2,261 research outputs found

    Weighted graphs defining facets: a connection between stable set and linear ordering polytopes

    Get PDF
    A graph is alpha-critical if its stability number increases whenever an edge is removed from its edge set. The class of alpha-critical graphs has several nice structural properties, most of them related to their defect which is the number of vertices minus two times the stability number. In particular, a remarkable result of Lov\'asz (1978) is the finite basis theorem for alpha-critical graphs of a fixed defect. The class of alpha-critical graphs is also of interest for at least two topics of polyhedral studies. First, Chv\'atal (1975) shows that each alpha-critical graph induces a rank inequality which is facet-defining for its stable set polytope. Investigating a weighted generalization, Lipt\'ak and Lov\'asz (2000, 2001) introduce critical facet-graphs (which again produce facet-defining inequalities for their stable set polytopes) and they establish a finite basis theorem. Second, Koppen (1995) describes a construction that delivers from any alpha-critical graph a facet-defining inequality for the linear ordering polytope. Doignon, Fiorini and Joret (2006) handle the weighted case and thus define facet-defining graphs. Here we investigate relationships between the two weighted generalizations of alpha-critical graphs. We show that facet-defining graphs (for the linear ordering polytope) are obtainable from 1-critical facet-graphs (linked with stable set polytopes). We then use this connection to derive various results on facet-defining graphs, the most prominent one being derived from Lipt\'ak and Lov\'asz's finite basis theorem for critical facet-graphs. At the end of the paper we offer an alternative proof of Lov\'asz's finite basis theorem for alpha-critical graphs

    Products of Foldable Triangulations

    Get PDF
    Regular triangulations of products of lattice polytopes are constructed with the additional property that the dual graphs of the triangulations are bipartite. The (weighted) size difference of this bipartition is a lower bound for the number of real roots of certain sparse polynomial systems by recent results of Soprunova and Sottile [Adv. Math. 204(1):116-151, 2006]. Special attention is paid to the cube case.Comment: new title; several paragraphs reformulated; 23 page

    On the Monotone Upper Bound Problem

    Get PDF
    The Monotone Upper Bound Problem asks for the maximal number M(d,n) of vertices on a strictly-increasing edge-path on a simple d-polytope with n facets. More specifically, it asks whether the upper bound M(d,n)<=M_{ubt}(d,n) provided by McMullen's (1970) Upper Bound Theorem is tight, where M_{ubt}(d,n) is the number of vertices of a dual-to-cyclic d-polytope with n facets. It was recently shown that the upper bound M(d,n)<=M_{ubt}(d,n) holds with equality for small dimensions (d<=4: Pfeifle, 2003) and for small corank (n<=d+2: G\"artner et al., 2001). Here we prove that it is not tight in general: In dimension d=6 a polytope with n=9 facets can have M_{ubt}(6,9)=30 vertices, but not more than 26 <= M(6,9) <= 29 vertices can lie on a strictly-increasing edge-path. The proof involves classification results about neighborly polytopes, Kalai's (1988) concept of abstract objective functions, the Holt-Klee conditions (1998), explicit enumeration, Welzl's (2001) extended Gale diagrams, randomized generation of instances, as well as non-realizability proofs via a version of the Farkas lemma.Comment: 15 pages; 6 figure

    Primary Facets Of Order Polytopes

    Full text link
    Mixture models on order relations play a central role in recent investigations of transitivity in binary choice data. In such a model, the vectors of choice probabilities are the convex combinations of the characteristic vectors of all order relations of a chosen type. The five prominent types of order relations are linear orders, weak orders, semiorders, interval orders and partial orders. For each of them, the problem of finding a complete, workable characterization of the vectors of probabilities is crucial---but it is reputably inaccessible. Under a geometric reformulation, the problem asks for a linear description of a convex polytope whose vertices are known. As for any convex polytope, a shortest linear description comprises one linear inequality per facet. Getting all of the facet-defining inequalities of any of the five order polytopes seems presently out of reach. Here we search for the facet-defining inequalities which we call primary because their coefficients take only the values -1, 0 or 1. We provide a classification of all primary, facet-defining inequalities of three of the five order polytopes. Moreover, we elaborate on the intricacy of the primary facet-defining inequalities of the linear order and the weak order polytopes
    • …
    corecore