
Connected Information
Management

Axel Rauschmayer

München 2010

Connected Information
Management

Axel Rauschmayer

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München
zur Erlangung des Grades Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt von
Axel Rauschmayer

München, 2010-01-29

Erstgutachter: Martin Wirsing
Zweitgutachter: Marcus Spies
Auswärtiger Gutachter: Don Batory
Tag der mündlichen Prüfung: 2010-02-18

Short contents

Abstract xv

Zusammenfassung xv

1 Introduction: Connected information management 1

I Background 9

2 Data modeling with RDF 11

3 Linked data on the web 29

4 Folksonomies and ontologies 43

5 Schema and ontology languages 49

II User interface and navigation 59

6 User interface 61

7 Information navigation 67

8 Title tags 77

III Foundations 81

9 A model for connected information management 83

10 Wikked: A wiki markup language 97

11 Templates: A presentation language for RDF 109

12 RDF patterns 115

IV The RDF editing meta-model 123

13 Introduction: The RDF editing meta-model (REMM) 125

vi SHORT CONTENTS

14 REMM schema 133

15 REMM presentation: Select, order and style the data to be edited 143

16 REMM editing: Specify and apply changes to resources 161

17 Configuration in RDF 171

V The extension framework 175

18 Architecture: Hyena as an implementation framework 177

19 Multiple interpretations of resources 185

20 Importing and exporting RDF 191

21 Synchronizing files and RDF data 195

VI Related work 201

22 Hypermedia and Hypertext 203

23 Annotating text 209

24 RDF editing 215

25 Information managers 221

26 Semantic wikis 231

27 Faceted navigation 235

28 Synchronization and versioning 243

VII Evaluation, summary, and future research 247

29 Integrating structured and unstructured data 249

30 User study 259

31 A survey on wikis: What features have long-term merit? 263

32 Summary and future research 267

VIII Appendix 271

A Wikked syntax 273

B Inferencing 277

SHORT CONTENTS vii

Acknowledgements 289

viii SHORT CONTENTS

Contents

Abstract xv

Zusammenfassung xv

1 Introduction: Connected information management 1
1.1 Overview . 1
1.2 Connected information management 2
1.3 Hyena, a platform for connected information management 3
1.4 The structure of this dissertation . 3
1.5 Running example . 7

I Background 9

2 Data modeling with RDF 11
2.1 Overview . 11
2.2 Finding a data format for structured data 12
2.3 Basic constructs and interpretations of RDF 14
2.4 Advanced features . 18
2.5 Best practices for basic RDF constructs 20
2.6 Schema, rules, and querying . 21
2.7 Useful vocabularies . 23
2.8 RDF applications . 24

3 Linked data on the web 29
3.1 Overview . 29
3.2 Core concepts . 29
3.3 Discovery . 32
3.4 Write-enabling linked data . 37
3.5 Future research: linked data and HYENA 41

4 Folksonomies and ontologies 43
4.1 Overview . 43
4.2 Folksonomies . 43
4.3 Ontologies . 45

x CONTENTS

5 Schema and ontology languages 49
5.1 Overview . 49
5.2 RDFS . 49
5.3 RDFS-Plus . 52
5.4 OWL Web Ontology Language . 54
5.5 Ontology Definition Metamodel (ODM) 57

II User interface and navigation 59

6 User interface 61
6.1 Overview . 61
6.2 Skill levels . 62
6.3 Master tabs . 63
6.4 Detail pane and inspectors . 65
6.5 Sidebar . 65
6.6 Discussion . 66

7 Information navigation 67
7.1 Overview . 67
7.2 Faceted navigation . 68
7.3 Defining and editing RDF facets . 70
7.4 Tagging . 71
7.5 Meta-faceted navigation . 73
7.6 Assisted querying . 74
7.7 Multi-paradigm search . 74
7.8 Running example . 75
7.9 Future research . 75
7.10 Discussion . 76

8 Title tags 77
8.1 Overview . 77
8.2 Basics . 77
8.3 Attaching meta-data . 78
8.4 Simple time notation . 78
8.5 Running example . 79
8.6 Discussion . 79

III Foundations 81

9 A model for connected information management 83
9.1 Overview . 83
9.2 Requirements . 85
9.3 Projects and repositories . 86
9.4 Event operations . 87
9.5 Manifesting entities as resources . 88
9.6 Search calculus . 89
9.7 Example . 92
9.8 Discussion . 95

CONTENTS xi

10 Wikked: A wiki markup language 97
10.1 Overview . 97
10.2 Requirements . 98
10.3 The markup language and its processing 98
10.4 Structure and wiki markup . 103
10.5 History and editing conflict management 104
10.6 Future research . 105
10.7 Discussion . 106

11 Templates: A presentation language for RDF 109
11.1 Overview . 109
11.2 Requirements for RDF templating 110
11.3 Syntax and meta-syntax . 110
11.4 Example . 112
11.5 Discussion and future research . 113

12 RDF patterns 115
12.1 Overview . 115
12.2 Encapsulating multiple resources as resources 115
12.3 N-ary relations . 117
12.4 Configuration . 120
12.5 Discussion . 121

IV The RDF editing meta-model 123

13 Introduction: The RDF editing meta-model (REMM) 125
13.1 Overview . 125
13.2 RDF vocabularies that REMM is based on 125
13.3 Conventions used in this document 127
13.4 Building blocks for data modeling in RDF 127
13.5 The main REMM constructs . 128
13.6 The user interface: REMM in use 129

14 REMM schema 133
14.1 Overview . 133
14.2 A type system for lightweight RDF editing 134
14.3 Operations on class hierarchies . 136
14.4 Translation from OWL . 140
14.5 Discussion . 142

15 REMM presentation: Select, order and style the data to be edited 143
15.1 Overview . 143
15.2 The abstract box model: Laying out RDF data 144
15.3 Selectors: Matching resources and properties 145
15.4 Groups: Context-specific containers for REMM constructs 146
15.5 Lenses: Selecting trees of RDF data 147
15.6 Formats: Styling RDF data . 151
15.7 Documenting lenses . 155
15.8 Example lenses . 155

xii CONTENTS

15.9 Discussion . 159

16 REMM editing: Specify and apply changes to resources 161
16.1 Overview . 161
16.2 The structure of a projection . 162
16.3 Creating a projection . 163
16.4 Editing a projection . 164
16.5 Applying the projection: changing the data 166
16.6 Example . 169

17 Configuration in RDF 171
17.1 Overview . 171
17.2 Designating primary classes . 171
17.3 Naming resources . 172
17.4 Summary: all configuration data parsed from RDF 173

V The extension framework 175

18 Architecture: Hyena as an implementation framework 177
18.1 Overview . 177
18.2 Dependency injection . 177
18.3 The HYENA container API . 180
18.4 Core layer and GUI layer . 182
18.5 Help content . 183
18.6 Discussion . 183

19 Multiple interpretations of resources 185
19.1 Overview . 185
19.2 Requirements . 185
19.3 Multi-models . 186
19.4 Embedders . 187
19.5 Inspectors . 187
19.6 Model piece methods . 188

20 Importing and exporting RDF 191
20.1 Overview . 191
20.2 Importing . 191
20.3 Exporting . 193

21 Synchronizing files and RDF data 195
21.1 Overview . 195
21.2 Synchronizing files . 195
21.3 Synchronizing RDF . 197
21.4 Future research . 198
21.5 Discussion . 199

CONTENTS xiii

VI Related work 201

22 Hypermedia and Hypertext 203
22.1 Overview . 203
22.2 Conceptual Open Hypermedia (COHSE) 203
22.3 NoteCard and issues for hypermedia systems 204
22.4 Aquanet: a hypertext tool to hold your knowledge in place 208

23 Annotating text 209
23.1 Overview . 209
23.2 Annotation and navigation in semantic wikis 209
23.3 Unstructured Information Management Architecture (UIMA) 211
23.4 Open Calais . 213

24 RDF editing 215
24.1 Overview . 215
24.2 The Protégé OWL plugin . 215
24.3 Tabulator redux: writing into the semantic web 217
24.4 OntoWiki . 218
24.5 TopBraid suite . 219
24.6 Annotation profiles . 220

25 Information managers 221
25.1 Overview . 221
25.2 Information scraps . 221
25.3 Lifestreams . 224
25.4 Haystack . 226
25.5 The Social Semantic Desktop (NEPOMUK project) 227
25.6 The DBin platform: A complete environment for Semantic Web Com-

munities . 229

26 Semantic wikis 231
26.1 Overview . 231
26.2 Semantic MediaWiki . 231
26.3 The KiWi platform . 232
26.4 AceWiki . 233

27 Faceted navigation 235
27.1 Overview . 235
27.2 Extending faceted navigation for RDF data 235
27.3 Ontogator—a semantic view-based search engine service for web ap-

plications . 237
27.4 /facet: a browser for heterogeneous semantic web repositories 239
27.5 gFacet: a browser for the web of data 241

28 Synchronization and versioning 243
28.1 Overview . 243
28.2 RDFSync: efficient remote synchronization of RDF models 243
28.3 A versioning and evolution framework for RDF knowledge bases . . . 244
28.4 SemVersion: an RDF-based ontology versioning system 245

xiv CONTENTS

VII Evaluation, summary, and future research 247

29 Integrating structured and unstructured data 249
29.1 Overview . 249
29.2 Wikis and structured data . 249
29.3 Incrementally introducing structure 250
29.4 Small notes and meta-data . 251
29.5 Browsing resource sets . 253
29.6 Collating data . 255
29.7 Files and data export . 257
29.8 Discussion . 258

30 User study 259
30.1 Overview . 259
30.2 Structure of the RDF repository . 259
30.3 Use of features . 260
30.4 Questionnaire . 261
30.5 Discussion . 262

31 A survey on wikis: What features have long-term merit? 263
31.1 Overview . 263
31.2 The survey . 263
31.3 Discussion . 265

32 Summary and future research 267
32.1 Overview . 267
32.2 Summary . 267
32.3 Future research . 268

VIII Appendix 271

A Wikked syntax 273
A.1 Wiki Creole . 273
A.2 LaTeX . 273
A.3 Commands . 275
A.4 Mixing in structured data . 276

B Inferencing 277
B.1 Overview . 277
B.2 Kinds of inferences . 277
B.3 Challenges of inferencing . 278
B.4 Outline of a solution . 279
B.5 Related work . 279

Acknowledgements 289

Abstract/Zusammenfassung xv

Abstract
Society is currently inundated with more information than ever, making efficient man-
agement a necessity. Alas, most of current information management suffers from sev-
eral levels of disconnectedness: Applications partition data into segregated islands,
small notes don’t fit into traditional application categories, navigating the data is dif-
ferent for each kind of data; data is either available at a certain computer or only online,
but rarely both. Connected information management (CoIM) is an approach to infor-
mation management that avoids these ways of disconnectedness. The core idea of
CoIM is to keep all information in a central repository, with generic means for orga-
nization such as tagging. The heterogeneity of data is taken into account by offering
specialized editors.

The central repository eliminates the islands of application-specific data and is for-
mally grounded by a CoIM model. The foundation for structured data is an RDF repos-
itory. The RDF editing meta-model (REMM) enables form-based editing of this data,
similar to database applications such as MS access. Further kinds of data are sup-
ported by extending RDF, as follows. Wiki text is stored as RDF and can both contain
structured text and be combined with structured data. Files are also supported by the
CoIM model and are kept externally. Notes can be quickly captured and annotated with
meta-data. Generic means for organization and navigation apply to all kinds of data.
Ubiquitous availability of data is ensured via two CoIM implementations, the web ap-
plication HYENA/Web and the desktop application HYENA/Eclipse. All data can be
synchronized between these applications. The applications were used to validate the
CoIM ideas.

Zusammenfassung
Unsere Gesellschaft sieht sich zur Zeit mit einer immer größer werdenden Informa-
tionsflut konfrontiert. Daraus erwächst die Notwendigkeit, Information effizient zu
verwalten. Als Hindernis hierzu erweist sich, dass in der heutigen Informationsverwal-
tung die Daten auf mehrfache Art getrennt sind: Daten werden durch spezifische An-
wendungen in schwer überbrückbare Inseln aufgeteilt; kleine Notizen passen in keine
der traditionellen Anwendungskategorien; das Navigieren ist bei jeder Datenart anders;
Daten sind entweder nur auf bestimmten Rechnern oder nur online verfügbar, aber sel-
ten beides. Connected information management (CoIM) ist ein Ansatz, Informationen
so zu verwalten, dass die erwähnten Trennungen vermieden werden. Die Kernidee des
CoIM ist, die Informationen in einer zentralen Datenbank zu halten, unterstützt von
generischen Organisationsmechanismen wie Tagging. Der Heterogenität der Informa-
tionen wird mit spezialisierten Editoren Rechnung getragen.

Die zentrale Datenhaltung vermeidet die Inselnstruktur anwendungsspezifischer
Daten und wird durch ein CoIM-Modell formal unterstützt. Das Fundament für struk-
turierte Daten ist eine RDF-Datenbank. Das RDF editing meta-model (REMM) sorgt
dafür, dass diese Daten Formular-basiert editiert werden können, ähnlich einer Daten-
bankanwendung wie MS Access. Weitere Arten von Daten werden wie folgt unter-
stützt, als Erweiterungen von RDF. Wiki-Text wird im RDF abgelegt und kann sowohl
unstrukturierten Text enthalten, als auch mit strukturierten Daten vermischt werden.
Dateien werden ebenfalls vom CoIM-Modell integriert und extern aufbewahrt. Notizen
lassen sich schnell eingeben und mit Meta-Daten versehen. Generische Organisations-
und Navigationskonzepte sind auf alle Daten anwendbar. Die universelle Verfügbarkeit

xvi

der Daten wird durch zwei CoIM-Implementierungen ermöglicht, von denen die eine,
HYENA/Web, eine Web-Anwendung, die andere, HYENA/Eclipse, eine Desktop-An-
wendung ist. Zwischen diesen Anwendungen können die Daten synchronisiert werden.
Beide Anwendungen wurden auch genützt, um die CoIM-Ideen zu validieren.

Chapter 1

Introduction: Connected
information management

Contents
1.1 Overview . 1

1.2 Connected information management 2

1.3 Hyena, a platform for connected information management . . . 3

1.4 The structure of this dissertation 3

1.5 Running example . 7

1.1 Overview

In our society, the information each individual has to manage digitally continues to
grow. Current tools are inadequate, because data exists in segregated islands and cannot
be accessed and organized freely, in a manner that transcends these islands. Connected
information management (CoIM) is a new approach to information management that
meets these challenges. It proposes an architecture where all information is kept in
a central repository that offers generic means of organization. Specific aspects of the
information in a repository are supported by specialized editors. The benefits of this
approach are that the separations between the information islands disappear. Thus,
information can be managed in a uniform manner, for example if a topic cuts across
kinds of data. The specialized editors guarantee that unique aspects of some kinds of
information can also be managed.

The core idea of a central repository has been formalized as a model. The ca-
pabilities of CoIM are further extended by other contributions such as synchronizing
repositories to ensure ubiquitous availability of data (online and offline), organization
schemes, navigation mechanisms and a framework that allows one to extend the given
facilities to support new kinds of data.

2 1. Introduction: Connected information management

1.2 Connected information management

Society is currently inundated with more information than ever: stored in wikis, blogs,
news feeds, web browser bookmarks, emails, and files such as PDFs, spreadsheet doc-
uments, and text documents. When working with this information, many areas of dis-
connectedness come up which prevent efficient management of it. First, specific kinds
of information are handled well by dedicated applications, but each kind exists in sep-
aration. If a topic crosses these kinds, then it is usually impossible to bring together
the relevant data, be it via linking or otherwise. An example is a workshop, where
one would like to collect contact information of the participants, emails that were writ-
ten during planning, the papers that were presented during the workshop, and the web
pages of the workshop. The second way of disconnectedness concerns online and off-
line availability of data: With the increasing sophistication of web applications, much
data is now available online, ubiquitously anywhere a web browser can be used to con-
nect to the Internet. But, online data and offline data are still largely disjoint, meaning
that some of it is only available when online, some of it is only available when one
has access to one’s offline data. There is no integrated way of making the same data
available on the web and offline. For example, wikis are usually online-only, while
most graphics programs are desktop applications. The third kind of disconnectedness
exists between users. With desktop applications, sharing data is either impossible or
inefficient. When collaboratively editing a document, it is often sent back and forth
between collaborators. Exchanging document fragments is even more complicated.
Most web applications do have ways of sharing and collaboratively editing data. But
not all of them allow one to do so, and there is no solution that crosses web application
boundaries. Fourth, there is disconnectedness between small unstructured notes and
other kinds of data. Small notes are usually stored in applications that were not made
for handling them, such as word processors and wikis. These programs tend to intro-
duce arbitrary groupings (into documents or pages) and make recall difficult. Often,
using a computer to capture a note is not convenient enough and people use physical
media such as post-it notes. Then the divide between the notes and the rest of the (elec-
tronically stored) data is even greater. Fifth and last, the process of finding information
suffers from fragmentation. Every kind of data brings its own way of navigation: Files
are usually browsed hierarchically, web pages are accessed via keyword search, online
galleries can find photos by location, and electronic calendars can return all events in a
given month. What is missing is a solution that integrates all these ways of recall. For
example, the geo-location where a file has been created can help to distinguish between
files created at work and files created at home, which might be crucial information for
finding it.

Connected information management (CoIM) and its implementation HYENA (an
akronym of Hypergraph Editor and Navigator) set out to eliminate these kinds of dis-
connectedness. The foundation of CoIM is RDF. Being graph-based, relational and
semi-structured, RDF is ideally suited for distributed, heterogeneous linked data. CoIM
enhances RDF with a simple type system and the means for form-based editing, so that
it can be used in a manner similar to database systems such as MS Access or Filemaker.
An additional enhancement is the integration of unstructured data such as files and un-
structured text. Such text is expressed in a special markup language called Wikked that
is a hybrid of free-from wiki markup and the formal LaTeX syntax. Wikked plays an
important role in CoIM as it is used for integrating, collating, and annotating data. Off-
line and online availability is ensured by two versions of HYENA, a web application
and a desktop version based on an Eclipse plugin. All data that HYENA manages can

1.3 Hyena, a platform for connected information management 3

be synchronized between both versions. The web application has multi-user support
and authentication. Collaboration is further helped by synchronization, which can be
performed between peers. This dissertation also explores the requirements of quick
note taking and what prevents users from doing it electronically. HYENA supports note
taking by allowing quick capture, piling instead of filing, simple addition of meta-data
and easy migration of note data. CoIM’s multi-paradigm search integrates view-based
navigation, keyword search and other filtering criteria across all supported data. It is
based on a formal model and offers users various ways of retrieving their data. The
final contribution of CoIM is a framework that provides important data management
building blocks so that one can quickly experiment with new kinds of data and new
kinds of navigation. The disconnectedness between HYENA’s RDF repositories and
the external, mainly file-based, world is bridged by an infrastructure for importing and
exporting files.

Partial solutions for the problems mentioned above exist, but none of them have the
necessary breadth of features: RDF editors support database-like handling of RDF, but
don’t have the free-form data entry and ease of annotation of HYENA’s wiki markup.
Semantic wikis are wikis with support for structured data in RDF; they mix structured
and unstructured data. Alas, the dominance of their wiki user interface does not make
them a good platform for general-purpose applications. CoIM’s navigation model and
synchronization also goes beyond their capabilities. Desktop applications with web
companions and web applications with an offline mode solve the problem of online
and offline availability of data, but only for one particular kind of data.

1.3 Hyena, a platform for connected information man-
agement

There are two versions of HYENA (Fig. 1.1): A desktop version called HYENA/Eclipse
is implemented as an Eclipse plugin (Fig. 1.2). A web application called HYENA/Web
is implemented with the Google Web Toolkit (Fig. 1.3). It supports multi-user access
and collaboration. Data is grouped into projects that can be synchronized between
HYENA/Eclipse and HYENA/Web. The idea is that one can work on one’s data offline
and then publish it as needed. But the web version has feature parity with the desktop
version, so using HYENA in a web browser is not a compromise. As a side benefit, the
offline data is a complete backup of the online data.

1.4 The structure of this dissertation

As there are many chapters, some of them relatively short, the author decided to group
them into parts (meta-chapters, if you will). Each part begins with a summary of its
contents. The contributions of this dissertation (Fig. 1.4) start in part II; to understand
them, the reader should have at least basic knowledge of RDF (which is explained in
Chap. 2). There are the following parts:

I. Background: provides background information on the concepts and technolo-
gies involved in connected information management: RDF is the data format that
CoIM uses for structured data. Linked data is a collection of best practices and
protocols to access and share RDF in a distributed manner. Folksonomies are used

4 1. Introduction: Connected information management

RDF repository

desktop app web app

Hyena

sync sync

resource

wiki page

embed
annotate with

proxy resource

data encoded as resources

structured data

link to

heterogeneous
schema

unstructured text

dir file

file

files
file

External data

collection of related data,
becomes a web site

Project

for

contains contains

Figure 1.1: There are two versions of HYENA, a desktop version and a web applica-
tion. Data is managed in projects and synchronized between the two. The dominant
construct of a project is an RDF repository which is used to manage all of the data.
Data that does not fit into the repository is kept externally and considered unstructured
to HYENA. Currently only files are handled this way.

1.4 The structure of this dissertation 5

Figure 1.2: HYENA/Eclipse. The left column gives access to the projects and their files
and gives access to common RDF management operations. Top center and right are
“master” views for listing RDF resources. Bottom center and right are “detail” views
for editing individual resources.

Figure 1.3: HYENA/Web. The left column contains a menu bar, login text fields, and
several widgets with context information. The top right area is a “master” view that
lists RDF resources. The bottom right area is a “detail” view for editing individual
resources.

6 1. Introduction: Connected information management

GUI for data management.
Mechanisms for organizing and
navigating data.
Quick capture of meta-data.

User interface and navigation

CoIM model integrates and
represents various kinds of data
(unstructured, structured).
Search calculus formalizes
navigation.
RDF modeling patterns.

Foundations

Lenses define how to display and
edit data entries (structured
data).
REMM schema is a type system
for data entries.

The RDF editing meta-model

Extensible implementation
architecture.
Multiple perspectives on RDF
resources.
Importing and exporting RDF.
Synchronizing data.

The extension framework

design and
specification

implementation

user interface

Figure 1.4: The diagram above shows the main contributions of this document. They
can roughly be partitioned into user interface, design and specification, and implemen-
tation.

by CoIM to organize data. Schema and ontology languages support the editing of
structured data.

II. User interface and navigation: This part gives an overview of the HYENA user
interface and describes its foundations such as tagging, faceted navigation and as-
sisted querying. CoIM supports multi-paradigm search, the integration of several
search approaches such as faceted navigation and keyword search.

III. Foundations: A model for CoIM describes how to integrate different kinds of
data. The search calculus is a formal foundation for multi-paradigm search.
Wikked, a formal wiki markup language that is part of CoIM, is explained in
detail. Templates define a meta-syntax on top of Wikked, so that RDF data can
be flexibly displayed using Wikked markup. The part finishes by describing RDF
patterns.

IV. The RDF editing meta-model (REMM): The canonical way of editing used by
database management systems such as MS Access and Filemaker is based on
forms. RDF has two obstacles for implementing this kind of editing: First, its
most capable schema language, OWL, which has been created for distributed
knowledge representation, is unintuitive for crucial aspects of data editing. Sec-
ond, forms depend on order, making using them for the relational RDF more
difficult than, for example, the tree-based XML. REMM meets both challenges;
it defines a simple type system derived from OWL on which editing is based and
introduces ways of specifying how to project ordered data from RDF and how to
edit that data.

1.5 Running example 7

V. The extension framework: If supporting a new vocabulary demands more than
HYENA’s generic tools can provide then one can extend HYENA in Java. This
part explains the programming framework that allows one to do so. It also ex-
plains how HYENA implements import and export of external, often file-based,
data, which has some challenging aspects. Managing the different ways in which
the same resource can be interpreted is also challenging and described in detail.
The part concludes by explaining how HYENA synchronizes projects between in-
stallations: Files are synchronized in a straightforward manner and then the prin-
ciples of file synchronization are extended to RDF synchronization, with resource
granularity.

VI. Related work: describes how systems similar to HYENA approach the problems
tackled by CoIM and how the solutions compare. Topics include navigation
mechanisms, RDF editing (which is challenging to edit in forms, in contrast to,
say, XML), hypertext, information management, data synchronization, semantic
annotation of text, synchronization and versioning.

VII. Evaluation, summary, and future research: This part investigates the requirements
of small-grained note taking and of integrating structured and unstructured data. It
is shown how HYENA’s constructs can be combined to fulfill those requirements.
A user study evaluates how HYENA is used in practice. A survey among wiki
users examines what makes wikis appealing and how they can be evolved without
losing their appeal. The dissertation ends with a summary and future research.

1.5 Running example
Shenzi is a researcher writing a paper, together with two co-authors. To that end, she
would like to manage the following information:

• Citations of relevant publications stored as BibTeX entries.

• PDF files of papers.

• Photos of posters she has taken at conferences.

• Local copies of papers that have been published as HTML.

• Other bookmarks related to the paper.

• Notes and ideas.

• Todos, each assigned to a particular co-author.

• Tags for grouping any of the data above by topic.

Shenzi would like to keep all of this data in one place and “take it with her”, so that it is
available everywhere she goes, both when she’s online and when she’s not connected
to the Internet. The data should also be easy to back up and to edit, collaboratively
with her co-authors. The CoIM contributions (Fig. 1.4) are applied to this example in
the following manner:

• User interface and navigation: Faceted navigation is used to access todos by
co-author. Tagging is used for grouping by topic.

8 1. Introduction: Connected information management

• Foundations: make it possible to keep all the data mentioned above in a single
project. Notes are stored as wiki pages. They can link to structured data such as
citations or bookmarks. Or they can embed it. This means that such data appears
inside the wiki page when displaying it.

• RDF editing meta-model (REMM): Allows one to declaratively specify how to
edit citations and bookmarks. REMM specifications can also be used for embed-
ding.

• The extension framework: This part is most interesting if one intends to extend
HYENA with new functionality. Pertinent to the example, it also explains how to
import data (such as citations and bookmarks) and how to synchronize projects.
The latter feature allows Shenzi to work on the data offline and then publish it to
a HYENA server so that all co-authors can see it.

Part I

Background

2 Data modeling with RDF 11

3 Linked data on the web 29

4 Folksonomies and ontologies 43

5 Schema and ontology languages 49

This part provides background information for subsequent parts. First, the Re-
source Description Format RDF is explained. It is a standard for data management and
exchange which is used by CoIM to handle structured data. Linked data is a collec-
tion of best practices that help with making deployments of RDF data self-describing
and easy to discover. A chapter on folksonomies and ontologies presents two ways
of representing knowledge, each with different expressiveness and complexity. CoIM
uses folksonomy-based meta-data to organize data. Finally, a chapter on schema and
ontology languages introduces the RDF schema language RDFS and the RDF-based
Web Ontology Language OWL. OWL will later become the foundation of a simple type
system to support RDF editing. The Ontology Definition Metamodel is a standard for
integrating OWL (and other ontology languages) with UML. It is not currently used by
CoIM, but provides a wider perspective on the field of ontology languages. It might
also be used to support UML-based creation of schemas in the future.

10

Chapter 2

Data modeling with RDF

Contents
2.1 Overview . 11
2.2 Finding a data format for structured data 12
2.3 Basic constructs and interpretations of RDF 14
2.4 Advanced features . 18
2.5 Best practices for basic RDF constructs 20
2.6 Schema, rules, and querying . 21
2.7 Useful vocabularies . 23
2.8 RDF applications . 24

2.1 Overview

The RDF data format is one of the foundations of Connected Information Management
(CoIM). It is used as a universal repository for all structured data. This chapter be-
gins by collecting requirements for a universal storage format: Its schema needs to be
flexible; it needs standardized symbols to universally express concepts such as people,
locations, and languages; it needs to be composable—combining data from different
sources must be seamless even if some of the entities they describe are the same; links
between entities must be expressible, and it needs a standardized exchange format so
that external tools can be used. Given these requirements, the deficiencies of the RDF
competitors XML, relational databases and “No SQL” stores are pointed out. Then
RDF is briefly explained and it is shown how it fulfills the requirements.

The remainder of the chapter is a thorough overview of RDF. Apart from the ba-
sic constructs and how to use them, it introduces schema languages, rules, and the
SPARQL query language. The chapter finishes by giving examples of useful RDF vo-
cabularies and RDF applications. RDF is also the data format of the semantic web.
Within the semantic web community, there are two factions: One that uses RDF to
represent knowledge and one that uses RDF to store data. Where the former faction
uses ontologies, the latter faction uses schemas. This chapter describes RDF from the
vantage point of data modeling.

12 2. Data modeling with RDF

2.2 Finding a data format for structured data

The general scenario of CoIM is one where data from many different sources is con-
solidated in a single repository. This results in the following requirements:

• Flexible schema: It should be easy to add data to entities, be it to annotate them,
be it to extend them with data that was not foreseen by the schema. This kind of
flexibility also helps with schema evolution, because entities can be migrated to
a new schema incrementally.

• Globally unique symbols: Symbols are needed to express concepts such as loca-
tions or languages in a globally unique way. This ensures that it is easy to find all
data relevant to a given concept, even if it comes from different sources. As any
source can introduce new symbols, there should be a way to make symbols self-
describing; that is, a mechanism to express what a symbol means. Sometimes,
two parties might introduce different symbols for the same concept. Thus, one
must be able to declare that those symbols mean the same thing.

• Composability: It must be simple to combine data from different sources and one
source must be able to add data to entities from another source. One application
of this feature is a user adding annotations to data imported from an external
source.

• Links between entities: When organizing entities, it helps if one does not just
have a list of them, but can also cross-reference them.

• Standardized exchange format: If one wants to apply external tools to the data
one manages, there has to be a way to get data in and out of a repository.

The next sections take a look at how XML, relational databases, and “No SQL” stores
fare in light of these requirements. Then a brief introduction to RDF is given and it is
examined how RDF fulfills the requirements.

2.2.1 XML

One of the great features of XML is that one can easily model new data domains:
When one creates new tags, one goes beyond simple data storage towards modeling
relationships between things. Furthermore, XML has a standardized exchange format,
making it easy to exchange data. Lastly, it works well for marking up unstructured
data.

On the flip side, XML is not ideal for semi-structured data. XML is difficult to
enter manually (it has been called having a “write-only syntax”). Whitespace han-
dling is complicated, because it some situation you want to honor whitespace, while in
others honoring it can make accessing data difficult. XML is bad at handling binary
data. The overhead of the tags becomes an issue when storing many small pieces of
information. Attributes compete with tags, but add no real power. The roles of tags
for data and attributes for meta-data are often confused. Due to the tree-structure of
XML, unobtrusively annotating and composing data is difficult. Note that XML is of-
ten wrongly considered similar to RDF, because RDF has an XML serialization format.
But conceptually, RDF (relational) and XML (tree-based) are very different.

2.2 Finding a data format for structured data 13

2.2.2 Relational databases
Relational databases are one of the great success stories of computer science: They
have both solid theoretical underpinnings and high-performance implementations.

What is missing are standardized ways of modeling facts and exchanging data.
Schema evolution is difficult, for example, adding a new attribute to a table is a non-
trivial operation. These deficiencies lead to a difficulty in assembling data from dif-
ferent sources. Lastly, relational databases don’t handle semi-structured data well. For
example, if an attribute is only needed for one row in the database, it must be added to
all of them.

2.2.3 No SQL
The “No SQL” movement is concerned with distributed non-relational databases. It
includes examples such as CouchDB1, and BigTable [CDG+06]. No SQL abandons
the query language and the schema constraints of relational databases in favor of greater
scalability and flexibility. Such databases usually manage collections of untyped records.
Thus, they handle semi-structured data well. They do have deficiencies when it comes
to querying or to composing data that cross-cuts records.

2.2.4 RDF in a nutshell
An RDF repository consists of a set of triples, that is, a single relation. The three
components of a triple are called (subject, predicate, object). The subject is the iden-
tifier of an entity, the predicate is the key of a field, and the object is the value of a
field. For subjects and predicates, RDF uses URIs which are roughly the addresses
one uses in a web browser. For example, a predicate for the first name of a person
is http://xmlns.com/foaf/0.1/firstName. To make URIs less unwieldy,
they are abbreviated via namespaces (more details on namespaces are given later). The
following are four URIs and their abbreviations:

Abbreviation URI
foaf:firstName http://xmlns.com/foaf/0.1/firstName
gen:37542 http://hypergraphs.de/generated#37542
vcard:Country http://www.w3.org/2001/vcard-rdf/3.0#Country
country:GB http://downlode.org/rdf/iso-3166/countries#GB

The first URI is the above mentioned predicate for the first name, the second URI is
a generated ID, the third URI is the predicate for the country of residence, the fourth
URI is the URI of Great Britain. The following two triples use these URIs:

gen:37542 foaf:firstName "John" .
gen:37542 vcard:Country country:GB .

The first triple says that the first name of the subject, the person with ID gen:37542,
is “John”. The second triple says that John lives in Great Britain. Objects are thus either
literals (text strings) or URIs. RDF is obviously a relational data format, similar to
storing all relations of a relational database in a single table. The resource is a concept
that is similar to a database record. A resource is specified via a URI and comprises
all triples whose subject is that URI. Thus, the actual data of a resource is a set of

1http://couchdb.apache.org/

http://couchdb.apache.org/

14 2. Data modeling with RDF

(predicate,object) pairs, each such pair is called a property (with a key and a value). The
same predicate can be used several times, which is the same as saying that a property
can have multiple values. In a way, RDF is like a normalized relational database that
uses URIs as column names and as tuple IDs. In practice, RDF repositories are often
based on relational databases and thus build on that technology instead of replacing it.

Fullfilling the requirements. This relatively simple format fulfills all of the require-
ments mentioned above. The schema is flexible, because, apart from the triples, basic
RDF has no schema. Adding a property to a field means adding a new triple to the
RDF repository. Conflicts cannot occur, because the same predicate can be used sev-
eral times and because the use of URIs as property keys prevents name clashes. RDF
has external schema languages for checking consistency and inferring data, but these
can be applied selectively and otherwise ignored. RDF’s globally unique symbols are
the URIs. We have already seen the concept “Great Britain” expressed as the URI
country:GB. Self-description is guaranteed by two conventions: First, each URI,
which might be used as a predicate or as a subject, can be annotated with descrip-
tive properties. Second, most standard URIs can be entered into a web browser to
retrieve a page describing the URI’s meaning to humans. The OWL schema language
(Sect. 2.6.2) allows one to declare two URIs as equivalent, which effectively leads to
the two resources they denote being merged. Composing two RDF data sources is sim-
ple, one constructs the union of the two sets of triples and resources with the same URI
are merged automatically (due to how resources are defined). Linking resources can
be performed via properties. One thus interprets RDF as a graph, where each triple
is an edge between the subject and the object, whose label is the predicate (Fig. 2.2).
There are several standardized exchange formats available for RDF. They allow one to
export RDF data to a file, which is then either published or processed via external tools.
Some of the exchange formats are XML-based, with the goal of machine readability,
while the syntax of others makes it easy for humans to author RDF. Alas, RDF is not
handling binary data well. A typical work-around is to store binary data externally and
reference it from RDF.

2.3 Basic constructs and interpretations of RDF
This section describes how RDF data is structured and explains several ways of under-
standing it: as tuples, as resources (almost object-based), or as mathematical graphs.

2.3.1 URIs and namespaces
RDF uses URIs (universal resource identifiers) as symbols, to refer to concepts such
as “Great Britain”. They are roughly the internet addresses one types into a web
browser. For example, one can use http://downlode.org/rdf/iso-3166/
countries#GB to identify Great Britain. Because URIs are globally unique, data
from different sources can be combined and different symbols will not be mistaken
for each other, while two identical symbols will also be recognized as such. Further
advantages of URIs are that, due to the popularity of the web, people are already fa-
miliar with them. And a URI can be self-documenting by referring to a document that
explains its meaning.

To make URIs easier to read and write, they can be abbreviated by defining a
namespace. A namespace is a short alias for a URI fragment. For example, let

2.3 Basic constructs and interpretations of RDF 15

us assume that several URIs for countries all start with the URI fragment http:
//downlode.org/rdf/iso-3166/countries#. The namespace would thus
define an alias country called the namespace prefix for this URI fragment, which
is called the namespace URI. With this definition, the abbreviated form of http:
//downlode.org/rdf/iso-3166/countries#GB becomes country:GB.
This way of writing a URI is called a qualified name (or qname). This particular
qname has the prefix country and the local name GB. URIs and qnames are writ-
ten differently in most RDF syntaxes, to avoid confounding them. URIs are usually
quoted with angle brackets (as they have many legal characters), while qnames can be
free-standing. In this chapter, we use the following namespaces:

Prefix URI
country http://downlode.org/rdf/iso-3166/countries#
ex http://example.com/
foaf http://xmlns.com/foaf/0.1/
gen http://hypergraphs.de/generated#
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
vcard http://www.w3.org/2001/vcard-rdf/3.0#

Some of those namespaces end with a slash, making the local name a file name, others
end with a hash, making the local name a URI fragment identifier. Sect. 2.5.1 has more
details.

2.3.2 Statements: subject, predicate, object
The basic data structure of RDF is the statement or triple. It is a tuple consisting of
three components: The subject, the predicate, and the object. Take, for example, the
following statements.

gen:37542 foaf:firstName "John" .
gen:37542 foaf:surname "Doe" .
gen:37542 vcard:Country country:GB .
gen:37542 rdf:type foaf:Person .

The first and the second statement express that whoever is identified by the URI gen:
37542 has the first name “John” and the surname “Doe”. The third statement ex-
presses that John Doe lives in Great Britain. The last statement says that gen:37542
is a person. The subject of a statement is always a URI or a blank node (which is simi-
lar to a URI and introduced later). The predicate is always a URI. The object can be a
URI, a blank node or a literal (a text string, enclosed by quotes above).

2.3.3 Repositories, resources and properties
RDF databases are called repositories. All they contain are the statements explained
above. A resource describes a different view on statements. It has an identifier (a URI
or a blank node) and all statements whose subject is that identifier are that resource.
Those statements are called the properties of a resource. Each property has a key
(the predicate of the statement) and a value (the object of the statement). Continuing
our example, resource gen:37542 has the properties foaf:firstName, foaf:
surname, vcard:Country, and rdf:type.

16 2. Data modeling with RDF

This compares very directly to something the reader is probably already famil-
iar with: a (relational) database with contact information. Such a database contains
several records where each record holds the information for a single person. The in-
formation itself is structured as fields. Each field will have a key such as "first name",
"residence" and a value such as "Joe", "Great Britain". Obviously, a resource corre-
sponds to a record and a property corresponds to a field (where property keys are a bit
more standardized than field keys). Fig. 2.1 visualizes the comparison.

gen:37543
vcard:Countrygen:37542 country:GB

Doefoaf:surnamegen:37542
Johnfoaf:firstNamegen:37542

rdf:typegen:37542 foaf:Person
...gen:37541 ...

Resource

Resource URI

Property

RDF repository

Relational database

ID
...

...
37542

...

...
First

...

Country

...

...
Last

DoeJohn Great Britain
...

Table “Person”

Record

Record key Field

Figure 2.1: An RDF repository contains resources with properties that include a type.
A relational database contains tables whose rows are records with fields.

While this feels similar to a record in an imperative programming language, state-
ments are actually immutable, similar to functional data structures. That means that to
change a property value, you have to remove the old statement and add a new statement
to the repository. Furthermore, the same statement can only exist once in a repository;
adding a statement that already exists has no effect. A property always has a set of val-
ues, depending on how often its key is used as a predicate (within the same resource).
Thus, where programming languages force you to decide whether a variable can have
zero or one value (a scalar) or a set of values, RDF does not do so.

