1,327 research outputs found

    Browsing Digital Collections with Reconfigurable Faceted Thesauri

    Get PDF
    Faceted thesauri group classification terms into hierarchically arranged facets. They enable faceted browsing, a well-known browsing technique that makes it possible to navigate digital collections by recursively choosing terms in the facet hierarchy. In this paper we develop an approach to achieve faceted browsing in live collections, in which not only the contents but also the thesauri can be constantly reorganized. We start by introducing a digital collection model letting users reconfigure facet hierarchies. Then we introduce navigation automata as an efficient way of supporting faceted browsing in these collections. Since, in the worst-case, the number of states in these automata can grow exponentially, we propose two alternative indexing strategies able to bridge this complexity: inverted indexes and navigation dendrograms. Finally, by comparing these strategies in the context of Clavy, a system for managing collections with reconfigurable structures in digital humanities and educational settings, we provide evidence that navigation dendrogram organization outperforms the inverted index-based one

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    Simulated evaluation of faceted browsing based on feature selection

    Get PDF
    In this paper we explore the limitations of facet based browsing which uses sub-needs of an information need for querying and organising the search process in video retrieval. The underlying assumption of this approach is that the search effectiveness will be enhanced if such an approach is employed for interactive video retrieval using textual and visual features. We explore the performance bounds of a faceted system by carrying out a simulated user evaluation on TRECVid data sets, and also on the logs of a prior user experiment with the system. We first present a methodology to reduce the dimensionality of features by selecting the most important ones. Then, we discuss the simulated evaluation strategies employed in our evaluation and the effect on the use of both textual and visual features. Facets created by users are simulated by clustering video shots using textual and visual features. The experimental results of our study demonstrate that the faceted browser can potentially improve the search effectiveness

    Modeling Faceted Browsing with Category Theory for Reuse and Interoperability

    Get PDF
    Faceted browsing (also called faceted search or faceted navigation) is an exploratory search model where facets assist in the interactive navigation of search results. Facets are attributes that have been assigned to describe resources being explored; a faceted taxonomy is a collection of facets provided by the interface and is often organized as sets, hierarchies, or graphs. Faceted browsing has become ubiquitous with modern digital libraries and online search engines, yet the process is still difficult to abstractly model in a manner that supports the development of interoperable and reusable interfaces. We propose category theory as a theoretical foundation for faceted browsing and demonstrate how the interactive process can be mathematically abstracted in order to support the development of reusable and interoperable faceted systems. Existing efforts in facet modeling are based upon set theory, formal concept analysis, and light-weight ontologies, but in many regards they are implementations of faceted browsing rather than a specification of the basic, underlying structures and interactions. We will demonstrate that category theory allows us to specify faceted objects and study the relationships and interactions within a faceted browsing system. Resulting implementations can then be constructed through a category-theoretic lens using these models, allowing abstract comparison and communication that naturally support interoperability and reuse. In this context, reuse and interoperability are at two levels: between discrete systems and within a single system. Our model works at both levels by leveraging category theory as a common language for representation and computation. We will establish facets and faceted taxonomies as categories and will demonstrate how the computational elements of category theory, including products, merges, pushouts, and pullbacks, extend the usefulness of our model. More specifically, we demonstrate that categorical constructions such as the pullback and pushout operations can help organize and reorganize facets; these operations in particular can produce faceted views containing relationships not found in the original source taxonomy. We show how our category-theoretic model of facets relates to database schemas and discuss how this relationship assists in implementing the abstractions presented. We give examples of interactive interfaces from the biomedical domain to help illustrate how our abstractions relate to real-world requirements while enabling systematic reuse and interoperability. We introduce DELVE (Document ExpLoration and Visualization Engine), our framework for developing interactive visualizations as modular Web-applications in order to assist researchers with exploratory literature search. We show how facets relate to and control visualizations; we give three examples of text visualizations that either contain or interact with facets. We show how each of these visualizations can be represented with our model and demonstrate how our model directly informs implementation. With our general framework for communicating consistently about facets at a high level of abstraction, we enable the construction of interoperable interfaces and enable the intelligent reuse of both existing and future efforts

    Connected Information Management

    Get PDF
    Society is currently inundated with more information than ever, making efficient management a necessity. Alas, most of current information management suffers from several levels of disconnectedness: Applications partition data into segregated islands, small notes don’t fit into traditional application categories, navigating the data is different for each kind of data; data is either available at a certain computer or only online, but rarely both. Connected information management (CoIM) is an approach to information management that avoids these ways of disconnectedness. The core idea of CoIM is to keep all information in a central repository, with generic means for organization such as tagging. The heterogeneity of data is taken into account by offering specialized editors. The central repository eliminates the islands of application-specific data and is formally grounded by a CoIM model. The foundation for structured data is an RDF repository. The RDF editing meta-model (REMM) enables form-based editing of this data, similar to database applications such as MS access. Further kinds of data are supported by extending RDF, as follows. Wiki text is stored as RDF and can both contain structured text and be combined with structured data. Files are also supported by the CoIM model and are kept externally. Notes can be quickly captured and annotated with meta-data. Generic means for organization and navigation apply to all kinds of data. Ubiquitous availability of data is ensured via two CoIM implementations, the web application HYENA/Web and the desktop application HYENA/Eclipse. All data can be synchronized between these applications. The applications were used to validate the CoIM ideas
    • …
    corecore