, 1, 2, 3} holds fv|zi=η ∈ IF (4)
1 .

7the same technique is used in CUDD for the representation of negated edged
8with the template helper object Common::SmartAccess〈T〉
9The TADD implementation only differentiates between inner and terminal nodes. This differ-

entiation is reasonable because it simplifies the implementation of algorithms. The partitions are
not taken as an distinctive feature because it does not simplify the implementation.

10constant functions are always IF (4)
1 functions
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xyi

0 1 2 3

xyi

0 31 2

xyi

0 31 2

Figure 5.3: How to classify if a node is a IF 1 or IF 2 node

The first condition means that the node must be ϕS-invariant. The second condition
is a result from the observation that all cofactors have to be IF 1 functions. These
criteria can be used to implement an efficient findOrAdd algorithm11. Each node
also uses one Boolean flag to identify if it is representing a IF 1 function or a IF 2

function12.

Figure 5.3 shows different situations to illustrate the identification process. The
marked nodes13 are representing IF 1 functions. The first example shows that this
node cannot represent a IF 1 function because succ1(node) 6= succ2(node). The
second example shows the only situation where the node represents a IF 1 function
(succ1(node) = succ2(node) and all sub-trees represent IF 1 functions). The third
example shows the situation where not all sub-trees represent IF 1 functions and
therefore the node must represent a IF 2 function.

5.2.1 FindOrAdd

The selection function defined in the section above uses a function order to ensure
uniqueness. The implementation uses a similar idea. We will define an order on
the nodes, e.g., the topological sorting. The basis algorithm to provide a unique
data structure is the findOrAdd algorithm. The findOrAdd algorithm for TADDs is
slightly more complex than for ordinary BDD variants. It has to deal with four nodes
and toggling information on the edges. The handling of four parameters instead of
two increases the number of possible situations to deal with. The possible situations
and the results are presented in Figure 5.4. In this example, all cofactors are IF 2

functions14. The mentioned situations are the cases where the algorithm has to alter
the input parameters.

11as the identification rules just look at the already created sub-nodes
12This is needed to identify the node in constant time. Otherwise a whole traversal would be

needed.
13or sub-trees
14the situation with IF 1 functions is handled analogously
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Figure 5.4: Possible input parameters for the findOrAdd algorithm and the resulting
structure

The findOrAdd algorithm is shown in Algorithm 2. The algorithm first checks if
the second condition is violated. This information is essential to mark a node as a
IF 1 or IF 2 node. The toggle function is used to calculate the right transformation
function. If the successor is a IF 1 node the transformation function will always be id .
In the other case, it calculates ϕS ◦ φi to adjust the already existing transformation
function. The function setSymm marks a node to be a IF 1 node. By default a node
is assumed to be a IF 2 node. The different cases are labeled with the corresponding
number from Figure 5.4. Case IV15 handles the cases where the transformation
function is always the identity function. There is also a check if the newly created
node is a IF 1 node.

5.2.2 Algorithms and Operators

The algorithm concept of JINC is efficient and flexible16. We will discuss the imple-
mentation of a generic APPLY algorithm for TADDs, other algorithms (e.g., a generic
ABSTRACT algorithm) follow the same pattern.

Listing 5.2 shows the implementation of a generic APPLY algorithm on TADDs.
The template argument of the APPLY algorithm provides the handling of termi-
nal cases and the operator ID for computed-table look-ups. It also provides if a
cache optimization should be performed. In the case of a commutative operator
T::cacheOpt() will provide a normalization of the input parameters for a better
computed-table hit ratio. In the case of a non-commutative operator the template
argument provides an empty implementation which will be eliminated by the com-
piler and leads to no run-time overhead. Listing 5.3 shows the implementation of
the plus operator as an example. The Helper module provides base-classes that im-
plement the cache optimization. The plus operator is commutative and thus derived
from Common::COMMUTATIVE<TADDBaseNode>. Line 10 checks if both arguments are
equal. In that particular case JINC provides an optimized one argument plus op-
erator. Figure 5.5 illustrates the algorithm concept on the example of the plus
operator. The APPLY algorithm in Listing 5.2 does not take pure node pointer as an
argument. It uses the TraversalHelper to provide convenient methods for imple-
mentation (e.g., for successor access). Every pointer will automatically converted to

15not shown in Figure 5.4
16through policy-based-design [4] which can be seen as a compile-time variant of the strategy

pattern
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Algorithm 2 findOrAdd

Input: Variable index i and cofactor tuples < w0, φ0 >, < w1, φ1 >,
< w2, φ2 > and < w3, φ3 >

Output: Unique tuple < n, φ >

symm=areSymmetricCofactors(w0, w1, w2, w3)
if < w0, φ0 >=< w1, φ1 >=< w2, φ2 >=< w3, φ3 > then
< n, φ >=< w0, φ0 > Case I+

else if w1 > w2 then
n =find or add node on level i with successor tuples

< w0, toggle(w0, φ0) >, < w2, toggle(w2, φ2) >
< w1, toggle(w1, φ1) >, < w3, toggle(w3, φ3) >

< n, φ >=< n,ϕS > Case II+
else if w1 = w2 and w0 > w3 then
n =find or add node on level i with successor tuples

< w0, toggle(w0, φ0) >, < w1, toggle(w2, φ2) >
< w1, toggle(w1, φ1) >, < w3, toggle(w3, φ3) >

if symm=true then
setSymm(n)

end if
< n, φ >=< n,ϕS > Case III+

else
n =find or add node on level i with successor tuples

< w0, φ0 >, < w1, φ1 >, < w2, φ2 > and < w3, φ3 >
if w1 = w2 and symm=true then

setSymm(node)
end if
< n, φ >=< n, id > Case IV+

end if
return < n, φ >
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Figure 5.5: JINC’s algorithm concept on the example of the plus operator

TraversalHelper so that there is no possibility to use a malformed pointer.

5.2.3 Iterators

TADDs uses nodes with four successors. Therefore the TraversalHelper enables
the access to logical paths with a branch range of four. Most of the HOWDD
instances supported by JINC have a branch range of two. For that reason the
TADD implementation also defines a TraversalHelper with a branch range of two.
This approach provides a compatible interface so that TADDs can be used like all
other variants.

5.2.3.1 Swap

The approach of TADDs is based on edge weights. Therefore ordinary reordering
methods cannot be applied directly. The swap algorithm has to be extended to
handle the edge weights. The transformation of xi and yi variables to one zi variable
speeds up the swap operation for applications with interleaved variable orderings[42].
It is clear that both variables should not be separated and handled as a group. A
swap of two neighboring groups with two variables requires four swap operations. In
the case of TADDs it is performed with one swap operation. Figure 5.6 shows the
idea of the TADD swap operation. (a) is the initial point. The highlighted nodes
in (b) show the newly created nodes. The x node is then moved to the y level and
linked to the newly created nodes (c). The second y node (from (a)) is then no
longer referenced and can be deleted. Afterwards the levels are swapped (d).
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1 template <typename T>

2 TADDBaseNode* comp(TraversalHelper <TADDBaseNode > v1, TraversalHelper <TADDBaseNode > v2,

3 PtrHashMap2 <TADDBaseNode >& computedTable , TADDMemPools& pools){

4
5 if(TADDBaseNode* comp=T:: terminalCase(v1.node.ptr ,v2.node.ptr ,computedTable ,pools ))

6 return comp;

7
8 T:: cacheOpt(v1.node.ptr ,v2.node.ptr);

9
10 if(TADDBaseNode* comp=computedTable.find(Common :: calcPtr(v1.node.ptr ,T::ID),v2.node.ptr))

11 return comp;

12
13 TADDBaseNode* w0;

14 TADDBaseNode* w1;

15 TADDBaseNode* w2;

16 TADDBaseNode* w3;

17 TADDUniqueTable* minTable;

18
19 if(v1.getPtr()->getRealLevel ()<=v2.getPtr()->getRealLevel ()){

20 minTable=v1.getPtr()->getUniqueTable ();

21 if(v2.getPtr()-> getUniqueTable ()== minTable ){

22 w0=comp <T>(v1.getSucc (0),v2.getSucc (0), computedTable ,pools);

23 w1=comp <T>(v1.getSucc (1),v2.getSucc (1), computedTable ,pools);

24 w2=comp <T>(v1.getSucc (2),v2.getSucc (2), computedTable ,pools);

25 w3=comp <T>(v1.getSucc (3),v2.getSucc (3), computedTable ,pools);

26 } else {

27 w0=comp <T>(v1.getSucc (0),v2,computedTable ,pools);