2.3.4 Types, classes and instances
Each resource can have a type. A type defines how to interpret the contents of a re-
source. This is similar to giving files types such as .doc or .jpg. RDF does not explicitly
distinguish between data and meta-data in this case and stores the type in the prop-
erty rdf:type, just like any other property. Continuing our example, resource gen:
37542 contains contact information for which the type foaf:Person has been stan-
dardized. Accordingly, the property rdf:type has the value foaf:Person.

“Class” is roughly a synonym for “type”. One also says that class foaf:Person
has the instance gen:37542 or that resource gen:37542 is an instance of class

2.3 Basic constructs and interpretations of RDF 17

foaf:Person. Right now, classes are just tokens without any semantics. Schema
languages (Sect. 2.6) can be used to define what it means that two resources are an
instance of the same class.

2.3.5 Graphs and merging repositories

Resources, properties and types are an object-oriented view on RDF, while statements
are a relational view on it. A third view on RDF is as a mathematical graph, a set
of nodes and a set of edges. The nodes are the RDF resources, the edges are the
statements. As an RDF repository only contains statements and not single resources, a
node comes into existence by being the subject or object of a statement. If it is neither,
we cannot store it in RDF. In practice, this is not a problem, because the only interesting
aspect of such a resource is whether it exists or not. And that can be easily expressed
differently.

Graphs can be visualized as diagrams where resources are ovals, literals are rect-
angles, and statements are lines between resources and literals that are labeled with the
predicates (see Fig. 2.2).

gen:37542 foaf:Person

John

Doe

country:GB

rdf:type

foaf:firstName

foaf:surname

vcard:Country

Figure 2.2: The resource gen:37542 about John as a diagram.

Note how merging of repositories translates elegantly from the union of statements
to the diagram: if there are initially two separate diagrams that both have the same
URI u, the version of u in the merged diagram has the properties from both original
diagrams. This is a pleasant side effect of assembling resources from statements.

2.3.6 Blank nodes and more literals

So far, we have only encountered a single kind of resource: URI nodes that have URIs
as an identifiers. Blank nodes are a second kind of resource: anonymous resources,
without an identifier. To make working with them practical, they do get internal tem-
porary identifiers, but these are not stable. And when merging two repositories, blank
nodes will always stay distinct.

All literals that we have seen up to now were simple text strings. RDF actually
distinguishes two kinds of literals:

• Plain literals are strings combined with optional language tags. This allows
one to specify the same text in multiple languages. For example, a property
could have the values "chaise"@fr and "Stuhl"@de. The former is chair
in French (language tag “fr”), the latter is chair in German (language tag “de”).

18 2. Data modeling with RDF

• Typed literals are strings combined with a datatype URI. This URI is the type
of the literal that specifies how the content of the string is to be interpreted.
Standard RDF datatypes include XML schema datatypes such as xsd:string,
xsd:boolean, or xsd:integer. Additionally, there is the datatype rdf:
XMLLiteral for literals that contain XML markup. Arbitrary type literals
are written as "literal value"̂ m̂y:datatype. Literals of type xsd:
integer and xsd:boolean can be written without datatypes and quotes.
Thus, 123 is the same as "123"̂ x̂sd:integer, and true is the same as
"true"̂ x̂sd:boolean.

2.4 Advanced features
This section explains advanced RDF features: How to encode sequences of RDF nodes
and sets of RDF statements; how to refer to statements; and how to exchange RDF
data.

2.4.1 Collections and containers

The information contained in resources is always unordered, which is part of the reason
why RDF repositories are so easy to merge. Properties contain sets of values which is
a problem if order matters or if we want to mention the same value twice. One way
of fixing this is to introduce a new kind of node for ordered multi-sets (OMS). RDF
instead opts for two ways of encoding ordered data using the existing means. To explain
them, we use the example of the OMS of literals 〈"Harold", "Maude"〉. Note that
we could have just as well used an OMS of resources.

Collections are of type rdf:List. The data structure is a chain of resources where
each of the resources uses the property rdf:first to store one element of the OMS
(Fig. 2.3). The data structure resources are connected by rdf:rest properties and
the last resource in the chain is always the URI rdf:nil.

Haroldgen:12751 rdf:first

rdf:first Maude

rdf:rest

rdf:nil

rdf:rest

Figure 2.3: A collection with the member literals "Harold" and "Maude". The
nodes on the right are those member literals. The nodes on the left are the data structure,
a chain of resources connected via rdf:rest properties. The whole data structure has
the URI gen:12751.

Containers have one of three types:

2.4 Advanced features 19

• rdf:Alt for alternatives, i. e. a set of alternative values for, say, a property
(applications should choose one them when processing the RDF data);

• rdf:Bag for bags with unordered members;

• rdf:Seq for sequences of members where order matters.

All members are directly stored in properties rdf:_i where i is the index of the
member (Fig. 2.4).

Harold

gen:12751
Maude

rdf:_1

rdf:_2

Figure 2.4: A container with the member literals "Harold" and "Maude". The
whole container has the URI gen:12751.

2.4.2 Named graphs
Especially when different data sources are being merged, it is desirable to track sets of
statements. In order to do so, most modern RDF repositories add another component
to a statement, turning it from a triple to a quadruple: the graph. For example such a
repository might contain the following quadruples:

graph:1 gen:37542 foaf:firstName "John" .
graph:1 gen:37542 foaf:surname "Doe" .
graph:2 gen:37542 vcard:Country country:GB .
graph:2 gen:37542 rdf:type foaf:Person .

Grouping by graph, we can say that the repository contains graph:1 with the triples

gen:37542 foaf:firstName "John" .
gen:37542 foaf:surname "Doe" .

and graph:2 with the triples

gen:37542 vcard:Country country:GB .
gen:37542 rdf:type foaf:Person .

During most operations, the graph URI is ignored, leading to a view that a repository
stores triples that are tagged with where they came from. Thus, the resource gen:
37542 is still considered to have four properties, but we can now determine that they
came from two different sources.

2.4.3 Reification
Most data can be easily expressed in binary relations. But sometimes, one needs to
annotate a relationship itself. For example, when one assigns a body height to a person,
one might want to record when this assignment has been made. Thus the statement

gen:37542 ex:bodyHeight "180"^^ex:cm .

20 2. Data modeling with RDF

has to be annotated somehow. RDF does not have a direct way of doing this, so the
statement is reified as a resource:

gen:12345 rdf:type rdf:Statement .
gen:12345 rdf:subject gen:37542 .
gen:12345 rdf:predicate ex:bodyHeight .
gen:12345 rdf:object "180"^^ex:cm .

gen:12345 dcterms:date "2009-10-14"^^xsd:date .

The last statement is the annotation. Especially for data modeling, reification is often
too brittle. An alternative is to use one of the RDF patterns described in Chap. 12.

2.4.4 Exchange formats
RDF is often being confused with being an XML dialect, because its first standardized
interchange format was XML/RDF. This format had many problems. It was neither
easy to read nor easy to write for humans, nor does it support named graphs. Thus new
external syntaxes were invented:

• Turtle (Terse RDF Triple Language): the syntax used in this document. So far,
the only syntactic construct that has been shown was the triple. Additionally,
Turtle has syntactic sugar to concisely express collections, several statements
with the same subject, several statements with the same subject and predicate,
etc. [BBL08].

• Notation 3 (N3): A more powerful syntax than Turtle (which has been created as
a simplified version of N3) [BLb].

• Syntaxes supporting named graphs [C+]: Trix is an XML-based syntax for
machine-readable RDF with named graphs. Trig is a version of Turtle that can
handle named graphs.

2.5 Best practices for basic RDF constructs

2.5.1 Creating good URIs
The local name of a URI is the actual term denoted by the URI. It is separated from the
namespace URI either by a slash or a hash:

1. Separated by a slash: http://example.com/namespace/localname
The namespace URI is http://example.com/namespace/

2. Separated by hash: http://example.com/namespace#localname
The namespace URI is http://example.com/namespace#

In the former case, the local name is a file name, in the latter case, it is a URI fragment.
This determines how self-description of URIs is handled for humans: Either there is
one document for each term or one document for each namespace that explains all the
terms. Each of the two approaches has its benefits, Sect. 3.2.2 on information resources
has details. For general information on how to choose URIs consult the paper “Cool
URIs for the semantic web” [SC]. The following section covers the special case of how
to name properties.

2.6 Schema, rules, and querying 21

Property names

Finding good property names is difficult, because they are used in different contexts.
Sometimes one displays RDF as statements and a verb is a good choice for the predi-
cate:

:Jane foaf:knows :Tarzan

On the other hand, properties whose values strongly belong to a resource are often
displayed in a form-like manner. Then nouns (so-called role nouns2) make more sense.

:Jane foaf:name "Jane Porter"

An anti-pattern of property naming is to combine a verb and a noun or a noun and
a preposition. The rule of thumb is: What property name would look good in a
form? Clearly, name works better than hasName and superclass works better
than subClassOf. N3 has special support for role nouns. The following two state-
ments are equivalent in N3:

:Jane :father :Archimedes .
:Archimedes is :father of :Jane .

Note that foaf:knows does not have a good corresponding noun and thus is an
example where a verb (on its own) makes sense as a property name.

A third way of naming is to use adjectives. Examples include skos:broader
and skos:related. In both cases the reading is has X and not is X than/to. This
is already indicated by the standard SKOS labels “has broader” and “has related”. As
adjectives fit neither of the use cases “display as a statement” and “display in a form”,
it often makes sense to use a noun or a verb instead.

2.5.2 Using literals
The following rules help with using literals.

Use datatypes to mark text that has special meaning. If a text string should be
interpreted in a special way, it is common practice to give the literal holding it a cus-
tom datatype. An example is the datatype wikked:Markup for wiki markup that is
stored in properties. When saving a resource, this allows HYENA to do special post-
processing of the markup. An additional use case of datatypes is for quickly looking
up IDs. If one were to define a datatype for ISBN numbers, such numbers could be
found via SPARQL in any property, without any false positives.

Use language tags for internationalization. This is what language tags have been
created for: a resource is given several labels, one for each language. The language tags
of these labels help distinguish them. If an application can be switched to a specific
language, only the labels in those language will be shown.

2.6 Schema, rules, and querying
A number of standards provide more sophisticated ways of processing and describing
RDF.

2http://esw.w3.org/topic/RoleNoun

http://esw.w3.org/topic/RoleNoun

22 2. Data modeling with RDF

2.6.1 RDF schema language (RDFS)
An RDF vocabulary is a set of URIs used for a particular purpose. It can be seen as
a less powerful version of an ontology (Sect. 2.6.2). RDFS defines a vocabulary for
describing RDF vocabularies. The main components of this meta-vocabulary are:

• Classes and class hierarchies: One can explicitly describe and type classes for
resources and literals in RDF. Furthermore, a hierarchy of classes can be built
via rdfs:subClassOf.

• Properties and property hierarchies: Properties are described by giving the prop-
erty key the type rdf:Property and by assigning a domain and a range via
rdfs:domain and rdfs:range.

• Helper properties: rdfs:label is used to attach short human-readable labels
to RDF resources, rdfs:comment provides a longer description of a resource,
rdfs:seeAlso points to related resources.

• Other vocabulary: Containers, collections, and reification are also part of RDFS.

RDFS performs inference: RDF definitions are applied as rules to RDF statements
to generate new statements. One example is the transitivity of the property rdfs:
subClassOf: Given two triples

B rdfs:subClassOf A .
C rdfs:subClassOf B .

RDFS infers a third triple

C rdfs:subClassOf A .

If a repository performs inference, the inferred statements are added to the repository
and are indistinguishable from non-inferred statements (except for not being remov-
able). Sect. 5.2 has more information on RDFS.

2.6.2 Web ontology language (OWL)
Similar to a vocabulary, an ontology defines a set of URIs. But the means for specifying
the meaning of these URIs tend to be more powerful. OWL can roughly be considered
an extension of RDFS. Like RDFS, it does inferencing. OWL goes a step further by al-
lowing custom inferencing rules: In addition to the built-in transitivity of, for example,
rdfs:subClassOf, any predicate can be declared transitive. Other features that are
relevant for data modeling are:

• Inverse properties: If property ex:child is declared the inverse of ex:parent,
then a triple

ex:Jill ex:parent ex:Bruce .

will lead to the inference of the triple

ex:Bruce ex:child ex:Jill .

2.7 Useful vocabularies 23

• Declaring equivalence: owl:equivalentClass declares two classes to be
equivalent, owl:equivalentProperty and owl:sameAs do the same for
two properties and two resources. This can be useful when integrating different
data sets.

OWL has many more features, but those are beyond the scope of this chapter. Sect. 5.2
provides more information.

2.6.3 Semantic web rule language (SWRL)
SWRL [HPSB+] adds the Unary/Binary Datalog RuleML sublanguages of the Rule
Markup Language [Rul] to OWL. It thus enables Horn-like rules for OWL knowledge
bases. These rules control inference. An example from [HPSB+] is

hasParent(?a,?b) ∧ hasBrother(?b,?c) ⇒ hasUncle(?a,?c)

2.6.4 The SPARQL query language
SPARQL [PS05] is the standard query language for RDF. Its syntax has been inspired
by SQL. The following example looks for wiki pages and displays the ones first that
have been modified last.

SELECT ?modified ?title WHERE {
?page rdf:type wikked:Page .
?page rdfs:label ?title .
?page dcterms:modified ?modified .

} ORDER BY DESC(?modified)

2.7 Useful vocabularies
Vocabularies define sets of URIs that are published for public use. Common vocabular-
ies help to make data exchangeable. The following list is a sampling of interesting RDF
vocabularies. It gives an impression how and for what one would define vocabularies.

Dublin Core

The Dublin Core Metadata Element Set is a vocabulary of fifteen prop-
erties for use in resource description. The name “Dublin” is due to its
origin at a 1995 invitational workshop in Dublin, Ohio; “core” because
its elements are broad and generic, usable for describing a wide range of
resources. [dublincore.org]

Among other constructs, the Dublin Core RDF vocabulary [dcm] defines properties
such as dcterms:date, dcterms:creator, dcterms:hasVersion, dcterms:
license, dcterms:publisher.

Friend of a friend (FOAF)

The Friend of a Friend project is creating a Web of machine-readable pages
describing people, the links between them and the things they create and
do. [foaf-project.org]

24 2. Data modeling with RDF

FOAF defines [BM] classes such as Person and properties such as name, weblog,
knows, publications, currentProject, interest, myersBriggs, logo,
fundedBy.

Semantically-Interlinked Online Communities (SIOC)

The SIOC Core Ontology provides the main concepts and properties re-
quired to describe information from online communities (e.g., message
boards, wikis, weblogs, etc.) on the Semantic Web.

The SIOC ontology [B+b] defines classes such as Community, Forum, Post, Site,
Thread, User, and Usergroup. It defines properties such as has_modifier,
has_parent, has_reply, has_subscriber, etc.

Other vocabularies

• Simple Knowledge Organisation System (SKOS): “SKOS is an area of work
developing specifications and standards to support the use of knowledge organ-
isation systems (KOS) such as thesauri, classification schemes, subject heading
lists, taxonomies, other types of controlled vocabulary, [. . .]” [MB]. SKOS de-
fines classes such as Concept and properties such as broader, narrower.

• The Fresnel display vocabulary3: allows one to specify, in RDF, how to display
RDF data in a browser-independent manner.

• Description of a project (DOAP4) describes open source projects (homepage,
maintainer, etc.).

• RDF Calendar5: encodes the iCalendar standard for calendar data in RDF.

• vCard in RDF6: for encoding contacts (name, address, telephone number etc.) in
RDF.

• Creative Commons7: lets you describe copyright licenses in RDF.

2.8 RDF applications
This section describes RDF-based applications, illustrating how RDF can be used in
practice. It contains the following sub-sections:

1. The Extensible Metadata Platform (XMP): attaches RDF-encoded meta-data to
files. RDF helps with standardizing file meta-data.

2. Semantic web search engines: catalog RDF that has been published online and
make it searchable. They complement the traditional “web of (unstructured) doc-
uments” with the “web of data”, making a different part of the web accessible,
via more precise and sophisticated querying.

3http://www.w3.org/2005/04/fresnel-info/
4http://usefulinc.com/doap
5http://www.w3.org/TR/rdfcal/
6http://www.w3.org/TR/vcard-rdf
7http://creativecommons.org/ns

http://www.w3.org/2005/04/fresnel-info/
http://usefulinc.com/doap
http://www.w3.org/TR/rdfcal/
http://www.w3.org/TR/vcard-rdf
http://creativecommons.org/ns

2.8 RDF applications 25

3. PiggyBank: extracts structured data such as citations or contact information from
web pages and makes it available as RDF. This helps with collecting and process-
ing such data.

4. RDF online databases: Online databases are increasingly based on RDF, due to
the ease of exchanging data and of handling heterogeneous data.

5. Internal use of RDF: Some applications use RDF internally, but hide that fact
from the user as much as possible.

2.8.1 Extensible Metadata Platform (XMP)
XMP8 is a standard initiated by Adobe that allows one to store RDF-based meta-data
about a file inside the file. Supported file formats are, among others, HTML, SVG,
JPEG, PNG, PDF, Photoshop documents, and Illustrator documents. Inside the files,
RDF data is serialized as RDF/XML (minus a few of RDF/XML’s non-essential fea-
tures). Standard XMP vocabularies are Dublin Core, XMP Basic, XMP Rights Man-
agement, XMP Media Management, XMP Basic Job Ticket, XMP Paged Text, XMP
Dynamic Media. Specialized XMP vocabularies are Adobe PDF, Photoshop, Camera
Raw, and EXIF. Properties typically used by Adobe applications are:

• Dublin Core: dc:title, dc:creator, dc:description, dc:subject,
dc:format, dc:rights

• XMP basic: xmp:CreateDate, xmp:CreatorTool, xmp:ModifyDate,
xmp:MetadataDate

• XMP rights management: xmpRights:WebStatement, xmpRights:Marked

• XMP media management: xmpMM:DocumentID

But XMP is not limited to these vocabularies, any RDF can be embedded. Furthermore,
it can be embedded in almost any kind of file, even if its format is not unknown to
XMP. This technology is called XML Packet and the algorithm to find XMP meta-data
in unknown files is to look for the text string

<?xpacket begin=

This is the beginning of the opening tag of the XML packet. Subsequently, there is
XML packet specific data, then the RDF data, serialized as RDF/XML.

2.8.2 Semantic web search engines and supporting tools
Semantic web search engines collect RDF data that has been published on the web and
make it searchable. Where traditional web search engines search the web as a collection
of documents, semantic web search engines search the web as a collection of databases.
That means that more precise results can be produced and more sophisticated queries
can be formulated. Recent examples of semantic search engines are:

• Falcons at http://iws.seu.edu.cn/services/falcons/

• SWSE at http://swse.deri.org/
8http://www.adobe.com/products/xmp/

http://iws.seu.edu.cn/services/falcons/
http://swse.deri.org/
http://www.adobe.com/products/xmp/

26 2. Data modeling with RDF

• Sindice at http://sindice.com/

• Watson at http://watson.kmi.open.ac.uk/WatsonWUI/

• Swoogle at http://swoogle.umbc.edu/

Two tools have been created to help semantic search engines find data on the web.
Ping the semantic web9 (PTSW) has been created to complement semantic search
engines. It is a web service that functions as a registry of all RDF data on the web. It
is to be used by RDF crawlers looking for content. Updates to the data are tracked,
so that one can find out what has most recently been updated. With an account, one
can leave a server IP address where notifications of updates are sent. When a URL
is registered with PTSW, it tries to get an RDF representation via content negotiation
(Sect. 3.2) and additionally follows RDF files referenced via a <link> tag. Any file
that is found is only accepted if it can be validated. Semantic radar for Firefox10 is
a Firefox extension that watches the pages a user visits and indicates the availability
of RDF data by showing an icon the status bar. Currently supported are RDFa and
references via <link>. Semantic radar works in conjunction with Ping the semantic
web and can send it pings of the RDF data that has been found.

2.8.3 Piggybank: Extracting RDF content from online sources
Piggybank11 is an RDF screen scraper which has been implemented as a Firefox ex-
tension. While visiting sites such as Flickr, the ACM portal, or LinkedIn, Piggybank
can extract data from those sites such as events, citations, and contact information. The
extracted data can then be tagged and shared with others via an online account.

2.8.4 RDF online databases
Online databases are increasingly based on RDF, due to the ease of exchanging data
and of handling heterogeneous data. With RDF, a set of databases can feel like a single
large database; all that is necessary are a few URIs being shared. DBpedia is Wikipedia
translated to RDF:

DBpedia is a community effort to extract structured information from
Wikipedia and to make this information available on the Web. DBpedia al-
lows you to ask sophisticated queries against Wikipedia, and to link other
data sets on the Web to Wikipedia data. [http://dbpedia.org/]

DBpedia’s extraction algorithm is helped by the fact that Wikipedia already uses subject-
specific templates for entering data. It is a rich source of RDF vocabulary that is linked
against by other members of the linked web of data (Chap. 3). Its data can be down-
loaded and is published by a web service. The web application DBpedia mobile12 uses
a map to display DBpedia information that has geographical coordinates.

Freebase13 is a public, collaboratively edited, database. Users enter structured
data: things and facts about things. Compare this to mainly text input managed by
Wikipedia. While Freebase is not directly based on semantic web principles, its way
of organizing data is very similar and it can export any of its data as RDF.

9http://www.pingthesemanticweb.com/
10http://sioc-project.org/firefox
11http://simile.mit.edu/wiki/Piggy_Bank
12http://wiki.dbpedia.org/DBpediaMobile
13http://freebase.com/

http://sindice.com/
http://watson.kmi.open.ac.uk/WatsonWUI/
http://swoogle.umbc.edu/
http://dbpedia.org/
http://www.pingthesemanticweb.com/
http://sioc-project.org/firefox
http://simile.mit.edu/wiki/Piggy_Bank
http://wiki.dbpedia.org/DBpediaMobile
http://freebase.com/

2.8 RDF applications 27

2.8.5 Internal use of RDF
More and more applications are based on RDF, but hide that fact from their users as
much as possible. This includes information managers such as Haystack [QHK03]
or the Social Semantic Desktop [BDE+08]. Relo14 is another example of an RDF
application. It helps developers explore Java code bases. Its interface is a UML-like
diagram where users can directly edit code. Relo stores its data as RDF, opening the
door to using SPARQL to make complex queries about source code.

14http://relo.csail.mit.edu/

http://relo.csail.mit.edu/

28 2. Data modeling with RDF

Chapter 3

Linked data on the web

Contents
3.1 Overview . 29
3.2 Core concepts . 29
3.3 Discovery . 32
3.4 Write-enabling linked data . 37
3.5 Future research: linked data and HYENA 41

3.1 Overview
Linked data tackles the specifics of deploying RDF data on the web. It is currently not
supported by CoIM (and thus not prerequisite knowledge for understanding it), but the
logical next step in its RDF support. What this next step might look like is explained
as “future research” at the end of this chapter.

Linked data is a collection of best practices for the deployment of RDF data: How
can it be distributed and processed on a large scale? How can machine readability,
navigability and usability for humans be ensured at that scale? Linked data is based
on the ideas that made the web of documents successful and extends them to build a
web of data [Hea09]. For practical applications, the term linked data is increasingly
replacing the term semantic web. There is no clear consensus1 how the two terms
are related, the most common understanding is that linked data is a sub-topic of the
semantic web, providing a data infrastructure on which semantics can be based. This
chapter first explains the core concepts surrounding linked data and shows how linked
data can be made easy to discover. A number of technologies help with write-enabling
linked data and turn sets of linked data into lean web services that are founded on
simple principles. The chapter concludes with future research.

3.2 Core concepts
[BHBL09] describes linked data as follows:

1http://tomheath.com/blog/2009/03/linked-data-web-of-data-semantic-
web-wtf/

http://tomheath.com/blog/2009/03/linked-data-web-of-data-semantic-web-wtf/
http://tomheath.com/blog/2009/03/linked-data-web-of-data-semantic-web-wtf/

30 3. Linked data on the web

Linked data refers to data published on the web in such a way that it is
machine-readable, its meaning is explicitly defined, it is linked to other
external datasets, and can in turn be linked to from external datasets.

Linked data adheres to and builds on the core principles of the classic world wide web
[BHBL09] to create a web of data: The web of data can contain any kind of data,
published by anyone, without being subject to vocabulary constraints. Entities are
linked into a global data graph that spans data sources and enables the discovery of
new sources.

Application developers enjoy the following benefits [BHBL09]: Data is clearly
separated from presentational aspects. Data is also self-describing, because there is
a standard way of looking up the definition of a URI, for machines and for humans.
HTTP as a standard data access mechanism and RDF as a standard data format make
linked data simpler than most web APIs which rely on heterogeneous data models and
access interfaces. Finally, the web of data is open, meaning that applications need not
work with a fixed set of data, but can be written to discover new data by following
links. In the following, linked data’s core concepts are explained. Sect. 24.3 describes
“Tabulator”, a linked data client program for end users.

3.2.1 Linking documents and data

The following concepts refer to the linking aspect of linked data.

The web of documents is “the web as we currently know it”: it is the equivalent
of a global file system, designed for humans, its primary objects are documents, there
are untyped links between documents, the content is relatively low on structure and
semantics are implicit. Even though there is a lot of data on the web of documents,
it is difficult to access, because it is typically unstructured and it does not adhere to a
common standard.

The graph of linked things (the web of data) is the equivalent of a global database,
designed for machines, primary objects are things, there are typed links between things,
the content has a high amount of structure and explicit semantics. This is the core
component of linked data, but the graph complements the web of documents, it does
not replace it.

Dereferencing a URI is the process of looking up on the web a so-called resource,
information that is pointed to by a URI. The two main involved parties are the client
making the request and the server answering it. During the request, content negotiation
takes place: The client tells the server what formats it prefers and the server can then
create and deliver the appropriate representation of the resource. For example, web
browsers normally request HTML via the HTTP header Accept: text/html,
while linked data clients requesting RDF might send Accept: application/
rdf+xml. The idea is that when humans looks up a resource, they usually want to
read text and browse data, while machines are only interested in the raw data. Flexible
servers react accordingly and generate the appropriate representation on the fly.

3.2 Core concepts 31

3.2.2 Information resources and non-information resources
URIs can represent two kinds of resources. Information resources are things (docu-
ments, images, etc.) that actually exist on the web. During content negotiation, there
are two ways of providing different representations: one can directly serve a repre-
sentation or one can forward to an appropriate resource with the response code 302
Found. That means in both cases that data has been found at the location of the URI.

Non-information resources such as abstract concepts and people do not actually
exist on the web. To honor the semantics of this fact while still serving data, servers
usually forward to a resource that contains related information with the response code
303 See Other. Alternatively, a non-information resource can have a URI with a
fragment identifier such as http://example.com/file#fragment. Then the
non-fragment part of the URI can be served and the URI with fragment retains its
abstract status. The former method has the advantage of being more flexible, but it
requires redirects. The latter method has to serve the complete parent resource every
time one of its fragments is accessed. On the other hand, no redirects are required.
Fragments work well for small stable vocabularies, while 303 redirects should be used
for large evolving vocabularies [SC].

As an example, here are three URIs related to “Russia” [BCH07]:

1. http://www4.wiwiss.fu-berlin.de/factbook/resource/Russia
(URI identifying the non-information resource Russia)

2. http://www4.wiwiss.fu-berlin.de/factbook/data/Russia
(information resource with an RDF/XML representation describing Russia)

3. http://www4.wiwiss.fu-berlin.de/factbook/page/Russia
(information resource with an HTML representation describing Russia)

In this context, the following usage scenarios are conceivable: accessing the non-
information resource (1) will 303 forward web browsers to (2) and RDF clients to
(3). Accessing the HTML page (3) with a web browser will directly serve that page,
while RDF clients will be 302 forwarded to (2).

To avoid the complexities of content negotiation, one can also serve HTML and
RDF at the same time, by marking up an HTML page with RDFa (Sect. 3.3.3). This
allows humans to read the rendered HTML, while machines can extract the embedded
RDF.

3.2.3 Berners-Lee’s four rules for linked data
Tim Berners-Lee [BLa] states four rules for linked data:

• Use URIs as names for things. URIs can denote anything, not just documents.

• Use HTTP URIs so that people can look up those names. HTTP URIs have
the advantage of being globally unique with distributed ownership.

• When someone looks up a URI, provide useful information. What represen-
tation (RDF, HTML, . . .) of a URI is useful depends on who accesses it. Content
negotiation is a clean solution for this problem.

• Include links to other URIs, so that they can discover more things. Note that
this rule holds for both RDF and HTML. In both cases, linking is essential to the
distributed nature of the web.

http://www4.wiwiss.fu-berlin.de/factbook/resource/Russia
http://www4.wiwiss.fu-berlin.de/factbook/data/Russia
http://www4.wiwiss.fu-berlin.de/factbook/page/Russia

32 3. Linked data on the web

3.2.4 Datasets

In the linked data universe, a dataset is a graph of RDF data. It is often hosted in a
single place and there are several possible ways of accessing it:

• As linked data. Granularity is the namespace for hash URIs and the resource for
slash URIs. In the former case, one usually serves all statements whose subjects
are part of the namespace. In the latter case, one usually serves all statements
whose subject is the URI.

• Via SPARQL endpoints: web services where one sends SPARQL queries and
receives query results, see Sect. 3.4.4.

• As a data dump, a complete files with all of the data.

• Via URI lookup, as defined by the voiD specification (Sect. 3.3.2): one URL-
encodes a resource URI R, appends it to a URI lookup endpoint, and downloads
the resulting URI which is expected to contain an RDF description of R.

3.3 Discovery

This section describes techniques to make a dataset easy to discover, given either an
HTML web page, a web server, or another data set. Fig. 3.1 provides an overview.

dataset URI

dataset

dataset URI

dataset

robots.txt
(one per server)

sitemap2.xml

sitemap1.xml

semantic
extensions

vocabulary of
interlinked
datasets

HTML
<link> tag

HTML

RDF

RDFa

Figure 3.1: Datasets can be discovered by following the per-server robots.txt to
semantic sitemaps. HTML files can refer to related RDF datasets, if those are stored
in files. The RDFa standard allows one to embed related RDF data inside HTML. The
RDF vocabulary of interlinked datasets is used to provide further meta data.

3.3 Discovery 33

3.3.1 Semantic sitemaps
Classic sitemaps are XML files that are declared in the per-domain robots.txt file.
Semantic sitemaps [CSD+08] extend this format to allow one to describe datasets:

• datasetLabel: a human description of the dataset.

• datasetURI: points to a URI in the dataset that contains more information about
the dataset. This information can be expressed in the voiD vocabulary (Sect.3.3.2).

• linkedDataPrefix: describes how the resources in the dataset are served as linked
data. URIs that begin with this prefix must resolve to RDF descriptions. What
exactly such a description entails can also be specified (statements whose subject
the URI is, statements whose subject or object the URI is, etc.).

• sparqlEndpoint: where can SPARQL be used to query the dataset?

• dataDump: where can a dump of the dataset be downloaded?

• changefreq: how frequently does the data change?

• sparqlGraphName: what is the graph URI of the dataset inside the SPARQL
endpoint?

• sampleURI: provides starting points for human exploration of the dataset.

• authority: normally, the only way to get information about who is responsible for
a web site is via the DNS records, which are external to the site. By specifying
a URI for an authority, this kind of information can be served via linked data
principles.

Having this kind of information solves the following problems:

• Crawling performance and exhaustive data enumeration: crawling linked data
can be expensive, because each resource might be served separately and there
is no definitive way of retrieving all of the dataset. By associating a linked data
prefix with a data dump, this can be fixed.

• Scattered RDF files: instead of having to crawl a complete site to find RDF data,
crawlers simply look up the site map.

• Cataloging SPARQL endpoints: semantic sitemaps provide a standard way of
discovering SPARQL endpoints.

• Discovering a SPARQL endpoint for a given resource: is especially interesting
for linked data, because it allows one to go from looking up a resource to making
sophisticated queries about it. Sitemaps allow this by associating linked data
prefixes with SPARQL endpoints.

• Closed-world queries about self-contained data: Usually, RDF’s open world as-
sumption makes queries such as “Does Example Inc. have an employee named
Eric?” impossible. By delineating datasets, one can temporarily assume a closed
world. If a query fails to produce results, the dataset label can be used to report
the failure.

34 3. Linked data on the web

3.3.2 Vocabulary of Interlinked Datasets (voiD)
The Vocabulary of Interlinked Datasets (voiD, [ACHZ]) extends semantic sitemaps by
providing a detailed RDF vocabulary for describing datasets and how different datasets
are linked.

Describing datasets

The vocabulary for datasets comprises the type void:Dataset for datasets and lets
one specify the following data:

• About the dataset: title, description, home page.

• Who created it: creator (main author), publisher, contributor.

• URIs in the dataset: example resources (as entry points) and a regular expression
that matches one or more URIs in the dataset.

• Dates: date of creation, issuance, modification.

• Describing the content: URIs tag a dataset with categories (such as “computer
science” or “biology”), a URL points to the license under which the dataset has
been published.

• Composition of the content: one can specify a source from which the current
dataset has been derived, sub-datasets which are combined to form the whole
dataset, and the vocabularies used in the dataset.

• Access methods: one can declare SPARQL endpoints, URI lookup and data
dumps.

Describing links between datasets

dataset dataset

linkset

Figure 3.2: A linkset is a dataset that connects two datasets.

A linkset is a dataset that contains links between two datasets (Fig. 3.2). These
links can declare a URI from one dataset to be equivalent to a URI from the other
dataset. Or they can otherwise relate URIs (who knows whom, who lives where, etc.).
voiD distinguishes two kinds of linksets: “classic linked data” means that one of the
involved datasets contains the links, “3rd-party” means that the linkset is external to
the datasets. The description of the links can specify a direction or be undirected. The
following URIs are available:

• void:Linkset is the type of linksets.

3.3 Discovery 35

• void:subset (read as “has subset”) declares that one dataset is a superset
of another one. In particular, it can be used to declare that one of the datasets
contains the linkset (which is also a dataset), as is the case in the “classic linked
data” scenario.

• void:linkPredicate states one predicate that is used for linking the datasets.

• void:target to declare the involved datasets in the undirected case.

• void:subjectsTarget, void:objectsTarget to describe the direc-
tion of the links between the datasets.

The following example (taken from [ACHZ]) describes a linkset connecting the Ja-
mendo and Geonames datasets. The former describes a collection of Creative Com-
mons licensed songs, including the artists that performed them. The latter is an on-
tology of places (continents, countries, cities, etc.). The linkset is contained in the
Jamendo vocabulary (classic linked data). The links are directed from Jamendo to
Geonames and have the predicate foaf:based_near. Such links can be used to
express where, for example, bands are located.

:Jamendo void:subset :Jamendo2Geonames .

:Jamendo2Geonames a void:Linkset ;
void:linkPredicate foaf:based_near ;
void:subjectsTarget :Jamendo ;
void:objectsTarget :Geonames .

Discovering voiD descriptions

Usually, one uses the dataset URI specified in a semantic sitemap to look for linksets
whose target is that URI. Should the dataset be spread across several documents, each
of those documents can use dcterms:isPartOf to refer to the main dataset URI
with the voiD description:

<document.rdf> dcterms:isPartOf <void.ttl#MyDataset>

3.3.3 Associating RDF data with HTML files
To associate an HTML file with related RDF data, one can either refer to an RDF file
via an HTML tag or embed the RDF inside the HTML. There are two reasons for
performing such an association. First, the RDF can be meta-data, describe what the
page is about, its intended audience, topics covered, etc. Second, it can be a more
precise version of the data displayed on the web page, given that many web pages
display structured data (such as contacts and events) as unstructured text. Obviously,
translating that unstructured text to structured data for further processing is a non-trivial
task.

Linking from HTML to RDF.

<link> tags allow one to tell browsers about content that is related to the current
HTML document. This is already frequently used for RSS feeds: If a feed version of
the current pages is available, it is linked to in HTML and a status icon indicating the

36 3. Linked data on the web

additional content shows up in the web browser. In a similar fashion, one can link to
RDF data by including the following tag in the header:

<link rel="alternate" type="application/rdf+xml"
title="RDF Version" href="mydoc.rdf">

RDFa: Embedding RDF inside HTML

Many web pages are produced by translating a database to HTML. Alas, this process
is not reversible: Even though there are many lists of contacts or dates available on the
web, one cannot easily import this data into address books and calendars and usually
ends up entering it manually. Help comes in the form of an (X)HTML extension called
RDFa [AB06]. It defines a small set of attributes that remain hidden inside the HTML,
but their values allow one to extract the RDF triples that were used to generate the
HTML in the first place.

In the following example (which is taken from [Wikb]), relatively free text is
marked up with RDFa:

<p xmlns:dc="http://purl.org/dc/elements/1.1/"
about="http://www.example.com/books/wikinomics">

In his latest book
<em property="dc:title">Wikinomics,
Don Tapscott
explains deep changes in technology,
demographics and business.
The book is due to be published in
<span property="dcterms:date"

content="2006-10-01">October 2006.
</p>

All RDFa-specific parts are underlined: we initially define the namespace prefix dc2

for the URI http://purl.org/dc/elements/1.1/. Then we say that the
paragraph is about the resource http://www.example.com/books/wikinomics,
meaning that the properties we are about to define should be attached to it. Then we
define the dc:title and dc:author of that book. For the date, we use an RDFa
mechanism that lets us display October 2006 to the user, but store 2006-10-01
in RDF. Note that even though we discard the former, it is still semantically marked up
as the value of property dcterms:date. Thus, the following three triples have been
embedded in the HTML fragment and can be easily extracted:

http://www.example.com/books/wikinomics
dc:title "Wikinomics" ;
dc:author "Don Tapscott" ;
dcterms:date "2006-10-01" .

There are tools such as bookmarklets [rdf] available with which it is easy to extract
the RDF from RDFa-enriched web sites. All HTML generated via Fresnel lenses in
HYENA has RDFa in it.

RDFa is similar to microformats [sit]. Microformats introduce a new set of HTML
attributes and CSS classes for each kind of data. Examples include People and Or-
ganizations; Calendars and Events; Opinions, Ratings and Reviews; Licenses; Tags,

2dc stands for the standard RDF vocabulary Dublin Core which defines predicates for author information
etc.

3.4 Write-enabling linked data 37

Keywords, Categories; Lists and Outlines. In contrast, RDFa relies on the universal-
ity of RDF and just needs a new RDF type. On the other hand, microformats do not
require one to handle RDF and are already broadly supported via browser plugins.

Google has recently begun using RDFa to improve search efficiency. Google sup-
ports what they call “rich snippets”3 to improve how a web page is displayed in the
search results. Snippets are HTML fragments that are marked up in either a microfor-
mat or RDFa. Initial support is for reviews and people. The former allows Google to
collect all reviews for a given product. The latter allows Google to distinguish several
people with the same name.

3.4 Write-enabling linked data
The technologies that have been described turn datasets into lean web services that are
founded on simple principles. But so far, only read access to data has been possible.
This section describes the means4 for write-enabling linked data: Web IDs are public
IDs for people and other entities; FOAF+SSL is an authentication protocol that is based
on Web IDs; Web Access Control is an authorization scheme and protocol; the update
protocols WebDAV and SPARQL Update are used for effecting changes in a distributed
setting.

3.4.1 Web ID: entity identifiers
The core idea of Web ID is to extend linked data principles to personal identity. To
create a web ID for user Romeo, one performs the following steps:

• Create a FOAF file that describes in RDF who Romeo is, refers to his home-
pages, his pictures, his friends, etc. Put the file at http://example.com/
~romeo/foaf.rdf

• Romeo’s web ID is http://example.com/~romeo/foaf.rdf#me. Other
fragment identifiers are possible such as initials, this, etc. This means that the
URI with #me is a non-information resource, while the URI without #me is an
information resource.

• The FOAF file refers to Romeo’s friends and acquaintances via their web IDs,
creating a network of social data.

The next section explains how web IDs can be used for automatic authentication.

3.4.2 FOAF+SSL: authentication scheme and protocol
FOAF+SSL is an authentication scheme based on Web IDs. It involves cryptography
for secure communication (no one listens in, data is not changed). There are two main
kinds of cryptography:

• Symmetric-key cryptography: both communication parties have the same secret
key. Disadvantage: one has to manage the keys of all of one’s communication
partners. This was the only way of doing cryptography until 1976 [DH76].

3http://www.google.com/support/webmasters/bin/answer.py?answer=99170
4http://esw.w3.org/topic/WriteWebOfData

http://www.google.com/support/webmasters/bin/answer.py?answer=99170
http://esw.w3.org/topic/WriteWebOfData

38 3. Linked data on the web

• Public-key cryptography: Encryption is asymmetrical and one always uses pairs
of keys: A private key is kept secret, a public key can be freely published. One
of the two keys is used for encryption, the other one for decryption. Naturally,
the two keys are related, but computing the private key given the public key is
assumed to be too computationally expensive to be practical.

– Encryption: For encryption, a public key is used to encrypt messages and
a private key is used to decrypt them. This ensures that only the owner of
the private key can read the encrypted message.

– Signing: When signing a document, the role of the public key and the pri-
vate key is reversed. The signer encrypts the document or a summary (e.g.
a hash) of it to become the signature, with the private key. The signature is
attached to the document and the recipient of the document uses the public
key to decrypt it, after which it can be used to ensure the authenticity of the
document.

– Public key certificate5: a document that binds together a public key and an
identity (full name, alias, or some other kind of identifier). This document
is used to verify that a public key belongs to an individual. To ensure
authenticity, the certificate is signed, often by a trusted public entity, but
self-signing is also common.

The FOAF+SSL protocol works as follows [SHJJ09]:

1. The client, Romeo, dereferences a secure URL such as https://juliet.
net/location.

2. As part of the exchange with the client, the server receives the client’s certificate
with the client’s public key and the client’s web ID, http://example.com/
~romeo/foaf.rdf#me. As the connection is encrypted, the server can be
sure that the client knows the private key corresponding to the public key in the
certificate (and has not just copied the public key from somewhere).

3. Juliet’s server downloads http://example.com/~romeo/foaf.rdf and
checks that that document mentions the same public key that is used in the cur-
rent exchange. Juliet can now be sure that Romeo has write access to the re-
source http://example.com/~romeo/foaf.rdf. That means that the
communication partner has been authenticated “as” the given URI.

4. The web ID can now be used to look up Romeo’s trustworthiness, for example by
(recursively) crawling Juliet’s FOAF file to find out how direct a friend Romeo
is. Or authorization criteria is looked up locally. In both cases, access is either
granted or denied.

3.4.3 Web Access Control: authorization scheme and protocol
The Web Access Control6 (WAC) system provides an ontology for specifying access
control lists for web resources. Dereferenceable URIs are used for resources, users and
groups. That means that resources, users and groups can be hosted on different systems
and are brought together by the access control ontology.

5http://en.wikipedia.org/wiki/Public_key_certificate
6http://esw.w3.org/topic/WebAccessControl

http://en.wikipedia.org/wiki/Public_key_certificate
http://esw.w3.org/topic/WebAccessControl

3.4 Write-enabling linked data 39

Users are specified by web IDs which are authenticated via FOAF+SSL. Groups
are classes, group membership is defined as

webId rdf:type group .

This statement is either stored locally, at the server of the resource or remotely at the
server of the group URI where it can be accessed via linked data principles. In the
latter case, the server of the resource obviously trusts the server that hosts the group
definition. foaf:Agent is the special group of all users. That means that the rights
of this group are granted to anyone, even if they are not logged in.

Access control data is specified per resource, in RDF. It can be stored in a single
repository for the complete server or by defining a convention that associates resources
with access control files (for example, access control for /foo/bar.txt could be
defined in /foo/.meta/bar.txt.n3). The data itself is stated in the Access con-
trol vocabulary which specifies

• What can be accessed: either a single resource or a class (set) of resources.

• What access mode is being granted: read, write, or control, where control means
that one can change the access control information of a resource.

• Who is being granted access: either an agent (specified by a web ID) or a class
of agents (a group URI).

The following example specifies that the resource card.rdf can be read by anyone
and written by http://example.com/~romeo/foaf.rdf#me.

[acl:accessTo <card.rdf> ;
acl:mode acl:Read;
acl:agentClass foaf:Agent]

[acl:accessTo <card.rdf> ;
acl:mode acl:Read, acl:Write ;
acl:agent <http://example.com/~romeo/foaf.rdf#me>]

3.4.4 Update protocols

Update protocols allow one to modify a repository hosted at a given URI. Two protocols
are often used by linked data applications:

• WebDAV: is used for reading, writing, or deleting files that contain data dumps.

• SPARQL Update: is used for incremental updates to a repository.

WebDAV

WebDAV extends the standard HTTP verbs (OPTIONS, GET, HEAD, POST, PUT,
DELETE, TRACE, CONNECT) in order to enable complete remote management of a
file system. Many operating systems (Windows, Mac OS, Linux, . . .) support it in a
way where managing remote files is indistinguishable from managing local files. The
following verbs7 are new:

7http://en.wikipedia.org/wiki/WebDAV

http://en.wikipedia.org/wiki/WebDAV

40 3. Linked data on the web

• PROPFIND: retrieves properties, stored as XML, from a resource. In can also
be used to retrieve the collection structure (the directory hierarchy) of a remote
system.

• PROPPATCH: changes and deletes multiple properties on a resource in a single
atomic act.

• MKCOL: creates collections (directories).

• COPY: copies a resource from one URI to another.

• MOVE: moves a resource from one URI to another.

• LOCK: puts a lock on a resource. WebDAV supports both shared and exclusive
locks.

• UNLOCK: removes a lock from a resource.

Note that for most linked data write applications, standard HTTP verbs (mainly GET,
PUT, and DELETE) are enough.

SPARQL Update

SPARQL update [SMB+08] extends normal SPARQL with two categories of update
operations on a repository. First, graph update operations add and remove triples from
one of the graphs in the repository:

• INSERT DATA: adds triples to a graph, as specified directly in the request.

• DELETE DATA: removes triples from a graph, as specified directly in the re-
quest.

• MODIFY: can add and/or remove triples from a graph. In both cases, the data is
produced from a template whose variables are filled in via a query pattern.

• INSERT: MODIFY without the (optional) DELETE.

• DELETE: MODIFY without the (optional) INSERT.

• LOAD: copies all triples of a remote repository (which is specified by a URI)
into a graph.

• CLEAR: removes all triples of a given graph.

Second, there are operations for graph management:

• CREATE: create a graph.

• DROP: remove a graph.

Example (from [SMB+08]): delete all records of old books (with date before year
2000).

3.5 Future research: linked data and HYENA 41

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

DELETE {
?book ?p ?v .

} WHERE {
?book dc:date ?date .
FILTER (?date < "2000-01-01T00:00:00"^^xsd:dateTime)
?book ?p ?v .

}

Most of linked data fits into the paradigm of Representative State Transfer (ReST,
[Fie00]) where URLs denote data sources and the HTTP verb GET is used for re-
trieval, while POST is used for updates. SPARQL update does not adhere to this clear
separation. Usually the POST verb is used to send a SPARQL Update request to a
SPARQL endpoint, denoted by a URL. Such a request can perform both retrievals and
updates.

3.5 Future research: linked data and HYENA

HYENA does not currently support linked data. This section sketches how support for
linked data will be built into future versions of it. HYENA/Web serves data as a web
application. Thus, URIs contain the state of the user interface. In the future, linked data
could be supported in three ways. The first way is to enable FOAF+SSL for HYENA/
Web, so that linked data users have single sign-on. The second way is as a linked data
client. HYENA would read and write linked datasets. This could happen either directly
(e.g. via SPARQL update) or by importing a set into HYENA, editing it there, and
writing it back to the original location. The third way is for HYENA to be a linked data
server. This means that in addition to accessing HYENA’s data via a web application,
one could also access it via linked data principles. The web application part could help
the linked data part by assisting users with the creation of semantic sitemaps and voiD
data.

42 3. Linked data on the web

Chapter 4

Folksonomies and ontologies

Contents
4.1 Overview . 43
4.2 Folksonomies . 43
4.3 Ontologies . 45

4.1 Overview
This chapter introduces two popular ways of knowledge representation on the seman-
tic web: Folksonomies, user-generated systems of tags and ontologies, formal, partially
self-describing specifications of concepts and their relationships [Wel07]. It then pro-
ceeds to classify them as two extremes of expressiveness along the spectrum of knowl-
edge representation systems. CoIM uses folksonomy-based meta-data to organize data.

4.2 Folksonomies
To retrieve entities such as documents, they have traditionally been annotated with
keywords taken from a pre-defined vocabulary that has been created by domain experts.
Thus, if one is looking for entities that are related to a given topic, one can find them if
one of the keywords matches the topic.

With the web, everyone can publish content and using keywords for retrieval be-
comes harder, because they cannot be managed in a centralized fashion any more. This
is due to the fact that the number of entities being added to sites such as Flickr is simply
too great to be monitored and managed by a central agency. Thus, many web sites with
user-generated content use folksonomies: keywords are called tags and the collection
of all tags is called a folksonomy. Two new ingredients are that users can create their
own tags and that the web is used to collaboratively manage a folksonomy. Vander Wal
distinguishes two kinds of folksonomies: in broad folksonomies, does not only attach
tags to entities, but also who has added a tag, so that the same tag can be attached
more than once. In narrow folksonomies, the person who has tagged the entity is not
recorded; usually only the author of an entity is allowed to attach tags. Broad folk-
sonomies allow one to compute how popular a tag is for a given entity. A common way

44 4. Folksonomies and ontologies

of visualizing the result is as a tag cloud: the tags are displayed as a single continuous
text, in alphabetical order. The more popular a tag is, the larger its font size becomes.

4.2.1 Active vocabularies versus controlled vocabularies

Adding metadata in a distributed, uncontrolled manner has the advantage of being
cheap and offering several perspectives, in parallel. Such metadata reflects the ac-
tive vocabulary of a community and is constantly being updated to fit current needs.
Lastly, especially with broad folksonomies, one can extract knowledge that is implicit
in the system: For example, how different tags are popular at different times permits
conclusion as to what developments are important in a community or how it reacts to
certain events.

In contrast, controlled vocabularies are less flexible, but they avoid the vocabulary
problem that folksonomies face: synonyms, trans-language synonyms, spelling vari-
ants and abbreviations are not recognized as referring to the same concept; homonyms
are not distinguished. This leads to reduced precision and recall when searching folksonomy-
organized information.

4.2.2 Reasons for tagging

Not all tags are for categories that are of public interest. Some tags are for personal
use only. Al-Khalifa and Davis [AKD07] have grouped tags into three categories in a
study:

• Factual tags (62%) referred to the actual content of a document.

• Personal tags (32%) only had personal relevance. Self-referencing tags such as
me or my-dog fall into this category.

• Subjective tags (4%): express opinions such as cool.

Golder et al. [GH06] list seven functions of tags:

1. Identifying what (or who) it is about: What is the topic of the tagged entity?

2. Identifying what it is: Especially when entities refer to something, tags such as
book or blog-entry are used.

3. Identifying who owns it: Who owns or created the content of the entity?

4. Refining categories: Some tags do not stand alone, but rather refine other tags.
Examples include numbers (25 people) or colors (yellow flower).

5. Identifying qualities or characteristics: The tagger’s opinion is expressed via
adjectives such as scary, funny, or stupid.

6. Self-reference: For example, tags that start with “my” such as mystuff and
mycomments can only be understood in relation to the tagger.

7. Task organization: Some tags help with organizing data for performing a task.
Examples include toread and jobsearch.

4.3 Ontologies 45

4.2.3 Retrieval versus exploration
As a method for retrieval, folksonomies lack precision and recall. Both can be im-
proved using natural language processing techniques (such as edit distance between a
query and the tag names).

It has been argued [Qui05] that folksonomies lend themselves to serendipity: sim-
ply by browsing, one can discover new content. Serendipity can be supported by ex-
ploiting that broad folksonomies contain relations between three kinds of entities: doc-
uments, tags, and users. For example, users are related if they use the same tags or tag
the same documents. Documents can be related by examining who tags them and how.
Similarly, it is possible to find related tags.

4.3 Ontologies
The term ontology is difficult to define, because it is used in many different fields,
with different backgrounds and requirements: computer science, information science,
philosphy, computer linguistics, artificial intelligence, life sciences, bioinformatics,
etc. There are two ways of defining the term ontology:

1. as a general concept that subsumes all other kinds of knowledge representation
systems (such as thesauri and taxonomies).

2. as a new type of knowledge representation system that goes beyond traditional
systems.

The first way is justified by the fact that, while powerful, ontology languages easily
scale down to the level of simpler knowledge representation systems and are often
used in that capacity. In the following, the author adopts the second way, because it
enables one to distinguish semantically richer systems from thesauri, classifications,
and folksonomies. Using this approach, one can categorize knowledge representation
systems in several ways:

• Availability of vocabulary control: for many, less formal, applications this is
the main distinguishing criterion that pits uncontrolled keyword systems against
ontologies, thesauri and classifications.

• Expressiveness: Uncontrolled keywords are a very simple system, folksonomies
add social dimensions, etc. (Fig. 4.1).

• Complexity of relational constructs: Where folksonomies have no explicit rela-
tions at all, ontologies provide specified associations (Fig. 4.2). The next section
provides more information on explicit relations.

4.3.1 Explicit relations
One example of an explicit relation is specifying that two concepts are synonymous.
Some of the most common kinds of relations used in knowledge representation systems
are [WP07]:

• Relations of equivalence: for synonyms. Important for recall and consistent use
of a vocabulary.

46 4. Folksonomies and ontologies

Keywords
(uncontrolled)

Folksonomies
(social
dimensions)

Thesauri
(unspecific
definition: mere
collections of
synonyms)

Taxonomies
(purely
hierarchical)

Controlled keywords
(nomenclature)

Thesauri
(information
science's
definition)

Classifications Ontologies
(frames)

Ontologies
(with limited
use of axioms)

Ontologies
(first-order logic)

more expressive

Figure 4.1: Distinguish knowledge representation systems by their expressiveness.
Taken almost verbatim from [Wel07].

Ontology

Thesaurus
Classification

Controlled keywords

Folksonomy

complexity of structure

extent of captured
knowledge domain

hypnoymy, meronymy, equivalents
and specified associations

hyponymy, meronymy, equivalents
and associations

hierarchy and equivalents

equivalents and associations

(no explicit relations)

Figure 4.2: Distinguish knowledge representation systems by the complexity of their
relational constructs. The more complex the formalism, the harder it is to capture as
much of a knowledge domain as possible. Taken almost verbatim from [Wel07].

4.3 Ontologies 47

• Hierarchical relations: for defining the core structure of a knowledge domain.
Includes meronymy, and hyponymy. Meronymy is the part-of relation, “lips” is
a meronym of “mouth”. Hyponomy is the kind-of relation, “duck” is a hyponym
of “bird”.

• Associative relations: other kinds of connections between concepts.

These relationships are used by knowledge representations as follows:

• Controlled keyword indexing: focuses on synonyms for vocabulary control. Hi-
erarchical relations are not used (which would result in a thesaurus). Additional
unspecified references may be included.

• Classification: a single kind of hierarchy for concepts.

• Thesaurus: the main focus is on equivalence, on grouping synonyms. Uses the
two hierarchical relations meronymy and hyponomy. Includes undifferentiated
associative relations.

• Ontology: supports meronymy (usually as a subclass-of relation), hyponomy
(usually as an is-a relation), and the definition of any kind of differentiated asso-
ciative relation.

48 4. Folksonomies and ontologies

Chapter 5

Schema and ontology languages

Contents
5.1 Overview . 49
5.2 RDFS . 49
5.3 RDFS-Plus . 52
5.4 OWL Web Ontology Language 54
5.5 Ontology Definition Metamodel (ODM) 57

5.1 Overview
Structured databases such as relational databases usually have built-in schema mech-
anisms that apply to all the data. In contrast, RDF is a semi-structured database and
has no fixed schema (apart from the structure of the triples). Most repositories support
schema and ontology languages that extend the core RDF with the ability to selectively
declare a schema, whose constraints can be applied per entity/object. This chapter de-
scribes the main RDF schema and ontology languages: RDF Schema (RDFS), RDFS-
Plus (a subset of OWL), and the Web Ontology Language (OWL). All have encodings
in RDF which means that the schema can be stored and delivered together with the data
it describes. The intention of the chapter is to convey what the standard RDF schema
approaches are capable of. They have limitations when it comes to data modeling.
Which is why CoIM includes REMM schema (Chap. 14), a schema system for data
modeling whose definitions are derived from OWL.

To give a broader understanding of this area, the Ontology Definition Metamodel
(ODM) is explained. The ODM integrates two worlds: on one hand the world of on-
tologies, on the other hand the world of modeling as defined by the Object Management
Group (OMG) for software engineering. Both worlds can profit from each other, on-
tologies profit from tools for visual data modeling, the OMG modeling profits from
how ontologies handle semantics.

5.2 RDFS
The RDF Schema Language (RDF) is a relatively simple schema language that focuses
on the concepts of classes and properties.

50 5. Schema and ontology languages

5.2.1 Constructs
RDFS has several areas where one can specify things about RDF in RDF.

Classes

Classes are sets of RDF nodes. Plain literals and tagged literals have implicit classes,
datatype literals have an attached type, and resources declare their memberships of
classes via the rdf:type property. A subclass hierarchy is declared via the prop-
erty rdfs:subClassOf. Predefined classes for resources are rdfs:Resource,
the class of all resources and superclass of all classes; rdfs:Class the class of
classes; and rdf:Property the class of RDF properties. Classes for literals are
rdfs:Literal the class of literals and its subclass rdfs:Datatype, the class
of datatypes. Subclasses of rdfs:Datatype are rdf:XMLLiteral, the class of
XML literal values, and all simple types of XML schema.

Properties

If one takes the predicates of the triples in an RDF repositories as names of relations,
then a property is one such relation. A property relates subjects (the domain of the
property) and objects (the range of the property). It is a binary relation and (in general)
not a function. Property domains are declared via rdfs:domain, the values of this
property are classes whose instances have the given property. Property ranges are de-
clared via rdfs:range, the values of this property are classes whose instances can
be a value of the given property.

The rdfs:subPropertyOf property declares that one property is a subproperty
of another. If a property P ′ is a subproperty of a property P then all pairs of resources
which are related by P ′ are also related by P . Sect. 5.2.3 shows this concept written as
a rule.

Additional vocabulary

A few standard properties defined by RDFS have special meaning.

• Special properties: rdf:type declares class membership, rdfs:label spec-
ifies a human readable label for a resource, rdfs:comment provides a longer
descriptive text. rdfs:seeAlso states that the object provides additional in-
formation about the subject.

• Container vocabulary: Class rdfs:Container with subclasses rdf:Bag,
rdf:Seq, rdf:Alt and the super-property rdfs:member of all container
indices. See Sect. 2.4.1 for details.

• Collections: The class rdf:List, the properties rdf:first and rdf:rest,
and the empty list rdf:nil. See Sect. 2.4.1 for details.

• Reification: The class rdf:Statement and the properties rdf:subject,
rdf:predicate, rdf:object. See Sect. 2.4.3 for details.

Two other utility properties have not been mentioned before:

• rdfs:isDefinedBy states that the object defines the subject.

5.2 RDFS 51

• rdf:value is used for structured values; the value is compound and encoded
in a resource with properties that hold an amount, a unit of measurement etc.
rdf:value marks the main property in such a resource (usually the amount).

5.2.2 Model-theoretic semantics
An interpretation maps resources and literals to a set of individuals and properties
to a set of binary relations. Ground graphs are interpreted as true if for each triple
(s, p, o), the interpretation of the pair (s, o) is an element of the interpretation of p
(that is, a binary relation). Blank nodes are interpreted as existential variables. If an
interpretation evaluates a graph to true, then it is said to satisfy the graph.

• Simple entailment between RDF graphs: A set S of RDF graphs entails a graph
E if every interpretation which satisfies every member of S also satisfies E.

Simple interpretation and simple entailment ignore any meaning that has been given to
names via vocabularies. To handle vocabularies, interpretations have to consider more
conditions and some property interpretations have to be “pre-filled” (as if several RDF
statements were in every graph to be interpreted).

Interpreting the RDF vocabulary

Conditions for the interpretation ensure that rdf:Property and rdfs:XMLLiteral
are used correctly (only resources of type rdf:Property can be mapped to a re-
lation, etc.). Furthermore, all URIs in the RDF vocabulary are typed correctly, for
example:

rdf:type rdf:type rdf:Property .
rdf:nil rdf:type rdf:List .

Interpreting the RDFS vocabulary

For the RDFS vocabulary, a new mapping from URIs to classes is introduced. It is
used to express the constraints imposed on relations by rdfs:domain and rdfs:
range. The interpretation of rdfs:subClassOf and rdfs:subPropertyOf
are required to be transitive and reflexive. Finally, domains and ranges are declared for
several properties, as are some more types and subclass relationships.

5.2.3 Inference
To make RDFS entailment visible to all clients of an RDF repository, inference is
used. It creates (read-only) inferred statements derived from the asserted statements
according to the semantics outlined above. Inference can be written as rules. In those
roles, if certain RDF statements are present in the RDF repository, one or more new
statements are created (forward-chaining). For example, the transitivity of rdfs:
subClassOf corresponds to:

(a subClassOf b), (b subClassOf c)→ (a subClassOf c)

This means that if there are two statements declaring a a subclass of b and b a subclass
of c then a statement is created that declares a a subclass of c. Subproperties lead to
the following inference rule:

(p′ subProperty p), (s p′ o)→ (s p o)

52 5. Schema and ontology languages

Subproperties are useful when a set of resources has a given predicate, but should have
another one (instead or additionally). For example: dc:title can be used to assign a
title for resources such as documents. But, most RDF tools only support rdfs:label
for human-readable labels. Thus, one simply makes the following declaration and
every resource gets a label that is the same as its title:

dc:title rdfs:subPropertyOf rdfs:label .

The rule for property domains is:

(p domain c), (s p o)→ (s type c)

This means that if a resource s has the property p, it is automatically assigned the type
c. Note how this works differently from typical schema languages which would signal
an error if s has a property p and is not of type c. With inference, the problem is being
“fixed” instead and the necessary type is inferred. The inferences caused by domain
and range can be used to assign types to resources that are related in a certain way. For
example, a isMarriedTo b could assign the same type MarriedPerson to both
a and b.

5.3 RDFS-Plus
Allemang and Hendler describe [AH08] a subset of OWL that contains many useful
features without being overly complex: RDFS-Plus.

5.3.1 Properties
By making properties instances of the following special classes, one can control infer-
ence.

• Inverse properties: With the property owl:inverseOf one can define a prop-
erty q to be the inverse of a property p. Then for every statement s p o the
statement o q s is inferred. For example, one could define

:childOf owl:inverseOf :parentOf .

• Symmetric properties: If a property p has the type owl:SymmetricProperty
then each statement s p o leads to the inference of o p s. For example, one could
define

:marriedTo rdf:type owl:SymmetricProperty .

• Transitive properties: If a property p has the type owl:TransitiveProperty
then the statements r1 p r2 and r2 p r3 lead to the inference of r1 p r3. For ex-
ample, one could define

rdfs:subClassOf rdf:type owl:TransitiveProperty .

To distinguish between directly related and transitively related, one can combine sub-
properties and transitivity:

5.3 RDFS-Plus 53

:direct rdf:type rdf:Property .
:trans rdf:type owl:TransitiveProperty .
:trans rdfs:subPropertyOf :direct .

The last statement “seeds” :trans with all pairs of resources that are related via
:direct and then infers the transitive closure.

5.3.2 Equivalence
Equivalence is a concept that is needed in the context of heterogeneous distributed
data: When two vocabularies define the same class with a different URI or two data
sets contain different resources for the same entity, it would be helpful if one could
automatically merge them. RDFS-Plus provides the mechanisms to do so.

• Equivalent classes: the property owl:equivalentClass is used to declare
that two classes are the same.

• Equivalent properties:

:p owl:equivalentProperty :q .

means that :p is the same property as :q. That is, every statement whose pred-
icate is :p leads to an inferred statement whose predicate is :q and vice versa.

• Same individuals:

:s owl:sameAs :t .

means that :s is the same individual as :t. That is, every statement whose
subject is :s leads to an inferred statement whose subject is :t and vice versa.

• Functional properties: if a property is declared functional that means that every
domain element is related to exactly one range element. This can be used to infer
sameness. For example, the following statements

p rdf:type owl:FunctionalProperty .
s p a .
s p b .

lead to the inference

a owl:sameAs b .

• Inverse functional properties: sometimes there is a property whose values are
better unique identifiers for resources than their URIs. Or the property enables
unique identification of blank nodes. In both cases, such a property is declared of
type owl:InverseFunctionalProperty. In the former case, it leads to
URIs being owl:sameAs if their IDs are the same. That is, different resources
with the same (property-assigned) ID are effectively being merged into a single
resource.

54 5. Schema and ontology languages

5.4 OWL Web Ontology Language
OWL is an ontology language that has been created to take into account the distributed
nature of data on the world wide web. As a consequence, OWL makes several assump-
tions that are unusual when compared to traditional logic and schema approaches:

• An open world is assumed: When a statement cannot be proven true, it is not
considered to be false (which is sometimes called “negation as failure”), because
it might still be true somewhere on the web.

• Unique names are not assumed: If two names are different, they might not neces-
sarily refer to different entities. Thus, OWL makes no a priori assumption about
two names being different. Several mechanisms can be used to prove that two
names are equivalent and there are ways of explicitly stating that two names are
different or equivalent (Sect. 5.3.2).

• Classes are not assumed to be disjoint: No assumption as to whether two differ-
ent classes are disjoint are made until that fact is either positively or negatively
stated or proven. This has the benefit of making modeling more flexible.

5.4.1 Constructs
The following sections describe the constructs available in OWL [B+a].

Classes

Class descriptions are used to construct classes:

• Enumeration: defines a class by enumerating its values.

• Property restriction: defines a class where the values of a single property are
restricted regarding their kind or their amount. By subclassing several property
restrictions, a class can define something similar to a schema for itself. Restric-
tions of the kind are called value constraints and can specify that all property
values are from a given class, that at least one property values is from a given
class, or that the property values always include a given value. Restrictions of
the amount are called cardinality constraints and specify a minimum and/or a
maximum cardinality. Restrictions cause inferences similar to domain and range
in RDFS.

• Intersection, union, and complement: construct a class by combining other class
descriptions with the standard set-theoretic operators.

Class axioms are relations between classes: rdfs:subClassOf is the subclass rela-
tion, owl:equivalentClass declares two classes as equivalent, owl:disjointWith
declares two classes as disjoint (that is, by default, OWL does not make the assumption
that two classes with different names are disjoint).

Properties

All property declarations are part of RDFS-Plus and thus have already been described:

• From RDF schema: rdfs:subPropertyOf, rdfs:domain, rdfs:range.

5.4 OWL Web Ontology Language 55

• Relations between properties: owl:equivalentProperty, owl:inverseOf.

• Global cardinality restrictions on properties: owl:FunctionalProperty,
owl:InverseFunctionalProperty.

• Logical characteristics of properties: owl:TransitiveProperty, owl:
SymmetricProperty

Individuals

In the abstract OWL model, individuals are defined with individual axioms (also called
facts):

• Facts about class membership and property vlaues of individuals. When encod-
ing OWL in RDF, these are the non-ontology (a-box) statements.

• Facts about individual identity: OWL does not make the “unique name assump-
tion”, that two different names refer to the different individuals. Accordingly,
one explicitly declares two individuals as the same via owl:sameAs or as dif-
ferent via owl:differentFrom.

5.4.2 OWL sublanguages
OWL defines three sublanguages with varying degrees of expressiveness:

• OWL full contains all of OWL’s features at the cost of losing some abilities of
automated reasoning.

• OWL DL: limits OWL full so that it can be handled by current description logic
reasoners.

• OWL Lite: limits OWL DL so that it is in a lower complexity class. This usually
makes OWL Lite reasoners simpler to implement and more efficient. OWL Lite
provides the basics for subclass hierarchy construction: subclasses and property
restrictions. Additionally, OWL Lite allows properties to be optional or required.

5.4.3 Model-theoretic semantics
Apart from expressing OWL DL in description logics, the standard OWL semantics
[PSHH04] is model-theoretic. An interpretation maps the (syntactic) OWL constructs
to a semantic domain of individuals, sets of individuals, etc. It distinguishes between
classes, properties, etc. It maps, for example, classes to sets of semantic individuals
and resource-valued properties to relations between individuals. Embedded constructs
such as intersections are interpreted as sets that are constructed out of interpretations
of their operands. Facts such as equivalentClass lead to conditions on interpretations
(for equivalentClass, the interpretations of the given class names have to be equal).

• An interpretation is said to satisfy an ontology if the mappings (interpreting URIs
as either classes, properties, etc.) in it are correct and all conditions hold.

• A collection of ontologies and axioms and facts is consistent if and only if there
is some interpretation that satisfies each ontology and axiom and fact in the col-
lection.

56 5. Schema and ontology languages

• A collection O of ontologies and axioms and facts entails an abstract OWL on-
tology or axiom or fact O′ if each interpretation that satisfies O also satisfies
O′.

5.4.4 OWL reasoners

OWL reasoners are logic engines (typically using rule-based or tableaux-based algo-
rithms) that provide more services than just inference. Examples of such services are:

• Satisfiability: is a class satisfiable, can it have instances?

• Subsumption: does class A subsume class B, is A a superset of B?

• Classification: given an OWL ontology, compute a subsumption-based class hi-
erarchy.

• Entailment: does one OWL ontology entail another one?

5.4.5 Pitfalls of OWL

There are several pitfalls [dBLPF05] for OWL when it comes to interoperability, scal-
ability of reasoning, and intuitive conceptual modeling.

Problem: interoperability. To accommodate RDFS, the layering of the OWL sub-
languages is not hierarchical. On one hand, the less expressive sublanguages OWL
Lite and OWL DL are only layered on a subset of RDFS. On the other hand, the most
expressive layer OWL Full is layered on all of RDFS, but not on top of OWL Lite and
OWL DL. This can impede interoperability between agents using RDFS or OWL Full
and agents using OWL Lite or OWL DL.

Problem: scalability. Research on description logic reasoning has so far focused on
subsumption inference. Research on optimizing query answering is ongoing. This task
involves very complex reasoning, meaning that it does not scale to fulfill its important
role on the semantic web.

Problem: conceptual modeling. OWL exhibits a few deficiencies when it comes to
conceptual modeling:

• Difference in treatment of abstract and concrete values: Abstract values don’t
adhere to the unique name assumption (that two individuals with different names
are different) and an open world is assumed. Concrete values assume unique
names and a closed world. Restrictions involving the abstract domain are used
to infer new knowledge. Restrictions involving the concrete domain are used to
check whether the knowledge satisfies certain constraints. This distinction makes
OWL unintuitive.

• Deriving equality through cardinality restrictions: If a property has more values
than its cardinality allows, the values are assumed to be equal. As a consequence,
situations that should be treated as errors lead to wrong inferences.

5.5 Ontology Definition Metamodel (ODM) 57

• Deriving class membership through value restrictions: If a property is declared to
have a class C as its range and that property has a value that is not an instance of
C, OWL infers that the individual is an instance of C, instead of treating it as an
inconsistency. Similar to inferring equality, for most applications, disjointness
of classes should be assumed unless specified otherwise. In OWL, classes are
assumed to be equivalent unless specified as disjoint.

• Limited support for datatypes: The three major limitations are: (1) no negated
datatypes (“every integer except 0-3”), (2) no predicates for datatypes (such as
≤ for integers), (3) no user-defined datatypes (except enumerated datatypes).

Problem: extensibility. Rule languages are a useful complement to ontology lan-
guages and should be based on them. Alas, straightforward extension of OWL DL
with rules leads to undecidability and existing rule systems cannot be used for such a
language.

Solutions. The literature mentions two solutions for the above mentioned problems.
First, OWL Flight ([dBLPF05], whose semantics is based on logic programming in-
stead of description logics and which supports integrity constraints). Second, OWL
plus integrity constraints ([MHS09], which adds integrity constraints to standard OWL).

Sect. 14.2 describes a third solution, a simple type system—similar to type systems
in data modeling languages and programming languages—for which a translation from
OWL is provided.

5.5 Ontology Definition Metamodel (ODM)
The the goal of the Ontology Definition Metamodel (ODM, [omg09]) is to provide
the modeling technologies of the Object Management Group (OMG) with the for-
mal grounding for representation, management, interoperability, and application of
business semantics. Benefits of the ODM include: the availability of several for-
malisms with varying levels of expressivity; precise semantics; profiles and mappings
for exchanging models expressed in one of the formalisms, and for validating and
consistency-checking them; the foundations for combining MDA and semantic web
technologies to support semantic web services and other declarative, policy-based ap-
plications. The ODM can be used for knowledge representation, conceptual modeling,
formal taxonomy development and ontology definition. ODM-based ontologies can
be used to support interchange of knowledge among heterogeneous computer systems,
representation of knowledge in ontologies and knowledge bases, specification of ex-
pressions that are the input—or output—of inference engines.

The OMG’s metamodeling architecture is called Meta-Object Facility (MOF). It
has a layered design that usually comprises four layers. These layers are universal, but
the following list gives examples for programming languages.

• M3: Meta-meta-model. MOF expressed in itself.

• M2: Meta-model. A modeling language for a specific programming language,
expressed in M3. This is typically UML.

• M1: Model. The classes of a programming language, expressed in M2.

• M0: User object layer. The objects of a programming language.

58 5. Schema and ontology languages

The ODM was not based on the UML 2.0 metamodel for the following reasons. UML
operates mainly syntactically. The lack of reliable set semantics and model theory
prevents the use of automated reasoners on UML models. UML cannot express ob-
jects independently of classes where in most ontology languages, one can start with
individuals and add classes later on. Finally, elements of an ontology frequently cross
meta-levels. For example, if there is an annotation mechanism for adding meta-data
to (object-level) instances, that same mechanism can also be used to annotate classes
(which are a meta-level construct). UML only partially supports this feature. Even
though the ODM is not semantically based on the UML, it brings UML benefits to
ontology languages: a standardized persistence format and tools for modeling, visual-
ization and transformation.

Six metamodels provided by the ODM encode ontology and modeling languages
in MOF:

• Two formal logic languages: descriptions logics [BCM+03] and Common Logic
[iso07].

• Three structure-oriented, descriptive formalisms: RDF Schema, OWL and Topic
Maps [PH03].

• Two traditional, software engineering approaches to conceptual modeling: UML2
and Entity Relationship diagramming.

Three UML profiles enable the use of UML notation and tools for ontology model-
ing in: RDF, OWL, and Topic Maps. Finally, mappings between a number of the
metamodels are provided. These mappings are expressed in the MOF Query View
Transformation (QVT) language [Gro08] for model transformation.

The ODM is not currently used by CoIM, but will be useful if CoIM adds UML-
based (possibly visual) schema editing.

Part II

User interface and navigation

6 User interface 61

7 Information navigation 67

8 Title tags 77

This part describes HYENA’s user interface and navigation concepts. It begins by
giving an overview of the user interface and continues by introducing navigation con-
cepts: faceted navigation is concerned with making entities with attributes easy to nav-
igate. Its ideas can be directly applied to RDF. Tags, label-like meta-data attached to
resources, are treated as a special case of facets. Meta-faceted navigation is an exten-
sion of faceted navigation that supports meta-facets, kinds of values that can appear
across attributes. Examples of meta-facets are time and location. In addition to nav-
igating with facets, tags, and meta-facets, HYENA also supports editing them. The
last navigation construct that is explained is assisted querying, an interactive way of
creating queries for the RDF query language SPARQL. Multi-paradigm search is the
concept of having a single integrated way of performing several kinds of searches (such
as faceted navigation and keyword search). The last chapter of this part introduces title
tags, a wiki-like notation for quickly adding meta-data such as tags and faceted data to
resources. The contributions of this part are faceted editing, meta-faceted navigation,
and assisted querying.

60

Chapter 6

User interface

Contents
6.1 Overview . 61
6.2 Skill levels . 62
6.3 Master tabs . 63
6.4 Detail pane and inspectors . 65
6.5 Sidebar . 65
6.6 Discussion . 66

6.1 Overview
This chapter gives a brief introduction to the user interface of HYENA/Web and the
rationales behind it. The responsibilities of the user interface comprise three sets of
tasks:

• Handling sets of resources: Given the whole of the repository, one must be able
to find relevant resources and display them appropriately. Sometimes, one needs
to sort the results alphabetically by name, sometimes one would like to know
when something was created or modified, sometimes a visual representation of
the structure (how resources are related) is useful.

• Handling single resources: Given a set of resources, one often wants to “zoom
in” on the details of a single resource, of which only a summary is shown in set
mode. A detailed view of a resource will have to take into consideration that the
same resource can be interpreted differently (Chap. 19), as it can be viewed at
several levels of abstraction and can have multiple types. In a similar vein, the
operations that can be performed on a resource also depend on how it is currently
interpreted.

• Complementary tasks: Some tasks are more indirectly concerned with exploring
the data. Such tasks include logging in and out, and temporarily remembering
interesting resources (similar to bookmarks in a web browser).

The above suggests that a master detail approach be used (Fig. 6.1); the user interface
for managing the data of a repository is split into three panes: A master pane shows

62 6. User interface

collections of resources, a detail plane shows the currently selected resource and a
sidebar pane provides context information for both master and detail. An additional
challenge facing the user interface is how to accommodate users with different skill
sets, ranging from beginners to experts. For this reason, skill levels allow HYENA to
incrementally introduce features: Beginners can use it as a simple wiki, advance to a
wiki plus tags, etc.

Note that while HYENA/Web manages several repositories, one always accesses
a single repository at a time, whose name is specified as part of the URL. For more
information on the user interface of HYENA/Web and HYENA/Eclipse (which is not
covered in this chapter), please refer to the HYENA manual [Rau].

MasterSidebar

Detail

Figure 6.1: The user interface of HYENA/Web. The URL indicates that the name of
the web application is hyena and that the name of the project is axel. No repository
name is given, meaning that the root repository (with the same name as the project)
is used. The master pane displays collections of resources, the detail pane displays
the currently selected resource, and the sidebar displays context information for both
master and detail.

6.2 Skill levels
Skill levels are an attempt to solve a problem inherent with generic tools: not every
user needs all the features. Skill levels allow one to reveal HYENA’s features in an
incremental fashion.

6.3 Master tabs 63

• Wiki: HYENA works as a simple wiki.

• Wiki + Tags: shows the resources in the repository; enables tags and faceted
navigation.

• Wiki + Tags + Database: Lens-based editing is enabled.

• Wiki + Tags + DB + Semantic web: enables a tab for vocabulary exploration.

6.3 Master tabs
The master pane handles sets of resources. It contains a tabbed folder where each tab
corresponds to a different way of generating and visualizing such sets.

6.3.1 Resource set management

Figure 6.2: Month tab: Shows the current resource set (search results) in a month grid.

The first four tabs represent different ways of editing the same resource set:

• List: This tab shows the resource set in a table. The table can be sorted by any
of its columns or filtered by text or by type. The columns are either determined
by a lens definition or a default is used (label, types and tags of each resource).

• Month (Fig. 29.3): The same resource set that is edited by the List tab can also
be displayed in a month grid. Each set element is displayed according to its
occurrences: for each of its properties that contains date information, a hyperlink
to the resource is shown in the corresponding day, together with the key of the
property. The properties (such as lastModified, created, due) can also
be used to filter the occurrences.