28 w1=comp <T>(v1.getSucc (1),v2,computedTable ,pools);

29 w2=comp <T>(v1.getSucc (2),v2,computedTable ,pools);

30 w3=comp <T>(v1.getSucc (3),v2,computedTable ,pools);

31 }

32 } else {

33 minTable=v2.getPtr()->getUniqueTable ();

34 w0=comp <T>(v1,v2.getSucc (0), computedTable ,pools);

35 w1=comp <T>(v1,v2.getSucc (1), computedTable ,pools);

36 w2=comp <T>(v1,v2.getSucc (2), computedTable ,pools);

37 w3=comp <T>(v1,v2.getSucc (3), computedTable ,pools);

38 }

39
40 TADDBaseNode* node=findOrAdd(pools.innerNodeMemPool ,minTable ,w0 ,w1,w2,w3);

41
42 computedTable.insert(Common :: calcPtr(v1.node.ptr ,T::ID),v2.node.ptr ,node);

43
44 return node;

45 }

Listing 5.2: APPLY for TADDs

1 struct TADD_PLUS_2 : Common :: COMMUTATIVE <TADDBaseNode >{

2 static const unsigned short ID=ArithmeticConstants :: ADD_OP;

3 static inline TADDBaseNode* terminalCase(TraversalHelper <TADDBaseNode > v1,

4 TraversalHelper <TADDBaseNode > v2 ,

5 PtrHashMap2 <TADDBaseNode >& computedTable ,

6 TADDMemPools& pools){

7
8 if(v1.node.ptr==TADD:: zeroDrain) return v2.node.ptr;

9 if(v2.node.ptr==TADD:: zeroDrain) return v1.node.ptr;

10 if(v1.node.ptr==v2.node.ptr)

11 return ::comp <TADD_PLUS_1 >(v1.node.ptr ,computedTable ,pools);

12 if(v1.isDrain () && v2.isDrain ())

13 return findOrAddDrain(pools.terminalNodeMemPool ,v1.getValue ()+v2.getValue ());

14 return 0;

15 }

16 };

17
18 TADDFunction TADDFunction :: operator +( const TADDFunction& function ){

19 TADDData& data=getTADDData ();

20 return TADDFunction(

21 comp <TADD_PLUS_2 >(

22 rootNode ,function.rootNode ,

23 *data.computedTables.arithmeticHashMap ,data.memPools

24 )

25 );

26 }

Listing 5.3: Operator + for TADDs
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Figure 5.6: The idea of swapping the two levels.

5.3 Benchmarks

This section illustrates how this new HOWDD variant perform compared to the
ordinary OBDDs.

The performance of Boolean operators is measured with the well known n-queens
problem [11, 80, 47, 41]. The n-queens problem is the problem of putting n queens
on a n × n chessboard such that none of them is able to attack the others. The
movement and capture rules of a queen are governed by standard chess rules.

Table 5.2 shows the results for the n-queens problem. The times include the building

OBDD TADD
n Solutions Nodes Time(s) Nodes Time(s)

4 2 31 0,01 17 0,01
5 10 169 0,02 83 0,01
6 4 131 0,02 66 0,02
7 40 1.101 0,04 548 0,08
8 92 2.453 0,10 1.216 0,14
9 352 9.559 0,32 4.776 0,28
10 724 25.947 1,32 12.922 0,98
11 2.680 94.824 6,23 47.409 4,43
12 14.200 435.172 35,32 217.022 24,55

Table 5.2: Comparison between OBDDs and TADDs (n-queens problem)
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of all solutions plus testing if all found solutions are valid17. With increasing run-
time and BDD size TADD perform better than ordinary OBDDs because of the
more compact representation and the more efficient cache hit-ratio. TADDs have
less collisions and thus have more cache hits. The other advantage is that with
the two-step approach less recursive calls are made. The overhead for the pointer
arithmetic is noticeable for small instances of the n-queens problem.

17this involves the iterator concept described in Section 4.1.3
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JINC – Multi-Threading

Chapter 6
The concepts described in the previous chapters lead to an efficient library design.
The performance boost of computer hardware is going to end. [112] states that a
dramatic change in software design is needed to gain more performance on modern
system [96, 39, 91]. The idea to speed-up the OBDD manipulation is based on multi-
threading. The discussed approach follows the principle to use shared memory to
maintain the efficient recursive structure of OBDD algorithms. This method is
different from the existing parallel computing approaches. Parallel computing has
the advantage of more available physical memory as the memory of several computers
can be combined. The communication effort reduces the performance so that the
run-time performance is less than the traditional non-parallel approaches [78, 111].
JINC’s design allows to apply multi-threading techniques to OBDD algorithms. This
increases the performance without increasing the memory usage. A novel idea to
reduce the memory footprint that can be used in a multi-threaded environment will
be discussed in Section 6.7. Before discussing the details of JINC’s multi-threading
approaches we will discuss the possible speed-up of parallel execution and different
design concepts.

6.1 Parallel Computing Concepts

Amadahl’s law [5] states that if a fraction p of computation can be run in parallel
while the rest of the computation must run serially the speed-up is upper-bounded
by 1

1−p . The goal of JINC’s multi-threading approach is to speed-up all parts of

calculation1. The alone application of Amadahl’s law cannot help to understand the
possible speed-up [52]. At first the fraction p must be evaluated which requires a
different model.

Another model to understand parallel behavior is the direct acyclic graph (DAG)
model for multi-threading [15]. The instructions of a program are represented by
vertices, the edges indicate the dependencies between instructions. Instruction x
precedes instruction y (x < y) if x must complete before y can start. If neither
x < y nor y < x then x and y can be executed in parallel (x|y). Figure 6.1 shows a
multi-threading DAG.

An important measure is the work, which is the sum of all instructions. For Figure
6.1 it is 16 (number of vertices). This model only uses uniform costs and does not
included caching, overhead for communication, etc. For a more detailed theoretical
view we refer to [71].

Let Tp be the fastest calculation time of the application with p processors. The work
is equal to T1. These notations help to understand the bound for the fastest possible

1no serial execution parts can be identified
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Figure 6.1: Multi-threading direct acyclic graph
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execution time for p processors.

Tp ≥
T1

p

In this model each processor can execute one instruction per time and thus p pro-
cessors can execute at most p instructions.

Another important measure is span, which is defined as the longest path of depen-
dencies in the DAG. In Figure 6.1 it is 8 (e.g.,1→ 2→ 3→ 6→ 7→ 8→ 9→ 16).
The span represents the fastest possible execution time with an infinite number of
processors, i.e.,T∞. This leads to the bound:

TP ≥ T∞.

Work and span are important measures to understand parallelism, as it is defined
as T1

T∞
(which means ration of work and span). These definition can be understood

as the average amount of work along each step on the critical path. It is also the
maximal speed-up which can be obtained by any number of processors.

In our example DAG (Figure 6.1) the maximal possible speed-up is 2 = T1

T∞
= 16

8
.

After discussing the theoretical framework of parallel execution we will now discuss
what is the work in an OBDD library which can be calculated in parallel. We identi-
fied three fields of activities in typical OBDD libraries. The first and most important
is the calculation of OBDD structures. The second is the garbage collection phase. It
is not reasonable in a parallel environment to execute the garbage collection among
the regular calculation as there are strong side-effects, e.g., cache inconsistency.
Therefore we will remove all automatic garbage collection and reordering methods
from the calculation phase2. There is still the possibility for garbage collection and
reordering to reduce memory usage after all calculation is finished3. This design
separates these two phases, so that we can discuss them separately. The last part
are the reordering algorithms. For efficiency reasons, the garbage collection is called
directly before the reordering phase, so that only a minimal number of nodes have
to be reordered.

Calculation The scope of this thesis covers parallelism only on the high-level
operator view. We will not focus on the fact that the recursions can be executed
in parallel. An approach like Cilk [95] can easily be integrated into the recursive
structure of OBDD algorithms. The problem occurs with the work stealing policy
[16]. Cilk’s approach is based on independent calculations with few or no shared
memory. For OBDD algorithms this is not the case. For this reason this approach is
not within the scope of this thesis4. The unique-tables and computed-tables are the
major obstacles to implement an efficient parallel OBDD library. Parallel computing

2See Section 6.7 for a new approach to reduce the necessity of automatic garbage collection and
reordering.

3This can only be guaranteed in the main thread. See Section 6.2.1 for more details.
4Future work should investigate the possibilities if parallelism can also be implemented on

an algorithmic level. A combination of JINC’s high-level approach with low-level parallelism is
imaginable.
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with Message Passing Interface (MPI) [110] have been proven to be inefficient for
OBDD libraries because of the communication overhead of unique-tables [78, 111].
Therefore JINC implements parallelism on an operator level and distributes the work
to multiple threads managed in a thread-pool (see Section 6.3). The thread-pool
has a fixed number of threads available and each thread has its own computed-
tables and memory pools (see Section 6.2.3). This allows the use of shared memory
which eliminates the communication overhead. The advantage of using thread-local
data structures is that no concurrent situation occurs which increases the overall
performance. The drawback of this approach is that multiple computed-tables lead
to more computed-table misses. A computed result is only inserted in one computed-
table. It is not unlikely that the next calculation is performed on a different thread
where the result has not been inserted. To address this issue, Section 6.7 introduces
a new approach to reduce the need of computed-tables.

Garbage Collection The garbage collection phase has different steps to perform.
First to identify dead nodes and second to remove those nodes. Every level has its
own unique-table so that the identification phase can be executed in parallel. The
removal phase can also be executed in parallel. More details can be found in Section
6.5.

Reordering Reordering with JINC’s reordering template approach (see Section
4.1.5) is straight forward. Each swap operation is equal to a vertex in the DAG.
A more detailed description of JINC’s novel approach and the modifications can
be found in Section 6.6. This phase profits the most of parallel execution as the
benchmarks in Section 7.2.2 shows.

6.1.1 Multi-Threading Challenges

JINC uses multi-threading with shared memory to speed-up the computation, re-
ordering and garbage collection phase. There are several approaches for parallel
OBDD packages like [111, 123] but all work on distributed BDDs (on several pro-
cesses or computers) or uses breadth-first construction. JINC follows a different
approach. It still remains focused on depth-first traversal to avoid the memory
overhead of breadth-first traversal. The approaches differ in the underlying memory
models.

The traditional approaches (parallel processes) are using different memory areas.
This has the disadvantage that the main task has to communicate the data to the
other processes [2]. The main advantage is that all processes run independently at
full speed. Figure 6.2 illustrates the concept of parallel processes.

We will focus on the fact that computers with multi core architecture are widely
available [76]. The advantages of shared memory for all parallel threads is that
there is no communication overhead5 [2]. The disadvantage of this method is that

5this idea is based on a lock-free algorithm [35, 46]
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Figure 6.2: Concept of parallel computing
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Figure 6.3: The problem with multi-threading

(without precaution) concurrent threads can lead to unexpected behavior. Figure
6.3 shows the main problem with multi-threading. Situations A and B produce
unpredicted results. To avoid concurrent reads and writes on sensitive data mutual
exclusions (mutexes) [34] around critical sections must be used6. The main focus
of JINC’s implementation was to have only minimal or non-existing overhead for
locking (see the following sections for more details).

6.1.2 JINC’s Concept

JINC is the first multi-threaded library for OBDD manipulations. It is not only
a transformation from the distributed approaches to a multi-threaded environment
(like [93]), it is based on new ideas to benefit from today’s available hardware archi-
tectures.

JINC’s multi-threading approach does not break the basic concept described before.
Figure 6.4 illustrates the new concept (modified parts are marked). The function
object is nearly unchanged. The differences rely on the pooling for the computed-
tables and the memory pools. A Thread Local Storage (TLS) [121] variable is used
to identify the local data structures of a thread. Each thread owns a separate set
of memory pools and computed-tables. The unique-table has been modified so that
concurrent access is possible. A new function object has been developed that enables
multi-threaded calculation.

The maximal number of parallel threads in JINC is limited (see Section 6.3 for more

6Situations C and D would be the resulting outcome.
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Figure 6.4: Multi-Threaded API concept

details). The number of threads can be configured at start-time. With this approach
it is possible to change the multi-threading behavior without recompilation. The
recommended number of parallel threads is at least the number of cores. To many
threads reduce the performance as there are too many context switches and it reduces
the efficiency of hardware caches.

Further details on the changes for a multi-threaded environment are discussed in
the following sections.

6.2 Data Structures

The following section describes the changes in the data structures to work efficient
in a multi-threaded environment.

6.2.1 Nodes

The requirements on the node types are different in a multi-threading environment.
Successor pointers and transformation functions are just altered in garbage collec-
tion phases. So under the assumption that no garbage collection takes place during
multi-threaded calculation no special treatment for these fields is needed. Therefore,
JINC removed the automatic garbage collection process. Instead there is a man-
agement function that checks if garbage collection is needed. If the memory usage
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is too high the garbage collection is called. The management function must only
be called in the main thread as it acts as a synchronization point. The reference
counter is thereby the most critical part because it is changed multiple times during
calculations. Due to concurrency in a multi-threading environment it is possible that
a wrong reference counter implementation could result in incorrect values. Figure
6.3 illustrates this problem. This, in combination with the garbage collection will
lead to unexpected behavior, e.g., missed incrementations of the reference counter
could lead to the deletion of still used objects. JINC uses atomic incrementation and
decrementation to insure correct reference counter values [46, 77] in a concurrent
environment. Atomic operations are provided by most modern processors and are
more efficient as protecting a critical section with a lock.

The other fields (like successors, transformations, unique-table pointer and terminal
value) of the different nodes types do not need to be thread-safe. The values are
only altered during the garbage collection and reordering phase. These algorithms
are designed to work on distinct node sets and thereby need no special treatment
for multi-threading. During OBDD manipulation these values are initialized once
and not altered afterwards.

The next pointer is only altered in the unique-table algorithms. The unique-table
is thread-safe (see Section 6.2.2) and thereby this value.

6.2.2 Unique-table

Unique-tables in a multi-threaded environment are the bottle-neck for parallel ex-
ecution. The usage of one mutex for every unique-table would result in blocking
behavior if several threads try to access the same unique-table. To use one mu-
tex of every slot in a unique-table has several drawbacks. The size of a mutex
increases the memory usage dramatically and the overhead for locking is greater
than the performed operation in the critical section7. JINC uses spin locks [6] for
every unique-table slot to implement an efficient multi-threaded unique-table with
low memory overhead.

The findOrAdd algorithm in a multi-threaded environment is more complex than
the single-threaded version. It is important to recognize that searching for a node
in the unique-table can be implemented without any locking. This is due to the
fact that JINC removed the automatic garbage collection process. In the case of a
successful search the result can be returned. In the case of an unsuccessful search
the slot lock must be requested. Before inserting a new node a new search (with
active lock) must be performed. This is important because another thread could
have inserted the searched node just between the failed search and the acquisition
of the lock. If this search also fails a new node must be inserted. Note, that the
second search could be started just before the first search failed8. Figure 6.5 shows

7The space efficiency is not the key factor as the space requirements does grow with the number
of slots and variables but not with the number of nodes in the BDD. The mutex algorithm presented
in [33] provides a space-efficient solution (if the number of threads is fixed) with fairness guarantees.
The low collision probability does not justify a complex run-time locking algorithm.

8The linked list is sorted. See Section 4.1.1.2 for more details.
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two threads that access the same unique-table slot. One thread has occupied the
lock and inserts a new node. The other threads performs an unsuccessful search.
This example shows that even the newly inserted node will be considered during
the second search. That means that concurrent successful search operations can
be performed lock-free. In the single-threaded case the acquisition of the lock is
the only overhead for the insertion of a new node. Another adjustment to the
single-threaded unique-table is that the dynamic resizing cannot take place during
computation. The dynamic resize process has been moved to the garbage collection
phase.

6.2.3 Memory Pools

The memory pool has been used in a single-threaded environment to avoid memory
fragmentation. In a multi-threaded environment there are several unique-tables ac-
cessed in parallel. The access to the memory pool has to be thread-safe. Securing
the memory pool with a mutex would negate all advantages of multi-core architec-
tures. This is due to the fact that allocating and freeing nodes are highly frequent
tasks of an OBDD library. JINC follows the approach that each active thread uses
its own memory pool. This can be accomplished because of the limited number of
parallel active threads (see Section 6.3). With this idea each thread can allocate
and free memory independently.

6.2.4 Computed-table

The computed-table is important to increase the performance of an OBDD library.
The read and write operations (as described in Section 4.1.2.1) are optimized to
be very efficient. The computed-table performance drops dramatically when using
mutexes [48]. JINC follows the same idea as for the memory pool. Every thread uses
its own computed-table. The overall memory usage of the multiple computed-tables
is comparable to the one computed-table in the single-threaded environment.

6.2.5 Variable Ordering

The variable ordering is almost unmodified compared to the single-threaded ap-
proach. This is due to the fact that the variable ordering definition phase is usually
at the beginning of the calculation. Whenever the variable ordering has to be al-
tered there should be only one active thread. For the case of parallel reordering (see
Section 6.6) the swap of two neighbored variables has been implemented thread-safe.