• Day: This tab allows one to zoom in on the day that is currently selected in
the month view. A table displays the occurrences in three columns that mirror
RDF statements: The first column displays the label of the resource, the second
column displays the label of the property that holds the time information, the

64 6. User interface

Figure 6.3: Diagram tab: Show the current resource set (search results) as a graph
diagram which visualizes how resources are connected.

third column displays the date (and possibly time) itself. In addition to filtering
by occurrence property (as in the month tab), one can also choose to show the
past (everything before the current day), the present (the current day) and the
future (everything after the current day). One example of using this feature is to
choose “future” to show upcoming events.

• Diagram (Fig. 6.3): displays the resources in the resource set and their connec-
tions as a diagram.

6.3.2 Querying

There are two ways of entering queries: One either uses SPARQL directly or one
uses the AQuery tab for assisted querying (Sect. 7.6), a form-based way for entering
SPARQL.

6.3.3 Vocabulary management

The Vocab tab currently only shows a browsing interface for the URIs in the repository
(which indicate the vocabularies that are currently in use). It shows the URIs in a table
with two columns: The first column shows the label of the URI, the second column
shows tag. Each URI is tagged with the statement component where it appears and its
namespace. The statement component can be either one of graph, property, or resource:
If a URI appears at least once in the named graph position, it is considered a graph URI.
If a URI appears in the predicate position, it is considered a property URI. Otherwise, it
is considered a resource URI. Additional free tags can be used to mark important URIs.
By default, hyena uses the tag “data” for important data-level URIs such as common
classes, the tag “meta” for meta-level URIs such properties that indicate the date of
modification, and “config” for its configuration vocabulary. The table can be filtered
by tag.

6.4 Detail pane and inspectors 65

6.4 Detail pane and inspectors
The detail pane shows the currently selected resource and consists of the following
elements:

• Title: when clicking, a dialog is displayed with information about the current
resource (its URI, its human-readable label, how to embed it, etc.).

• Inspector combo box: allows one to change the inspector that is used for editing
and/or displaying the resource. Inspectors are categorized by presentation mode:
they either display, edit, or configure (meta-data, less common editing tasks).

• Mini-links: a bar that makes commonly used commands available. Examples
are: switching the presentation mode, saving, etc.

• Content: as displayed by the currently active inspector.

6.4.1 Inspector selection
When selecting a new resource or when switching the presentation mode, HYENA has
to figure out what inspector to show initially. This task is complicated by the fact that
there are often many different inspectors; every lens leads to two inspectors, one for
displaying data with the lens, one for editing data with the lens. If one selects a new
resource, the current inspector should be used again. If that is not possible (because it
does not apply to the new resource) then the “best” inspector for that resource should
be chosen. If one switches the mode, say from displaying to editing, then the new
inspector should correspond in some manner to the current one.

This leads to the following strategy for inspector selection in HYENA. When se-
lecting a new resource, one searches all of its inspectors that have the same presen-
tation mode as the current inspector. It is assumed that the user wants to continue
displaying, editing, or configuring. HYENA keeps a history of inspectors that the user
has selected manually. Supposedly, because she didn’t like the current inspector and
wanted to override the automatic choice. If any of the inspectors in the history applies
to the new resource, it is used. Otherwise, the best ranked inspector is used. Inspec-
tors rank themselves with regard to the current resource. This is mainly an integer that
encodes the distance in the inheritance hierarchy between the type of the resource and
the type that the inspector supports. Generic inspectors are registered as supporting
rdfs:Resource.

For changing the mode, HYENA also relies on history and ranking. But both are
overridden if the inspector specifies a related inspector. For example, the inspector for
displaying wiki pages specifies the inspector for editing wiki pages as related.

6.5 Sidebar
The sidebar shows context information for the master pane and the detail pane and
consists of the following elements:

• Menu bar: with commands that operate on the master pane or the detail pane.

• A login pane: Either the active user is shown or (when logged out) text boxes for
logging in.

66 6. User interface

• Sidebar page: displays a wiki page to make things such as commonly used links
available in the sidebar.

• Shelf: is a bookmark-like mechanism to temporarily hold links to important re-
sources.

• Facets: are used for summarizing and filtering the current resource set.

• Tags: for showing and editing the tags of the current resource.

• Inlinks: show what resources refer to the currently selected resource.

6.6 Discussion
The need of managing sets of resources, with the option to closer examine single re-
sources lead to the master-detail design of HYENA. With sets of resources, one faces
the challenge of efficiently finding what one is looking for and of displaying search
results meaningfully. The former is solved by faceted navigation, full text search, and
other filter mechanisms. The latter is solved by several ways of displaying sets of re-
sources: As a list, in a calendar, as a diagram, etc. With single resources, one faces
the challenge of efficiently displaying and editing the same resource in multiple ways.
Only those operations should be offered for application to a resource that make sense
in the current context. This is solved by providing multiple inspectors per resource, by
managing intelligently which one of them is selected when first showing a resource,
and by context-sensitive mini-links for invoking operations that are shown next to the
current inspector. Finally, skill sets help with hiding some of the user interface com-
plexity when it is not needed.

Chapter 7

Information navigation

Contents
7.1 Overview . 67
7.2 Faceted navigation . 68
7.3 Defining and editing RDF facets 70
7.4 Tagging . 71
7.5 Meta-faceted navigation . 73
7.6 Assisted querying . 74
7.7 Multi-paradigm search . 74
7.8 Running example . 75
7.9 Future research . 75
7.10 Discussion . 76

7.1 Overview

This chapter describes HYENA’s means for information navigation. First, faceted navi-
gation is explained, where one explores a list of entities via the values of their attributes.
One sees a summary of the values and can restrict the list to only those entities that have
a given value. For example, among a list of songs, one can only show those that were
performed by a given artist. CoIM uses faceted navigation for RDF, with the enti-
ties being resources and the attributes being properties. Facet-aware RDF editing lets
one edit the properties of one or more resources at the same time. When adding a new
property to a resource, one is shown the values that the property has for other resources,
which helps with quick entry and consistent use of the values. Tags are categories that
can be attached resources; CoIM treats them as a special case of facets. Meta-faceted
navigation is a way of navigation when a value set cross-cuts facets. For example,
the meta-facet “time” comprises, among others, the facets “time of modification” and
“time of creation”. Assisted querying is a form-based way of entering a SPARQL query
where suggestions help with formulating the query. Multi-paradigm search is the inte-
gration of several different kinds of searches (such as faceted navigation and keyword
search).

68 7. Information navigation

7.2 Faceted navigation
Faceted navigation is an efficient way of exploring a set of entities via the values of
their attributes. It combines a summary of those values with a way of selecting only
those entities that have a given value. Faceted navigation is currently most prominently
used in music programs. As an example, consider the following small database of
songs:

Genre Artist Album Title
Rock Beatles Revolver Good Day Sunshine
Funk James Brown Cold Sweat Cold Sweat
Rock Beatles White Album I’m So Tired
Funk Prince Parade Kiss

Any of the columns taken as a set is a facet of these songs. Thus, the facet “Genre” has
the values “Funk” and “Rock”. In faceted navigation, a facet plays two roles. First, it
summarizes a set of faceted entities: For a set of songs, there are typically less genres
than songs, making the list of genres a nice summary. Often a count of how often a
given facet value appears is displayed in such a summary. This illustrates how the set of
all entities is partitioned by a facet. Continuing the example, the facet-based summary
below shows that the songs are half funk, half rock.

Genre Artist Album
Funk (2) Beatles (2) Cold Sweat (1)
Rock (2) James Brown (1) Parade (1)

Prince (1) Revolver (1)
White Album (1)

Note that not all facets make good summaries: The song title was left out, because
there normally is almost a one-to-one mapping between song and song title. The facet
“album” does not work well for the example, either (obviously, this is different in real-
world music databases).

The second role a facet plays is for navigation. It is based on the observation
mentioned above that facets partition the set of faceted entities. For navigation, facet
values are interpreted as restrictions. Selecting a value shows only those entities where
the facet has that value. After restricting the result set, one can continue to refine
it by repeating the last two steps: One first computes the facet values as a summary
of the restricted, smaller, set and then further restricts it by selecting from these val-
ues. For music, this kind of navigation is often hierarchical: One starts with genre,
continues with artist, and then selects from the albums of that artist. But it works non-
hierarchically, too. Several artists might collaborate for an album. Then it makes sense
to look upwards in the “hierarchy”: Given an album, what are the artists?

In a slightly improved version of the navigation described above, facet boxes not
only contain the current restrictions, but also values that would appear in the box, if it
didn’t contain any restrictions. The latter values and the restrictions are distinguished
by highlighting the restrictions. Without these improvements, if a box contains restric-
tions, only those restrictions are shown. That is, clicking on “Cold Sweat” in “Album”
makes all other choices disappear. With these refinements, alternative choices are still
selectable. That is, clicking on “Cold Sweat” highlights that choice, but does not hide
the other albums. Thus, the highlighted choices are the summary and remaining choices
are possible alternatives. Before, all that a box contained was the summary.

7.2 Faceted navigation 69

Faceted navigation also works well as a complement to keyword text search. Search-
ing for a keyword among the entries can be seen as a form of restriction. The computed
summary now tells the user where the text appeared (in which albums etc.).

7.2.1 The facet summary as a tree

Figure 7.1: Facets as a tree: The rdf:type facet has completely disappeared. On top
there is the trail of restrictions, a disjunction specifying that pages and tags should be
displayed.

HYENA uses a compact version of faceted navigation: Facets are displayed as a
forest of trees whose roots are the facet names (Fig. 7.1). The children of the facet
names are the facet values. With facet boxes, you can highlight the current restrictions
in the boxes, with a tree that is less practical. Instead, HYENA’s tree only shows the
summary values, without alternatives. The current restrictions are not part of the tree
either, but shown separately, where they can be undone. They form a navigational trail,
similar to paths in hierarchical navigation. Whereas until now, all restrictions were
conjunctions (“and”, an entity has to contain all restrictions to be shown), HYENA also
supports disjunctions of conjunctions (“or”, an entity has to contain either of several
sets of restrictions). For example, when one wants to list all entities whose type is either
“Page” or “Tag”, a disjunction is needed (Fig. 7.1). Negating a restriction (selecting all
entities that do not have it) is also supported.

An advantage of tree-based faceted navigation is compactness. Furthermore, the
restriction trail gives a sense of location and makes it relatively easy to support dis-
junctions. An advantage of facet boxes is that one always sees the alternatives to the
current restriction. With a tree, one has to remove a restriction to see alternatives. Ac-
cessing facet values is also simpler with boxes, as they have a more static layout and
one does not need to expand a tree node to see them. HYENA remembers what facet
keys are expanded to partially mitigate this disadvantage.

70 7. Information navigation

7.3 Defining and editing RDF facets
CoIM uses faceted navigation for RDF data. The entities to be navigated are resources,
their attributes are their properties. As it is impossible to predict what properties make
good facets, CoIM lets the user specify what properties should be considered by faceted
navigation.

7.3.1 Simple facets
For resources, the simplest kind of facet is to use the values of a given property as
facet values. For example, the values of rdf:type make a good facet. Simple facets
are specified by the URI of the property. Editing facets works the same for a single
resource and for sets of resources: Facet values can be removed and added. When
adding a facet value, we can support the user by presenting her with a set of values
to choose from. In case none of those values are appropriate, we need to give her the
option to create and assign a new value. According to these requirements, a simple
facet specification comprises the following components:

• Property URI: the name of the facet.

• Default values: for a user to choose from when he adds a facet value.

• Value types: If a facet value does not exist yet, it has to be created. The value
types specify the class(es) to instantiate in such a case. If the facet values are
literals, the facet type will be a subclass of rdfs:Literal. Instantiation then
means entering the text of the new literal.

There are several ways of specifying default values and value types:

1. Not at all: If there are no explicit default values, HYENA uses the current values
of the facet. If no value types are specified, then new values are created as
untyped resources.

2. Range classes: given a set of classes, the default values are the instances of those
classes, the value types are the classes.

3. Default value sets: HYENA defines IDs for sets of default values.

• remm:primaryClasses: The primary classes, as defined by the cur-
rently active Fresnel group.
• remm:propertyValues: The same as the default.

Note that the last two ways are not mutually exclusive.

7.3.2 Broad facets
The idea of broad facets is that for every assignment one makes, there is information
about that assignment to be recorded. The most common use case is collaborative
tagging (Sect. 7.4.4): If several users tag, it makes sense to record who did the tagging
and when. Alas, RDF support for annotating edges in the graph is not very capable
(contrary to, for example, topic maps [PH03]). To remedy the situation, HYENA uses
the RDF pattern “single-target edge” (Sect. 12.3.1): A resource manifesting the edge
is inserted between the source and the target. This indirection makes facet definitions
more complicated. Data to be specified:

7.4 Tagging 71

• The source predicate, which points from the source to the edge.

• The type of edge resource.

• Automatically generated properties of the edge resource. For example, adding
the user that is currently logged in as the value of dcterms:creator or
adding the current date and time as the value of dcterms:created.

• The target predicate connects the edge and the target. The default is rdf:
value.

• Default values, value types: are used and specified like for simple facets.

7.4 Tagging
Tags are categories that are attached to entities and a popular way of organizing data on
the web. For example, Flickr1 uses tags for photos, Delicious2 uses tags for bookmarks.
CoIM treats tags as “facets without a key”. The tags of a resource as well as its facets
can be displayed and edited in title tag syntax (Chap. 8), which follows the pattern

#facetkey1=facetvalue1 #tag2 #tag3

When displaying the tags of a resource, one can click on a facet value or a tag to restrict
the current resource set to similar resources. During editing, one can start typing a tag
name and is presented with possible completions. When committing the changes, all
tag names are looked up. If a tag with precisely the specified name exists (ignoring
case), then it is attached to the resource, otherwise a new tag with this name is created.

7.4.1 Operations for tag editing
To support the above mentioned way of editing and navigation, the following opera-
tions are needed.
Operations on tags

• Find tag by name: either via its exact name or via prefix. The former is needed
when entering a tag name, the latter is used to offer suggestions if the user has
not yet finished typing in the name.

• Find tagged resources: Restrict the current resource set so that only resources
with a given tag are shown.

• Create a tag, given a name: Used if there is no tag that already has that name.

Operations on tagged resources

• List tags: what tags are attached to a resource?

• Add tag: to a resource.

• Remove tag: from a resource.

1http://www.flickr.com/
2http://delicious.com/

http://www.flickr.com/
http://delicious.com/

72 7. Information navigation

7.4.2 Simple tags
The simplest way of handling tags is to attach them to a resource with a single standard
property. A complete specification for this kind of tagging comprises the following
values:

• Tagging predicate: the property with which to attach a tag to resource.

• Tag type: the type of tag resource.

• Tag name predicate: the property where the name is stored. The default is
rdfs:label.

The above mentioned operations for tagging are implemented as follows. Finding a tag
means finding tag resources whose name is equal to or starts with a given text. Finding
tagged resources means finding resources that have a tag property whose value is the
tag. Creating a tag means instantiating the given tag type. Tagged resource operations
are handled similarly. While the tagging predicate is normally hidden, it is used as a key
in the facet tree. The facet values are the tags, allowing one to use faceted navigation
for tags.

7.4.3 Several tagging predicates and types
If several tagging vocabularies are to be mixed, things become more complicated. We
now need to ask for the type of the tag when creating a tag and when adding a tag to
a resource. This assumes that there is a unique mapping from a tag type to a tagging
predicate and a tag name predicate (for labeling).

7.4.4 Broad tagging
Richard Newman’s tag ontology [New], the archetype of RDF tag ontologies, intro-
duces taggings, resources that denote a single assignment of a tag. The ontology de-
scription states:

Taggings reify the n-ary [sic] relationship between a tagger, a tag, a re-
source, and a date.

One of the requirements for HYENA’s broad facet mechanism (Sect. 7.3.2) was to sup-
port broad tagging. It is thus powerful enough to handle this scenario; tagger and date
are edge properties.

7.4.5 Managing tags
When working with tags, there usually comes a time when the current set of tags has
to be changed: Two tags mean the same thing and should be merged; the meaning of
a single tag should be refined by splitting it into two tags; or a tag should be renamed,
because its current name does not reflect its meaning any more. In HYENA, one does
not need special operations for this, because the existing editing mechanisms can be
used:

• Merging tag u into tag t. This is handled by first deleting u and then renaming
its URI to the URI of t. As this changes every occurrence of URI u into URI t,
it has the desired effect: each attached u is changed to t.

7.5 Meta-faceted navigation 73

• Splitting a tag t into two tags u1 und u2: Facet changes can be applied to sets
of resources. Thus, one first lists all resources that are tagged with t. Then one
selects all those resource that should be tagged with u1, removes t from those
resources and assigns the new tag u1. Finally, one repeats this procedure for u2

or one simply renames t to u2.

• Renaming a tag: is trivially simple. HYENA always refers to a tag by URI and
looks up the name on the fly when resolving a tag name or displaying a tag.
Thus, to change the name, one changes the name property and from then on, the
tag will be found under the new name and displayed with it.

7.4.6 Grouping tags
Often, there is not one homogeneous group of tags, but several subgroups that are
used orthogonally. For example, in collaborative tagging systems, one often has tags
such as todo and paris. But these are different kinds of tags. The former refers
to the status of a tagged entity, while the latter refers to a related location. Writing
them as status = todo and location = paris brings us back to facets. And
one definition of “facet” is in fact “group of tags”. The migration from tags to facets is
performed incrementally: A tag can be specified to have a tag predicate. This predicate
becomes a facet and the tag is henceforth not added with the default predicate, but with
its own tag predicate. More than one tag can use the same tag predicate. When listing
the tags of a resource, the tag is displayed as

tag predicate = tag

This makes the grouping immediately obvious. With broad facets, the tag predicate
becomes clickable and leads to the edge resource.

7.5 Meta-faceted navigation
Abbreviated and informally, faceted navigation can be written as

entities + restrictions→ results + summary

Meta-facets are based on the idea that some data one is looking for cannot be found in
a single facet, but in several ones. Two examples are “time” (facets “created”, “mod-
ified”) and location (facets “born”, “residence”). Navigation for meta-facets extends
the constructs for faceted navigation as follows: Each meta-facet restriction filters all
property values. That is, values determine the result, property keys are completely ig-
nored. For example, a time restriction is often an interval with informal semantics such
as “all resources that have an attached date within December 2009”. The results do
not contain just resources any more, but rather occurrences. An occurrence is a triple
consisting of subject, predicate and object. Two possible results for the above given
time restriction are

(:r1, dcterms:created, "2009-12-6"̂ x̂sd:date)
(:r2, dcterms:modified, "2009-12-30T21:32:52"̂ x̂sd:dateTime)

The following extensions are necessary for meta-faceted navigation:

Restricting occurrence predicates: Occurrences can be restricted by occurrence pred-
icate. For example, to only show the dates of last modification and not the dates
of creation.

74 7. Information navigation

Broad facets: For broad facets, one can add the edge resource to the occurrence, al-
lowing the user interface to display a link to it.

Keyword search: Text is also a meta-facet. Restricting by occurrence predicate (where
the text has been found) is useful. The occurrence does not contain the complete
object, but only an the text that has been found and a few words surrounding it
to provide context.

Integration with faceted navigation: Meta-faceted search usually starts by listing all
occurrences in the current search results. For example, to display all time infor-
mation on a month grid. So the meta-facet “filter pipeline” starts by converting
a set of resources to a set of occurrences. These occurrences can then be further
filtered. If the final result is to be displayed at the same time by meta-faceted
navigation and, say, faceted navigation, then one has to convert the occurrences
back to a set of resources.

Further details on meta-faceted navigation are given in Sect. 9.6 on the search calculus.

7.6 Assisted querying
Assisted querying provides a form-based way for entering SPARQL queries. When it
comes to filling in text boxes in a triple pattern, assisted querying can show possible
values (expansions) for that box. This can be used to quickly perform small queries.
For example, after filling in the subject box, showing values for the predicate box
answers the question: “What properties does this resource have?” After entering the
URI of a resource r into the object box, retrieving the values for the subject answers
the question: “What resources refer to r?”. Because SPARQL queries are used to find
expansions, this feature works for an arbitrary amount of triples patterns and is useful
for navigating long paths. The assistance being given helps with learning the structure
of the data and with formulating the query.

7.7 Multi-paradigm search
The goal of multi-paradigm search is to combine several search paradigms into a single
solution. Synergistic effects between paradigms usually make this solution more pow-
erful than the sum of its parts. The paper “Collaborative multi-paradigm exploratory
search” [TB08] lists the following search paradigms:

• Keyword-based search: for keywords in the content or the meta-data. Some-
times both results are combined, and meta-data results highlighted (because it is
assumed that they are more interesting to the user).

• View-based search: interactively guides the user through the search process
by visualizing the current result and offering next steps for refining the query.
Faceted navigation is a kind of view-based search.

• Query by example: Apart from the classic relational query by example (where
one enters values into the columns of a table), newer variants return results that
are similar to a given instance. Note that this works both for images, textual data
and structured data, after having defined appropriate similarity measures.

7.8 Running example 75

CoIM performs multi-paradigm search by integrating simple search criteria (such as
“what graph is the resource in?”) with keyword-based search and view-based search
(facet-based, meta-facet-based). Query by example is not part of CoIM multi-paradigm
search; assisted querying is similar, but handled separately.

7.8 Running example
Shenzi wants to add ideas as wiki pages. First, she prepares some meta-data to help
with organizing and navigation, then all authors create the data and finally, she navi-
gates the data. The next chapter explains how the meta-data mentioned below can be
added quickly to a resource.

Create the meta-data. First, she creates resource for the tag #idea. Then she cre-
ates three resources representing the co-authors. Finally, she declares the property
event:agent to be a facet.

Create the data. For each idea, a co-author creates a wiki page. It is marked as an
idea by assigning it the tag #idea. The co-author records himself or herself as the
creator of the page by adding his or her resource as the value of property event:
agent.

Navigate the data. All ideas are listed by showing all resources with tag #idea.
All ideas by a particular author are listed by additionally restricting the facet “agent”.
To see all ideas created or modified by a particular author in a particular month, one
switches to that month in the month view. As all wiki pages are automatically annotated
with the date of creation and last modification, they appear in the appropriate day of
the month (similar to Fig. 29.3). Each calendar entry shows whether the wiki page has
been created or modified on that date. A combo box that contains all the (time-related)
predicates that appear in the month view can be used to just show when pages have
been created.

7.9 Future research
Dynamic category sets. Dynamic category sets [Tun06] are the result of the observa-
tion that when searching faceted data, the query text might not be contained in a single
facet value, but rather spread out across several facets. For example, a user might search
for “20th Century Fiction”, thinking of it as the value of a single facet (say, “title”). But
a matching entity might be faceted as having a “time period” of “20th Century” and a
“Genre” of “Fiction”. This is the vocabulary problem [FLGD87] transferred to facets:
end users might mentally partition the information space differently from the indexers
that created the facets. The paper proposes to make keyword queries independent of
how the facets are organized by demanding that the keywords be contained in the union
of all facet values and not just in a single one.

Structuring facet values. Similar to faceted browsing in /facet (Sect. 27.4), HYENA
should support hierarchical facet values. For example, the values of rdf:type could
be displayed as the tree of the class hierarchy. If a facet has many (flat) values, grouping

76 7. Information navigation

enhances usability. That is, one introduces a tree structure. For example, years can be
grouped into decades (1960-1969, 1970-1979, etc.). Often, the group members are not
even enumerated in the facet summary.

Improved navigation. /facet can also relate two result sets. For example: “What
pictures of Rome have been painted by a French artist?”. This query relates the pictures
of Rome and French artists. /facet’s approach is relatively simple and type-based and
would have to be refined. The relation browser [Mar06] can preview the facet tree that
would result when selecting a restriction. This is shown as a tooltip and very useful.

Advanced search. Intelligent information retrieval algorithms could be used to find
similar resources or related resources.

More facet visualizations. The calendar and day tabs are the first facet-specific vi-
sualizations. More should be added. For example, geographical maps or time-lines.

Facet inferencing. Inferred facets are especially useful for tags. For example, one
might want to automatically tag each resource with “Programming language” that is
tagged with “Java”.

7.10 Discussion
This chapter described faceted navigation and brought several contributions. It has
shown how tags and facets are related and how one can incrementally migrate from the
latter to the former. Facet editing and the integration of broad facets are another contri-
bution. As is meta-faceted navigation, which complements and extends faceted navi-
gation. Combining several search paradigms is called multi-paradigm search. Sect. 9.6
provides a formal foundation for HYENA’s multi-paradigm search, the so-called search
calculus.

Chapter 8

Title tags

Contents
8.1 Overview . 77
8.2 Basics . 77
8.3 Attaching meta-data . 78
8.4 Simple time notation . 78
8.5 Running example . 79
8.6 Discussion . 79

8.1 Overview
Title tags are used in three capacities in HYENA. First, when creating a new wiki page,
one can enter the title and add meta-data to the new page at the same time. For example:

Feed the bird #todo

The word #todo at the end is a tag expressed in title tag syntax. This input leads to
a new page being created that has the title “Feed the bird” and is tagged with todo.
Second, the same syntaxs (without the page title) is used to later edit the tag. Third, the
tags of a resource are displayed with title tags syntax. This chapter explains the title
tags syntax and a complementary simple notation for date and time.

8.2 Basics
The grammar for title tags is as follows.

tag ::= #〈category〉 |@〈person〉 | >〈location〉
facet ::= #〈facet-key〉=〈facet-value〉

Tags can appear either inside the text of the title or after it. In the former case, tags are
added to the title and less typing is needed. For example:

I will go to #Munich

78 8. Title tags

The title becomes “I will go to Munich”, and a tag is added, too. This syntax is similar
to conventions established by Twitter. More Examples:

• Meet @Jack >home #time=tue

• Lunch with @Jill #loc=Ye Olde Tavern

• Call back Fineas #todo

• http://example.com/article.html #read

The last example shows support for bookmarking: If a title tag text starts with a URL,
a bookmark resource is created and the title filled in by downloading the web page and
extracting the title. The tags and facets after the URL are added to the resource.

8.3 Attaching meta-data
The meta-data generated by title tags is based on the Event Ontology1. The following
facets are predefined. Note how some tags are synonyms for facets.

Facet key Predicate As tag
#due=〈time〉 cal:due
#time=〈time〉 event:time
#loc=〈location〉 event:place >
#who=〈person〉 event:agent @

Names of categories, agents, and locations are resolved as follows. HYENA searches
the labels of instances of tagging:Tag (categories), of foaf:Agent (agents), or
of geo:SpatialThing (locations). If one of the labels exactly matches the name,
the corresponding resource is used. In addition to labels, foaf:nick and hyena:
shortName (a kind of nick for locations) are also considered. If no exact match is
found, HYENA creates and uses a new appropriately typed resource that is labeled with
the name.

8.4 Simple time notation
The following notation is used to make time easy to enter for humans. Alternatively,
one can enter a keyboard shortcut to bring up a date chooser (a small calendar) and
insert a date.

• 2008-10-22

• 10-22 (next October 22)

• oct-22 (next October 22)

• tue, tuesday, +tue (next Tuesday)

• -tue, -tuesday (last Tuesday)

• tod, tom, yes (today, tomorrow, yesterday)

1http://motools.sourceforge.net/event/event.html

http://motools.sourceforge.net/event/event.html

8.5 Running example 79

• today, tomorrow, yesterday (today, tomorrow, yesterday)

• +1, -3 (tomorrow, three days ago)

Time (time symbols are disjoint with date symbols):

• 15, 2pm, 10am (15:00, 14:00, 10:00)

• 6pm:30, 16:30 (18:30, 16:30)

8.5 Running example
The previous chapter mentioned that the co-authors store ideas in wiki pages. Such
wiki pages can be created quickly with title tags. The following is an idea added by
Ed:

Add overview as mind map #idea @Ed

This creates a wiki page that is tagged with #idea and records Ed as a related person.
Shenzi can add bookmarks via title tags, too. A URL plus tags leads to a bookmark

being created and tagged. Additionally, HYENA has an operation for caching the web
page referred to by a bookmark in the file system. This ensures that the bookmarked
content is always available, even when the Internet cannot be accessed, a server is
temporarily offline, or the site structure has changed.

8.6 Discussion
Title tags are an important puzzle piece to enable efficient note taking. Chap. 29, “In-
tegrating structured and unstructured data”, explains all considerations in this regard.

80 8. Title tags

Part III

Foundations

9 A model for connected information management 83

10 Wikked: A wiki markup language 97

11 Templates: A presentation language for RDF 109

12 RDF patterns 115

This part describes the foundations of connected information management (CoIM).
First, a model for CoIM is presented. It is an informal model, a more abstract way of
looking at the CoIM implementation HYENA. Its goal is to integrate various kinds of
structured and unstructured data such as data entries, text, files, etc. The CoIM model
builds on RDF and extends it with the following contributions: wiki markup as a formal
language that integrates structured data; the means to keep proxies for external data up
to date; and a search calculus, a formalization of information navigation.

Few comprehensive models of this kind exist in the literature. KiWi’s model
[SEG+09] is similar to HYENA’s. It does not have HYENA’s formalization of navi-
gation or external references. KiWi’s model is based on content items, a mixture of
XML (wiki) and RDF (data). Content items are more powerful than CoIM markup
(queries can refer to the structure of XML), but also less standard, making interaction
with external data sources more complicated.

The next chapter introduces Wikked, the CoIM wiki markup language, in detail.
Wikked is a hybrid of the line-based wiki markup standard Creole [wika] and LaTeX,
whose constructs can be nested. This hybridization introduced challenges that lead to
the adoption of staged parsing in HYENA. The result of parsing is an abstract syntax
that needs to be evaluated and can then be translated to an external markup language
for display or printing. Examples of external markup languages are HTML and LaTeX.
The author is not aware of any other wiki syntax that has a formal definition. HYENA’s
use of LaTeX has proven useful when integrating external LaTeX-based work flows:
Bullet lists (in wiki syntax) created for brain storming can be exported to LaTeX, frag-
ments of LaTeX code can be used in HYENA. Templates are fragments of Wikked
markup with blanks that are to be filled in by RDF data. Templates are used as a flex-
ible means for displaying RDF data. Given the generality of Wikked markup, it was
easy to extend it for this task.

Finally, RDF patterns are described. These patterns collect how HYENA uses RDF
for configuration and works around some of RDF’s limitations.

82

Chapter 9

A model for connected
information management

Contents
9.1 Overview . 83
9.2 Requirements . 85
9.3 Projects and repositories . 86
9.4 Event operations . 87
9.5 Manifesting entities as resources 88
9.6 Search calculus . 89
9.7 Example . 92
9.8 Discussion . 95

9.1 Overview
Currently, the data one encounters in one’s digital life is stored in disconnected islands:
Data entries are kept in separate databases such as an address book application for
contact data, a browser for bookmarks, a calendar for events, BibTeX files for publica-
tion data; unstructured text is stored in text files or wiki pages; files such as images or
PDF files are stored in the file system. There is no way to consolidate this data or to
organize and navigate it in a manner that crosses islands. The goal of connected infor-
mation management is to build bridges. This chapter presents a model that allows one
to manage all kinds of information in a centralized location. The data can be organized
by uniformly attaching meta-data to it. A special data calculus complements the model
to perform information retrieval.

The main unit of management of the CoIM model is the project (Fig. 9.1): It consol-
idates all data used for a particular purpose and is also the granularity of authorization.
The foundation of a project is an RDF repository1. RDF is ideally suited to store most
structured data, including the examples given above. The CoIM model extends RDF
to integrate the remaining kinds of data. The first extension is to allow the remaining

1The current implementation of HYENA still supports several repositories per project. This chapter de-
scribes the simpler and more elegant approach of having one repository per project.

84 9. A model for connected information management

RDF repository

resource

wiki page

embed
annotate with

proxy resource

data encoded as resources

structured data

link to

heterogeneous
schema

unstructured text

dir file

file

files
file

External data

collection of related data,
becomes a web site

Project

for

contains contains

Figure 9.1: A project contains an RDF repository for managing all of the data and some
external data that does not fit into the repository, but is instead represented by proxy
resources.

kinds of data to become RDF. The relevant entities are manifested2 as RDF resources:
Each wiki page is a resource and the wiki markup is stored in a property. Data that can-
not be efficiently stored in RDF is called external. External entities are manifested as
proxy resources pointing to those entities. The second RDF extension is a set of events
which can be reacted to, ensuring the integration and consistency of the manifested
resources:

• Resource post-processing: is performed after saving a resource to RDF. It is used
for tasks such as updating the time of last modification and to make references
in wiki markup visible in RDF.

• URI renaming: is a user interface operation that is invoked by the end user. In
addition to changing the RDF, the URIs in wiki markup have to be updated.

• Derivation update: The content of some named graphs is derived from other
data. Examples are graphs with proxy resources which are derived from external
data or graphs with inferred data which is derived from RDF data. A derivation
update is explicitly invoked by the user and recomputes the derived data. The
CoIM model assigns kinds to named graphs which determine the semantics of
their data and thus how to perform the derivation update.

Projects achieve closure regarding their most important kind of external data, files,
by including sets of files in addition to RDF data. Synchronizing projects between
installations synchronizes both files and RDF data.

2The verb to manifest is used instead of to reify, to avoid confusion with RDF reification.

9.2 Requirements 85

The search calculus has been created to support navigation of all CoIM data accord-
ing to the principles of multi-paradigm search (Sect. 7.7) which combines keyword-
based search, faceted navigation, meta-faceted navigation and more.

9.2 Requirements
The data managed by the CoIM model falls into three categories:

• Structured data: includes object data (such as contacts, bookmarks, events),
meta-data (the time of creation of a contact) and configuration data (the wiki
page to be shown after a CoIM system has started). Note that meta-data is cross-
cutting, it exists in addition to other data. Some of it should be added automati-
cally; conceivable are timestamps and location.

• Wiki pages: are text with references to data. Examples are notes and outlines.

• External data: everything that is not stored in its entirety in the RDF repository.
An example is files.

The following principles must hold when managing this data:

• Uniform annotation: All annotations, including meta-data, should be attached to
entities in the same way and be compatible with each other. For example, all
entities should attach tags in the same manner and use the same tag vocabulary.

• Uniform semantic references: Whenever an entity managed by CoIM refers to
another element, it should use the same mechanism to do so. Each reference
should be labeled, to indicate its semantics. Knowing who references a given
entity is important for navigating the data. The label is crucial for wiki pages
which can, for example, embed another entity or link to it. In the former case,
the referenced entity becomes part of the page, in the latter, it is just linked.

• Consistency of unstructured content: Whenever annotations or other data is de-
rived from the content of an unstructured entity, measures should be taken so that
derivation and content stay consistent. For example, if the date of last modifica-
tion of a file has been made available to a CoIM system as meta-data and the file
changes, then the meta-data has to be updated accordingly.

• Multi-paradigm search (Sect. 7.7) for the data has to be supported. In CoIM, this
kind of search integrates keyword-based search, faceted navigation, meta-faceted
navigation and more.

• Uniform navigation: When it comes to browsing and searching the data, all en-
tities should be treated the same. This requirement is relatively simple to fulfill
if annotations are uniform, as they will be used for organizing entities.

Wiki pages are a special kind of unstructured data, because in addition to being referred
to, they can also refer to other data. Three kinds of references are predefined and lead to
different ways of presenting the referenced entity: a link is shown as a hyperlink whose
text is the name of the referenced entity; an embedding leads to the referenced entity
being displayed in place; an annotation is displayed as the icon of a post-it note that
shows the entity in a pop-up window if clicked on. References can appear anywhere in
styled text which makes wiki pages ideal for collating and presenting data.

86 9. A model for connected information management

The requirement of “uniform semantic references” applied to wiki markup means
that references need to be translated to the same labeled format used by all entities.
Similarly, “consistency of unstructured content” demands that the result of the transla-
tion has to change if the wiki page changes and that the wiki page has to change if the
translated references change.

9.2.1 Notation

The following notation is used in this chapter:

• Node denotes the set of RDF nodes.

• Res denotes the set of RDF resources.

• Uri denotes the set of RDF URIs.

9.3 Projects and repositories

The main packaging construct of CoIM is the project. It consolidates all the data men-
tioned above and allows users to “take it with them”. Data access is authorized at the
project level. A project is a tuple (R, g, F) where

• R ⊂ (Uri × Res × Uri × Node) is the RDF repository, a set of quadruples
(quads). An alternative name for a quad is statement.

• g : Uri → GraphKind assigns kinds to graphs. The set GraphKind is defined
in Sect. 9.3.1.

• F is a set of files.

The RDF repository is the core of a project, it is where all the data is integrated. This
is done by manifesting each entity as an RDF resource. Event operations are invoked
in reaction to certain events and extend RDF so that requirements such as consistency
can be fulfilled. The next section describes named graphs which are used to assign
semantics to sets of resources which is necessary for the operations to work correctly.

9.3.1 Named graphs

Named graphs group sets of triples and are assigned a kind. The kind defines the se-
mantics of the content of a graph and thus how the content is processed by the standard
operations. The grouping is done by adding a fourth component to each triple, the URI
of the graph. This component is ignored when working with data, so one still processes
triples as before, but it can be used to retrieve all triples in a given graph. Named graphs
contain

• generated data (such as proxies for external data). encapsulated, so that it can
easily be re-generated.

• imported data to facilitate re-importing.

9.4 Event operations 87

• framework data. Extensions of the CoIM framework can provide their own RDF
data that becomes part of each RDF repository. This is often meta-data such as
classes or lenses. Apart from this data being read-only to users, no other distinc-
tion is made between framework data and data created by end users. Framework
data is stored in separate named graphs.

• user data, allowing users to group their data; for example, by topic.

In the future, named graphs will be used

• to integrate external linked data sets (Chap. 3) and

• to separate inferred data from asserted data (Chap. B).

The purpose of a graph is defined via the function g which maps graph names to graph
kinds. This set is defined as

GraphKind = {framework, user} ∪ ExtKind

Thus, a graph can contain framework data, user data, or (proxies for) external data.
Sect. 9.5.3 contains more on external data and the set ExtKind. A graph can have the
following properties:

• Writable: Only user graphs are writable. Framework data is managed by the
framework and proxy resources for external data are generated automatically.

• Removable: User graphs and graphs with proxy resources can be removed.

9.4 Event operations
To guarantee the consistency of the data, extra work has to be performed during some
events in the life cycle of the data. This sections describes the events and the work.

Resource post-processing. After a resource has been saved, it is post-processed
to ensure its consistency. This includes updating the date of last modification and
adding the references in wiki markup (see below). The former is different from sim-
ilar data that is derived for files: If a non-external resource has the property hyena:
updateModified then its time of last modification is continually updated. If that
property is encountered and a resource does not have a time of creation, then that time
is added.

URI renaming. This operation is explicitly invoked by end users. Renaming a URI
t to a URI u means replacing all occurrences of t in RDF with u. If t appears in the
content of unstructured data such as wiki pages, then more work is necessary. See
below for details on wiki pages.

Derivation update. Some named graphs don’t contain original data, their data is
derived from other data. Proxies resources for external data are one kind of derived
data. To be consistent, their meta-data, which includes their path in the file system
and the date of last modification, should be updated from time to time. This update is
triggered explicitly by the user and leads to each graph with proxies being brought up
to date. In the future, when RDF inferencing is implemented (Chap. B), the derivation
update can be used to update the inferred data.

88 9. A model for connected information management

9.5 Manifesting entities as resources
Manifesting the various entities as RDF resources is key to integrating them in the
repository. This section describes how this is done.

9.5.1 Structured data
Structured data is usually represented as entities with attributes which is trivial to ex-
press in RDF [MAK+04]. RDF can accommodate heterogeneous data, because there
is no central schema.