6.3 Thread-pool

All former described changes are based on the idea that several threads use data
structures concurrently. This section explains the details behind JINC’s thread-pool
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[79, 73, 40].

The idea behind a thread-pool is that a number of threads are created to perform a
number of tasks, which are usually organized in a queue. Typically, there are more
tasks than threads. As soon as a thread completes its task, it will request the next
task from the queue until all tasks have been completed. The thread sleeps until
there are new tasks available. JINC uses a thread-pool to limit the number of parallel
threads. An unlimited number of threads could lead to reduced performance because
of too many context switches [70]. The fixation lead to optimized unique-table (see
Section 6.2.2) and computed-table (see Section 6.2.4) handling. Another advantage
of using a thread-pool over creating a new thread for every task is that the costs for
thread creation and deletion are negated. This results in better performance and
system stability.

The used thread-pool (limited to T threads) fulfills the following conditions:

• each task is performed the same order as in the working queue

• a maximum of T tasks are processed in parallel

• each scheduled task will be executed only once.

JINC uses one global thread-pool. In the following creating or starting a thread is
equivalent with adding a new task to the thread-pool.

6.4 Futures

The idea behind JINC’s multi-threaded approach is that every thread contains some
local storage and makes use of the shared data structures. The function object itself
has to be adjusted to use the memory pools and computed-tables that are bound
to the particular thread. JINC uses a TLS pointer to bind data structures to a
thread. The pointer is initially zero. Before the execution of a HOWDD algorithm,
the function object addresses the TLS pointer and checks it against zero. If it is zero
a container (containing memory pools and computed) is allocated and the pointer
is set to the containers memory address.

To benefit from the multi-threaded data structures JINC uses the idea of delayed
function evaluation [13, 99].

The single-threaded object oriented API has been modified to work in a multi-
threaded environment. In a usual program flow a function call is completely eval-
uated before continuing with the next one. Listing 6.1 shows an example program
that could benefit from the multi-threaded approach. Figure 6.6 shows the DAG
of this program9 and identifies possible paths for parallel execution. Even in this
simple program some parallel calculations can be performed.

JINC uses a generic approach to solve this problem. A template object called Future

acts like a multi-threading management layer [9]. A value or function can be assigned

9Line number l correspondent to the l-labelled vertex.

79



CHAPTER 6. JINC – MULTI-THREADING

1

2

4

6

7

9 10

5

12

13

Figure 6.6: DAG of Listing 6.1

1 BDDFunction someBigFunction =...

2 BDDFunction anotherBigFunction =...

3
4 BDDFunction tempResult=someBigFunction*someBigFunction;

5 BDDFunction temp1=someBigFunction*anotherBigFunction;

6 BDDFunction temp2=tempResult*anotherBigFunction;

7 BDDFunction result=temp1+temp2;

8
9 unsigned long sTempResult=tempResult.size ();

10 unsigned long sResult=result.size ();

11
12 std::cout << sTempResult << std::endl;

13 std::cout << sResult << std::endl;

Listing 6.1: The need of lazy evaluation
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to a Future at construction time, but a Future cannot be reassigned. This ensures
that a object holds the same state over its lifetime. Each object contains a value
field and a Boolean flag to identify the validity of the value. The Boolean flag is
used to identify if the calculation of the value is finished and thereby a valid value
available. If an already calculated value10 is assigned to a Future the value is stored
and the valid flag is set to true (no thread will be created in this case). If Future f
is assigned to a Future (e.g.,Listing 6.2 line 6) it creates a new thread and sets the
valid flag to false. The thread then waits until the valid flag of f becomes true. In
that case the value is copied and the valid flag is set to true. If a function object is
assigned to a Future the valid flag is set to false and a thread which executes the
function object is created. This function object waits until all parameters have valid
values and starts the evaluation. After the execution of this function object the value
is copied and the valid flag set to true. The waiting process does not consume any
performance because Future uses elaborate to inform all waiting threads through a
condition variable.

Listing 6.2 shows the same situation as in Listing 6.1 but uses JINC’s lazy evaluation
approach. The template parameter represents the type of the value stored in the
Future object. Lines 9 and 10 show that it is possible to combine different calcu-
lations types. This is necessary as the size calculation is bind to the BDDFunction

but returns a numerical type11. The lines 4-10 are not executed in the main thread.
Each line creates a function object which is scheduled in the thread-pool. With the
precaution that those function objects cannot be reassigned and that the thread-
pool executes the jobs in the given order it is not possible to create a dead-lock
situation. Lines 12 and 13 are executed in the main thread and thus assure the
right order of the output (see Figure 6.6).

1 BDDFunction someBigFunction =...

2 BDDFunction anotherBigFunction =...

3
4 Future <BDDFunction > tempResult(multiplication ,someBigFunction ,someBigFunction );

5 Future <BDDFunction > temp1(multiplication ,someBigFunction ,anotherBigFunction );

6 Future <BDDFunction > temp2(multiplication ,tempResult ,anotherBigFunction );

7 Future <BDDFunction > result(plus ,temp1 ,temp2 );

8
9 Future <unsigned long > sTempResult=Future :: createSizeFunction <BDDFunction >( tempResult );

10 Future <unsigned long > sResult=Future :: createSizeFunction <BDDFunction >( result );

11
12 std::cout << sTempResult.getValue () << std::endl;

13 std::cout << sResult.getValue () << std::endl;

Listing 6.2: Lazy evaluation in JINC

Another usage for lazy evaluation is the implementation of iterative methods. Dur-
ing the check if a further iteration step is needed the next step could be processed
in parallel. Listing 6.3 shows the idea behind using lazy evaluation in iterative
methods.

10That means a function object of the single-threaded API.
11in this case an unsigned long
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1 {

2 Future <bool > check(checkCondition ,function );

3 Future <BDDFunction > next(computeIterationStep ,function );

4 function=next.getValue ();

5 } while(check.getValue ());

Listing 6.3: Lazy evaluation for iterative methods

6.5 Garbage Collection

Garbage collection in a single-threaded environment halts the computation phase,
collects and removes dead nodes, cleans the computed-tables and starts the com-
putation phase afterwards. In a multi-threaded environment it is not reasonable
to perform a garbage collection on one thread and perform calculations on other
threads. The computation phase is also halted as in the single-threaded case. The
main difference rely in the possibility to use several threads at once to collect and
remove dead nodes.

JINC collects all dead nodes on every level and removes them from the unique-table.
During removal the dead nodes are linked via the next pointer of the provided base
node. This operation is common for all variants and is thus provided by the generic
unique-table implementation. Each variable in the context of the variable ordering
has its own unique-table so that this process can be executed in parallel (without
mutexes). Figure 6.7 illustrates the parallel garbage collection process from the
perspective of one unique-table. After the collection phase there are n linked lists
of dead nodes12. For every node in the linked lists a traversal must be performed to
identify the next dead nodes. JINC uses a thread-safe reference counting mechanism
so that this process can be performed in parallel. The newly identified nodes are
then linked to the existing lists. After this step the n linked lists have to be freed.

6.6 Parallel Reordering

Reordering algorithms are used to reduce the number of nodes. This thesis intro-
duces a run-time efficient method to use multi-threading architectures to speed-up
reordering algorithms. There have been several approaches to parallelize the re-
ordering process [45, 97, 82, 78, 103, 12, 83]. These approaches work on several
computers. The disadvantage of distributing the reordering process to several com-
puters is the communication overhead. The advantage of the distributed solution
is that the global available memory is higher. JINC follows an orthogonal idea.
Using shared memory for all parallel threads is used to speed-up the calculation.
This approach can be combined with the traditional ideas. Each process (of the
traditional methods) could implement this new approach to speed-up each process
independently.

JINC’s reordering approach has been adapted to work with multiple threads in

12where n is the number of variables which is equal to the number of unique-tables
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Figure 6.7: Multi-threaded garbage collection approach (from the perspective of one
unique-table)
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Figure 6.8: The idea of queued (delayed) swap operations

parallel. This is based on the idea that it is not necessary to perform every swap
operation directly. JINC delays the swap operation till the reordering template calls
the size function or the reordering is finished. The swap operations are stored in a
queue. The collection of swap operations allows for checking whether it is possible
to create multiple parallel threads. The parallel execution of swap operations is
possible because the swap operation has only local influence (on the involved levels).
The only influence on other levels is the incrementation and decrementation of the
reference counter. This is implemented as an atomic operation [46, 77] (as described
in Section 6.2.1) and thereby is a lock-free mechanism.

The memory overhead of JINC’s approach is limited to the size of the waiting list
of swap operations and is not dependent on the size of the BDD.

The used approach uses a bit field to identify possible swaps. All bits are initially set
to zero. For every swap operation it is checked if the affected positions are blocked13.
A swap operation cannot be performed if at least one position is blocked. In both
cases the corresponding positions are set. With this simple check it is possible to
identify independent swap operations. Figure 6.9 illustrates the identification pro-
cess. Whenever a swap operation is ready it reports to the ReorderHelper. The

13i.e., swap(i,i+ 1) will check if one of the bits on position i or i+ 1 is set
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ReorderHelper removes the finished operation from the parallel swap list and starts
the identification process again14. Algorithm 3 shows in detail how the scheduling
process is performed. The last step is repeated until all swap operations are per-
formed. The swap operations are scheduled in the thread-pool (see Section 6.3).

The order of the swap operations is observed in the identification algorithm. The
current swap operations P and the pending swap operations S are stored in a list.
This ensures that the dependencies of swap operations are maintained.

Algorithm 3 Parallel-Swap-Scheduling

Input: List P of parallel swap operations, list S of pending swaps,
number of variables n and optional the list F of finished swap
operations till last schedule

Output: List of parallel swap operations

remove all entries of F from P
create bit array B of size n and set all elements to zero
for all p in P do
B[|index(p)|] = 1
B[|index(p) + 1|] = 1

end for
for all s in S do

if B[|index(s)|] = 0 and B[|index(s) + 1|] = 0 then
add s to P
add s to thread-pool

end if
B[|index(s)|] = 1
B[|index(s) + 1|] = 1

end for
return P

The biggest advantage of this approach is that there is no need to change the re-
ordering algorithms to work in a multi-threaded environment. Different reordering
methods [101, 53] benefit differently from this new approach. The sifting algo-
rithm usually performs one swap operation and measures the size of the OBDD. In
this case no parallel execution could be accomplished. Genetic reordering methods
[36, 69, 26] are best suited to benefit from this approach. Genetic algorithms create
several individuals which have to be measured. Each individual has to be created15

and can then be measured. The swap operation that are needed to go from one
individual to another are highly independent. The individuals are measured in the
order so that the global number of swap operations is minimal.

This parallel approach is also applicable for group reordering algorithms as they
implement one group swap with several variable swap operations. Figure 6.10 illus-
trates the parallel operations and shows that the number of parallel swap operations

14The current active operations (parallel swap list) are set as blocking before starting the iden-
tification phase.

15the variable ordering has to be applied to the OBDD
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Figure 6.9: Identification of possible parallel swap operations
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Figure 6.10: Parallel swap operations for group reordering algorithms

is limited by the group size. If the first group consists of g1 variables and the second
group consists of g2 variables (with g1 ≤ g2) the maximal speed-up factor can be
calculated by:

work

span
=

2 ·
g1−1∑
i=1

i+ (g2 − g1 + 1) · g1

g1 + g2 − 1
=

g1 · g2

g1 + g2 − 1

This is the theoretical possible speed-up as not every swap operation consumes the
same time (see Section 7.2.2.2).

An idea to benefit from parallel swap operations with the sifting algorithms is to
partition the variable ordering into groups. The ordering of each group can than be
reordered in parallel. JINC’s architecture supports this in a natural way.

The only changes that are necessary to support this multi-threaded reordering im-
provement has to be made for the ReorderHelper. The reordering system described
in Section 4.1.5 then can be used for either variables or groups of variables.

Chapter 7 investigates the performance speed-up of this novel approach of a multi-
threaded reordering system.

6.7 Generic Multi-Operand APPLY

The basis for multi-threaded calculation has been introduced with the Future ap-
proach. The object oriented API provides overloaded operators which are evaluated
at once, e.g., the term (f + g) · h first evaluates f + g and afterwards the multiplies
h to the result. To benefit from the Future approach the complete term has to be
capsulated into a function object. This does not follow the philosophy of JINC as it
complicates the development. Therefore JINC introduces a novel lazy evaluation ap-
proach for OBDD operators that is well suited for being separated to other threads.
The idea is based on the expression template approach [118]. This concept utilizes
the compiler’s parse tree to generate an object which represents a complete term.
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Figure 6.11: Parse tree and expression template structure for the term (f + g) · h

The template structure is created at compile-time and does not influence run-time.
Based on this object a generic APPLY algorithm is implemented which evaluates the
term at once. This approach has two advantages. First, operator evaluation can be
postponed. This in combination with the Future approach eases the development
of algorithms using multi-threaded. Second, and more importantly, the immediate
evaluation of a term with arbitrary arguments and structure creates no temporary
nodes during computation and thus speeds up OBDD manipulations. The elim-
ination of temporary nodes allows for the representation of larger systems. The
reduced need of computed-tables is important as JINC uses thread-local computed
tables and disabled the automatic garbage collection due to concurrency.

This approach is superior to the MORE approach [51, 27] as there is no structure
modification, no node overhead and no need for applying a reduction algorithm
afterwards.

6.7.1 Expression Templates

This section illustrates the expression template approach [118]. It will show how an
object structure represents a term which can be evaluated later on.

Figure 6.11 shows the parse tree for (f + g) · h and JINC’s expression template
structure. Each function is represented by the Symbol class. Each operator is
represented by its own class. The class Expression acts as a separator to eliminate
any side-effects with already existing definitions. Expression combines Symbols

and operator classes and forwards every call to its template type. For this reason
we will not discuss any further details of Expression. The Symbol class stores a
pointer to the root node of a function. The operator classes store their left-hand
side and right-hand side argument.

6.7.2 Generic Multi-Operand APPLY algorithm

After illustrating the conceptual design of JINC’s expression templates we will now
discuss how recursive HOWDD algorithms can operate on this structure.
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At first the node pointers must be extracted out of the structure. The idea is
to create an array in which each Symbol element stores its pointer. To evaluate
the needed array space each object is enriched with size information. Listing 6.4
illustrates the concept. Symbol just stores one argument and thus has size one. An
operator does not store a value itself but its template types. Thus, its size is the sum
of the template type sizes. Note, the OperatorBase class implements the common
behavior of each operator.

We now can create an array with appropriate size. It remains to fill the array with
the corresponding values. This is implemented with a slicing mechanism. Listing
6.4 shows the implementation. The size value is now used to slice the information.
Figure 6.12 illustrates the concept on the example of term (f+g)·h. An array of size
3 is created. The pointer to the first element of the array is passed to the object (i).
The operator object first fills the left-hand side argument and thus just passes the
pointer to it (ii). The next operator does the same (iii). The Symbol element stores
its content in the corresponding element and returns (iv). The operator object now
fills the right-hand side argument. Therefore, the pointer to element with index 1
(initial index plus size of left-hand side argument= 0 + 1 = 1) is given to the right-
hand argument. The Symbol element stores its content in the element corresponding
to the given array pointer (v). Thus, the element with index 1 is filled through a
slicing mechanism. The operator object is finished with filling and returns (vi).
The index to the array is calculated in the same way as before (index plus size of
left-hand size argument= 0 + 2 = 2) (vii). The Symbol element stores its content in
the appropriate element and returns (viii). (ix) shows the final situation.

The remaining parts of a HOWDD algorithm are the terminal case check and the
recursive calculation steps. The terminal case check must be implemented for every
structure. As in the case of initial value filling, a pointer to the element array must
be given as parameter. Symbol just returns the first element of the array. The
operator classes must implement their corresponding checks. The only difference
to regular algorithm handling is that left-hand and right-hand side parameters can
for their part be operators. This enables early termination, e.g.,(f + g) · 0 will
return 0 and not calculate f + g. As result no temporary nodes will be created
during calculation. It is important to note that all information about terminal case
handling depends on the template type and the input values. Therefore, no object
instance is needed for algorithm handling. The generic APPLY algorithm is illustrated
in Listing 6.5. The algorithm consists of two parts. First, the structure is created
and the initial array is filled (line 32). Second, the recursive algorithm is called with
the initial values (line 33). The recursive algorithm first checks for terminal cases
(line 3). If it is a terminal case the algorithm returns the result16. In the other case
it calculates the successors (lines 12 and 17) and calls the algorithm recursively for
each successor array (lines 13 and 18). The final step is to combine the resulting
nodes (line 20). Listing 6.5 includes caching only in the case that the left-hand
and right-hand side parameters are Symbols (lines 5-7 and 22-24). This behavior
is equivalent to the traditional APPLY algorithm with two arguments. Future work

16Terminal case handling is done with recursive traversal of the template structure which has
been created at compile-time.
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Figure 6.12: Array filling concept illustrated on the term (f + g) · h
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1 template <typename T>

2 struct Expression {

3 enum {size=T::size};

4
5 ...