9.5.2 Wiki markup
In this chapter, wiki markup is treated as an opaque text string from which a set of
references can be extracted. More details on wiki markup are given in Chap. 10. To
manifest a wiki page as a resource, one creates a resource with type wikked:Page
and stores the markup in a property wikked:content. The value of this property
is a literal with the datatype wikked:Markup. The requirement of “uniform seman-
tic references” is fulfilled by writing the references inside the markup to RDF. When
it comes to the requirement of “consistency of unstructured content”, two directions
have to be considered: Changes in markup have to be propagated to RDF. And changes
in RDF have to be propagated to the markup. The latter direction is only partially
supported. Namely, when a resource URI is renamed. Changing the manifested refer-
ences in RDF does not change the markup. Markup-to-RDF is handled during resource
post-processing, RDF-to-markup is handled during URI renaming.

Resource post-processing. The references are extracted from the markup as a set
of (property key, property value) pairs. First all properties whose keys appear in the
set are removed and then the pairs are written to RDF as new properties. Note that
the semantics of the references is largely ignored, it is expressed as the property keys.
References are described in more detail in Sect. 10.4.1.

URI renaming. The markup contains URIs as the arguments of reference commands.
When renaming a URI, one can use the manifestations in RDF of the references to find
out what resources with wiki markup might be affected. Then one still has to find all
occurrences of the URI to be renamed (if any) and update them.

9.5.3 External unstructured data
External unstructured data is everything that is not stored in an RDF repository: files,
email messages3, Java source code fragments, etc. CoIM refers to this kind of data by
creating proxy resources for it. Proxy resources can be linked to and embedded, as a
place holder for the external entity. They can also be used to associate meta-data such
as tags with external entities. All proxies for a group of external entities (such as a
directory in the file system or an email account) is kept in a single named graph. For
each kind of external entity two things need to be defined:

• Graph type: An element of ExtKind defines what kind of data is stored in a
given named graph.

3Mentioned for illustrative purposes only and not currently supported by HYENA.

9.6 Search calculus 89

• Proxy update: An operation that brings proxy resources up to date with the
(meta-)data of the external entities.

Furthermore, support for external data often includes help with following proxies to the
original and vice versa. For example, one can let the user search for an external entity
and then go to the corresponding proxy resource; possibly after having automatically
created it. Note that while files are included with a project, not all conceivable external
data has to be. Proxy resources could, for example, refer to data on the Internet.

Choosing URIs for proxy resources

External entities usually have identifiers. Some of these IDs are stable, they don’t
change during the lifetime of the external entities. An example is the ID of an IMAP
email message. Stable IDs are translated to URIs for proxy resources. Each entity with
an unstable ID is turned into a resource with a generated, globally unique URI. The
ID is stored in a property. If it changes, the property is updated during the next proxy
update. The goal is to keep the URIs of the proxy resources stable. Then, during a
proxy update, only the proxy resources need to be changed and to the statements that
refer to them. For example, URIs for file proxies cannot include the (unstable) file
system path, because if the file was to move then the statements mentioning the URI
would have to be updated. With unstable IDs, extra care has to be taken not to create
two proxies for the same external entity.

9.6 Search calculus
Result sets describe the results of multi-paradigm search (Sect. 7.7). This search in-
tegrates keyword-based search, faceted navigation, meta-faceted navigation and more.
To formally describe how result sets are produced, this section presents a calculus for
multi-paradigm queries. In other words, it contains a set of operations on which multi-
paradigm search can be based.

9.6.1 Requirements
In general, the result set of a search are all resources that match the query. The query
is expressed as a sequence of filters. Basic filtering is performed by enumeration (only
keep the enumerated resources; used when the user selects resources and creates a new
set with them), by property (only keep resources with a given property), and by graph
(only keep resources in given named graphs). For faceted navigation, a summary of a
set is needed, in addition to facet-based filtering.

Meta-faceted navigation has the following requirements. Results need to be re-
turned as a set of occurrences, denoting not just what resources matched, but also
where the match occurred. Various kinds of filtering operations need to be supported
that are specific to the meta-facet. For example, one such operation, for the meta-facet
“time”, is “only occurrences within a given month”. Finally, one needs to know the set
of all predicates where matches occurred.

9.6.2 The calculus
In search calculus, a query is a sequence of filters. Filtering is performed by starting
with all resources in the repository; each filter removes zero or more resources from

90 9. A model for connected information management

its input. A filter is a function and a query is produced by composing functions. The
semicolon operator is used for diagrammatic function composition (from left to right).
The last argument and the range of each filter function is always a set. Sometimes
additional arguments are used to parameterize the filter. These arguments are curried
(partially applied), resulting in a function from set to set that can be composed. The
RDF repository is almost always an implicit argument; it is omitted for reasons of
simplicity.

Sets

The following sets are used in function signatures:

• Date, Str: dates and text strings, the types of filter parameters.

• Occ = Res × Uri × Node: the set of occurrences. An occurrence is a triple
consisting of the subject where something has been found, the property key and
the property value (or an abbreviation thereof).

Constants

The following constants are used as filter arguments and to start a query expression.

today : Date
returns the date of today.

facets : 2Uri

returns all declared facet predicates (which influence the summary).

userGraphs : 2Uri

returns the URIs of the user graphs which comprises the default graph and any
graphs the user has created. Read-only graphs provided by the HYENA frame-
work are non-user graphs.

all : 2Res

returns the set of all subjects in the RDF repository. Almost every query starts
with this constant.

Basic filtering

The following filter functions complement (meta-)faceted search and keyword search.

oneOf : 2Res × 2Res → 2Res

oneOf(enum, input) only keeps those resources of input that appear in enum .

withProp : Uri× 2Res → 2Res

withProp(prop, input) only keeps those resources of input that have the given
property. For RDF search, a useful option is to only show resources that have a
type. This hides many internal helper resources and thus reduces clutter.

inGraph : 2Uri × 2Res → 2Res

inGraph(guris, input) only keeps the resources of graphs whose name appears
in guris .

9.6 Search calculus 91

Faceted navigation

For faceted navigation, one needs to filter with the current restriction and to compute a
summary of the current result.

restrictFacets : 22
Uri×Node × 2Res → 2Res

hasFacet(disj , input) keeps those resources whose properties match disj . disj
is a disjunction of conjunctions of (key,value) pairs, encoded as a set of sets of
pairs. If a resource matches the disjunction, it contains all property (key,value)
pairs of at least one of the disjunction elements.

facetSummary : 2Uri × 2Res → (Uri×Node)?

facetSummary(keys, input) extracts the values of the facets keys from input .
Returns a sequence of pairs so that value counts can be performed (how often a
given value appears in the input).

Meta-faceted navigation

When combining faceted and meta-faceted navigation, one first computes the result
of simple filtering and facet restrictions. The resulting resource set is then translated
to occurrences which can be further filtered. If afterwards, a summary for faceted
navigation is needed, it must be extracted from the final set of occurrences via projSubj.
Note that for the month view, it makes sense to show all time-related predicates even
those that don’t appear in the current month (but in another month). The rationale is
that even “no results” means something, especially if browsing several months.

The following operations translate a set of resources to a set of occurrences. This
translation is sometimes performed in conjunction with a filtering step.

withTime : 2Res → 2Occ

withTime(ress) translates the set of resources ress to a set of occurrences. The
result contains (the occurrences of) all time-based property values.

withText : Str× 2Res → 2Occ

withText(text , ress) returns all occurrences of property values that contain text .
The values are abbreviated to only show the search text and a few surrounding
words.

Projecting occurrence components:

projSubj : 2Occ → 2Res

projSubj(occs) returns the subjects of the occurrences in occs .

projPred : 2Occ → 2Uri

projPred(occs) returns the predicates of the occurrences in occs . Used to com-
pute the list of all available predicates.

Filtering occurrences:

inMonth : Date× 2Occ → 2Occ

inMonth(date, input) only keeps occurrences whose dates have the same month
as date . The argument is a date (and not a month or a date-time), because a
date denotes the “current position in time” in the user interface. This position
determines the month to be displayed (month view) and the day to be displayed
(day view).

92 9. A model for connected information management

beforeDay : Date× 2Occ → 2Occ

beforeDay(date, input) only keeps occurrences with dates before the day of
date .

onDay : Date× 2Occ → 2Occ

onDay(date, input) only keeps occurrences whose dates have the same day as
date .

afterDay : Date× 2Occ → 2Occ

afterDay(date, input) only keeps occurrences with dates after the day of date .

withPred : Uri× 2Occ → 2Occ

withPred(pred , input) only keeps occurrences whose predicate is pred . Used
when the occurrence predicate is restricted.

9.6.3 Implementing the calculus
The search calculus is implemented by HYENA by translating a sequence of filter op-
erations to a SPARQL query. SPARQL exhibits the following limitations:

• Specific blank nodes cannot be referenced. As a consequence, one cannot filter
arbitrary resources by enumeration. As a work-around, HYENA filters the query
result in Java.

• Query results in non-first normal form: One cannot list a resource with all of its
properties, but always has to perform separate grouping.

• Statements that are not in any particular graph cannot be listed. Most RDF en-
gines by now store their data as quads so that each triple is annotated with the
named graph it is in. Some statements belong to the so-called default graph, they
do not have a graph URI. While one can list all statements in a particular named
graph in SPARQL, one cannot list all statements in the default graph. As a work-
around, HYENA queries for triples that exist somewhere in the repository but not
in any particular named graph. Another solution would be to assign a URI to the
default graph and change all quads after loading and before saving.

9.7 Example
The RDF in this section is expressed in Trig syntax [C+] which is an extension of the
Turtle syntax for triples that has been used so far. Trig allows one to specify named
graphs by grouping triples with braces and prefixing a URI. In addition to standard
namespaces and the HYENA namespaces hyena and wikked, two additional names-
paces are used: graph for the URIs of named graphs and res for the URIs of re-
sources. URIs in the latter namespace are usually automatically generated. To make
the RDF data easier to read, descriptive local names were chosen.

In this example, Shenzi wants to create a wiki page with a single to-do item: To read
the paper “As we may think” from Vannevar Bush. She has downloaded the paper as a
PDF file and would like to manage both the file and the corresponding bibliographical
data with HYENA. Initially, the project is a file directory that looks as follows:

shenzi/
shenzi.trix
think.pdf

9.7 Example 93

shenzi.trix is the RDF repository, think.pdf is a PDF of “As we may think”.
The initial data in the repository is

graph:Framework {
res:Lens rdf:type fresnel:Lens .

}
graph:Files {

res:ThinkFile rdf:type hyena:File ;
hyena:path "think.pdf" .

}

The bibliographical data of that paper is, in BibTeX format:

@article{bush:1945,
title = {As we may think},
author = {Vannevar Bush},
year = 1945,

}

This data is added to the repository as the following RDF.

graph:UserData {
res:Think rdf:type bibo:Article ;

dc:title "As we may think" ;
dc:date "1945-07-01"^^xsd:date ;
bibo:authorList (res:Bush) .

res:Bush rdf:type foaf:Person ;
foaf:name "Vannevar Bush" .

}

Next, she creates two wiki pages. The first page embeds the data of paper. To do so, the
user only specifies the URI, HYENA automatically adds the title “As we may think” of
res:Think to the \embed command, so that it becomes more readable for humans.
Underneath the embedding, Shenzi adds a short comment.

As we may think (res:PageThink)
\embed{res:Think As we may think}
Still contains many relevant ideas.

The second page links to the first page. Shenzi adds the tag “Todo” to it.
Todos (res:PageTodos)

* Read \link{res:PageThink As we may think}

The two pages lead to the following RDF being added to the repository. Note how
\embed and \link in the wiki markup lead to RDF properties being created. A
resource for the “Todo” tag has also been automatically created.

graph:UserData {
res:PageThink rdf:type wikked:Page ;

rdfs:label "As we may think" ;
wikked:content "..." ;
dcterms:created "2009-11-07T09:54:33"^^xsd:datetime ;
dcterms:modified "2009-11-07T09:54:33"^^xsd:datetime ;
wikked:embed res:Think .

res:PageTodos rdf:type wikked:Page ;
rdfs:label "Todos" ;

94 9. A model for connected information management

wikked:content "..." ;
dcterms:created "2009-12-06T14:03:10"^^xsd:datetime ;
dcterms:modified "2009-12-06T14:03:10"^^xsd:datetime ;
tagging:tag res:Todo ;
wikked:link res:PageThink .

res:Todo rdf:type tagging:Tag ;
rdfs:label "Todo" .

}

9.7.1 Data calculus expressions

In this section, the namespace prefixes of the qnames are omitted (for example, modified
is used instead of dcterms:modified).

Query: What resources are matching the facet disjunction ((type = Page) ∧ (tag =
Todo)) ∨ (type = Tag)?

all; restrictFacets({{(type, Page), (tag, Todo)}, {(type, Tag)}})

Result (resources): {PageTodos, Todo}

Query: Meta-facet summary: what time-related predicates appear in the repository?

all;withTime; projPred

Result (predicates): {created, modified}

Query: When have resources been modified in November 2009? A complete date is
used to specify the month.

all;withTime; inMonth(2009-11-26);withPred(modified)

Result (occurrences): { (res:PageThink, modified, "2009-11-07T09:54:33"̂ d̂atetime)
}

Query: Where does the text “Todo” appear in the repository?

all;withText(“Todo”)

Result (occurrences): { (PageTodos, label,"Todos"), (Todo, label,"Todo")
}

Query: List the facets in the user graphs. Returns a sequence to be counted.

all; inGraph(userGraphs); facetSummary({type, tag})

Result: 〈 (type, Article), (type, Person), (type, Page), (type, Page),
(tag, Todo), (type, Tag) 〉
Thus, facet type has the values Article, Person, Tag that appear once and the
value Page that appears twice. Facet tag has the value Todo that appears once.

9.8 Discussion 95

9.8 Discussion
The CoIM model extends RDF, so that it is suitable for connected information man-
agement: One has to be able to manage both structured and unstructured data. This is
achieved by manifesting every entry that is to be managed as an RDF resource. Some
unstructured data, such as files, are not stored in the RDF repository, but still managed
by CoIM. Wiki markup is unstructured data that is stored in the RDF repository, but
can contain references to structured data. It is thus useful for annotating and combining
structured and unstructured data. Further book-keeping is done when the user saves a
resource to RDF, renames a URI or invokes an update of derived data, fulfilling the
requirements mentioned at the beginning of this chapter:

• Uniform annotation: Every entity is (represented as) an RDF resource and uses
RDF properties for annotations.

• Uniform semantic references: RDF properties are also used as labeled edges
between entities.

• Consistency of unstructured content: The RDF representation of unstructured
content is updated either when saving it (wiki pages) or during derivation update
(files). URI renaming changes RDF and updates wiki pages as necessary.

• Multi-paradigm search: The search calculus presented in this chapter lays the
foundations for a user interface.

• Uniform navigation: Navigation is mainly based on annotations such as tags and
facets, which, thanks to the uniformity requirement, are attached to all entities
in the same manner. Thus, the search calculus does not distinguish between
different kinds of entities.

Looking at related work, only semantic wikis undertake the work of integrating un-
structured data and structured data. The semantic wiki with the most powerful mod-
eling abilities is KiWi [SEG+09]. It is similar to CoIM, but does not have CoIM’s
integration of external data or a formalization of multi-paradigm search. KiWi’s model
is based on content items, a mixture of XML (wiki) and RDF (data). Content items are
more powerful than CoIM wiki markup (queries can refer to the structure of XML). But
where KiWi introduces a completely new infrastructure, CoIM minimizes this kind of
effort and is based on a standard RDF repository.

The paper “Extending Faceted Navigation for RDF Data” [ODD06] has a calculus
that is similar to the CoIM search calculus, but only for faceted navigation (albeit a
more powerful variant than HYENA’s).

Future research will be concerned with making more internals of unstructured data
available to CoIM. For example, a derivation update could extract text from unstruc-
tured entities, enabling a full text search via the data calculus.

96 9. A model for connected information management

Chapter 10

Wikked: A wiki markup
language

Contents
10.1 Overview . 97
10.2 Requirements . 98
10.3 The markup language and its processing 98
10.4 Structure and wiki markup . 103
10.5 History and editing conflict management 104
10.6 Future research . 105
10.7 Discussion . 106

10.1 Overview
Wiki markup is an important element of the CoIM integration strategies, because it can
hold both unstructured text and (references to) structured data. This makes it useful for
anything from small notes to presenting and annotating data. The breadth of connected
information management places several requirements on wiki markup: In addition to
wiki syntax for simple content, more complex content should be supported by a formal
markup language. Plugins supporting new vocabularies have to be able to extend the
markup language. Several display media have to be supported (among others, a graph-
ical user interface and printing). For collaboration, editing conflicts have to be handled
and an editing history is needed.

These requirements lead to wiki markup being evaluated in stages: An initial hybrid
of wiki syntax and LaTeX syntax is translated to pure LaTeX, parsed and evaluated to
a core abstract syntax. This abstract syntax is then rendered, turned into an external
markup language such as HTML or LaTeX. Plugins can contribute new commands that
are converted to the core syntax during evaluation. The CoIM file management is used
to keep a history of editing. Each history entry is addressed using a globally unique
version ID that is assigned to a page when it is saved. This ID is also used to detect
editing conflicts which are resolved either manually or automatically, via a simple diff
algorithm [HM76].

98 10. Wikked: A wiki markup language

10.2 Requirements
Wiki markup plays the important role of being a glue for structured data, by annotating
and collating it. Simple things should be easy to enter, in traditional wiki syntax. But
one should also be able to express complex things, for which a more formal markup
language is better suited. This markup language should be extensible so that frame-
work plugins can add new constructs. The final “rendering” of the markup has to be
configurable: Being able to export LaTeX is useful to make the conversion to printable
documents, HTML is necessary for display in a browser. HTML output itself has two
variants: On one hand, HTML should contain user interface elements such as links to
go to embedded content. On the other hand, simpler HTML is needed for printable out-
put. Other parts of the framework also have the need for configurable output, not just
wiki markup evaluation. That means that an abstract wiki syntax should be available
to framework plugins. An example are embedders, which use the abstract wiki syntax
to render their content.

For collaborative editing, two more features are important: First, one should be able
to visit older versions of a wiki page, to understand its history and so that inappropriate
changes can be undone. Second, editing conflicts have to be handled: If a wiki page is
to be saved and its content in RDF has changed since editing began, there has to be a
way to reconcile the changes in RDF and the changes in the editor.

10.3 The markup language and its processing

Define new
commands

Influence/observe
evaluation

Unevaluated abstract syntax (external commands)

Evaluated abstract syntax (markup commands)

Markup language (HTML, LaTeX)

Libraries
Type constructors

Render profile
Interceptor

LaTeX/Creole hybrid

Preprocessor

Evaluator

LaTeX

Parser

Renderer

Figure 10.1: Content processing comprises the following phases: preprocessing, pars-
ing, evaluation, and rendering.

The CoIM wiki markup language is called Wikked. In order to make Wikked as
flexible as required, it goes through a number of transformation steps (Fig. 10.1) where
each step transforms one formal language to another:

• The initial input is a mixture of LaTeX syntax (for example, \textbf{bold}
for bold text) and Creole wiki syntax (for example, **bold** for bold text).
This is the markup language that the end user sees and uses.

10.3 The markup language and its processing 99

• A preprocessor transforms this hybrid into pure LaTeX, mainly by searching and
replacing via regular expressions. For example, all occurrences of **bold**
become \textbf{bold}.

• Parsing leads to an internal unevaluated abstract syntax. Various external com-
mands, some of them quite powerful, still need to be evaluated. For example,
\embed{res} is a command to embed resource res (to insert the content of
it).

• Evaluation leads to an abstract syntax with a core set of so-called markup com-
mands. These comprise the most important construct for displaying text such as
tables, bullet lists, text styles, etc. Thus, all external commands are evaluated
to markup commands. For example, embed is replaced with the (evaluated)
commands of the resource it refers to.

• Rendering is the final step where Wikked’s syntax is translated to an external
markup language such as HTML or LaTeX.

The following sections explain all transformation steps and the formal languages that
are involved.

10.3.1 Input: Creole/LaTeX hybrid syntax

| this | is |
| a | table |
//italics// and **bold**
* A list with

* two bullets

* and a \href{http://nytimes.com}{link}

this is
a table

italics and bold

• A list with
• two bullets
• and a link

Figure 10.2: Wiki markup: On top, you see how the text is entered, on the bottom,
how it is rendered. Note how it is a mixture of traditional wiki markup and a LaTeX
command (last line, starting with a backslash).

Wikked, the syntax entered by the user, is a hybrid of the Creole wiki syntax and
LaTeX (Fig. 10.2). Creole [wika] is a standard for wiki syntax and uses visual symbols
such as ** for bold text, // for italic text, | for tables, etc. LaTeX [Pro] has a more
formal syntax where commands are written as

\command[option1=value2, o2=v2]{argument1}{a2}

Any argument or value can contain line breaks and commands can be arbitrarily nested.
Alternatively, one can bracket several lines with \begin{env} before the first line

100 10. Wikked: A wiki markup language

and \end{env} after the last line. env is the environment, a name for a multi-line
command, if you will. Thus, where the dominant construct in Creole is the text line (the
character that starts a text line often determines how it is interpreted, as, for example,
with bullet lists), it is the command or the environment in LaTeX. This makes the two
syntaxes hard to mix in a formal grammar and necessitates the following processing
steps. A detailed description of Wikked markup is given in App. A.

10.3.2 Preprocessing: translate to pure LaTeX
Preprocessing translates the end user syntax to pure LaTeX. This is done by iterating
over the lines and doing a regular expression based search and replace from Creole
characters to LaTeX commands. One such rule is:

[^:]//(.+?)//→ \textit{$1}

Explanation: The left hand side of the rule is a condition, a regular expression that
specifies when the rule is applicable. If it matches, the right hand side of the rule, the
replacement, takes the place of the matched text. If there is a URL such as http:
//example.com in the text, the double slash it contains should not be treated as
starting text in italics. Thus, the condition forbids colons before the initial double
slash. The double slash is followed by a sequence of one or more arbitrary characters.
This sequence is minimally (lazily) matched and finished by a second double slash.
The replacement wraps the text between the slashes in a LaTeX \textit command.
Multi-line Creole markup such as bullet lists are handled by keeping the current line
prefix as context during parsing. If it changes, one might have to open or close LaTeX
environments. Triple braces are used in both Wikked syntaxes to escape markup; spe-
cial characters inside them are interpreted as plain text and do not change the text style.
This means that an extra parsing step is needed before applying regular expressions:
The text is translated into a stream of parsed and unparsed (escaped) segments. Only
the parsed segments are changed by regular expressions. The last step of preprocessing
is to combine the segments into a single text string again.

10.3.3 Parsing: convert to unevaluated abstract syntax

Expression ::= Block | Command | NoWikiText | PlainText .
Block ::= Expression* .
Command ::= “\” Name (“[” Options “]”)? PositionalArgument* .

Options ::= Key “=” Expression (“,” Options)? .
PositionalArgument ::= “{” Expression “}” .

NoWikiText ::= “{{{” Character+ “}}}” .
PlainText ::= Character+ .

Figure 10.3: Grammar of concrete LaTeX syntax.

During parsing, text in LaTeX syntax is translated to the abstract Wikked syntax.
The concrete (LaTeX) syntax is defined by the grammar in Fig. 10.3.

In the abstract syntax (Fig. 10.4), Expression, Block and Command are direct
equivalents of the concrete syntactic constructs. Evaluation is often directly delegated
to methods defined in the host language Java. To make implementing these methods
simpler, instances of class JavaObject are part of the abstract syntax and wrap native

10.3 The markup language and its processing 101

Expression

elements : List<Expression>
Block

name : String
options : Map<String,Expression>
arguments : List<Expression>

Command

text : String
NoWikiText

javaObject : Object
JavaObject

Figure 10.4: Wikked abstract syntax

Java objects. JavaObjects can directly hold complex intermediate results without some
kind of encoding scheme. There are two kinds of text. The concrete PlainText is
stored as a String inside a JavaObject. The concrete NoWikiText becomes the abstract
NoWikiText. Note that for functions working with text, the two kinds of storing it make
no difference, as they are mainly different ways of parsing text; special characters in
plain text have to be escaped, while nowiki text is a single escaped block. A common
text API abstracts the differences. This API also involves Block, because adjacent plain
text and nowiki text might have to be joined into a single text string. But Creole also
defines NoWikiText to change the appearance of text: text does not wrap, line breaks
show up as line breaks, and a mono-spaced font is used. Thus, while one could wrap
plain text with a special nowiki command, using an extra syntactic construct helps with
making printed syntax trees look the same as the parsed input. Furthermore, two kinds
of nowiki text are distinguished: inline nowiki text (no newlines) and multi-line nowiki
text (with newlines). They are usually rendered differently1.

10.3.4 Evaluation: convert to evaluated abstract syntax
In evaluation, a broad set of commands is translated to a core set of markup commands.
The latter is a subset of the former. Both source and target of this translation are in
abstract syntax. The following rules define evaluation:

eval(t : NoWikiText) = t
eval(c : Command) = evalFunction(c.name,

{ key→ eval(expr) | (key→ expr) ∈ c.options },
[eval(expr) | expr ∈ c.arguments])

eval(b : Block) = block([eval(expr) | expr ∈ b.elements])
eval(j : JavaObject) = j

Evaluating a command invokes evalFunction, after evaluating the map of options
and the sequence of arguments. Evaluating a block means creating a new block with
evaluated elements. evalFunction translates markup commands to the same com-
mand, but with evaluated options and arguments. For other commands, it looks for a
definition and signals an error if there isn’t one. The next section describes ways of
defining new commands.

1LaTeX: verb command versus verbatim environment.

102 10. Wikked: A wiki markup language

Evaluation is controlled by the so-called evaluator. It holds various kinds of data
that influences evaluation. Because the constructs to be evaluated are often nested (e.g.
when embedding content), the existence of the data it contains can be scoped: There is
not a single evaluator, but a chain of evaluators where the last (top-most) is current. One
“pushes” a new evaluator onto the evaluator stack when, for example, a new embedded
page is to be evaluated. To enable commands to store any kind of scoped data, each
evaluator holds a mapping from a key to an expression. Examples of data stored in the
evaluator:

• Shared: local settings (with user interface settings such as the current write
graph); heading counter (keeps track of nested numbered headings); render pro-
file (parameterizes output, see below); evaluation interceptor (tracks evaluation,
see below). This data is not scoped and thus the same in every member of the
evaluator chain.

• Scoped: heading level depth (How deeply nested is the current heading? Needed,
because if a page is deeply nested, then so are its top-level headings); TOC in
progress (in bindings, a boolean that indicates that the current evaluation of the
data is for the table of contents, see Sect. 10.3.4); the current resource (in bind-
ings, needed mainly by wiki pages, so that the RDF data can be accessed via
commands).

Note that management of headings keeps two separate pieces of data: the heading
counter is compound and keeps one number per level of numbered nesting. To make
sure that unnumbered headings also have an effect on nested headings, the heading
level depth is used.

Defining new commands

There are two ways of defining new commands: Libraries and type constructors. Li-
braries are all objects in a core container that implement a marker interface. Each
method that is annotated with @Function defines a Wikked command. eval-
Function uses name and arity to find a suitable match.

Type constructors define a bidirectional translation between a Java object and a
Wikked expression. They are used so that complex Java objects such as lists can be
introduced into evaluation and to print an expression with a JavaObject as something
parsable. Type constructors are subclasses of AbstractTypeConstructor and
define

• the type that is constructed.

• name and arity of a Wikked command and a method implementing that command
that returns an instance of the constructed type.

• a method that translates an instance of the constructed type to a Wikked expres-
sion.

Wikked currently has constructors for lists, booleans, integers, URIs, and literals. Due
to type constructors, Wikked can be used for serializing simple Java objects; in a syntax
that is (moderately) human-readable.

Influence and observe evaluation

There are two ways to influence and observe evaluation.

10.4 Structure and wiki markup 103

Render profiles. RenderProfiles are necessary, because the rendered HTML in HYENA
contains so-called chrome, user face elements that go beyond simple hyperlinks: going
to an embedded resource to display or edit it, creating a new resource, etc. Chrome
depends on the platform: it is different on HYENA/Eclipse and HYENA/Web and does
not show up at all when printing. This requirement necessitated to a way of parame-
terizing evaluation, the so-called render profiles. Render profiles get their name from
being tightly coupled with rendering. HYENA has one render profile for printing and
two render profiles (Eclipse and Web) for chrome. The print profile can be used for
LaTeX, too, but the chrome profiles only work with HTML rendering.

• Platform characteristics: Is CSS to be included (needed by HTML renderer)?
Is chrome to be displayed (used when evaluating an embedded page and GUI
invocations)?

• Table of contents: post-processing a numbered heading, appending a TOC entry.
Both methods help with platform-specific ways of scrolling to a location in a
document (in HYENA/Eclipse, one can use normal anchors, in HYENA/Web,
URL fragments are not available).

Interceptors. An interceptor is attached to an evaluator and notified by it of certain
events during evaluation. Currently, interceptors are only used for assembling the table
of contents: Before evaluating a possibly compound page, one has to create the table of
contents. To do so, the page is already completely evaluated, but one is not interested
in the result, but in finding all headings. Accordingly, the interceptor for the table of
contents is notified of three events: the beginning and end of a page (so that dotted
frames can be drawn around embedded content in the TOC) and the appearance of a
numbered heading. Triggered by these notifications, it constructs the markup for the
table of contents.

User interface scope versus Wikked scope

HYENA is always split into a back-end (runs on the server in HYENA/Web) and a
front-end (the user interface, runs on the browser in HYENA/Web). The back-end man-
ages the RDF and thus Wikked processing is performed in the back-end. If one of
the Wikked commands needs to contact the user interface (for example to select a re-
source when a link has been clicked) then that is handled in a platform-specific way via
rendering profiles.

10.3.5 Rendering: convert to output markup language
The final step before displaying the evaluation result is to render it, to translate abstract
wiki syntax with only markup commands to an output markup language. Currently,
HYENA supports HTML and LaTeX. This step is relatively straightforward, because
the markup commands contain very simple constructs such as headings, text styles,
bullet lists and tables. And these constructs are easily translated to a markup language.

10.4 Structure and wiki markup
By adding structure to a wiki text, it becomes semantically richer. There are two com-
mon ways of introducing structure: references and page fragments.

104 10. Wikked: A wiki markup language

10.4.1 References
Traditional wikis have a single kind of reference: links refer to pages. Wikked goes
beyond these capabilities by providing three kinds of references that can refer to both
data and wiki pages (as there is no fundamental difference between the two in the
CoIM model). References point to resources via their URI. By manifesting references
in RDF, they become structured data and can be queried for.

• \link is rendered as a hyperlink to another resource. It is manifested in RDF
as a wikked:link property.

• \embed displays the complete content of another resource inside the current
resource. How the content is displayed can be configured, but the default rarely
needs to be changed. Embeddings are manifested in RDF as wikked:embed
properties.

• \annotate is rendered as an icon of a post-it note. Clicking on the icon dis-
plays a pop-up with the content of the annotation resource. Annotations mani-
fested in RDF as wikked:annotate properties.

10.4.2 Page fragments
The main use cases for page fragments are:

• Annotation: Some content management systems allow content fragments to be
annotated with comments, corrections, etc. Similarly, some specifications are
published with a unique number for every paragraph, to enable annotations.

• Editing page fragments: MediaWiki (which powers Wikipedia) allows one to
“zoom in” on part of a page and edit it. This reduces editing conflicts and makes
editing more focused.

• Refined querying: If the querying mechanism is aware of the text structure, one
can perform queries such as “in what paragraph appears both the word ‘wiki’
and the word ‘semantic’”?

Some wikis store their content in XML and permit queries that take the XML structure
into consideration. In contrast, Wikked markup currently is treated as flat text when
it comes to querying (only references are exported to RDF). A limited kind of anno-
tation can be performed via annotation references. Otherwise, a page fragment can be
emulated by creating a sub-page for it and embedding it in the parent page.

10.5 History and editing conflict management
Past versions of a wiki page are stored in the file system. There is one directory per
resource and one text file per history entry. Each history entry has a globally unique
ID (automatically generated), a time stamp and a list of entries it is derived from (usu-
ally one; more than one when merging entries). Per page, there is a single history root
(the very first version) and a single current version which is stored in the wiki page re-
source. The history thus forms a directed acyclic graph (DAG). Three aspects combine
to make distributed synchronization simple: First, the DAG handles editing branches
well. Second, data is stored using standard CoIM file management which means that

10.6 Future research 105

file synchronization can be used for the history. Third, the data grows monotonically;
existing data is never changed.

10.5.1 Editing conflicts during saving

R

C

R editor

current

Figure 10.5: Editing conflict during saving. The version R recorded in the editor is
not current any more. Instead, a newer version C has been saved since the editor was
opened.

An editing conflict can happen during saving (Fig. 10.5): The version R recorded
when reading the page is not the same as the current version C of the page in the
repository (meaning that it has been changed elsewhere since). HYENA presents the
user with the following choices:

• Automatic merge: Perform an automatic merge of C and the current content,
using a simple diff algorithm [HM76]. The merged page gets a new version and
is marked as being derived from both R and C.

• Manual merge: Perform an automatic merge, but don’t save it yet. Instead the
user can continue editing to fine-tune the result.

• Overwrite and save: The current content is forced to be the current version and
marked as being derived from both R and C.

• Continue editing: postpone the decision about how to solve the conflict.

• Don’t save: completely discard the changes that have been made.

10.5.2 Editing conflicts during synchronization
The second kind of editing conflict happens during synchronization, if a common older
version v0 was continued differently on two installations (Fig. 10.6). The different
history entries v1 and v2 are both considered current. Thus, the user has to decide
which of the two resources to keep. She can also choose to merge the two resources.
Then a merged history entry is created whose fathers are v1 and v2. In either case, the
effect is that there is again a single current entry in the history.

10.6 Future research
The mechanism used by the back-end to contact the user interface should be made
explicit so that end users can use it, too. This would allow them to automate tasks,
program custom functionality etc. Then three different formal languages are used in

106 10. Wikked: A wiki markup language

v0

v1 v2

p p'

history entries

wiki page resources

installation 1 installation 2

Figure 10.6: Editing conflict during synchronization. Two installations have continued
the history differently. The same resource also exists in different versions p and p′.

Wikked: Wikked for wiki markup, Java to extend wiki markup, and some other lan-
guage (probably JavaScript) to control the user interface.

Having an editing history is very useful. Thus, HYENA should also have one for
RDF data, not only for the content of wiki pages. Most of the effort of devising such a
mechanism will be spent on making it as flexible as the current scheme, while handling
any RDF.

10.7 Discussion

The requirements stated at the beginning of this chapter are fulfilled as follows. The
complexity of the markup language scales well: Simple things such as bold text or
bullet lists can be quickly entered using the Creole wiki syntax. Complex, possibly
nested, commands can be entered using LaTeX syntax. Additionally, the latter syntax
can be extended by plugins, so that support for new kinds of data can also be based
on Wikked. Staged parsing ensures that this flexible concrete syntax is translated to a
compact abstract syntax. This simplifies the targetting of different output media such
as a web browser or a printer, because this abstract syntax can be easily translated to
external markup languages such as HTML or LaTeX. Any client or part of the frame-
work can access this capability by using the core syntax to produce its output. With
branches and non-conflicting merging of version DAGs, the wiki page history is very
flexible in distributed settings. Editing conflicts are handled in a manner that is typical
for this kind of problem. Because the history uses the standard CoIM file management,
it is easy for users to fix problems. History management is reminiscent of distributed
version control [YCM06].

No other wiki (semantic or otherwise) has a markup language that is as sophisti-
cated as Wikked. Compared to other wikis, moving from simple to complex markup is
easier for end users and automatic processing of markup is helped by a concise abstract
syntax. A predecessor of Wikked has been discussed in [RK06].

In the running example, researcher Shenzi uses the LaTeX interoperability of Wikked
to support her external LaTeX-based work flow that she has established for writing pa-
pers. During brain storming with her coauthors, bullet lists in Creole syntax are created

10.7 Discussion 107

as wiki pages. When writing the paper, those are exported to LaTeX. When a part of
the paper needs to be collaboratively edited, the relevant fragment is put on a wiki page
and later reintegrated into the paper.

108 10. Wikked: A wiki markup language

Chapter 11

Templates: A presentation
language for RDF

Contents
11.1 Overview . 109

11.2 Requirements for RDF templating 110

11.3 Syntax and meta-syntax . 110

11.4 Example . 112

11.5 Discussion and future research 113

11.1 Overview

Lenses (Chap. 13) are a convenient way of defining a way to both display and edit a
resource. Alas, when it comes to displaying, they are relatively complicated, but not
very flexible. Their output is always a table with one property per row. Templates were
created to provide more flexibility for displaying than lenses while being simpler to
use at the same time. A template is a function from RDF to Wikked markup. Using a
standard technique, a template is expressed in the object syntax Wikked, interspersed
with commands in a meta-syntax for hiding or repeating blocks of Wikked or for in-
serting input data. The meta-syntax chosen for templates is also Wikked which allows
one to re-use Wikked parsing. In order to display properties and lists, the commands
of the meta-syntax must be able to handle multiple values. Each value can be com-
pound, resulting in the need for recursion. Furthermore, illegal values and the skeleton
(text between values) must be handled properly. The result are three groups of meta-
commands: Display commands present the current node, iteration commands loop over
multiple values and recurse into them, conditional commands are used for correctness
checks and the skeleton (where they check the position of the current value within a
sequence).

110 11. Templates: A presentation language for RDF

11.2 Requirements for RDF templating
The classic way of transforming a record-like data structure to text is via string interpo-
lation. For example, in Unix shells, one can access environment variables by prefixing
a dollar sign:

echo "Home directory: $HOME"

For RDF, CoIM uses a similar approach, but has to take into consideration the peculiar-
ities of RDF. A node can be compound: lists and properties can have multiple values
or no value at all. Additionally, one has to choose an order for property values, which
are unordered. Displaying them in random order is confusing for end users, choosing
a meaningful fixed order is complicated to do generically. The difference between no
values, one value, and several values is especially obvious when it comes to the skele-
ton, the text surrounding the values. For example, mathematical sets are written as “∅”
for the empty set, as “{e1}” for a single element e1, as “{e1, e2}” for two elements, etc.
The skeleton consists of ∅, the braces and the colon. Enumerated items are omitted if
there is no item, written as “i1.” for a single item i1, as “i1; i2.” for two items etc. The
skeleton consists of the semicolon and the dot. If a list or property value is compound
one has to recurse into it and display its parts. One might also need to skip a compound
value if it is ill-formed. For example, one might not display the resource of a person
if no name has been assigned. Extra care has to be taken that the skeleton is properly
handled in case of a rejection.

11.3 Syntax and meta-syntax

:Jane (foaf:name = "Jane Doe")

Name:
\prop{foaf:name}

Name:
Jane Doe

RDF repository

template

Wikked expression

input

output

Figure 11.1: A template is a function that translates a resource in the RDF repository
to a Wikked expression.

A template is a function that is applied to a resource and produces Wikked markup
(which can be integrated with the standard CoIM display work flow). Thus, the object
syntax of a template is Wikked. A meta-syntax is used to define the template-as-a-
function. It specifies blanks inside the markup that are to be filled in by RDF data and

11.3 Syntax and meta-syntax 111

blocks of markup that might be hidden or repeated. This meta-syntax is also Wikked
(Fig. 11.1).

An important concept is the current node. When starting template evaluation, the
current node is the resource it is applied to. If a template command recurses into
a property value, that value becomes current. Thus, both resources and literals can
become current. The following island grammar sketches the template syntax:

template ::= block .
block ::= (objectSyntax | display | iteration | conditional)* .
iteration ::= \iterCmd{ source }{ block } .

The template is a block which is a sequence whose elements are either target syntax,
commands displaying the current node, an iteration (a loop, if you will) over values,
or a conditional. An iteration command optionally specifies what to iterate over, the
property whose values are to be used. This property is implicit (and the argument
omitted) when iterating over a list or a sequence. Display, iteration, and conditionals
are explained in the following sections.