6
7 void fill(BaseNode ** nodes) const {

8 value.fill(nodes );

9 }

10 };

11
12 struct Symbol {

13 enum {size =1};

14
15 ...

16
17 void fill(BaseNode ** nodes) const {

18 (*nodes)=node;

19 }

20 };

21
22 template <typename T1 , typename T2>

23 struct OperatorBase {

24 enum {size=T1::size+T2::size};

25
26 ...

27
28 void fill(BaseNode ** nodes) const {

29 lhs.fill(nodes);

30 rhs.fill(nodes+T1::size);

31 }

32 };

33
34 template <typename T1 , typename T2>

35 struct Multiply : OperatorBase <T1,T2 > {

36
37 ...

38
39 };

Listing 6.4: Size concept and array filling with slicing

1 template <typename T>

2 BaseNode* apply_impl(BaseNode ** nodes){

3 if(BaseNode* comp=T:: terminalCase(nodes )) return comp;

4
5 if(T::size ==2){

6 if(BaseNode* comp=T::find(nodes)) return comp;

7 }

8
9 UniqueTable* table=T:: getMinUniqueTable(nodes);

10
11 BaseNode* succs[T::size];

12 T:: fillSuccs(nodes ,succs ,table ,0);

13 BaseNode* w1=apply_impl <T>(succs);

14
15 ...

16
17 T:: fillSuccs(nodes ,succs ,table ,m-1);

18 ADDBaseNode* wm=apply_impl <T>(succs);

19
20 BaseNode* result=findOrAdd(table ,w1,w2 ,...,wm);

21
22 if(T::size ==2){

23 T:: insert(nodes ,result );

24 }

25
26 return result;

27 }

28
29 template <typename T>

30 BDDFunction apply(const Expression <T>& s){

31 BaseNode* nodes[T::size];

32 s.fill(nodes);

33 return BDDFunction(apply_impl <T>(nodes ));

34 }

Listing 6.5: Generic multi-operand APPLY
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Figure 6.13: Generic multi-operand APPLY example

should investigate the possibility to cache operator classes. The concept enables the
addition of new types without changing the algorithm. It is also possible to introduce
non-operator calculations like existential quantification, etc. The correctness of this
novel algorithm can be easily seen as we just use a combination of correct two-
operand algorithms. Note that the described algorithm creates terminal nodes in
T::terminalCase for simplicity reasons. In practise, terminal nodes should only be
created in apply impl to avoid the creation of temporary terminal values.

Figure 6.13 illustrates the algorithmic behavior on the example (f + g) · h with
f = x, g = x · y and h = (1 − x) · y. This figure shows the parse tree and
the HOWDD structure of the functions. Within this example the functions are
represented in an ADD. The initial array does not match any terminal case. The
0-successor node array is then created and the algorithm called recursively. In this
step the terminal case of the plus operator matches and returns the 0 drain as
result. The multiplication operator returns the 0 drain because the result from the
plus operator matches a terminal case. The 1-successor node array is then created
and the algorithm called recursively. In this case the multiplication operator can
immediately return the 0 drain. The total result of this expression is 0 (elimination
rule). The regular APPLY approach would first create f + g = x · (y + 1) and thus
create a not needed temporary function.

The concept of this new generic multi-operand APPLY is illustrated on pointer based
variants. The concept is also valid for variants which use the TraversalHelper

approach.
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Chapter 7
This chapter benchmarks the performance of JINC in its single-threaded and multi-
threaded version.

At first JINC’s performance, without using its multi-threading abilities, is mea-
sured in different settings. These benchmarks also include comparisons to the well
established OBDD library CUDD [109].

The multi-threading benchmarks are divided into garbage collection, calculation
and reordering phase to show the pure performance of each approach. The last
benchmark shows the performance of the novel multi-operand APPLY algorithm.

7.1 Single-Threaded JINC

JINC’s single-threaded design illustrated in Chapter 4 is not used in the following
benchmarks. JINC’s multi-threaded version is used. The thread-pool size is limited
to zero, so that no scheduling or thread creation takes place. The data structures
are designed so that they have minimal overhead in a single-threaded environment.

7.1.1 Model Checking

We will use the application model checking to measure the single-threaded perfor-
mance of the HOWDD library JINC. Model checking has been chosen as a bench-
mark because model construction and validation of properties uses a broad range
of OBDD algorithms. The used model checking environment PROMOC is based
on JINC [86]. The used formalism to model the reactive modules is also used by
PRISM [92]. PRISM uses the BDD library CUDD [109]. The same model check-
ing language makes it possible to compare the performance of JINC and CUDD.
Therefore, this benchmark also includes measurements with the established model
checking tool PRISM [63]. All used models can be found on the benchmark page
of PRISM [64]. The methods how to build the system are similar for PRISM and
PROMOC. The only differences rely on the generated variable ordering1 and inter-
nal resolution of probabilistic and non-deterministic choices. For our benchmark we
will use an example where both programs generate the same variable ordering. This
is an important characteristic as this benchmark measures the performance of JINC
and CUDD and not the influence of different variable orderings on model checking.

Besides a pure symbolic calculation engine, PRISM provides a sparse matrix engine
and a hybrid engine which combines the advantages of OBDDs and the sparse matrix
representation. We will just measure against the pure symbolic calculation engine as
we are interested in the performance of single-threaded JINC. The hybrid approach

1both libraries use an interleaved variable ordering [42, 49]
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involves less OBDD operations and we therefore would obtain unreliable information
about the OBDD library performance.

7.1.1.1 Leader Election Protocol

The leader election protocol is used to elect a leader out of N processors. In this
case all processors are arranged in a synchronous ring. For this case study we will
use the leader election protocol from [58].

This protocol uses the idea that every processor randomly chooses a number from
1 to K. All chosen numbers are passed around the ring. The processor with the
highest chosen number will be the leader. If there are more than one processors
with the same number, the election starts again.

In this case study, we will vary the number of processors N and the range K. Listing
7.1 shows the leader election model. In this example, the number of processes N
is three and the range of the domain K is two. We will compare the building time
for the system for different variants. We will also measure the time to calculate the
probabilities to elect a leader within L rounds and the expected number of rounds
to elect a leader.
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1 probabilistic

2
3 const N=3; // number of processes

4 const K=2; // range of probabilistic choice

5
6 module counter

7 c : [1..N-1];

8
9 [read] c<N-1 -> (c’=c+1);

10 [read] c=N-1 -> (c’=c);

11 [done] u1 | u2 | u3 -> (c’=c);

12 [retry] !(u1 | u2 | u3) -> (c ’=1);

13 [loop] s1=3 -> (c’=c);

14 endmodule

15
16 module process1

17 // s1=0 make random choice

18 // s1=1 reading

19 // s1=2 deciding

20 // s1=3 finished

21 s1 : [0..3];

22 // has a unique id

23 u1 : bool;

24 // value to be sent to next process in the ring

25 v1 : [0..K-1];

26 // random choice

27 p1 : [0..K-1];

28
29 // choose number

30 [pick] s1=0 -> 1/K : (s1 ’=1) & (p1 ’=0) & (v1 ’=0) & (u1 ’=true)

31 + 1/K : (s1 ’=1) & (p1 ’=1) & (v1 ’=1) & (u1 ’=true);

32 // read

33 [read] s1=1 & u1 & !p1=v2 & c<N-1 -> (u1 ’=true) & (v1 ’=v2);

34 [read] s1=1 & u1 & p1=v2 & c<N-1 -> (u1 ’= false) & (v1 ’=v2) & (p1 ’=0);

35 [read] s1=1 & !u1 & c<N-1 -> (u1 ’= false) & (v1 ’=v2) & (p1 ’=0);

36 [read] s1=1 & u1 & !p1=v2 & c=N-1 -> (s1 ’=2) & (u1 ’=true) & (v1 ’=0) & (p1 ’=0);

37 [read] s1=1 & u1 & p1=v2 & c=N-1 -> (s1 ’=2) & (u1 ’= false) & (v1 ’=0) & (p1 ’=0);

38 [read] s1=1 & !u1 & c=N-1 -> (s1 ’=2) & (u1 ’=false) & (v1 ’=0);

39 // done

40 [done] s1=2 -> (s1 ’=3) & (u1 ’=false) & (v1 ’=0) & (p1 ’=0);

41 // starting a new round

42 [retry] s1=2 -> (s1 ’=0) & (u1 ’=false) & (v1 ’=0) & (p1 ’=0);

43 // self loop

44 [loop] s1=3 -> (s1 ’=3);

45 endmodule

46
47 // construct remaining processes through renaming

48 module process2=process1[s1=s2 ,p1=p2,v1=v2,u1=u2 ,v2=v3] endmodule

49 module process3=process1[s1=s3 ,p1=p3,v1=v3,u1=u3 ,v2=v1] endmodule

50
51 system

52 counter || process1 || process2 || process3

53 endsystem

54
55 rewards

56 (s1=0 | s2=0 | s3=0): 1;

57 endrewards

Listing 7.1: Leader election model

Table 7.1 shows the time needed to build each system. The building times for PRO-
MOC and PRISM are comparable for small sized instances. PROMOC outperforms
PRISM for bigger sized instances. The difference in building times arise from the
underlying OBDD libraries CUDD and JINC.

Table 7.2 shows the times needed to verify that the election of a leader has proba-
bility one. TADDs have been included in this measurement as verification involves
the renaming of neighbored variables.

As expected, TADDs benefit from their compact size and thereby gain an run-time
advantage over ADDs. The indirect comparison between JINC and CUDD provide
similar results as for to the building times.

Table 7.3 shows the times for calculating the expected number of rounds to elect a
leader. This calculation has not been done with PRISM because it does not provide
this feature. This calculation uses the iterative methods discussed in Section 2.3
to solve the linear equation system. In this benchmark, TADDs are again faster
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N K Model PROMOC PRISM
States Transitions Nodes Time (s) Time (s)

3 2 22 29 367 0 0
3 4 135 198 1.781 0 0
3 6 439 654 5.632 0 0
3 8 1.031 1.542 10.595 0 1
3 10 2.007 3.006 23.382 1 1
3 12 3.466 5.193 29.617 1 1
3 14 5.495 8.238 51.000 1 1
3 16 8.199 12.294 69.553 1 1
4 2 55 70 908 0 0
4 4 782 1.037 10.801 1 0
4 6 3.902 5.197 58.324 7 6
4 8 12.302 16.397 165.625 8 8
4 10 30.014 40.013 473.188 19 60
4 12 62.222 82.957 929.667 18 312
5 2 136 167 1.731 2 1
5 4 4.124 5.147 41.528 5 7
5 6 31.133 38.908 337.108 16 27
5 8 131.101 163.868 1.274.313 42 413
6 2 329 392 3.163 2 1
6 4 20.524 24.619 140.735 9 12
6 6 233.340 279.995 1.732.096 115 1.207

Table 7.1: Building times for the leader election protocol.

PROMOC PRISM
N K ADD TADD ADD
4 2 0 0 0
4 4 1 0 0
4 6 2 1 2
4 8 2 1 6
4 10 7 2 19
4 12 7 4 42
5 2 0 1 0
5 4 3 1 2
5 6 19 12 11
5 8 48 35 315
6 2 1 1 0
6 4 11 8 12
6 6 175 133 433

Table 7.2: Calculation times to verify P≥1[trueU
∧

1≤i≤N
si = 3].
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N K ADD TADD
4 2 0 0
4 4 1 1
4 6 1 1
4 8 1 1
4 10 2 2
4 12 3 4
5 2 1 1
5 4 1 1
5 6 1 1
5 8 4 6
6 2 3 3
6 4 10 8
6 6 88 72

Table 7.3: Times to calculate the expected number of rounds.

than ADDs. TADDs result in faster computation times because they profit from
the compact representation and the better cache hit/miss ratio.

7.1.1.2 Kanban

This benchmark uses the model checking tool from [66]. This tool can use JINC as
well as CUDD. As such, this benchmark can be seen as a direct comparison between
JINC and CUDD. Both BDD packages do not perform any garbage collection op-
eration. The computed-table sizes have been chosen so that no resizing took place.
Dynamic reordering has been switched off.

This case study is based on the Kanban system of [29]. The system is modeled with
Continuous Time Markov Chains (CTMSs). Kanban is a manufacturing system
related to ’Just In Time’ (JIT) production. The system signals the need for an item
with the so called Kanban card. The number of Kanban cards tokens is synonymic
for production stations. The Kanban system is a Pull system and was successfully
devised by Toyota.

Table 7.4 shows the times needed to build the Kanban system with a various number
of Kanban cards. The benchmark indicates2 that JINC is faster than CUDD. The
time difference is mainly based on the faster garbage reuse algorithm (no traversal
needed), the better node handling (derivation hierarchy) and the optimized run-time
behavior through extensive use of template meta programming (a result from the
HOWDD framework).

7.2 Multi-Threaded JINC

This section benchmarks JINC’s novel multi-threaded approaches. The benchmarks
are divided into three parts. At first, parallel node allocation and garbage collection

2like in the comparison between PRISM and PROMOC
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Kanban JINC CUDD
N Time (s) Time (s)

4 1 1
5 1 3
6 3 6
7 4 14
8 11 33
9 19 61

Table 7.4: Times to build the Kanban system.

is measured. Second, the parallel reordering approach will be investigated in terms of
variable reordering and group reordering. The last part benchmarks JINC’s parallel
computation abilities.

7.2.1 Parallel Node Allocation and Garbage Collection

The purpose of this benchmark is to measure the maximal speed-up for node allo-
cation and the expected speed-up for the garbage collection algorithm.

The benchmark setup uses two parameters, n for the number of variables and k for
the number of nodes that are created per level. There is no dependency between
levels. For level i (with variable xi) we create the functions

xi, 2 · xi, 3 · xi, . . . , n · xi.

The used hardware for this benchmark consists of 4 processors with 2.5GHz and
8GB RAM.

At first we use 10 variable levels and create 4000000 nodes per level. This means
that we allocate and delete 44000001 nodes (4000001 terminal nodes + 10 · 4000000
inner nodes) for the first measurement. Each level is created in a separate task, so
that there is no concurrent access to the unique-tables. As a second benchmark we
use 1000 variable levels and create 40000 nodes per level. This results in 40040001
total nodes. The third setup also uses 1000 variable levels and creates 40000 nodes
per level, but changes the creation order. Task i creates the functions i ·x1, . . . , i ·xk
(i = 1, . . . , n). That means that there are many concurrent accesses to unique-
tables. Figure 7.1 illustrates the results for all three benchmarks. In the first two
benchmarks the number of nodes that are allocated per second and processor is
almost constant. The garbage collection algorithm does not benefit in the equal
amount from parallel threads as in the case of node allocation. This is due to the
fact that the garbage collection has several phases which are separated via wait
points. This reduces the effect of multiple parallel threads. In the third benchmark
the performance of the allocation decreases, i.e., the concurrency increases with
an increasing number of processors. The performance of the garbage collection
decreased (compared to the second benchmark) dramatically. This is due to the
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Figure 7.1: Results for different allocation and garbage collection benchmarks.

fact that the nodes of a level are allocated from different memory pools. Because
of this memory fragmentation the processor data cache cannot work very efficiently.
Instead of fetching the data from the fast cache memory the data must be fetched
from the much slower main memory. The increased execution time of the garbage
collection makes the influence of the synchronization points less relevant.

7.2.2 Parallel Reordering

This benchmark is used to show how well the newly developed parallel reordering
concept performs under real conditions [50].

7.2.2.1 Variable Reodering

The used benchmark function is the n-queens problem. This function is defined
over many variables3 and thereby a good candidate for parallel swap operations.

3the n-queens problem uses n2 variables to represent the chess board
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The used reordering algorithm is the genetic reordering algorithm presented in [69].
As described in Section 6.6 genetic algorithms are well suited for this new approach
because of the high number of independent swap operations. Reordering algorithms
like e.g., sifting use variable shifting which cannot profit from the new parallel re-
ordering approach. There is no time penalty in using the parallel reordering ap-
proach for reordering methods like sifting, window permutation, etc as the swap
scheduling is performed in parallel.

Figure 7.2 shows the parallel reordering approach applied to different instances of
the n-queens problem. The x-axis represents the time needed to run a complete
genetic reordering algorithm4. The y-axis represents the number of CPUs that are
fully used5. The used hardware consists of 16 processors with 3.5GHz and 4GB
RAM. The thread-pool has been limited to 16 threads. The benchmark shows
that the new reordering approach scales with increasing number of variables. This
can be explained with the increasing number of possible parallel operations and
that the rescheduling is fast compared to a single swap operation. For the smaller
examples the rescheduling process is more time consuming compared to a single
swap operation. The larger examples take advantage of this new approach. The
reordering of the 10-queens problem is nearly 3 times faster compared to the single
threaded approach. This new approach speeds up the 11-queens problem reordering
by factor 7 (700% processor load in average) and the 12-queens problem reordering
by factor 10.