11.3.1 Displaying the current node
Formatting commands display the current node in different ways. They are derived
from the lens display hints (Sect. 15.6.3 provides more details).

• \DisplayDateTime[format] (time-related data)

• \DisplayExternalLink[text] (link to a web site)

• \DisplayImage

• \DisplayPlainText[mode]

• \DisplayResourceLink[mode,text] (link to a resource in the RDF
repository)

• \DisplayWikiMarkup (treat plain text as wiki markup)

The optional parameter format provides a date format, a time format or a date time
format such as “yyyy-MM-dd HH:mm:ss”. The optional parameter mode specifies
how to display the current node. Possible values are ResourceLabel, Resource-
QName, ResourceUri, LiteralText, LiteralParsable (Sect. 15.6.3). The
optional parameter text overrides the default link text.

11.3.2 Iteration commands
Iteration commands loop over a sequence of values. If they provide a body then the
values becomes the current node in that body. If not, resource values are displayed as
links and literals are displayed as plain text.

• \prop{propUri}{body} is for iterating over the values of property propUri.

• \seq{body} is for iterating over the elements of an RDF container (type rdf:
Seq).

• \list{body} is for iterating over the elements of an RDF collection (type
rdf:List).

112 11. Templates: A presentation language for RDF

The following options can be used for these commands:

• ifempty: an expression to be shown if one iterates over the empty sequence.

• before: show this expression before all of the result if there is at least one
iteration value.

• after: show this expression after all of the result if there is at least one iteration
value.

• ifCard is a sequence of semicolon-separated expressions such as rdfs:label
= 1, meaning that iteration values are ignored that don’t have properties with the
given cardinalities. Comparison operators are =, !=, <, <=, >, >=. This option
(which also has a corresponding command) is necessary so that the conditionals
\ifLast and \ifNotLast work.

• range: an interval such as 1, 2-, or -3 specifying the indices of the values to
iterate over.

11.3.3 Conditionals
The body of conditionals is only shown if their condition holds.

• \ifCard{condition}{body}: body is only shown if the current resource
has the property cardinalities specified in condition (in the same way as for
the iteration option ifCard above).

• \ifFirst{body}: body is only shown if the current iteration element is the
first one.

• \ifLast{body}: body is only shown if the current iteration element is the
last one.

• \ifNotLast{body}: body is only shown if the current iteration element is
not the last one.

• \ifRegex{regex}{then}{else}: compares a regular expression regex
with the text of the current resource (that is, the URI or the literal value). If it
matches, a then text is displayed which can contain the command \group{i}
to access the value of match group i. An optional else text is shown if the
regular expression does not match.

11.4 Example
Given the following RDF of a workshop with participants:

:wsh2001 rdf:type :Workshop ;
ex:participant [

foaf:name "Jane Bond" ;
foaf:homepage <http://www.sis.gov.uk/~jb/>

] ;
ex:participant [

foaf:name "Lars Croft" ;
foaf:homepage <http://www.croft.co.uk/~lc/>

] .

11.5 Discussion and future research 113

We can apply the following template to :wsh2001. The meta-syntax is printed in
bold.

Participants of the workshop are:
\prop[ifCard=foaf:homepage=1;foaf:name=1,

ifEmpty=None]{ex:participant}{
\href{\prop{foaf:homepage}}

{\prop{foaf:name}}\ifNotLast{,}\ifLast{.}
}

The result is a bullet list of the participants:

Participants of the workshop are:
\href{http://www.sis.gov.uk/~jb/}{Jane Bond},
\href{http://www.croft.co.uk/~lc/}{Lars Croft}.

11.5 Discussion and future research
Templates provide a simple, mostly declarative, means for displaying RDF. They are
an application of proven techniques from, among many others, web application frame-
works and generative programming, to the new realm of RDF. The object syntax and
result of applying a template to an RDF node is a Wikked expression. Adaptation to the
RDF input is handled by three groups of commands: Display commands present the
current RDF node as a link, an image, plain text, etc. Iteration commands are used for
recursing into complex values and for displaying multiple values coming from prop-
erties, containers, and collections. Conditional commands handle illegal or varying
input.

Currently, the meta-syntax is Wikked, the same as the object syntax. On the positive
side, this allows one to use Wikked parsing and evaluation for handling templates. On
the negative side, expressions in object syntax must always be well-formed and closed.
One cannot, for example first repeat \textbf{ several times and then } several times.
As the core ideas of templates are universal, that suggests using them to generate a
wider variety of artifacts. This might mean a different meta-syntax, but certainly a more
tolerant parser that ignores the structure of the object language. Naturally, Wikked can
still be an object language.

An unsolved problem is in what order to display multiple values of a property.
HYENA currently sorts the URIs to have at least a stable order, but a more sophisticated
mechanism clearly is necessary. For example, if a property’s values are resources, one
could provide an argument to \prop that states what property of the resources to use
as a sort key.

114 11. Templates: A presentation language for RDF

Chapter 12

RDF patterns

Contents
12.1 Overview . 115
12.2 Encapsulating multiple resources as resources 115
12.3 N-ary relations . 117
12.4 Configuration . 120
12.5 Discussion . 121

12.1 Overview
This chapter describes useful modeling patterns for RDF. The first group of patterns
concerns encapsulating sets and sequences of resources as resources. Part of the SKOS
[MB] vocabulary has been defined for this purpose and is explored: Sets are supported
by a type for set resources and a property for set members. Problems of RDF collec-
tions regarding editing and querying are solved by introducing anchor resources for
collections and inferencing for membership. The second group of patterns covers ways
for going beyond the labeled binary edges between nodes that RDF offers. By turn-
ing the edge into an intermediary resource, it can be annotated with its own properties
and/or refer to several targets. The third group of patterns demonstrates how RDF can
provide extension points for data contributed by plugins or end users. The scenarios
given are the contribution being a single simple value or several complex values.

12.2 Encapsulating multiple resources as resources

12.2.1 Encapsulating a set as a resource
Problem. RDF provides collections and containers for encapsulating sequences of
resources, but has no standard construct to encapsulate a set of resources as a resource.

Example. Participants in an event can be either individuals or groups of people. In
the latter case, they should be seated close to each other. As an example, let us assume
that Fiona is having a party and invites Joe Public and the couple Jane and John Doe.
The couple should be added as a single participant.

116 12. RDF patterns

Solution. The SKOS [MB] vocabulary defines the necessary constructs: a class skos:
Collection for sets of resources and a property skos:member for set members.
Storing sets in properties is an obvious approach, with properties being set-valued. The
contribution of the SKOS vocabulary is thus having a standard property for doing so
and a type that marks this practice. Using the SKOS vocabulary results in the following
RDF:

:FionasParty rdf:type ex:Event ;
ex:participant :JoePublic ;
ex:participant [

rdf:type skos:Collection ;
skos:member :JaneDoe ;
skos:member :JohnDoe

] .

12.2.2 RDF collections

Stable identity

Problem. Instances of rdf:List sometimes have no identity of their own: If they
are empty, they are always the URI rdf:nil. In this case, no individual label can be
given or instance-specific properties added. Furthermore, this fact prevents list iden-
tities from being stable during editing. With all other resources, editing a compound
resource does not affect the statement whose object it is. With collections, this is not
the case.

Example. If a task “put up Christmas tree” initially has no subtasks, expressed as an
empty list. Then one cannot select this empty value and add more subtasks to it:

:PutUpChristmasTree rdf:type ex:Task ;
ex:subtasks rdf:nil .

Solution. SKOS gives collections stable identities, by introducing an indirection. A
resource of type skos:OrderedCollection becomes the permanent anchor and
holds the actual list in the property skos:memberList. If the above example uses
this vocabulary, the value of property ex:subtasks is a resource that is stable during
editing.

:PutUpChristmasTree rdf:type ex:Task ;
ex:subtasks :Subtasks .

:Subtasks rdf:type skos:OrderedCollection ;
skos:memberList rdf:nil .

Inferred membership

Problem. There is no way to use SPARQL for list elements, for example, to retrieve
all lists that have a given element.

12.3 N-ary relations 117

Example. Continuing the example of the task of putting up a Christmas tree, let us
define this task to have the subtasks “buy, “install”, and “decorate”.

:Subtasks rdf:type skos:OrderedCollection ;
skos:memberList (:buy :install :decorate) .

There is no easy way to find the list of which, for example, :install is a member,
as the above collection is stored as a chain of resources and this kind of construct is not
supported by SPARQL.

Solution. The SKOS reference [MB] suggests the following (custom) inference rule:

(S36) For any resource, every item in the list given as the value of the
skos:memberList property is also a value of the skos:member prop-
erty.

That means that an inferencer 1 that supports this assertion would infer the following
RDF from the example above:

:Subtasks
skos:member :buy ;
skos:member :install ;
skos:member :decorate .

This makes it easy to find the list, given an element of it.

12.2.3 RDF containers
Note that containers, instances of rdf:Seq don’t even exhibit the problems that are
solved for rdf:List here. They always have a stable identity. Additionally, all
container properties are subproperties of rdfs:member. Thus, given a container

:MySeq a rdf:Seq ;
rdf:_1 "a" .
rdf:_2 "b" .

a standard RDFS inferencer can perform inferences similar to the ones above:

:MySeq rdfs:member "a", "b" .

An additional advantage of a container is that its elements are direct properties which
simplifies parsing and removing a container.

12.3 N-ary relations
In RDF, normal relations, as defined via statements, are binary: Their elements are
edges connecting subjects and objects. The predicates are the labels of those edges.
While binary relations are fine for most applications, sometimes, one needs to relate
more than two participants. In this section, we describe the three most common use
cases. We also refer to the corresponding use cases in the note “Defining N-ary Rela-
tions on the Semantic Web” (DNRSW, [NR]) which has been published by the Seman-
tic Web Best Practices and Deployment Working Group.

1OWL is not powerful enough to make this kind of inference.

118 12. RDF patterns

What all use cases have in common is that the edge is modeled as an explicit re-
source that is connected by properties to all participants of the edge. Properties pointing
to the edge resource are called source properties, the resources doing the pointing are
called source resources. The edge resource consists of two kinds of properties: edge
properties contain data that is considered to belong to the edge. One or more target
properties are the arrows of the edge and point to the so-called target resources.

12.3.1 Single-target edge
Problem. The atomic unit of data in RDF is the statement. Especially in multi-user
applications being able to annotate the smallest possible unit is useful. It allows one,
for example, to assert who created the statement. RDF has a standard mechanism for
this kind of annotation which is called reification, because it reifies a statement as a
resource. Alas, reification is brittle and takes extra time to look up. It also wastes
storage space, especially if long literals are involved.

Example. Joe has tagged the book “Resurrection” with “interesting”. The usual way
of expressing this is as the statement

:Resurrection ex:tag :interesting .

For multi-user applications, one wants to annotate this statement with who added the
tag and when.

source edge target

edge properties

sprop rdf:value

eprop1
eprop2

eprop3

Figure 12.1: Single-target edge: a binary edge with edge properties.

Solution. [DNRSW use case 1] A single-target edge has a single source property of
cardinality one and a single target property of cardinality one. Thus, one has a tradi-
tional binary edge, but with the ability to add edge properties to it. RDFS provides
the standard property rdf:value to mark the main property of a compound value
(Sect. 5.2.1). So this property can either be the target property or be made a superprop-
erty of the target property (in which case RDFS inference adds it to the edge).

This pattern is used for broad facets (Sect. 7.3.2), the solution to the above men-
tioned problem. The following RDF records that Joe assigned the tag and when. It uses
the Common Tag2 RDF vocabulary.

:Resurrection ctag:tagged [
a ctag:ReaderTag ;
ctag:means :Interesting ;

2http://commontag.org/

http://commontag.org/

12.3 N-ary relations 119

foaf:maker :Joe ;
ctag:taggingDate "2009-02-13"^^xsd:date

] .

12.3.2 Multi-target edge
Problem. A property has a compound value, with one part of the compound value
considered to be more important than the rest.

Example. A product item weighs 2.4kg. Thus, the value of property “weighs” has
two parts, first the amount “2.4” and second the unit “kg”. The amount is more impor-
tant, as the unit might be standardized and then mentioning it only serves descriptive
purposes.

source edge target

target

target

sprop

rdf:value

tprop1
tprop2

Figure 12.2: Multi-target edge. If one of the target properties is considered primary,
one can use (or infer) rdf:value.

Solution. [SWBP use case 2] A multi-target edge has a single source property and
several target properties. It can be interpreted as a property that has a compound value.
rdf:value can be used for the main property or inferred as a superproperty of the
main property, similarly to the single-target edge. The following RDF [MM] expresses
the fact that product item 10245 weighs 2.4kg.

exproduct:item10245 exterms:weight [
rdf:value "2.4"^^xsd:decimal ;
exterms:units exunits:kilograms

]

12.3.3 Assignment of roles
Problem. An event happened that binds together several role players. This event
should be manifested as a resource.

Example. Tracy has purchased the book “Where the wild things are” as a birthday
gift. She used the online bookseller books.example.com and paid 15 Euros.

Solution. [SWBP use case 3] In this case the function of the edge is still to relate
several resources, but none of these resources stands out, so the instance of relating
(the edge) is conceptually very close to a “normal” resource. The edge is a mapping

120 12. RDF patterns

role assignment
role player2

role player1

role player3

role1

role2

role3

Figure 12.3: Role assignment

from role to role players. The following RDF (adapted from [NR]) expresses Tracy’s
purchase.

:Purchase_1 rdf:type ex:Purchase ;
ex:buyer :Tracy ;
ex:object :Wild_things ;
ex:purpose :Birthday_gift ;
ex:amount 15 ;
ex:seller :books.example.com .

12.4 Configuration
In CoIM, components (both standard components and plugin components) can con-
sume RDF configuration data which is provided by either components or an end user.
The challenge is to define public means for contributing such data; this usually involves
defining a public URI and the role it plays.

12.4.1 Configuring a single value

Problem. An end user can set a preference that is honored by the framework.

Example. As part of HYENA’s repository settings, one can define a resource to select
when a repository is first displayed in a web browser.

Solution. One defines a public URI and a property where the configuration value
is to be stored. An instance lens can help end users with editing. Applied to the
example, hyena:RepositorySettings is a resource for end user configuration.
The property hyena:startPage specifies the resource to show when starting up.
This leads to RDF similar to the following.

hyena:RepositorySettings hyena:startPage page:3 .

12.4.2 Contributing a set of complex values

Problem. A component needs a set of configuration entities that each comprise sev-
eral values.

12.5 Discussion 121

Example. Both components and end users can contribute namespaces. A namespace
has a URI and a prefix (a short alias for the URI).

Solution. One defines a public type. To retrieve the configuration values, one looks
for all instances of that type. A class lens can support the user with editing the in-
stances. Applied to the example, remm:Namespace is the class of namespace defi-
nitions. Defining two namespaces dcterms and foaf leads to the following RDF:

[] rdf:type remm:Namespace ;
remm:prefixName "dcterms" ;
remm:uriref "http://purl.org/dc/terms/" .

[] rdf:type remm:Namespace ;
remm:prefixName "foaf" ;
remm:uriref "http://xmlns.com/foaf/0.1/" .

12.5 Discussion
The SKOS vocabulary for encapsulating sets as resources and for fixing some of the
RDF collection problems are not yet supported by HYENA. Mentioning this vocabulary
in this chapter has been motivated by the difficulties the author encountered when im-
plementing collection editing. The pattern for a single-target manifested edge is used to
add context information to broad facets (Sect. 7.3.2). The configuration patterns were
derived from HYENA’s handling of data extension points.

122 12. RDF patterns

Part IV

The RDF editing meta-model

13 Introduction: The RDF editing meta-model (REMM) 125

14 REMM schema 133

15 REMM presentation: Select, order and style the data to be edited 143

16 REMM editing: Specify and apply changes to resources 161

17 Configuration in RDF 171

The RDF editing meta-model (REMM) is a comprehensive solution for RDF edit-
ing. The challenge was to bring form-based editing as implemented by, say, XML
schema based editors, to RDF. For RDF, more work is required, because the data of a
resource is usually unordered and a few of its data structures are complicated to edit.
REMM is based on the Fresnel display vocabulary, which it extends with support for
editing.

This part starts with a chapter giving a longer introduction and then continues with
chapter describing the components of REMM: A few aspects of OWL make it unsuited
for simple, intuitive editing (Sect. 5.4.5). As an answer, REMM schema has been cre-
ated. It is a different way of interpreting OWL and contains formal definitions for
operations that are needed by RDF editing (such as computing the schema of a class).
REMM presentation specifies what parts of a resource are to be displayed or edited:
What properties, in what order, how deep to descend into nested resources, etc. It also
specifies how to display or edit: what widgets, explanatory text, etc. REMM editing
describes how the specifications made in REMM presentation are turned into trees of
RDF data that are then changed and written back to RDF.

For RDF presentation and editing, there is no solution that is as comprehensive as
REMM and encoded in RDF. Furthermore, REMM is based on the Fresnel vocabulary
that is already widely in use. Its type system avoids many complications of OWL, while
being compatible with it. With REMM, RDF feels similar to frame-based databases.
The author is not aware of any simple type systems for RDF.

124

Chapter 13

Introduction: The RDF editing
meta-model (REMM)

Contents
13.1 Overview . 125
13.2 RDF vocabularies that REMM is based on 125
13.3 Conventions used in this document 127
13.4 Building blocks for data modeling in RDF 127
13.5 The main REMM constructs 128
13.6 The user interface: REMM in use 129

13.1 Overview

This chapter serves an an introduction to the following four chapters on the RDF editing
meta-model (REMM): “REMM schema” (Chap. 14), “REMM presentation” (Chap. 15,
“REMM editing” (Chap. 16), and “Configuration in RDF” (Chap. 17). REMM pro-
vides standards and techniques for implementing RDF editing: It defines an RDF
vocabulary for editing and clearly specifies the semantics of this vocabulary. It also
sketches user interface mechanisms to illustrate how the vocabulary would be used in
practice. A previous version of REMM has been published as a book chapter [Rau08a].

13.2 RDF vocabularies that REMM is based on

RDF has many existing standards that are more or less related to editing and presenta-
tion:

1. Schema: The RDF Schema Language RDFS [BG04] and the Web Ontology Lan-
guage OWL [B+a] are schema1 languages for describing the structure of data.

1For this chapter, we consider ontologies to be a superset of schemas.

126 13. Introduction: The RDF editing meta-model (REMM)

2. Presentation: The Fresnel Display Vocabulary [BPKL06] helps with presenting
the data. It declaratively specifies in RDF, how RDF data should be formatted
and laid out. This means that you can package both the data and instructions on
how to display it in the same RDF graph.

3. Reversible embedding for publication: RDFa [AB06] extends XHTML so that
RDF data can be embedded inside it. This means that the process of merging
unstructured data (XHTML) and structured data (RDF) for publication becomes
reversible; tools become feasible that, when given a web address, can extract the
data embedded in it, in a clearly defined, unambiguous way.

4. Querying: The SPARQL query language [PS05] aids in flexible data retrieval and
is used in advanced Fresnel applications.

5. Computed data: Not all information has to be explicitly stated, some of it can be
derived from existing data. OWL inferencing is one mechanism for such deriva-
tion. More powerful, rule-based approaches are currently being standardized
[Rul] for RDF.

REMM is partially based on (1), (2) and (3). It is a reflection on how these vocabularies
can be used and extended to better support data modeling. Both OWL and Fresnel are
lacking for this task: OWL is too complex for basic data editing, as stated by Hendler
[Hen06]. By its very nature, OWL does not support editing-specific views on RDF
data: For a class of resources, such a view would specify what properties to edit (while
ignoring the rest), how to display them and in what order. Fresnel has been created to
complement OWL in this regard and calls editing-specific views lenses. But Fresnel is
only concerned with displaying data and lacks several crucial features for editing. The
REMM is a combination of subsets and extensions of existing standards and is split
into three parts:

• Schema (Sect. 14): We specify a simple type system that represents a simpler
way of interpreting OWL and provides everything that is needed for most data
editing applications. We also introduce some constructs that OWL is missing.

• Presentation (Sect. 15): We restrict and extend Fresnel to suit our purposes.
Some parts of Fresnel are too advanced for the current iteration of the REMM,
some things are naturally missing, as Fresnel was never intended to support edit-
ing.

• Editing (Sect. 16): Data structures and algorithms that are necessary during the
actual editing of RDF. We never edit RDF directly, but change it in a three step
process: First a lens is used to create a projection of the RDF to be edited. This
projection is a tree-structured view on the RDF that reflects the definitions of the
lens. Second, the user changes the data, rearranging the nodes of the projection
as she pleases. Third, the projection is applied to RDF: The changes encoded
inside the projection are committed to RDF.

In order to better illustrate how the REMM could be implemented, we also comment on
challenges when implementing a graphical user interface for the REMM. We assume
familiarity with RDF. Knowledge about OWL and Fresnel is helpful, but we try to
explain most of the basic ideas.

13.3 Conventions used in this document 127

13.3 Conventions used in this document

13.3.1 Compliance with standards
The following markers are used to indicate how we extend or restrict existing standards.

Ignored A feature of a standard is ignored, because it is not (nor will it
ever be) useful for editing.

Future We postpone implementing a feature, but it is likely that it is
useful for editing.

Extension A standard lacks a feature that we need. We thus have to define
it ourselves.

13.3.2 Roles of REMM users
There are three kinds of REMM users:

• REMM implementors: are programmers that implement the REMM specifica-
tion.

• Experts: are assumed to have in-depth knowledge of RDF and REMM. They
create lenses etc. for end users.

• End users: work with what the experts have created. They should be shielded
from the complexities of RDF as much as possible.

Subsequently, when explaining a REMM feature, these roles will sometimes be men-
tioned to make the intended audience and the requirements of that feature clear.

13.4 Building blocks for data modeling in RDF
We try to shield the user from some of the complexities of RDF and never edit RDF
data directly, but through an intermediate tree-structured view, a so-called projection.
A projection is built from a few basic pieces, it has its own data-building vocabulary, if
you will. This vocabulary is reminiscent of object-oriented data modeling and knows
of the following categories of RDF nodes:

• Atomic data: Sometimes we are only interested in a single RDF node which then
forms atomic data. Literals are always atomic, but resources are sometimes, too,
if they are used as symbols and encode something, for example a country or a
web site address. Atomic data constitutes the leaves in the projection tree.

– Enumerations: Enumerations are classes that explicitly enumerate all of
their instances. OWL distinguishes between an enumerations of literals
(“enumerated datatypes”) and enumerations of resources (“enumerated classes”);
we seldom make that distinction. An enumeration mainly provides options
to choose from. The data itself, the “currently selected node”, is always
atomic.

• Compound data: Resources can contain data, making them compound; they are
the inner nodes of the projection tree. The REMM knows of two compound data
structures:

128 13. Introduction: The RDF editing meta-model (REMM)

– Records: Resources whose properties are seen as a set of (key,value) pairs.

– Assemblies: A sequence of RDF nodes, encoded as either an RDF collec-
tion or an RDF container.

13.5 The main REMM constructs

editing

presentation

schema

Supplemental information for lenses
class definition

what to display
in what order

lens

how to display
format

container
group

store changes
apply changes

projection

produces annotates

supplements

contains

contains

Figure 13.1: The REMM is partitioned into three layers: schema, presentation and
editing. Except for projection (which is purely a programming language data structure)
each of the constructs in the layers is defined by an RDF resource.

The REMM has three layers: schema, presentation and projection (Fig. 13.1). The
schema defines the structure of the data. The presentation both selects what data to
display (it acts much like a database view this way) and how to display it (style in-
formation, if you will): The so-called lens is the view, the format contains the style
information and groups are a package mechanism for both lenses and formats. The
editing layer uses projections to encode, visualize and apply changes to RDF data.
Note that the projection is purely a programming language data structure, while all
other constructs are defined in RDF.

13.5.1 Presenting the projection

We suggest that implementors of the REMM use two presentation modes: In edit mode,
the user has the typical widgets for changing data, such as text fields and combo boxes.
In display mode, we mainly show read-only text and make that text easy to copy. In
display mode, the REMM behaves like Fresnel. Sect. 15.6.3 explains how one specifies
the widgets to use for editing and display.

13.6 The user interface: REMM in use 129

13.5.2 Lens-based tables

Using lenses to define tables is currently an experimental REMM feature.HYENA can
display such tables, but their cells are not editable. A lens table has one column per
property. Challenges include what to display in a cell if a property has multiple values
and/or a compound value such as a collection.

13.6 The user interface: REMM in use

In this section, we want to give a feeling what the “finished product” should look like.
There are established standards for editing record-based data, as embodied by database
programs such as Microsoft Access or Filemaker. We want RDF editing to feel much
the same way. We distinguish two kinds of editing: Meta-editing is performed by
experts and involves creating schema, lenses, formats, and groups. Normal editing is
performed by end users and involves creating instances and using lenses. We first take
a look at normal editing.

13.6.1 Normal editing

The following scenarios require user interface answers:

• Creating new instances: How does the user create new data?

• Editing an instance: How does the user edit newly created or existing data?

• Batch editing: We want to give the user the opportunity to edit not only single
instances, but also sets of instances. For example, if she wants to set a property
of several instances to the same value.

Creating new instances

Figure 13.2: Creating a new instance.

130 13. Introduction: The RDF editing meta-model (REMM)

When the user decides to create a new instance, she will usually know what kind
of instance it should be. Thus we present her with a list of classes which comprises all
instances of rdfs:Class (Fig. 13.6.1). Obviously, it is the responsibility of an expert
to create these beforehand. We also give the opportunity to create untyped resources
or to enter a type manually. Note that we currently do not support a new instance
being a member of multiple classes. We consider this an advanced operation that could
be implemented as adding more class memberships to an instance after instantiation.
Whether to make this operation available to the end user or not and how is left to the
REMM implementor.

Displaying versus editing an instance

(a) display instance

(b) edit instance (c) add property

Figure 13.3: Instance editing.

Instance editing happens either after the user has created a new instance or if he
encounters existing data. One needs a lens in order to edit a resource, but REMM im-
plementations may provide a default lens for editing any resource. As editing controls
add considerable visual clutter to a user interface, we have two modes for accessing
instances:

• In display mode (Fig. 13.3(a)), data is read-only and can easily be copied. We
simply display the currently selected resource. This is exactly what a web browser
gives you when used with normal Fresnel.

• In editing mode (Fig. 13.3(b)) we provide the usual editing controls such as
text fields and combo boxes. One can change property values, remove prop-
erties and add new properties. This last operation brings up a list of predicates
(Fig. 13.3(c)) from which the user can choose the one she wants to add. If the
range of a property comprises several classes, we display the same predicate
several times, each time with a different class.

13.6 The user interface: REMM in use 131

The expert may define constraints on the data, the main representative being cardinality
constraints which state how often a given property can exist. Examples are: “there must
be exactly one last name”, “there must be at least one phone number”. We allow these
constraints to be violated at any time. For example, a new instance is always created
empty, even if there are properties whose minimum cardinality is greater than 0. But
we indicate violations with error messages.

Batch editing

Whereas in single-instance editing, one sees a lot of parsed data, batch editing usually
starts out with a display that is mostly empty. On can then specify what property
values are to be added and what properties are to be removed. The latter operation is
an explicitly displayed “remove all” that can be mixed with the former operation. Thus,
in addition to a plus icon for adding properties, there is also a minus icon for removing
properties. For example: Remove all first names from a set of resources and add the
single first name “Joe” to all of them.

13.6.2 Meta-editing

Figure 13.4: Class editing. The identifier of the class is not shown in this figure, be-
cause it is the same as the currently selected node which is displayed in a user interface
element that is external to this pane.

Meta-editing refers to the expert editing classes and lenses. For class editing (Fig. 13.4),
we display many properties as you would for instance editing. Two kinds of data as-
sociated with a class require special treatment, though: restrictions make more sense if
they are inlined with the class, as they are the closest thing that OWL has to declaring
what properties a class contains. Lens editing with REMM is self-hosting: You can
define a lens to edit lenses (Sect. 15.8.3).

132 13. Introduction: The RDF editing meta-model (REMM)

Chapter 14

REMM schema

Contents
14.1 Overview . 133
14.2 A type system for lightweight RDF editing 134
14.3 Operations on class hierarchies 136
14.4 Translation from OWL . 140
14.5 Discussion . 142

14.1 Overview

With the schema, the expert defines the shape of the data: What properties can an
instance have? What is the cardinality of a property? What values can it be assigned?
And so on. Ideally, one would use RDF schema and OWL for this purpose, but RDFS
is not powerful enough and OWL has deficiencies when it comes to intuitive modeling
(Sect. 5.4.5). Thus, this chapter presents a simple, intuitive type system that provides
several services crucial to editing:

• Checking whether a resource is an instance of a given class. This allows one to
use a class to state what resources can be edited with a lens.

• Creating a default instance for a class. This allows one to add new properties to
a resource by just picking a property key, a preliminary property value can be
automatically created from the property range.

• Computing the schema of a class. For editing, the schema is used to determine
what resource are valid. A resource is valid if all of its properties have the correct
cardinality and if each property value is in the range of the property.

Because the semantics of OWL and the type system are so different, there is no direct
translation from OWL. Instead, this chapter defines a loose translation that honors the
meaning that is usually intuitively (and not always entirely correctly) given to OWL
constructs.

134 14. REMM schema

14.2 A type system for lightweight RDF editing
REMM schema borrows OWL’s class-centric approach (as opposed to the property-
centric approach of RDFS). To make modeling intuitive, three assumptions are different
from OWL: First, a closed-world perspective is taken. For example, missing properties
cause a warning. Second, names are assumed unique unless specified equivalent. Thus,
if a property has a maximum cardinality of one and two resource values, they are not
inferred to be equivalent; instead, a warning is given. Third, classes are assumed to be
disjoint unless declared equivalent.

In REMM schema, A class is a set of RDF nodes. A class is identified by a resource,
its identifier. Every node is a member of one or more classes which are called the types
of the node. The node is an instance of each of its types. A class can contain two
kinds of schema information: the keys, ranges and cardinalities of properties and an
enumeration of the instances (then it is called an enumerated class). The properties are
used for consistency checks and for guided creation of instances, where a user is shown
what properties she can add to an instance and what values they are allowed to have.
Classes can also be used for matching, to check whether an RDF node is an instance or
not, and for instance creation.

Kinds of classes

Abstract versus concrete classes. Classes can be arranged in a directed acyclic
graph denoting inheritance. Every class inherits the schema of its ancestors. A class
can be declared abstract meaning that it cannot be instantiated, only (possibly) its sub-
classes. It can still be used for matching instances of its subclasses. For example, if
a property can have values that are either instances of Man or of Woman, its range is
Human, an abstract superclass of both classes. When we check if a property value is
valid, we match against Human which accepts all instances of Man and Woman. When
it comes to instantiating new property values, Human itself is never directly mentioned;
we only offer to instantiate either Man or Woman.

Internal versus external types. The types of a node that can be determined by exam-
ining just the node are called internal. Resources can also have external types, which
are attached to them via the rdf:type property. All literals have internal types.
Among the resources, rdf:nil has the internal type rdf:List. Elements of an
enumerated class are also considered to have that class as an internal type, even if they
don’t have an rdf:type property. Instantiating a node with internal types means cre-
ating a node that has a certain structure. Instantiating a node with external types means
creating a new resource and attaching those types to it.

REMM uses the following special classes, to cover several aspects of nodes that
are missing from RDF schema.

• remm:ResourceNode⊂ rdfs:Resource: The class of all resources. Mainly
used for matching. Note that rdfs:Resource is the class of all RDF nodes,
not just of resources. Specifically, rdfs:Literal is a subclass of rdfs:
Resource.

• remm:UriNode ⊂ remm:ResourceNode: The class of all URI nodes.

• remm:BlankNode ⊂ remm:ResourceNode: The class of blank nodes.

14.2 A type system for lightweight RDF editing 135

• rdf:PlainLiteral ⊂ rdfs:Literal: The class of plain literals1.

The following sections express the previous explanations more formally.

14.2.1 Basic sets
The following sets are taken from RDF:

Node The set of all RDF nodes
Literal ⊂ Node RDF literals
Res ⊂ Node RDF Resources
URI ⊂ Res RDF URI nodes

14.2.2 Properties
The set Prop of properties comprises quadruples

prop(uri , range,minCard ,maxCard)

with the components
uri ∈ URI is the predicate, a URI.
range ∈ 2Res is the range, the resources of classes.
minCard ∈ N is the minimum cardinality.
maxCard ∈ (N ∪ {∞}) is the maximum cardinality, which is either an integer

or unconstrained.

Combining properties

When collecting all properties (inherited and original) of a class, several properties
might have the same URI. Then those properties need to be combined into a single
one. The operations shown below perform this duty. They use the subset relation v on
the URI of classes which is defined later.

Property intersection. Property intersection is symmetric and defined as follows:

prop(p, r1, a1, b1) u prop(p, r2, a2, b2) = prop(p, min(r1, r2), max(a1, a2), min(b1, b2))
if min(r1, r2) is defined and max(a1, a2) ≤ min(b1, b2)

undefined otherwise

min : URI×URI→ URI is defined as

min(t, u) =

 t if t v u
u if u v t
undefined otherwise

Property restriction. For property restriction, the restricting property must be more
specific than the restricted property:

prop(p, r1, a1, b1) < prop(p, r2, a2, b2) ={
prop(p, r1, a1, b1) if r1 v r2 and a1 ≥ a2 and b1 ≤ b2
undefined otherwise

1http://www.w3.org/TR/rdf-text/

http://www.w3.org/TR/rdf-text/

136 14. REMM schema

14.2.3 Class hierarchies
A class hierarchyH is a triple (Class,Abstr,Sub) where

• Class is the set of classes. A class is a triple

class(id , {p1, . . . , pm}, {i1, . . . , in})

with an id ∈ Res, properties pk, and enumerated instances {i1, . . . , in} ⊂ Res.
If the instances are not relevant or empty, the class can be abbreviated to a pair.

• Abstr ⊂ Res contains references to all abstract classes.

• Sub ⊂ Res× Res is the subclass relation, a directed acyclic graph.

Class contains all classes defined in RDF schema (such as rdfs:Resource and
rdfs:Literal). For a Resource r the element relationship with Class is defined as:

r ∈ Class :⇔ ∃P, I : class(r, P, I) ∈ Class

Transitive subclass relation. The transitive subclass relation is defined as

d v c :⇔ (d, c) ∈ transrefl(Sub)

where

transrefl : D × R → D × R computes the transitive reflexive closure
of a binary relation.

Sets of resources are treated as intersections and related as follows.

D v C :⇔ ∀d ∈ D : ∀c ∈ C : d v c

14.3 Operations on class hierarchies
RDF editing needs several operations on the above defined structures. These are de-
scribed below.

14.3.1 Determining the types of a node
This section defines how the types of a node are determined. This definition is needed
by later operations. It consists of the function

types : Node→ 2Class

which is defined as

types(n) :=

 {ltype(n)} ∪ etypes(n) if n is a literal
{rdf:List,remm:UriNode} if n is rdf:nil
rtypes(n) ∪ etypes(n) otherwise

Helper functions:

14.3 Operations on class hierarchies 137

• ltype : Literal → URI determines the type of a literal. A plain literal has
the type remm:PlainLiteral, a language tag literal has the type remm:
LanguageTagLiteral, and the type of a typed literal is its datatype.

• rtypes : Res → 2URI computes the external types of a resource, the types at-
tached via the property rdf:type. If a resource has no external types, {rdfs:Resource}
is returned. To this result, one adds remm:UriNode if the resource is a URI,
and remm:BlankNode if it is a blank node.

• etypes : Node→ 2URI finds the enumerated types of which a node is part of.

etypes(n) = {u | class(u, P, I) ∈ Class ∧ n ∈ I}

Theorem 1 (Uniqueness of types). Every node has a unique set of types.

Proof. For each node n, the enumerated types etypes(n) are uniquely defined. If n
is a literal, it is always a member of exactly one kind of literal, which determines the
value of ltype(n). Thus, {ltype(n)} ∪ etypes(n) is uniquely defined.

If n is a resource, it is either rdf:nil or not. In the former case, it has two
uniquely defined types, in the latter case, rtypes(n) is uniquely defined and thus also
rtypes(n) ∪ etypes(n).

14.3.2 Instance-of checking

The check n instof c determines whether a node n is an instance of a class c.
Instance-of checking is used to tell if a lens applies to a node (by means of selectors,
Sect. 15.3). The check is defined as

n instof c :⇔ ∃d ∈ types(n) . d v c

Theorem 2. All instances of a class are also instances of its superclasses.

n instof c ∧ c v b⇒ n instof b

Proof. According to the definition of instof, there is a d ∈ types(n) such that d v c.
Due to the transitivity of v, the assertion d v b also holds and thus n instof b

14.3.3 Default instances of classes

When adding a property to an instance, the REMM user interface gives it a default
value. This section defines how, given a class, one creates an instance for it. To create
a default value for a property, one applies this operation to a randomly chosen element
of its range. Creating an instance distinguishes between external and internal classes:
External classes are all instantiated the same way: one creates a new resource and
attaches the type via the rdf:type property. For internal types, one can use a default
instance as a preliminary place holder that might later be changed.

Default instances for internal types

The function dflt : Res→ Node maps (the resources of) classes to default instances:

138 14. REMM schema

• Literal classes are mapped to literals. The default is to map rdf:PlainLiteral
to "" and subclasses d of rdfs:Datatype to ""̂ d̂. rdfs:Datatype it-
self and rdfs:Literal are abstract. A few datatypes are mapped differently
from this rule. The result is chosen so that if it is the value of a property, it counts
as “first time”, “true”, or “switched on”, as opposed to the same property not be-
ing there meaning “never”, “false”, or “switched off”. Examples of such proper-
ties are ex:numberOfCars and hyena:updateModified. Accordingly,
the default instance is "true" for booleans, "1" for integers, and the current
date or time for time-related datatypes.

• rdf:List is mapped to rdf:nil.

• Enumerated classes are mapped to the first enumeration member.

• All other URIs are mapped to ⊥.

Theorem 3. The default instance of a class is an instance of that class.

∀u ∈ URI : dflt(u) 6= ⊥ → dflt(u) instof u

Proof. Trivial, because the result n of dflt(u) has been chosen so that types(n)
contains u.

Construction sets

A construction set answers the question how a given type t can be instantiated. De-
pending on t, one or more alternatives for instantiation are offered. Each alternative is
one element of the construction set.

• If t is an internal type, a single instantiation alternative is offered—the default
instance n of t. This is written as {cinst(n)}.

• If t is a concrete class, it can be directly added as the type of a new resource.
This is written as {cclass(t)}.

• Abstract types cannot be instantiated themselves, one has to instantiate one of
their concrete subclasses. Thus, each concrete subclass becomes one alternative.

These three cases cannot be mixed. If that happens, then, as a fall-back, one assumes
that all elements of T are concrete and external. Formally, the function constrs maps
a URI t to a construction set:

constrs(t) =

{cinst(dflt(t))} if dflt(t) 6= ⊥
{cclass(t)} if t ∈ Class ∧ t 6∈ Abstr⋃

c∈concr(t) constrs(c) if t ∈ Abstr

∅ otherwise (t 6∈ Class)

Helper function:

• concr computes the concrete subclasses of an abstract class.

Converting an element of a construction set to an instance is defined as follows. The
result is a pair of a node and a set of triples. To actually create the node that is returned,
the triples have to be added to the RDF repository.

newinst(cinst(n)) = (n, ∅)
newinst(cclass(c)) = (r, {(r,rdf:type, c)})

where r is a fresh resource

14.3 Operations on class hierarchies 139

Note that the instances created might not be valid (see definition below), because the
schema might demand properties to have a cardinality greater than 0. This is by design,
as creating instances with correct cardinalities can become quite complex and editing
must allow ill-formed instances, to cope with inconsistent data. Then the errors are
pointed out and the user can fix them.

Theorem 4.

∀t ∈ Uri : ∀e ∈ constrs(t) : newinst(e) instof t

Proof. Looking at the cases of the definition of constrs:

• t has a default instance: A default instance of a class is an instance of that class
(see previous theorem).

• t is a concrete class: The special cases rdf:nil, enumerated types and literals
are handled as default instances. Thus, the result will be a resource with an exter-
nal type. This type will be returned by types (last case of function definition),
which is why the assertion holds.

• t is an abstract class: Each concrete subclass c of t leads to result elements e
such that newinst(e) instof c. As c v t, newinst(e) instof t also holds.

• t is not the URI of a class: The assertion holds trivially.

14.3.4 Schema computation
The algorithm for computing the schema sch(c) of a class c is only sketched here. The
result is a set R of properties.

1. Combine the properties of the superclasses of c to a single set P : The result is
the union of the individual properties. If two properties have the same predicate,
they are merged via property intersection u. If the result of merging is undefined
the result of schema computation is also undefined. If there is no superclass, P is
the empty set. Intuitively, P is the intersection of the schemas of all superclasses.

2. Add the properties Q of c to the superclass properties P . The result R is the
union of both sets; if a property q of Q has the same predicate as a property p of
P , then the property put in R is the restriction q<p. If any of the restrictions are
undefined, then the final result is also undefined. Intuitively, R is P restricted by
c.

Valid instances

A resource r is valid if its properties comply with the ranges and cardinalities in the
schema.

valid(r) :⇔ ∀c ∈ types(c) : ∀(u, r, a, b) ∈ sch(c) :
a ≤ | values(r, u)| ≤ b ∧ (∀v ∈ values(r, u) : types(v) v r)

The function
values : Res×URI→ 2Prop

is defined as values(res, prop) returning all values of property prop of resource res .

140 14. REMM schema

14.4 Translation from OWL
By translating from OWL to REMM schema, existing OWL ontologies can be used
for data modeling with REMM. Note that the semantics of OWL is not preserved, but
rather the translation is a different way of interpreting OWL, similar to how OWL plus
constraints [MHS09] interprets OWL definitions as constraints.

In this section, we abbreviate the components of a class hierarchy as follows: Class
becomes C, Abstr becomes A, Sub becomes S. Translation from OWL to the type
system happens in three steps, each step transforms a class hierarchy (C,A, S) to an-
other one (C ′, A′, S′), beginning with the first step whose input is (∅, ∅, ∅). The steps
are:

1. Translate OWL’s class definitions to type system classes.

2. Add global property definitions to the type system classes.

3. Supplement type system classes so that OWL’s class equivalence is honored.

The OWL constructs are always listed in the same order as in the OWL reference
[B+a].

14.4.1 Class definitions
To translate class definitions, we assume that one can iterate over class definitions
(even embedded ones) and that each class definition has an ID. Both of which is the
case when OWL is encoded in RDF. The translation is specified by rules, one per OWL
construct. Each rule describes the effects on the class hierarchy triple. The right side of
the arrow is the new triple (without parentheses), unchanged trailing components are
not shown. Neither is the old triple, which is always implied. Thus a rule

(C,A, S), 〈owl construct〉 7→ (C ∪X,A ∪ Y, S ∪ Z)

is abbreviated as
〈owl construct〉 7→ C ∪X,A ∪ Y, S ∪ Z

Embedded constructs

Ignored: complementOf

u@unionOf(d1, d2) 7→
C ∪ {class(u)}, A ∪ {u}, S ∪ {(d1, u), (d2, u)}

Explanation: assuming the class definition unionOf(d1, d2) has the ID u, it is added
as a new class to C, the new class is marked as abstract and becomes a superclass of
d1 and d2. The following rules work similarly.

u@intersection(d1, d2) 7→
C ∪ {class(u)}, A, S ∪ {(u, d1), (u, d2)}

u@oneOf(x1, x2) 7→
C ∪ {class(u, ∅, {x1, x2})}

where the xi are either individuals or literals.

14.4 Translation from OWL 141

u@restriction(p allValuesFrom(d)) 7→
C ∪ {class(u, {prop(p, d, 0,∞)})}

Ignored: someValuesFrom, value

u@restriction(p minCardinality(n)) 7→
C ∪ {class(u, {prop(p, ∅, n,∞)})}

u@restriction(p maxCardinality(n)) 7→
C ∪ {class(u, {prop(p, ∅, 0, n)})}

Normalizing properties: if more than one property of a class has the same URI, they
are merged into a single property definition via property intersection u. If the result is
ever undefined, the whole translation is undefined.

Axioms and facts

Ignored: complete versus partial classes, annotations, individuals.

Class(u embedded) 7→ u@embedded

If there are several embedded constructs, they are transformed into a new class that is
the intersection of those constructs

EnumeratedClass(u i1, i2) 7→ u@OneOf(i1, i2)

Ignored: Datatype, DisjointClasses (disjointness is default)

SubClassOf(d1, d2) 7→ C,A, S ∪ {(d1, d2)}

14.4.2 Global property definitions
Global property definitions are collected and added to the corresponding class.

ObjectProperty(p domain(d) range(r) 7→
addprop(C, d,prop(p, r))

Where

addprop({class(d, P), c2, . . . , cn}, d, p) = {class(d, P ∪ {p}), c2, . . . , cn}
addprop({c1, . . . , cn}, d, p) = {class(d, {p}), c1, . . . , cn}

If the class already has a property q with the same predicate as the global
property p, the class property restricts the global property and q < p re-
places q in the class. If the result of this operation is undefined, the com-
plete translation process is undefined.

Comments:

142 14. REMM schema

• The declaration of super properties is ignored (could be translated to SubPropertyOf).

• Multiple domains or ranges lead to the creation of new classes (intersections of
the range or domain classes).

• Modifier Functional inside the ObjectProperty assigns a cardinality of [0,1]
to the property.

• Ignored modifiers: Inverse, Symmetric, InverseFunctional, Transitive.

Other property definitions are handled as follows:

• DatatypeProperty is handled analogously to ObjectProperty.

• AnnotationProperty and OntologyProperty are ignored.

• EquivalentProperties, SubPropertyOf: Mainly important for infer-
ence, with no simple translation to a schema-based mechanism.

14.4.3 Equivalent classes
Equivalence is an OWL-only construct. If (the URIs of) two or more classes are de-
clared as equivalent, it is as if one had used the same URI for all of them. As REMM
schema does not have the notion of class equivalence, the effect has to be simulated:
Once all classes have been translated and all global property definitions have been
added to them, equivalence is added to the class hierarchy. For each set E of equiva-
lent classes

• C: The union of all properties of E is assigned to each member of E (after
appropriate merging).

• A: If one of the classes of E is abstract, all classes are.

• S: For each class ID e ∈ E, one looks for all pairs that contain e and for each
different class ID f ∈ E, one adds a copy of the pair to S where e is replaced
with f .

14.5 Discussion
This chapter presented an intuitive type system for RDF editing. It stands between the
data modeling type systems of database systems and the logic-based type system of
OWL: Its notions of consistency and correctness are looser than those of the former,
to cope with inconsistent data. OWL makes several assumptions that are necessary for
distributed reasoning, but either counter-intuitive or too complicated for data model-
ing. REMM changes those assumptions. The operations that are defined for the type
system reflect the unconventional needs of editing. For example, creating an arbitrary
instance of a given class supports REMM’s approach to editing, where new properties
are initialized with default values.

The translation from OWL to REMM tries to preserve as much of the intuitive
meaning of the OWL constructs. Alas, the completely different semantics make any
kind of correctness proof impossible.

Chapter 15

REMM presentation: Select,
order and style the data to be
edited

Contents
15.1 Overview . 143
15.2 The abstract box model: Laying out RDF data 144
15.3 Selectors: Matching resources and properties 145
15.4 Groups: Context-specific containers for REMM constructs . . . 146
15.5 Lenses: Selecting trees of RDF data 147
15.6 Formats: Styling RDF data . 151
15.7 Documenting lenses . 155
15.8 Example lenses . 155
15.9 Discussion . 159

15.1 Overview
The schema is used for controlling the structure of the data. The presentation layer of
the REMM takes care of displaying the (generally multi-dimensional) data on a two-
dimensional medium. The editing process happens as follows (Fig. 15.1): The user
selects one or more resources he wants to edit and then selects a lens (Sect. 15.5) to
edit it with. A lens specifies which properties are shown and which ones are hidden.
They thus provide the user with a limited view on the data, showing only those de-
tails that are relevant in the current situation. Lenses also define an order in which to
display property values; a necessity for editing, because humans derive meaning from
such ordering. Lastly, lenses specify via selectors (Sect. 15.3) what resources they
can be applied to. Given a set of resources, we can thus automatically generate a list
of applicable lenses for the user. In some situations, the most appropriate lens might
be automatically selected for the user. This process is called conflict resolution and
explained in Sect. 15.5.3.

Lenses are supported by formats (Sect. 15.6) and groups (Sect. 15.4). Formats con-
tain more detailed information about how to present the data: What widget to display

144 15. REMM presentation: Select, order and style the data to be edited

it in, what font to use, etc. Format applicability is also specified via selectors. Groups
define sets of lenses and formats that should be used in conjunction. As lens and format
selection is constrained by the currently active group, groups determine the “look and
feel” of the data. The active group is changed manually by the user.

The presentation layer is largely based on Fresnel. The reader can thus consult the
Fresnel manual [BLP] for further details.

PropertyDescription

ComputedProperty
label
value computer

RDFProperty
predicate

title
PropertySection

Lens

Group

label spec
display hint
edit hint
additional content

Format

Selector

predicate
PropertySelectorNodeSelector

instance URI
InstanceSelector

class URI
ClassSelector

use

*

sublenses
{ordered}

*

sections

properties {ordered}

*

* use

*

*

formats

lenses

selectors
selectors

Figure 15.1: The main REMM presentation constructs are the group, the lens, and the
format. A group contains lenses and formats. A lens contains properties partitioned
into sections. Both formats and lenses use selectors to declare their applicability, but
only the former can apply to properties.

Running example. For this chapter, we assume that Shenzi wants to edit movies with
REMM and that each movie has a title, a genre, and a description.

15.2 The abstract box model: Laying out RDF data
The Fresnel abstract box model defines a layout grid for RDF data. This grid consists of
nested boxes that form a tree (Fig. 15.2). The root of this tree is the so-called container,
a top-level display element such as a GUI window or a printed page that holds all of
the data. Inside the container, there are RDF resources. Each resource contains itself
sections, groups of properties. Each property is a set of (label,value) pairs1. Apart from

1The Fresnel manual suggests only displaying the label the first time when a property has several values.
It is our experience that it makes sense to display it each time, as values can take up quite a lot of (especially
vertical) room, when nested lenses are involved.

15.3 Selectors: Matching resources and properties 145

Container
Resource

Record section
Property

Label Value
Label Value

Assembly section

Property
...

Value
Value

Figure 15.2: The Fresnel abstract box model defines how elements of the RDF data are
to be nested when laying them out. The section box is REMM-specific and groups data
that is edited similarly (such as all record properties or all members of an assembly);
see Sect. 16 for details.

layout, the abstract box model is also referred to when defining styling and inheritance
of format data.

15.3 Selectors: Matching resources and properties
Selectors are the matching mechanism that is used by both lenses and formats to spec-
ify what instances (and/or properties) they apply to. Selectors are mostly implicit in
Fresnel, but we found it helpful to reify them.

15.3.1 Node selectors
Given a resource or a literal and a node selector, we can determine whether the selector
matches the node or not. This is used to specify whether a lens or format applies to a
node. Node selectors are either class selectors or instance selectors.

• Instance selectors: match nodes that are the same as a given node. They are
mainly used for lenses that apply to one particular public resource (identified by a
URI). One attaches them to lenses and formats via fresnel:instanceLensDomain
and fresnel:instanceFormatDomain, respectively. There are the fol-
lowing kinds of instance selectors:

– SPARQL selectors: A SPARQL query defines what nodes match a given
selector. Not currently used in the REMM.

– FSL (Fresnel Selector Language [Pie]) selectors: Not currently used in the
REMM.

– Simple selector: Directly states the applicable node. resource.

146 15. REMM presentation: Select, order and style the data to be edited

• Class selectors: Match by looking at the types of a node. Attached to lenses and
formats via fresnel:classLensDomain and fresnel:classFormatDomain,
respectively. A class domain of rdfs:Resource matches any node.

– Simple selectors: Directly state the ID of the relevant class. Can optionally
be expanded into a resource of type remm:ClassSelector with prop-
erties remm:acceptClass and remm:rejectClass. This kind of
resource is attached via remm:lensDomain and remm:formatDomain.
Sect. 15.8.2 shows an example of such a selector.

Note that via classes such as rdf:PlainLiteral, class selectors can also match
literals.

15.3.2 Property selectors
Property selectors are only used in formats, via the property fresnel:propertyFormatDomain.
There are two kinds of property selectors:

1. FSL selector: An FSL expression that returns properties. Not currently used in
the REMM.

2. Simple selector: Directly state the predicate.

15.3.3 Selector specificity
The order in which we have listed the selectors above determines their specificity. That
is, an instance selector is more specific than a class selector. When comparing two
class selectors, whichever has a class that is a subclass of the other is considered more
specific.

In situations where several lenses or formats apply, we have to decide which one
to use. This process is called conflict resolution (Sect. 15.5.3) and selector specificity
plays a large role in it. For example, if two lenses apply to a resource and one of them
has an instance selector, while the other one has a class selector, then the former lens
wins.

15.4 Groups: Context-specific containers for REMM
constructs

Sets of lenses and formats can define a mode of operation or a different look. A Group
is the construct to package such a set. Thus, depending on how a user currently wants
to work, she chooses the appropriate group. This group is then called the active group.
Furthermore, a property description in a lens can “use” a group (see below). Then
starting with the property value, that group becomes temporarily active, influencing
the selection of lenses and formats. There is an implicit group called group union
which, as its name suggests, is the union of all groups. If it is active, it is as if all
groups were active at the same time. A group specifies the following things:

• A set of lenses2. When a program shows the lenses that can be used for a given
resource, it only considers lenses that are members of the active group. That

2In Fresnel, things are actually stated the other way around: lenses and formats say what group they
belong to. Conceptually, we found it easier to think about a group as containing lenses and formats.

15.5 Lenses: Selecting trees of RDF data 147

means that lenses that are not part of any group stay invisible, but might still
be used as sublenses. As there are many small helper lenses, this reduces user
interface clutter.

• A set of formats.

• Style information for containers, resources, properties, labels and values. This
information is used to complement the same information that is stored in formats.
So, in a way, a group is also a format.

• Additional content to be inserted before and/or after: resources, properties, labels
and values. Again, this content is supplemental to similar format information.

• Primary classes: what classes are most important? This allows one to filter when
displaying a list of instances so that less important ones are not shown. It also can
be used to produce a set of classes to choose from when creating a new instance.
See Sect. 17.2 for more information.

15.5 Lenses: Selecting trees of RDF data

A lens is a way for the expert to state what part of the data she wants the end user to
look at. Thus, a lens encodes what properties to edit and in what order to display them.
A lens has the following properties:

• Selectors: what instances can this lens be used with (Sect. 15.3)?

• remm:peerRank has a value between −9 and +9 to rank applicable lenses in
conflict resolution (Sect. 15.5.3). 0 is the default, higher values are better. As
an example, not all universal lenses are equally important, the peer rank ensures
that more useful lenses are preferred during automatic selection.

• fresnel:showProperties: a list of property descriptions (see below for
details). Each property description defines how to display a single property.
When laying out the property data, we honor the order in which the properties
are listed here. There are several pseudo-predicates (Sect. 15.5.1) for specify-
ing sets of properties that should match a given description. Some of these sets
are not even known in advance (such as fresnel:allProperties for all
properties one encounters in a resource).

• fresnel:use: a format directly. Normally, formats function completely sep-
arate from lenses. This mechanism allows one to directly specify what format to
use, without depending on a format selector to match.

• Lens purposes (Sect. 15.5.4): describe a lens. Fresnel supports defaultLens
so that some lenses are preferred over others and labelLens for lenses that
generate labels for resources. The latter is not supported by REMM.

• Projection purposes (Sect. 15.5.5): Lenses and properties can be enabled and
disabled depending on the context in which they are used. For example, some
properties can be shown in a form, but hidden in a table.

148 15. REMM presentation: Select, order and style the data to be edited

15.5.1 PropertyDescription
A property description provides further information about a specific property. It is a
resource of type fresnel:PropertyDescription with various properties. As
a shortcut, one can also use the predicate URI p directly (instead of a resource where p
is specified via fresnel:property). A property description contains:

• fresnel:property: the URI of the property.

• fresnel:use: a format or a group. In the case of a format, it works like the
“use” property of a lens. In the case of a group, the given group temporarily be-
comes the active group. Thus, this group is responsible for all data we encounter
from here on down in the tree that we project from the RDF data.

• fresnel:sublens: a set of lenses that determines on a case-by-case basis
how the data tree should continue underneath a property. For example, depend-
ing on the type of an object, we might either display just its URI or several of its
properties. The selectors in the sublenses allow us to make this distinction.

• remm:orderedSublenses: has a collection domain and is needed when the
order in which we check the sublenses matter. For example, one needs ordered
sublenses in order to distinguish instances of fresnel:PropertyDescription
from shortcuts: (1) If it is a resource (which might be a URI!) whose type is
fresnel:PropertyDescription, then it is an instance. (2) Otherwise, if
it is a URI, then it is a shortcut. (3) All other cases are ignored.

• remm:propertyRange assigns a property range. Instead of having to make
this definition via OWL, it can be included with the lens and overrides schema
information. Another way of looking at it is that the schema is adapted for editing
needs. For example, if a lens is used for editing German content, one might
require and create literals with the language tag “de”.

Sections

In a projection, a section is a group of properties. It can optionally have a title. Some
properties such as rdfs:member (for elements of an rdf:Seq) automatically create
a new section, because they need different editing controls. One can also manually start
a new section by adding a literal to fresnel:showProperties (where so far only
resources were allowed). This leads to a new section being started whose title is the
value of the literal. Sect. 15.8.2 demonstrates this way of starting sections.

Pseudo-properties

A few URIs have special meaning when specifying a property. They are not matched
literally, but instead match sets of properties or are used to add special sections to a
lens.

• remm:globalProperties: Add a section listing global properties whose
domain is the current resource. Used for class lenses.

• rdf:first, rdfs:member, fresnel:member: The resource to be edited
is a collection, a container, or either (see below). Create the corresponding sec-
tions when projecting.

15.5 Lenses: Selecting trees of RDF data 149

• fresnel:allProperties: can be placed anywhere in the list and stands
for all properties, even the ones we do not know about in advance.

– fresnel:hideProperties: is a lens property and contains the URIs
of properties that should be ignored by fresnel:allProperties.

• remm:labelProperties: Edit the label properties of a resource. They are
usually the single property rdfs:label, but one can define custom labels
(Sect. 17.3.2).

Property descriptions for assemblies (collections and containers)

The pseudo-predicate rdf:first is for editing collections (type rdf:List), rdfs:
member is for editing containers (type rdf:Seq). fresnel:member is for editing
either assembly, depending on the content of a resource.

Sometimes we use lenses to create new instances (e.g. when adding a new property
with a sublens for the range). In that case, we must determine whether to create an
empty collection or an empty container. That is, we must disambiguate fresnel:
member. This happens according to the following rules.

• If there are lens selectors with a class name, we can examine the inheritance
chain of that class to determine whether we have a collection lens, a container
lens or both.

• Otherwise, there is no schema information to help us decide either way. If there
are no additional properties, we assume rdf:first (as rdf:List proper-
ties cannot coexist with other properties). If there are additional properties, we
assume rdfs:member.

If a lens is a collection lens, it pushes aside all other sections and properties and the
collection becomes the only section. As mentioned above, this is due to the fact that
collections do not have stable anchors. Sometimes they do not have their own anchor
at all, if you consider rdf:nil an empty anchor.

15.5.2 ComputedPropertyDescription and node transfomers
Computed properties are a way of adding information to a projection that does not exist
in RDF, but is computed using the projected resource. The result of the computation
is always an RDF node so that it can be formatted using the normal mechanisms, as
if the result had been directly parsed from RDF. Computed property descriptions have
the following properties:

• remm:computedPropertyLabel: The label to use (computed properties
have no predicate).

• remm:nodeTransformer: one of the following two URIs. Node transform-
ers are functions f : Resource→ Literal ∪Resource

– remm:Subject: maps a resource to itself. Useful for tables, where we
might want to display the resources of the rows in a column.

– remm:TitleTags: maps a resource to a literal containing the title tags,
a string showing the tags and facets of the resource (Chap. 8).

150 15. REMM presentation: Select, order and style the data to be edited

15.5.3 Conflict resolution for lenses and formats
Whenever several lenses apply and the user does not choose one manually, we have to
automatically determine which lens to use. This decision is made by finding the most
specific lens, which depends on the specificity of its selectors. The same algorithm ap-
plies to formats as well, with minor modifications, so we describe both algorithms here.
We successively try the following options until we have a matching lens or format:

1. (Format-only: the format attached to a lens via fresnel:use.)

2. Active group:

(a) (Lens-only: most specific matching default lens of a group, fresnel:
purpose = fresnel:defaultLens.)

(b) The lens or format with the most specific (Sect. 15.3.3) matching selector
in the active group.

(c) If several lenses or formats are equally specific, the one with the highest
fresnel:peerRank wins.

15.5.4 Lens purposes
Lens purposes come from Fresnel and are used less in REMM. Fresnel defines the
following lens purposes, which are assigned to a lens by the property fresnel:
purpose.

• defaultLens: Whenever looking for a matching lens inside a group, check lenses
marked as default first.

• labelLens: When creating the display label of a resource (see Sect. 17.3.2), Fres-
nel considers all matching label lenses of the active group. Not supported by
REMM.

15.5.5 Projection purposes
To make a lens more universal, we allow context-dependent hiding of lenses and prop-
erties. The context is a set of projection purposes which cover two areas (elements
within each area are mutually exclusive):

• What is the output of the lens? remm:tableLens, remm:formLens, remm:
textLens

• Is the projection for editing or for displaying? remm:editLens, remm:
displayLens

The following two properties are used in lenses and property descriptions to adapt them
to the projection purposes:

• remm:showIfPurpose: show the entity (lens or property) only if the given
URIs intersect with the projection purposes. If the property is missing, we always
show the entity.

• remm:hideIfPurpose: hide the entity if the given URIs intersect with the
projection purposes.

15.6 Formats: Styling RDF data 151

15.5.6 Running example

The lens of the running example looks as follows:

:MovieLens rdf:type fresnel:Lens ;
fresnel:classLensDomain ex:Movie ;
fresnel:showProperties (

[a fresnel:PropertyDescription ;
fresnel:property ex:title ;
remm:propertyRange xsd:string]

[a fresnel:PropertyDescription ;
fresnel:property ex:genre ;
remm:propertyRange ex:Genre]

[a fresnel:PropertyDescription ;
fresnel:property ex:description ;
remm:propertyRange wikked:Markup]

) .

This RDF specifies that resource :MovieLens is a lens that applies to instances of
ex:Movie and that such instances have three properties ex:title, ex:genre,
and ex:description. More examples of lenses encoded in RDF are given in
Sect. 15.8.

15.6 Formats: Styling RDF data

Formats work in parallel with lenses to determine how the data stored in an RDF re-
source should be displayed. “How” means: What widget should be used to display the
data? What text style should it be displayed in? Should additional text be appended
before and after the data? Formats have the following categories of parameters (see
also table 15.1).

• Selectors: Formats can be applied to both resources and properties, but some for-
mat mechanisms are specific to either resources or properties. Thus, the selectors
of a format are in general a mix of resource and property selectors.

• Label configuration: Two things can be specified in standard Fresnel. First,
whether the label should be shown at all. Second, whether a fixed text should be
displayed as the label instead of the predicate.

• Styles: apply to elements in the abstract box model, namely resources, proper-
ties, labels and values. Styles depend on the HTML-specific Cascading Style
Sheets standard and are currently ignored in the REMM. Ignored

• Presentation hint: How should a property value be displayed or edited? For
example, even if the value is a URI node, it still might make sense to let the end
user edit it inside a text field.

• Additional content: specifies text that should be prepended or appended to the
content of resources, properties, labels or values. For example, one might want
to start and end a list with square brackets and to separate the list elements with
commas.

152 15. REMM presentation: Select, order and style the data to be edited

Format parameter Group Compound Property Value
Label and presentation hint

fresnel:label ◦ •
remm:displayHint ◦ • (atomic)
remm:editHint ◦ • (atomic)

Additional content
fresnel:resourceFormat ◦ •
fresnel:propertyFormat ◦ •
fresnel:labelFormat ◦ ◦ •
fresnel:valueFormat ◦ ◦ •

Style
fresnel:containerStyle •
fresnel:resourceStyle ◦ •
fresnel:propertyStyle ◦ •
fresnel:labelStyle ◦ ◦ •
fresnel:valueStyle ◦ ◦ •

Table 15.1: Inheritance of format parameters. Circles indicate where the parameters
can occur (remember that groups also contain format parameters), filled circles indicate
where they are used. Values to the right override (less specific) values to the left.

15.6.1 Inheritance of format parameters
The projected format is computed dynamically for each projection and a combination
of several static formats contained in groups and lenses. The most specific of the static
formats is called the current format and applies directly to the location where one is
projecting. It is either explicitly specified via fresnel:use, has a matching selector,
or has been omitted (resulting in an empty current format).

Tab. 15.1 shows how per-parameter inheritance is used to compute the projected
format. Inheritance works along the projection tree: The group is seen as the root
which contains nested compound projections that hold property projections which in
turn contain either compound or atomic projections. In the table, each parameter has
its own row. A circle indicates that the value influences inheritance, a filled circle
indicates where the parameter is actually used. Columns to the right are more specific
than columns to the left. For example, if a format is projected for the value and the
labelFormat is specified in both the group and the property, the latter labelFormat is
used. Other considerations:

• A format explicitly attached via fresnel:use overrides one with a matching
selector which in turn overrides inherited parameters. Thus you can give defaults
for properties via a group or a compound projection and override them with
fresnel:use or a format that matches a specific property.

• Label and value format parameters are picked from the value, because this allows
us to change the label depending on what sublens matched.

• Resource format, resource style: apply only to compound resource projections
(not to atomic resource projections). Rationale: That way, literals and atomic
resources are handled similarly.

• One always combines the current formats and never the projected formats of
ancestors in the projection tree.

15.6 Formats: Styling RDF data 153

15.6.2 Additional content: Adding text

Additional content is specified for resources, properties, labels and values as fresnel:
contentBefore, fresnel:contentAfter, fresnel:contentFirst, fresnel:
contentLast and fresnel:contentNoValue. An atomic lens is only consid-
ered a value, not a resource. Additional content serves two purposes.

First, it can be used to add text data to the display boxes (Fig. 15.2). With “no
value”, the content is the box, while, with the other positions, it is placed before or after
the box. In a sequence of boxes, the last fresnel:contentAfter is overridden
by fresnel:contentLast (if it is there). Similarly, fresnel:contentFirst
overrides the first fresnel:contentBefore. Note that each section has its own
sequence of properties. When it comes to first and last values (and labels), we also
start counting inside the section box and not inside the property box (the box model is
shown in Fig. 15.2). Assemblies are considered a section with a single property.

Second, additional content is also used to translate a resource to text. If no addi-
tional content has been specified, a resource is translated to a sequence of values and
labels without any space or separator. As this is undesirable, because it is hard to read,
we supply a default that inserts an equal sign after the label and a space after the value.
Sect. 15.8.4 gives an example of an additional content specification.

15.6.3 Presentation hints: What widgets to use?

Extension Presentation hints are a fundamental way of styling: they determine what
graphical widget displays the relevant information. For example, instead of referring
to a resource, a URI node could also be the address of a web site. Then, for editing, we
would like to change it via a text field. During browsing, we want to have a clickable
hyperlink. Note that we ignore the presentation hint for compound lenses, because
there is only a single widget for compound projections. That is, presentation hints only
make sense for atomic projections. There are two kinds of presentation hints: display
hints and edit hints. The Fresnel property fresnel:value (whose range includes
fresnel:image, fresnel:externalLink, and fresnel:uri) is translated
to a display hint.

Display hints

Assigned to a format via remm:displayHint. The following classes exist:

• remm:DisplayDateTime. Display literals from the datatypes xsd:date,
xsd:datetime, xsd:time as date and/or time. This usually results only in
a slight change to make such data more readable for humans.

– Property: remm:dateTimeFormatPattern. A pattern3 that specifies
how to format the date. Example: “yyyy-MM-dd”.

• remm:DisplayExternalLink. Interpret the URI or literal as the URL of a
web site and display it as a hyperlink. hyperlink to a web site.

– Property: remm:linkText overrides the default link text.

3See http://joda-time.sourceforge.net/api-release/org/joda/time/
format/DateTimeFormat.html

http://joda-time.sourceforge.net/api-release/org/joda/time/format/DateTimeFormat.html
http://joda-time.sourceforge.net/api-release/org/joda/time/format/DateTimeFormat.html

154 15. REMM presentation: Select, order and style the data to be edited

• remm:DisplayImage. Interpret the URI or literal as the URL of an image
and display it as an embedded image.

• remm:DisplayPlainText. Display the URI or literal as plain text. How is
determined via a display mode (see below).

• remm:DisplayResourceLink. Interpret the URI or literal as referring to a
resource and link to that resource.

– Property: remm:linkText overrides the default link text.

• remm:DisplayWikiMarkup interprets the literal as wiki markup and ren-
ders it accordingly.

Edit hints

Assigned to a format via remm:editHint. The following classes exist:

• remm:EditCheckBox: Edit boolean literals as check boxes.

• remm:EditInstanceCollection: Assign a value by choosing from a
combo box with a list of instances. If instances are not enumerated by the class,
they are looked up in RDF. Both literals and resources can be edited this way.

• remm:EditResource: Interpret a resource as referring to a resource and pro-
vide a suitable picker.

• remm:EditTextBox: Edit a literal or a resource with a text box.

• remm:EditDateTime: Edit a time-related literal such as an instance of xsd:
dateTime with a date and/or time picker.

Presentation modes

Presentation modes determine how RDF nodes are translated to text.
(1) Display modes are assigned via the property remm:displayMode to instances
of remm:DisplayPlainText, remm:DisplayResourceLink, and remm:
EditInstanceCollection (where it determines how the entries in the combo
box are printed).

• remm:ResourceLabel: Display the label of a resource.

• remm:ResourceQName: Display the qname of a resource.

• remm:ResourceUri: Display the raw URI of a resource.

• remm:LiteralText: Display just the text value of a literal.

• remm:LiteralParsable: Display a literal in a parsable way (Turtle syn-
tax).

(2) Edit modes determine how things are edited. This means that the text to edit must
be parsable. Edit modes are assigned via the property remm:editMode to instances
of remm:EditResource, remm:EditTextBox.

• remm:ResourceQName: Edit the qname of a resource.

15.7 Documenting lenses 155

• remm:ResourceUri: Edit the raw URI of a resource.

• remm:LiteralText: Edit just the text of a literal.

• remm:LiteralEditAnnotation: Edit the text and the annotation (datatype
or language tag) of a literal.

• remm:LiteralDisplayAnnotation: Edit the text of a literal, display its
annotation.

• remm:LiteralParsable: Edit the literal in Turtle syntax.

15.6.4 Running example
We can now improve the property descriptions of the movie lens, so that better widgets
are used. The defaults are acceptable for ex:title and ex:description. The
range of ex:title is xsd:string and leads to a text box for editing and plain
text for display. The range of ex:description is wikked:Markup and leads to
editing via a text area for wiki markup and to displaying as rendered markup. One can
provide improved editing of ex:genre, by using a combo box that lists all instances
of ex:Genre. This is done by assigning a format via fresnel:use to the property
description:

[a fresnel:PropertyDescription ;
fresnel:property ex:genre ;
remm:propertyRange ex:Genre ;
fresnel:use [

a fresnel:Format ;
remm:editHint [

a remm:EditInstanceCollection
]

]
]

15.7 Documenting lenses
HYENA provides the following mechanisms to make lenses self-documenting:

• A lens documentation embedder: shows the domain of the lens, its properties and
their ranges. If one of the properties has an rdfs:comment, it is displayed as
its documentation.

• remm:helpText: Leads to a “note” link being shown during editing that dis-
plays the given text when clicked on.

• remm:helpId: Leads to a “help” link being show during editing that jumps to
a section of the manual when clicked on.

The examples shown in Sect. 15.8 contain help texts.

15.8 Example lenses
The following examples are written in the RDF syntax Turtle [BBL08].

156 15. REMM presentation: Select, order and style the data to be edited

15.8.1 Lens for namespaces
The following is a lens for namespaces.

remm:Namespace a owl:Class ;
remm:labelPredicate remm:prefixName ;
rdfs:comment "For defining a namespace in RDF itself." .

remm:NamespaceLens a fresnel:Lens ;
rdfs:label "Namespace lens" ;
fresnel:group hyena:MetaGroup ;
fresnel:classLensDomain remm:Namespace ;
fresnel:showProperties (

[a fresnel:PropertyDescription ;
fresnel:property remm:prefixName ;
remm:propertyRange xsd:string]

[a fresnel:PropertyDescription ;
fresnel:property remm:uriref ;
remm:propertyRange xsd:string]

[a fresnel:PropertyDescription ;
fresnel:property rdfs:comment ;
remm:propertyRange xsd:string]

) ;
remm:helpText "URI: Should end with a slash or a hash" .

The lens begins with a declaration of its type fresnel:Lens and a human read-
able label. It is member of a group which is necessary for it to be visible. The
lens applies to classes of type remm:Namespace. It shows the properties remm:
PrefixName (the prefix of the namespace), remm:uriref (the URI of the name-
space), and rdfs:comment. The last property of the lens definition provides a short
help text.

15.8.2 A lens for classes
remm:OwlClassLens a fresnel:Lens ;

fresnel:classLensDomain rdfs:Class ;
fresnel:group hyena:MetaGroup ;
fresnel:showProperties (

[a fresnel:PropertyDescription ;
fresnel:property rdfs:comment ;
remm:propertyRange xsd:string]

[a fresnel:PropertyDescription ;
fresnel:property rdfs:subClassOf ;
fresnel:sublens [# atomic

a fresnel:Lens ;
remm:lensDomain [

a remm:ClassSelector ;
remm:acceptClass rdfs:Class ;
remm:rejectClass owl:Restriction]]]

owl:unionOf
"Restrictions"
[a fresnel:PropertyDescription ;
fresnel:property rdfs:subClassOf ;
fresnel:sublens remm:OwlRestrictionLens]

15.8 Example lenses 157

"REMM"
[a fresnel:PropertyDescription ;
fresnel:property remm:labelPredicate ;
remm:propertyRange remm:UriNode]

[a fresnel:PropertyDescription ;
fresnel:property remm:vocabularyCategory ;
remm:propertyRange remm:VocabularyCategory]

"Global Properties"
remm:globalProperties

) .

remm:OwlRestrictionLens a fresnel:Lens ;
fresnel:classLensDomain owl:Restriction ;
fresnel:group hyena:MetaGroup ;
fresnel:showProperties (

owl:onProperty
owl:allValuesFrom
owl:minCardinality
owl:maxCardinality
owl:cardinality

) .

This lens for classes demonstrates three advanced features (underlined above): First,
the lens domain is defined by a remm:ClassSelector. It explicitly rejects in-
stances of owl:Restriction. This is necessary, because we want to handle re-
strictions later, but they are a subclass of rdfs:Class. Second, there are two section
headings, “Restrictions” and “Global Properties”. These headings are different from
additional content, because they actually start a new section with the consequence that
restrictions are added separately from other class properties. Lastly, remm:globalProperties
introduces a special class-specific section. This section collects all global properties
whose domains match the anchor of the current projection. In the user interface, we
allow the user to jump to them, but not to edit them (there is a separate lens that serves
this purpose). Note that because owl:Class is a subclass of rdfs:Class, it can
be edited by this lens, too.

15.8.3 A lens for lenses
The following RDF defines a lens that can be used for editing lenses.

remm:LensLens a fresnel:Lens ;
rdfs:label "Lens lens" ;
fresnel:group hyena:MetaGroup ;
fresnel:classLensDomain fresnel:Lens ;
hyena:helpId "lenses" ;
fresnel:showProperties (

rdfs:label
[a fresnel:PropertyDescription ;
fresnel:property fresnel:classLensDomain ;
remm:propertyRange rdfs:Class]

[a fresnel:PropertyDescription ;
fresnel:property fresnel:instanceLensDomain ;
remm:propertyRange rdfs:Resource]

[a fresnel:PropertyDescription ;

158 15. REMM presentation: Select, order and style the data to be edited

fresnel:property remm:lensDomain ;
fresnel:sublens remm:ClassSelectorLens]

[a fresnel:PropertyDescription ;
fresnel:property fresnel:group ;
remm:propertyRange fresnel:Group]

[a fresnel:PropertyDescription ;
fresnel:property remm:helpText ;
remm:propertyRange xsd:string]

[a fresnel:PropertyDescription ;
fresnel:property hyena:helpId ;
remm:propertyRange xsd:string]

[a fresnel:PropertyDescription ;
fresnel:property fresnel:showProperties ;
fresnel:sublens remm:ShowPropertiesSublens]

) ;
remm:helpText "Lenses must have a group to be publicly visible." .

remm:ShowPropertiesSublens a fresnel:Lens ;
fresnel:classLensDomain rdf:List ;
fresnel:showProperties (

[a fresnel:PropertyDescription ;
fresnel:property rdf:first ;
remm:orderedSublenses (

remm:ComputedPropertyDescriptionLens
remm:PropertyDescriptionLens
[# Resource has none of the property description types:
interpret as predicate URI
a fresnel:Lens ; # atomic lens, no showProperties
fresnel:classLensDomain remm:UriNode

]
)

]
) .

Omitted: remm:ClassSelectorLens
Omitted: remm:PropertyDescriptionLens
Omitted: remm:ComputedPropertyDescriptionLens

Demonstrated features: The sublenses of rdf:first are ordered, so that we can first
check whether we recognize the type of the resource and otherwise interpret it as a
predicate URI. The last of the sublenses has the lens domain remm:UriNode. This
means that—as a last, catch-all case—we accept any URI node as a collection element.
A lens domain of rdfs:Property would have been more elegant, but then we can
only refer to properties that have an explicit type in the RDF repository.

15.8.4 Additional content
We demonstrate how a lens can be used to translate a resource to text with the following
lens.

ex:TagsLens rdf:type fresnel:Lens ;
fresnel:classLensDomain rdf:List ;
fresnel:showProperties (

[rdf:type fresnel:PropertyDescription ;
fresnel:property rdf:first ;

15.9 Discussion 159

fresnel:use [
rdf:type fresnel:Format ;
fresnel:propertyFormat [

fresnel:contentBefore "[" ;
fresnel:contentAfter "]"

] ;
fresnel:valueFormat [

fresnel:contentAfter ", " ;
fresnel:contentLast ""

]
]

]
) .

This is a lens for collections. We want to display square brackets before and after all
liste elements (even if there are not any) and commas between list elements. If we use
this lens to generate text for the list

("Private" "Todo")

we get the result

[Private, Todo]

15.9 Discussion
This chapter explained how editing and displaying of RDF data can be specified using
lenses. It is largely based on Fresnel, with the following improvements:

• Improved automatic selection and adaptation of lenses: An integer for peer
ranking is used to prioritize lenses whose selectors are equally specific. Con-
ditions operating on the current set of projection purposes (table, form, edit,
display, . . .) allows one to enable or disable lenses and properties in a context-
sensitive fashion.