Figure 7.3 shows the number of possible parallel threads for the different instances
of the n-queens problem. It illustrates that even the smaller benchmarks have a
large number of parallel swap operations. As stated above the rescheduling and
thread-pool management slows the overall performance. Another reason is that the
number of nodes on each level is low and thereby the swap operations are not very
time consuming. For the larger examples the number of possible parallel threads is
higher than the number of CPUs used. This benchmark shows that even a small
number of variables results in a high number of parallel threads. The average number
of parallel threads for this benchmark is approximately n2

10
.

7.2.2.2 Group Reordering

Group reordering increases the number of independent swap operations (see Section
6.6 for more details). In this case all reordering algorithms can profit from the new
parallel reordering approach.

For this benchmark we use the n-queens problem and group the variables of a row
into one group, i.e., there are n groups and each group consists of n variables. The
sifting algorithm is the used reordering method.

Figure 7.4 shows the group sifting results for different instances of the n-queens
problem. The advantage of parallel computation depends on the group size, e.g.,

4The algorithm generates 20 individuals per generation and is repeated until there are no further
improvements for the last 10 generations.

5e.g., 10 threads that are using 50% single CPU time count as 5 fully used CPUs.
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Figure 7.2: Parallel reordering approach applied to different n-queens problem in-
stances
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Figure 7.3: Number of parallel swap operations for different n-queens problem in-
stances
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Figure 7.4: Parallel group reordering approach applied to different n-queens problem
instances

the 12-queens problem group reordering is sped up by factor 4.5, where a maximal
speed-up of 6.26 is possible (see Section 6.6).

7.2.3 Parallel Computation

This benchmark measures JINC’s parallel computation abilities in the application
of matrix power computation. The basic idea of this benchmark is to calculate the
matrix powers A2, . . . , An with given square matrix A and natural number n > 1.
Each computation step is a calculation intensive process and therefore well suited
to be calculated with parallel processes. The calculations are segmented into several
steps. Table 7.5 illustrates the step concept. After each step the garbage collection
algorithm is invoked to clean up memory used for temporary calculations.
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Step Matrix Powers

1 A1

2 A2 = A1 · A1

3 A4 = A2 · A2 A3 = A2 · A1

4 A8 = A4 · A4 A7 = A4 · A3 A6 = A4 · A2 A5 = A4 · A1

... · · ·

Table 7.5: Step concept of matrix power calculation.

Step 1 Processor 16 Processors Speed-up
Time (s) Time (s)

1 0, 27 0, 27 0 %
2 0, 33 0, 31 6 %
3 0, 50 0, 45 11 %
4 0, 62 0, 50 24 %
5 0, 74 0, 67 10 %
6 5, 07 1, 97 157 %
7 1.119, 34 214, 41 422 %

Table 7.6: Matrix power calculation with 1 and 16 processors.

The benchmark matrix A ∈ R256×256 has the following form:




0 1 2 3

1
. . . . . . . . . . . .

2
. . . . . . . . . . . . 3

3
. . . . . . . . . . . . 2
. . . . . . . . . . . . 1

3 2 1 0




We will run 7 steps, i.e., the matrix powers A2, . . . A64 will be calculated. The last
step invokes 32 threads in parallel. Figure 7.5 shows the processor load over time.
In this benchmark after finishing 16 tasks in step 7 there are no more waiting tasks
in the thread-pool, so that with every finished task the processor load decreases.
Table 7.6 shows the calculation times for every step for the single-threaded and
multi-threaded setup. The speed-up for the calculation of step 7 is around factor
5.22 with 16 processors compared to the computation with one processor (equivalent
to single-threaded JINC).

7.2.4 Generic Multi-Operand APPLY

This section discusses the advantages of the expression template approach in the
context of recursive HOWDD manipulation. The used benchmark is the well known
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Figure 7.5: Matrix power processor load.

n-queen problem. This benchmark is well suited because it can be expressed as
one expression. Note, there is no caching for the novel expression template ap-
proach. The regular manipulation algorithm uses computed tables. In comparison
to Section 5.3 we will just measure the building time.

Table 7.7 compares the traditional approach with the novel generic multi-operand
APPLY algorithm. The number of peak nodes illustrates the efficiency of this new
approach. The peak nodes include the nodes representing the board positions and
the resulting function. The overhead (including board position representations) is
illustrated in Figure 7.6. It can be seen that there is no overhead for the new
algorithm while keeping the efficient recursive structure (compared to [51, 27]). The
run-time improvements are a result from early termination and the optimal number
of nodes. For the largest benchmark instance it was not possible to fit into 4Gb
of memory6 with the traditional approach. The new approach reduce the necessity
to use caching mechanisms or garbage collection. This is important as caching and
garbage collection is inefficient in an multi-threaded environment.

6no garbage collection took place to illustrate the overhead of the traditional approach
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Traditional APPLY Multi-Operand APPLY

n Solutions Nodes Time(s) Peak Nodes Time(s) Peak Nodes

4 2 31 0,01 423 0,01 170
5 10 169 0,01 1.629 0,01 459
6 4 131 0,01 5.183 0,01 678
7 40 1.101 0,01 19.216 0,01 1.995
8 92 2.453 0,04 66.421 0,02 3.831
9 352 9.559 0,20 251.989 0,09 11.571
10 724 25.947 0,92 995.789 0,35 28.759
11 2.680 94.824 4,59 4.367.315 1,72 98.626
12 14.200 435.172 29,79 21.057.439 9,51 440.169
13 73.712 2.044.396 306,09 109.672.282 56,10 2.050.818
14 365.596 9.572.420 ∞ >4Gb 380,58 9.580.511
15 2.279.184 51.889.031 ∞ >4Gb 2.922,75 51.899.061

Table 7.7: Comparison between traditional and generic multi-operand APPLY
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Figure 7.6: Overhead comparison including board representation
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Conclusion

Chapter 8
The framework of OWDDs unifies the different OBDD variants to reason about
canonicity and to identify the similarities of several variants. In various applica-
tions, it has been shown that OBDD variants are well suited for a wide range of
applications. The special requirements for matrix representation and model check-
ing yield the basis to develop a new, more generic framework. The development of
HOWDDs made it possible to implement an efficient OBDD library and to develop
a new OBDD variant, TADD, that is more compact for matrix representation and
with which renaming of variable pairs can be performed in constant time.

The implementation of JINC follows traditional approaches and extends them to
support the idea of HOWDDs. With this design it is possible to implement new
instances rapidly. JINC makes use of multi-core architectures to speed-up function
manipulations, the garbage collection phase and reordering algorithms. The novel
approaches are implemented in a way that JINC’s multi-threaded version is superior
to the single-threaded version published in [88]. If JINC is used on a single-core
architecture it is as fast as the single-threaded version. Parallel packages like [78, 111]
had significant overhead compared to their single process basis implementation. This
is due to the fact that their parallel approach changes the algorithmic structure.
JINC has not altered the recursive structure of the algorithms, benefits from shared
data structures and uses almost no blocking algorithms.

Many steps were necessary to achieve JINC’s goal to provide a highly efficient OBDD
library. JINC is written in C++ which has been shown to be an efficient program-
ming language for high performance computing. The realization of JINC’s design
concept has been eased with the use of templates, policy-based design and state of
the art programming techniques. In several benchmarks, it has been shown that
the single-threaded version of JINC is faster than CUDD. The difference can be
explained by the efficient implementation and the extensive use of templates.

The new multi-threading approaches speed-up the OBDD manipulations and re-
ordering algorithms by several factors compared to JINC’s single-threaded version.
The multi-operand APPLY algorithm eliminates the creation of temporary nodes.
This is especially important in a multi-threaded environment as caching and garbage
collection is not as efficient as in a single-threaded environment. The elimination of
temporary nodes reduces the need for caching and garbage collection. The reduction
of the required memory for manipulations enables the computation of larger models.
Because of the space-efficiency of this new approach, the run-time performance is
also increased compared to the traditional APPLY algorithm.

The benchmarks indicate that the new approaches speed-up the computation and re-
ordering algorithms. This together with the space-efficiency leads to the conclusion
that many applications (e.g., unbounded model checking [122, 61, 94]) should be re-
viewed if they could benefit from the new multi-threading multi-operand approaches
introduced and discussed in this thesis.
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