• More powerful parsing: The introduction of selectors as an explicit concept
laid the foundation for more complex conditions of applicability. With multi-
ple sublenses, these conditions direct how parsing continues. By ordering the
sublenses, conditions become simpler to specify.

• Improvements for displaying and editing: Sections are used for grouping
properties and improve readability for humans if a lens had many properties. Ad-
ditional pseudo-properties enable the class lens to edit global properties whose
range is the current class and any meta-data lens to edit the label properties (as
they have been defined for the class of the instance to edit). Computed properties
are a mechanism similar to inference. Presentation hints are used for selecting
from a larger collection of widgets for displaying and editing, presentation modes
allow one to configure how an RDF node is translated to text (when edited in a
text field, shown in a combo box, etc.).

• Self-documentation: REMM collects the values of rdfs:comment to explain
properties and a lens can be assigned a help text with an explanation or a help ID
the refers to external help content. All of this is used to better document the lens
and to support the user during editing.

160 15. REMM presentation: Select, order and style the data to be edited

Chapter 16

REMM editing: Specify and
apply changes to resources

Contents
16.1 Overview . 161
16.2 The structure of a projection 162
16.3 Creating a projection . 163
16.4 Editing a projection . 164
16.5 Applying the projection: changing the data 166
16.6 Example . 169

16.1 Overview
This chapter describes what data structures are necessary to hold the data during edit-
ing. It turns out that there are many things one has to consider so that editing RDF
works as one would expect in a database-like application. Editing is a process that
comprises four steps: First, the user picks a resource he would like to display. Second,
an applicable lens is chosen, either automatically or manually by the user. Third, this
lens is used to project the resource, producing, as a result, a projection. A projection
contains the data of the resource, but in a format that mirrors the structure of the lens.
Compared to traditional parsing, the lens can be considered the grammar and the pro-
jection the abstract syntax tree. Similarly, the projection will reflect how deeply a lens
is nested and will always be a tree. The inner nodes of this tree are compound pro-
jections, the leaves are atomic projections. Fourth and last, after the user has finished
editing the projection, it plays its second role: the changes it contains are written back
to the resource; the projection is applied to the resource. This is the basic scenario
for using a projection. When designing the data structure, we also have to consider
that a projection has to work in batch mode (one should be able to apply the encoded
changes to several resources at once). Additionally, lenses can be used for translating
a resource to a text string (Sect. 15.6.2). For example, to generate labels for a whole
class of resources.

This chapter first explains how a projection is structured, how it is created, how it
is modified during editing and how it is applied. It concludes by giving an example.

162 16. REMM editing: Specify and apply changes to resources

16.2 The structure of a projection

class
lens

CompoundProjection

title
field choices

Section

compute statements

old node
new node
format

NodeProjection

add member
remove member
swap members

context
remove all?
removed members

AssemblySection

enumeration members
AtomicProjection

sections

RecordProperty

properties

add property

RecordSection

remove value

predicate
remove all?
removed values

RdfProperty

label
LabeledValue

labeledValues

format
context

Value

MemberValue

value

ComputedProperty

members

Figure 16.1: A UML class diagram for the projection data structures. A node projec-
tion is either atomic or compound. Compound projections contain sections which are
either assembly sections or record sections. Each property of a record section either
comes from RDF or is computed and contains a set of labeled values. Assembly sec-
tions contain member values. Note that even for the same record property, the labeled
values can have different labels, because the label can be determined by the property
value. The methods in the class diagram are the editing operations and are explained
in Sect. 16.4.

Fig. 16.2 shows how the box model from Fig. 15.2 is reflected in projections: The
root of a projection tree is always a compound projection, it holds sections that contain
data that is edited in a similar way. For example, a projection of a resource could have
two sections: one for container (rdf:Seq) data, one for normal properties. That is, it
is both an assembly and a record. One can assign a section title, in the showProperties
list of a lens, by putting a literal in front of the property description that starts the
section. The projection classes have the following purposes:

• NodeProjection: is either compound or atomic. In both cases it contains a format
and stores original and the current the value of the projected node. This is impor-
tant when changing the RDF, because due to RDF statements being immutable,

16.3 Creating a projection 163

we always have to remove the old statement and add a new statement.

• AtomicProjection: To avoid dependencies on schema and presentation data, we
store the enumeration members with atomic projections that need them for edit-
ing (e.g., when they are displayed as a combo box widget).

• CompoundProjection: The lens is needed for adding new properties (whose val-
ues correspond to sublenses). The class is needed for adding a type to a newly
created projection. To create atomic new properties, we need the property range
and use the class as a fallback if there are no sublenses. Class and lens are both
stored as resources, so that the projection does not have a dependency on schema
or presentation data. Compound projections usually contain at least one section.

• Section: holds information that is related to the projected resource. Here we
explain the assembly and the record section.

• AssemblySection: contains the elements of an ordered multi-set as encoded in
an rdf:List or an rdf:Seq.

• RecordSection: contains properties which are a set of labeled values. A property
can come from RDF or be computed.

Note how all constructs for data modeling that we have mentioned in Sect. 13.4 come
up in projections: AtomicProjection is for atomic data and can contain enumeration
members. CompoundProjection is for compound data and can contain a record and/or
an assembly. The following sections explain how the projection data structure is actu-
ally used.

16.3 Creating a projection
Projecting a lens Creating a projection means that we get a set of statements (all
the properties of a resource) and translate them to a CompoundProjection. To do that,
we initially create an empty CompoundProjection instance and then iterate over all
property descriptions in the lens. Each description consumes all statements that it
matches and continues parsing by projecting the statement objects with its sublenses.
While we usually ignore objects that do not match any sublens, we are more tolerant if
there is only a single collection sublens, because collections are often untyped. Atomic
sublenses lead to atomic projections and parsing stops. Otherwise, the process that we
have just described starts again and new CompoundProjections are created.

Whenever the current section is not a fitting home for the data produced by the
current property description or does not exist at all, a new one is created. For example,
if a record section is current and a container property starts parsing, an assembly section
must be created for its data. New sections can also be started by section titles, even if
there is no direct necessity to do so. Even if a property description does not produce
any data, an empty section is created for it, because there later need to be user interface
elements for adding data to the section.

Property ranges and the schema of a compound projection Property ranges are
used to create default values for properties and to display all fitting instances when
letting the user choose a property value. The range can come from one of three sources:
from the sublenses, from an explicitly assigned remm:propertyRange, or from the

164 16. REMM editing: Specify and apply changes to resources

class attribute of the compound projection. With sublenses, the range is the union of
all classes used in selectors.

When filling in the class attribute of a compound projection, we face two problems:
First, where should the schema information come from? From the resource that we are
parsing (dynamic schema) or from the selectors of the lens (static schema)? Second,
it greatly helps if we only have to deal with a single class, where in general, resources
have several types and lenses have several selectors. REMM opts for picking the class
of the most specific matching selector. That is, we use the static schema and have a
single class.

Projecting a format So far, we have not explained how the format value of a pro-
jection is created. Table 15.1 shows how the format is created parameter by parameter:
In each line, a filled circle indicates where the parameter value is stored, empty circles
show that the value determines other values to the right unless it is overriden. An ex-
ample: The value of fresnel:propertyFormat is stored in a property projection
and a combination of the values from the group, the compound and the property for-
mat: If the parameter is specified in the property format, it is used, if not, we look at
the compound projection and the currently active group.

In addition to that, we also track the position of the projection and consolidate
the additional content parameters (Sect. 15.6.2): fresnel:contentFirst and
fresnel:contentLast only have an effect for the first and last element, where
they override fresnel:contentBefore and fresnel:contentAfter. Thus,
we only keep these latter two parameters and change them during merging as appro-
priate. Note that finding the format before the merging involves selector matching and
conflict resolution (see Sect. 15.5.3). The merged format that is stored in the projection
is the result of merging the unmerged formats of the ancestors in the projection tree.
Otherwise, format parameters would be propagated too far down the projection tree.

16.4 Editing a projection
This section explains the operations for editing a projection.

16.4.1 Adding a property to a record section
Providing the user with a good user experience when it comes to adding a property is
surprisingly complex. Part of the problem is that we need to solve this problem in a
generic way and consider all possible options:

• Predicate: What properties do we present the user with? What do we do if
we have the pseudo-predicate fresnel:allProperties? What if the user
wants to manually enter a predicate?

• Object: How does the user specify an object? Should she choose an existing
node or create a new one? In the latter case, what type should it have? What if
the object is a literal or an enumeration? Should she enter a value right away or
do we provide a default and let her change that default later? How can we make
sure that we always present an exhaustive list of options for the object?

There are obviously many solutions to this problem. We explain our preferred solution
in more detail: We ask the user for how to create the predicate and the object at the

16.4 Editing a projection 165

same time, instead of first letting him pick a predicate and then providing him with
options for the object (in a more wizard-style fashion). All variations of this (object,
predicate) request are encoded as so-called property choices. Property choices have to
be created alongside the projection. They are a projection-specific list of all possibil-
ities for adding a new property. Naturally, the end user will never see their structure,
but rather a human-readable label. There are three kinds of property choices:

• typeset(predicate, mode, set of resource): Given a set of types, we either let the
user pick an appropriately typed node or instantiate one for him.

mode = choose: filter the choices by the given set of types. As an ex-
tended option, the user can manually enter a URI. The default for atomic
sublenses.
mode = instantiate: create a new blank node that has the specified
types. The user can later rename it to a URI if she wishes so. The de-
fault for compound sublenses.

• constant(predicate, node): In the case of literals and enumerations (both of
which are atomic), there is no real difference between choosing and instanti-
ating. We give the property a default value that can later be changed.

• enterPredicate(choices): Used for the pseudo-property fresnel:allProperties.
During parsing, it uses the same sublenses for any property it encounters. To cre-
ate a property, we must first ask for a predicate before we can offer the choices
derived from the sublenses. This results in a two-step process: First the user en-
ters a predicate, then she decides what to do about the object. We prepare for the
latter step by computing property choices with no predicate. After the user has
chosen a predicate, these choices are copied and the predicate is filled in. Then
the interaction with the user can continue like with normal property choices. In
the future, we might include a default list derived from the (dynamic) schema.
But there must always be the option to enter a predicate manually, because the
schema might be incomplete. HYENA/Eclipse currently presents all instances of
rdf:Property.

Property choices can be seen as instructions for creating new data. The user makes
his choice, the projection is extended, then possibly edited and applied. The algorithm
for creating the field choices is as follows. Creating the choices happens directly after
creating the projection and is driven by property descriptions. That is, each property
description produces a set of field choices. Obviously, their predicate is the predicate
of the property description. What kind of choice it is, depends on the range of the
property. We compute the construction set for the range (Sect. 14.3.3) and translate
cinst elements to constants and cclass elements to typesets. For example, a literal
class will produce a constant (say, the empty string for xsd:string or 0 for xsd:
integer) and an abstract superclass will produce one typeset choice for each of its
subclasses.

The property range is computed as follows. The selectors of the sublenses are trans-
lated to a set of property ranges. Each class selector is one property range, instance se-
lectors are immediately turned into constant choices. If there are no sublenses, we use
the schema to determine the range. If there is not even a schema, we assign two default
field choices: one for creating an empty literal, one for choosing any RDF resource.
The mode of the choices depends on whether or not a sublens is atomic. Atomic sub-
lenses always produce atomic projections whose structure is not visible, thus choosing

166 16. REMM editing: Specify and apply changes to resources

existing instances is the only meaningful operation. For compound sublenses, we al-
ways instantiate a new projection, but the user can later swap the new instance for an
existing one.

Note that adding a property to a record section actually means adding a labeled
value to a property, because when “add property” is invoked on the section with a
property choice, it looks for an RdfProperty with a fitting predicate

16.4.2 Other editing operations
• Compute statements: This operation is the foundation of applying changes to

RDF (see below).

• Remove value from RDF property: To remove a value from an RDF property,
one moves it from the labeled values to the removed values. Statement compu-
tation reacts accordingly.

• Add member to assembly section: Works the same as adding a property to a
record section, only the predicate is never shown. Thus, member choices are the
same data structure as property choices. A section can hold either one of them
which is why they are called field choices in that class.

• Remove member from assembly section: To remove a member, it is moved to
the removed members.

• Swap members: is used by the user interface when the user moves members via
drag and drop.

16.5 Applying the projection: changing the data
The user always changes the projection and not directly the data. To actually perform
the changes, she applies the projection. Before we can fully describe the application
algorithm, we first have to explain another mode of projection application: Whereas
until now, we have only talked about editing one resource at a time, batch editing is
about editing several resources at once.

16.5.1 Batch editing
There are three kinds of manipulation operations that can be encoded in a projection:
adding new data, removing existing data and changing existing data. Each of these
operations faces new challenges with batch editing. Adding an atomic property value,
such as a literal, to a set of resources is straightforward, but if the property value is
compound (and thus not shared), we have to create a new instance for each resource.
This kind of manipulation is encoded in a compound projection as the node being
null. When removing data from a single resource, we are working with a definite
set of data, so there are no problems. For multiple resources, we want to be able
to remove both all properties with a given predicate and one given predicate-object
combination. Especially the latter feature would be complicated to implement. REMM
instead opts for a combination of the former feature and a simplified version of the
latter: The projection is initially empty. Then one either adds atomic or compound
data. To remove data, one invokes an explicit operation that removes all values of a

16.5 Applying the projection: changing the data 167

given property. This operation is “queued” and shows up as a user interface element,
like the ones created when adding data. When going over all batch-processed resources,
we create a projection for each one of them. Adding data is the same as in non-batch
mode. Removing all properties means removing the projection trees of all values of a
property. The “remove all” operation is encoded in class RdfProperty as the flag
removeAll. That means that during batch editing, one can first remove all property
values (if the flag is true) and then add new ones (like with non-batch projections).

Note that batch processing has two kinds of operations. On one hand, generic
operations: For each batch-processed resource, new RDF is generated when adding a
compound projection and different RDF is removed when removing all properties. On
the other hand, RDF is directly specified when adding atomic projections or parsed
compound projections.

16.5.2 Compute statements: what to remove, add and keep
If you look at Fig. 16.2, you see that the removed data is kept in or below the sections:
the assembly section has a separate attribute for removed elements, the record section
stores removed properties in the property projection. The “compute statements” algo-
rithm produces three sets of statements: statements to remove, statements to add and
unchanged statements. A few examples: null nodes of compound projections cause a
new resource to be created for each invocation. An atomic projection with an old node
and a new node produces one statement to be removed (with the old node) and one
statement to be added (with the new node).

Afterwards, these three sets can be used to implement several operations: The
change operation can be seen as a combination of addition and removal. When one
changes a compound projection, the anchor does not change1. But changing an atomic
projection, we have to first remove the old property and then add the new property.
Thus, we store both the old and the new node with an atomic projection. To remove a
projection (for example, during the change operation or when handling the “removed”
data in an assembly section or a property projection), we compute the statements for
the subtree, ignore the statements to be added and move the unchanged statements to
the statements to be removed. Copying a projection means collecting all unchanged
statements. We also offer a “duplication” operation which means that we have to post-
process the unchanged statements and swap each existing resource with a freshly cre-
ated one.

Immutable data Some named graphs in HYENA are immutable. When parsing a
statement in such a graph, we don’t allow editing. This is implemented in AssemblySection
and Value via the context attribute that holds the graph URI and whether the graph
is mutable (Fig. 16.2). The context data for Value is also used when expanding a col-
lection from rdf:nil to one or more elements, to assign a graph URI to the newly
created first element of the collection. Note that the context turns the LabeledValue
into even more of a statement (minus the subject that is held by the compound projec-
tion).

When handling immutability during the computation of the statement sets, we need
to split the set of unchanged statements into two disjoint sets: The set of mutable
unchanged statements and the set of immutable unchanged statements. The algorithms
for change, removal, and duplication are adapted correspondingly. For example, to

1The only exception are collections.

168 16. REMM editing: Specify and apply changes to resources

completely remove a projection from RDF, one removes all unchanged statements, but
only if they are mutable.

RDF data versus projection-only data A projection is always a mix of data that
has been newly created by the user and data that has been parsed from RDF. The most
frequent case is that a parsed compound projection contains new data. But projection-
only data can also contain RDF data if the user chooses to add a reference to an existing
resource. The “old node” attribute of a node projection indicates whether a projection
is parsed or created: if it is null, then the data does not exist in RDF.

Adding and removing types Compound lenses always make their class the type
of newly created data. For removal, they have to find all equivalent types or subtypes
of the class and remove them. This is due to our decision to use the static instead
of the dynamic type (Sect. 16.3). Removing an atomic projection does not remove any
types, as atomic projections are considered shared data.

Collections Collections are the only compound data structure where the anchor can
change; they don’t have stable identities. As a consequence, if there is a collection
section in a compound projection, there can be no record or container sections. Fur-
thermore, property projections must be ready for the fact that one of its compound
values might change its anchor from a dedicated resource to rdf:nil or vice versa.
Lastly, neither rdf:nil nor dedicated collection anchors have types; we neither add
nor remove them.

It is a desirable feature that collections are handled like any other projection section.
However, when creating an empty compound projection in RAM that does not yet exist
in RDF, we create empty sections as place holders for properties or members to be
added. Then we need to distinguish a collection that doesn’t (yet) exist and a collection
with no members, because the latter changes the compound projection: the anchor
changes to rdf:nil. Contrarily, empty container sections and container sections with
no members are the same. If a collection section is active, all other sections are cleared.
If a non-collection section is active, the collection is reset to “does not exist”. This way,
the invariant is preserved that either the collection section or any other section is active.

To keep the computation of the changed and unchanged statements simple, we
recreate the structure each time. That is, we remove the old structure which in general
contains members that still exist and members that have been removed. Afterwards,
we first create members that have been newly added, then we remove the statements
of members that have been removed, and finally create a new structure that holds the
members that still exist and the new members. To avoid recreating the structure when
nothing has changed, we keep a flag informing us if the data has become “dirty”. The
algorithm for computing the statements of a container is similar.

Computed property projections Computed property projections are produced by
computed property descriptions (Fig. 15.5.2). They are almost the same as RDF prop-
erty projections, but are always immutable and don’t store removed values or a removeAll
flag. They do contain labeled values with usually atomic objects. Currently, one can
only use one of a fixed set of node transformers (functions) to do the computation. In
the future, JavaScript functions or rules could be additional ways of performing this
task.

16.6 Example 169

16.6 Example
For this section, the namespace ex is defined as http://example.com/. The
RDF data contains a declaration of ex:Name as a datatype (for literals):

ex:Name a rdfs:Class ;
rdfs:subClassOf rdfs:Datatype .

We use the following lens for humans and a sublens for a list of friends:

ex:HumanLens a fresnel:Lens ;
fresnel:classLensDomain ex:Human ;
fresnel:showProperties (

[a fresnel:PropertyDescription ;
fresnel:property ex:name ;
remm:propertyRange ex:Name]

[a fresnel:PropertyDescription ;
fresnel:property ex:friends ;
fresnel:sublens ex:FriendsLens]

) .

ex:FriendsLens a fresnel:Lens ;
fresnel:classLensDomain rdf:List ;
fresnel:showProperties (rdf:first) .

The first lens applies to humans and has the property ex:name with the range ex:
Name and the property ex:friends whose range is a list. The second lens is used
for editing the friend list. The fact that it edits lists is indicated by the pseudo-property
rdf:first. The actual data to be projected is as follows.

ex:Adam a ex:Human ;
ex:name "Adam"^^ex:Name ;
ex:friends () .

Parsing this RDF data with ex:HumanLens results in the following projection, which
is a data structure in RAM.

CompoundProjection: ex:Adam
== RecordSection ==
RdfProperty: predicate=ex:name

LabeledValue: context=null
AtomicProjection: "Adam"^^ex:Name

RdfProperty: predicate=ex:friends
LabeledValue: context=null

CompoundProjection: rdf:nil
== CollectionSection context=null ==

The root projection is compound and has the anchor ex:Adam it consists of a single
section, a record section. This record section holds to properties. The first property
ex:name has one value in the default graph (its context is null), an atomic projection
of the literal "Adam"̂ êx:Name. The second property ex:friends has a single
value, a compound projection of an empty list. This compound projection comprises a
single section for the collection.

Removing property values. One can remove property values which means that the
LabeledValue is moved to the removed values. As a result, the labeled values become
empty; empty properties are simply ignored.

170 16. REMM editing: Specify and apply changes to resources

Adding property values. The record section has the following field choices.

constant(ex:name, ""̂ êx:Name)
constant(ex:friends, rdf:nil)

This means that there are two ways of adding a property to the projection. If one picks
the first choice, the resulting projection looks as follows.

CompoundProjection: ex:Adam
== RecordSection ==
RdfProperty: predicate=ex:name

LabeledValue: context=null
AtomicProjection: "Adam"^^ex:Name

LabeledValue: context=null
AtomicProjection: ""^^ex:Name

RdfProperty: predicate=ex:friends
LabeledValue: context=null

CompoundProjection: rdf:nil
== CollectionSection context=null ==

Chapter 17

Configuration in RDF

Contents
17.1 Overview . 171
17.2 Designating primary classes . 171
17.3 Naming resources . 172
17.4 Summary: all configuration data parsed from RDF 173

17.1 Overview

This chapter explains several ways of configuring HYENA in RDF. The two most im-
portant topics are: First, how to designate primary classes. A primary class is preferred
when filtering or creating instances. Second, how to name resources. The chapter con-
cludes by summarizing all possible configuration data in a HYENA repository.

17.2 Designating primary classes

Not all available classes are equally interesting. This is why experts can designate more
important classes as primary. Their special role comes into play in two situations:
First, when displaying lists of resources, one can use the primary classes to filter it.
Then only instances of those classes are shown. Second, when creating a new instance,
only classes currently in use and primary classes are shown. Group-specific classes are
added to a group as either list elements via fresnel:primaryClasses or as prop-
erty values via remm:primaryClass. The latter property has the advantage of be-
ing compositional, where the former is a closed data structure. Global primary classes
are instances of rdfs:Class (of which owl:Class is a subclass) that have a prop-
erty remm:vocabularyCategorywhose range is remm:VocabularyCategory.
This allows us to group classes by purpose. Group-defined primary classes are part of
a default category if they do not explicitly state one.

Example. The following two statements declare the two classes wikked:Page and
tmpl:Template as primary. Note that the former is used by end users, while the

172 17. Configuration in RDF

latter is only used by experts. The groups where the classes are primary have been
chosen accordingly.

hyena:DataGroup remm:primaryClass wikked:Page .
hyena:MetaGroup remm:primaryClass tmpl:Template .

17.3 Naming resources

A resource has several names:

• The full URI: the lowest level of resource naming. Entered in HYENA in angle
brackets: <http://example.com/#Happiness>

• The qualified name (qname): URIs can be abbreviated if they are part of a name-
space (Sect. 2.3.1). Qnames are written without any brackets: ex:Happiness

• The label: the canonical way of adding a human readable label to a resource is
via the rdfs:label property. Labels can only be used to display resources,
not for entering them textually.

• The comment: is a longer description of a resource that is normally added via
rdfs:comment.

17.3.1 Handling namespaces

Qnames exhibit two problems: First, while many RDF storage formats allow one to
define namespaces, some don’t (often if a relational database is involved). There also
is no standard way of transferring such definitions. Second, the same prefix might be
used by several namespaces, resulting in a clash. As an answer to the first problem,
REMM reifies namespace definitions as resources of type remm:Namespace with
the predicates remm:prefixName and remm:uriref. As a partial solution to the
second problem, we regard qnames as a purely presentational mechanism and internally
always use complete URIs. This solves internal disambiguities, but might still make
explicit disambiguation necessary whenever the user enters a qname. Fresnel mentions
qnames as having to be defined per group, but does not (to the author’s knowledge)
specify what vocabulary or mechanism should be used for doing so.

Example. The following RDF defines two namespaces rdfs and gen. The latter
definition also contains an rdfs:comment that is shown as an explanation in the list
of namespaces.

hyena:NamespaceRdf rdf:type remm:Namespace ;
remm:prefixName "rdfs" ;
remm:uriref "http://www.w3.org/2000/01/rdf-schema#" .

[] rdf:type remm:Namespace ;
remm:prefixName "gen" ;
remm:uriref "http://hypergraphs.de/generated#" ;
rdfs:comment "Generated URIs" .

17.4 Summary: all configuration data parsed from RDF 173

17.3.2 Labeling resources

The algorithm for labeling resources is as follows:

• If the resource has been assigned an explicit label via rdfs:label, that label
is used.

• If the resource URI is part of a namespace, the local name is used (for exam-
ple, Resource instead of rdfs:Resource). HYENA originally included the
namespace prefix, but users found the colon in the middle of a name confus-
ing and the local name still conveys all relevant information. The local name is
URL-decoded. In some cases, when a user only provides a human readable label
and HYENA needs a URI, it URL-encodes the label and adds it to a namespace
URI to generate a URI. This works as a preliminary initial solution, because that
makeshift URI can later be renamed to something cleaner.

• The raw URI is used.

Fine-tuning labels

Sometimes a vocabulary defines a property p that would make a good label and the re-
sources that have that property do not define an rdfs:label. Then RDFS inference
can be used to automatically add it: By making p a sub-property of rdfs:label,
that property is added wherever p appears and has the same value.

The Simple Knowledge Organization System (SKOS) vocabulary provides1 several
ways of specifying labels: skos:prefLabel specifies the main label of a resource,
skos:altLabel specifies alternative labels, and skos:hiddenLabel specifies
invisible labels. This is currently not supported by HYENA.

Fresnel has the concept of a label lens, a lens that is used for labeling resources.
Unfortunately, using lenses to translate a resource to text is complicated and not very
performant. Thus, HYENA does not currently support this mechanism. In the fu-
ture, a substitute (for projections) could be a property of atomic lenses that specifies
how to translate a resource to text. This could be done via HYENA’s template syntax
(Chap. 11).

Example. The following RDF expresses the fact that the remm:prefixName of a
namespace resources is a good label.

remm:prefixName rdfs:subPropertyOf rdfs:label .

17.4 Summary: all configuration data parsed from RDF

The following configuration data is parsed from RDF in HYENA:

• Repository settings: configure things such as the window title, the start page and
the sidebar page.

• Brij settings: configures how RDF data is kept in sync with Java source code.

1http://www.w3.org/TR/skos-reference/#labels

http://www.w3.org/TR/skos-reference/#labels

174 17. Configuration in RDF

• Public resources: Certain URIs can be declared public. Public locations appear
in HYENA/Web in the “Go” menu, public settings appear in the “Settings” menu.
An example for the former is a query for orphaned wiki pages, examples for the
latter are the repository settings and the Brij settings.

• Short IDs: are assigned to resources so that the URL that links to them is cleaner.
For example, if a resource has the qname gen:rQeHbY2pyPJLsJzvuD, its
URL in HYENA/Web might be http://localhost/hyena/proj/#gen:
rQeHbY2pyPJLsJzvuD, by assigning the short ID todo that URL becomes
the much more readable http://localhost/hyena/proj/#todo.

• Sub-properties of rdfs:label: for resource labeling.

• Namespace definitions: for resource labeling.

• OWL, RDF: properties, classes (to provide schema support for REMM).

• REMM: groups, formats, lenses.

• Templates: are a more flexible display-only version of lenses.

• Facet definitions: are resources that define what facets to consider for faceted
navigation.

• Tag predicates: are assigned on a per-tag basis to group tags (Sect. 7.4.6).

Part V

The extension framework

18 Architecture: Hyena as an implementation framework 177

19 Multiple interpretations of resources 185

20 Importing and exporting RDF 191

21 Synchronizing files and RDF data 195

While HYENA’s generic editing mechanisms such as lenses are very helpful with
supporting new RDF vocabularies, not all new functionality can be supported in a
generic manner. Accordingly, HYENA as a framework has been made as extensible
as possible, so that it can be adapted to the editing requirements of new vocabularies.
Even the core framework “eats its own dog food”; it is based on the same mechanisms
that are available to extensions.

This part starts with giving an overview of HYENA’s architecture, which is based
on dependency injection (Sect. 18.2). Importing external data as RDF and exporting
RDF as files is implemented as plugins. Several challenges must be overcome for the
import and export translations and are described here. HYENA allows one to interpret
the same resource from different angles: raw data, high-level interpretations, partial
views, editing versus display, etc. These different interpretations must be kept in sync.
HYENA supports multiple interpretations and their presentation via several constructs
and maintains consistency by exchanging events between these constructs. HYENA
projects can be synchronized between installations. As they comprise both files and
RDF repositories, two different synchronization algorithms have to be implemented:
On one hand, file synchronization is based on well-known approaches such as digests.
On the other hand, RDF synchronization is implemented the simplest way possible and
extends ideas from file synchronization to RDF. The granularity of file synchronization
is the file, the granularity of RDF synchronization is the resource.

Creating a framework that involves RDF created new challenges such as handling
multiple interpretations of the same resource. But it also simplified some issues such
as configuration. In addition, HYENA strives for self-documentation and easy discov-
erability of services and provides several conventions to achieve these goals.

176

Chapter 18

Architecture: Hyena as an
implementation framework

Contents
18.1 Overview . 177
18.2 Dependency injection . 177
18.3 The HYENA container API . 180
18.4 Core layer and GUI layer . 182
18.5 Help content . 183
18.6 Discussion . 183

18.1 Overview
This chapter describes the foundations of the HYENA programming framework. The
main architectural principle of the framework is dependency injection. Dependency
injection has two major benefits: It allows the framework to scale to many interde-
pendent components and it allows it to adapt to different scenarios by changing what
components are in use and how they are connected. Dependency injection does this by
letting components declaratively specify abstract dependencies, while a core injector
object chooses concrete implementations, instantiates them, and connects them. The
container API is HYENA’s implementation of dependency injection. HYENA’s archi-
tecture comprises two layers that communicate asynchronously: One or more frontends
manage user interaction, while a single backend manages the data and synchronizes the
change requests from the frontends. The different platforms pose a challenge for au-
thoring help content: It has to be bundled with a web application and an Eclipse plugin
and it should be available online, browsable as HTML and downloadable as a PDF file
and ZIP archive of HTML files.

18.2 Dependency injection
Frameworks that consist of interdependent components face several challenges: Scal-
ing up is difficult. If there are many components, finding out what components are

178 18. Architecture: Hyena as an implementation framework

divide(dividend, divisor)
Divider

log(message)
Logger

log(message)
TestLogger

logger

Figure 18.1: The component class Divider depends on the component class
Logger. During unit testing, it should use the test version TestLogger.

available tends to be difficult. When accessing a component instance at runtime, one
has to know “where to look” (find the right factory, the right global variable with a
singleton, etc.). The more components are deployed, the harder it becomes to set them
up properly; in the proper order, considering all dependencies, etc. Finally, adapting
to different scenarios is challenging. The same abstract component can have several
implementations. Depending on the scenario, different implementations might have
to be picked, where each implementation needs to be set up differently. For example,
HYENA’s core components are used by both HYENA/Web and HYENA/Eclipse. Unit
testing is another example. During unit testing, a component does not exist inside the
complete framework, but is instead only connected to test versions of its direct depen-
dencies. These test versions can just do nothing or perform some kind of logging or
checking.

Dependency injection proposes two means to solve these problems: First, compo-
nents state their dependencies on component interfaces declaratively and the system
performs the wiring for them. Second, the configurator is a module-like mechanism
that encapsulates scenarios and tells the system what concrete components implement
the components interfaces.

18.2.1 Classes as components
Most frameworks implemented in class-based programming languages use classes in
two ways:

• as components, which provide a service and usually exist as singleton instances
in a given environment.

• as data holders, which encapsulate data and are used as parameters for compo-
nents.

Fig. 18.1 gives an example: Classes Divider and Logger are components, what-
ever classes are used for dividend, divisor and message are data holders. This example
illustrates that Divider and Logger will probably exist as singletons in a frame-
work. To unit-test Divider, one checks that something is being logged if there is a
problem such as division by zero. Thus, one would use a class TestLogger instead
of the normal Logger. This class records in RAM when something has been logged,
which allows the unit test to find out about it.

18.2.2 Managing components
Temporarily using TestLogger instead of Logger cannot be done in, say, Java
if Divider instantiates Logger itself. It would also make it impossible to share

18.2 Dependency injection 179

the Logger between several components. Thus, dependency injection uses the con-
tainer as a registry for singleton components, similar to the singleton design pattern
[GHJV95], but without the problems of using global variables. Thus, when Divider
needs an instance of Logger, it asks its container for an instance. Depending on the
scenario, the container maps the class Logger to an instance of TestLogger or
the normal implementation. Components can be viewed as living inside the container
(which explains its name).

18.2.3 Instantiating components
The container has a global perspective on the system, the component only locally
knows what it depends on. To ensure that components are instantiated in the proper
order and configured correctly, control over instantiation is taken away from it and
given to the container. That is, there is an inversion of control, the Divider does not
get to instantiate the Logger, the container does it for it.

To be able to do so, the container keeps a mapping from component interfaces to
component implementation classes. Initially, the container is empty and then instanti-
ates all implementation classes by asking each component what interfaces it depends
on. If an interface already has an instantiated implementation inside the container, that
implementation is handed to the component. Otherwise, the corresponding implemen-
tation must be instantiated, recursively. Obviously, this process can only start if the
dependency relation forms a forest whose roots are components with no dependencies.

The simplest way to inject dependencies is constructor dependency injection: The
constructor arguments state a component’s dependencies and the container becomes a
factory for instances. Thus, all arguments of a component C constructor are component
interfaces. The container invokes the constructor after having either freshly instantiated
or looked up all the components that C depends on.

18.2.4 Configurators
The life cycle of using a container is as follows: When starting up an application, one
first creates an empty container. Then a set of configurators creates the container’s
mapping from component interfaces to component implementations. Configurators
are similar to modules in programming languages. They are usually provided by the
platform and ensure that the right component implementations are chosen. Finally, the
container instantiates all of its components (the range of the mapping).

18.2.5 Other kinds of dependency injection
Two other kinds of dependency injection shall be briefly mentioned (for details, con-
sult [Fow04]): Setter dependency injection use the container as a registry in exactly the
same way as with constructor injection, but the constructor is nullary and all the setters
of the new instance are invoked the same way that the constructor has been before-
hand. Thus, handing in instances shifts from the constructor to the setters. Interface
dependency injection is different from constructor and setter injection. Here, a class
that needs to be injected implements an injection interface and during container con-
figuration one maps injection interfaces to injectors that invoke the methods defined in
the interface to set up a newly created instance.

While the way of dependency injection that we have seen so far was passive (a real
inversion of control), you can also turn this idea inside out and use the so-called service-

180 18. Architecture: Hyena as an implementation framework

locator pattern. The service locator is a registry that is used for actively retrieving
dependencies. HYENA uses the container for both dependency injection and service
location. The latter enables one to use the container for creating instances even after
all components have been set up. To do so, the container itself can be requested as
a dependency by a constructor. This mixed approach has worked well for HYENA.
It is necessary, because components might have internal objects that have component
dependencies, too. And the container can only inject dependencies into objects that it
manages. A possible declarative solution would be to mark component fields whose
values should be dependency-injected (similarly to setter injection), but often one wants
to control exactly under what circumstances the instantiation happens and how often.

18.2.6 State of the art

Currently, there are a few dependency injection frameworks available. Some popular
examples are: Java EE has introduced dependency injection with version 5.0. Spring
has had dependency injection from the start and has recently lessened its reliance on
external XML files by providing annotation-driven configuration.

Google Guice [gui08] is a lightweight dependency injection framework from Google
that comes closest to what HYENA dependency injection is like. But, HYENA was
created before Guice and thus, we are still using our code. Long-term, HYENA will
probably migrate to Guice.

18.3 The HYENA container API
The container API is HYENA’s implementation of dependency injection. Addition-
ally, HYENA defines conventions for discovering components and for extending them.
HYENA’s life cycle management helps with initializing and cleaning up components.

18.3.1 Components and their roles

A component in HYENA can play zero or more roles at the same time. To designate
itself as player of a role, a component implements an interface or extends an abstract
class. The following roles are available:

• Service: provides functionality that can be accessed by other components. This
role functions purely as a marker so that service providers can be easily looked
up.

• Service contribution: Lightweight components can be placed in a container to
contribute to a service. This role has two functions. On one hand, all service
contribution classes (or interfaces) inherit from a marker interface and can thus
be looked up. On the other hand, the service contribution role itself dictates
the format of the contribution. A contribution is either directly data, performs a
function (such as translating something) or a factory. An example of a factory
is an inspector factory which is invoked with a resource and returns applicable
inspectors.

• Life cycle participant: implementing one of these interfaces allow a container to
be notified of container life cycle stages (startup, shutdown, etc.; see below).

18.3 The HYENA container API 181

Note how all of the above mechanisms can be controlled by a configurators and com-
ponents. A configurator provides services by registering components that implement
the service role. A configurator specifies a service it needs, by letting one of its com-
ponents depend on an interface that none of its component implement. This interface
dictates the required service. A configurator contributes to services by registering com-
ponents that implement the service contribution role. Components signal the need to
be informed of life cycle events by implementing the life cycle participant role.

18.3.2 Container life cycle
The container goes through several stages of which components can be notified:

• Startup: Components can be notified if a container has just been created, to
perform one time only initialization tasks.

• Reloading: This stage has been introduced to allow components to reparse ser-
vice contributions and configuration data in RDF (e.g. after it has been edited).

• Shutdown: The container is about to be destroyed. This is the time for compo-
nents to perform clean up tasks.

If a component implements one of the following interfaces, it is automatically informed
of life cycle stages by the container.

• ReloadModifier: notifies a component when the container is reloaded. As a re-
action, a component may parse RDF or look for implementors of a Component-
Contribution interface in the container. Via a sub-interface of ReloadModifier,
a container can specify that it wants to be reloaded after another container (e.g.
if it needs data that that component obtains during reloading). An alternate way
of ensuring an order for reloading is another sub-interface where the compo-
nent returns a reload priority. Components with lower priorities are guaranteed
to be reloaded before components with higher priorities. The derivation update
(Sect. 9.4) is also performed during reloading.

• ShutdownModifier, StartupModifier: are similar to ReloadModifier, but used for
tasks that only need to be performed once, either at startup or when a container
is shut down.

18.3.3 Examples of service contributions
The standard HYENA services accept the following contributions. Each one is an inter-
face or an abstract superclass that is extended to make the contribution.

• Type constructors: are used to add support for new data types to Wikked (Sect. 10.3.4).

• Data importers: extend the Eclipse user interface with the ability to import new
data.

• Embedders: make it possible to display a certain kind of data (as represented by
a model piece, see Chap. 19) inside a wiki page.

• Model piece factories: derive representations in RAM by either parsing RDF or
by transforming other representations in RAM.

182 18. Architecture: Hyena as an implementation framework

• Publishers: implement ways of converting RDF data to external representations,
for example wiki pages to printable HTML or feed resources to an RSS feed.

• Save interactions: implement additional actions that are necessary when saving
some resources. For example, wiki page content needs to be added to the file-
based version control system.

• HYENA libraries: are classes whose methods are added as commands to the
Wikked markup language.

• Inspector factories: given a model piece, provide inspectors for editing it.

• RDF provider: the component implements a method that returns a Java resource
path to an RDF file. The data in that file then becomes part of every HYENA RDF
repository. This mechanism allows components to bring their own declarative
RDF data.

• StatusProvider: allows a component to return a short status report in HTML.
This status report is accessible via the user interface.

Note that one can also make a service contribution via RDF data (Chap. 17).

18.4 Core layer and GUI layer
Both HYENA/Web and HYENA/Eclipse have two layers:

• Core layer, backend: manages the data.

• Graphical user interface (GUI) layer, frontend: manages GUI interactions.

These two layers are necessary, because there are usually several frontends accessing a
single backend: HYENA/Web has several web browsers that host the GUI layer, while
the core layer is hosted by the server. HYENA/Eclipse has a single-threaded user in-
terface as frontend and the HYENA engine as the backend. But there have already
been experiments where distributed installations of HYENA/Eclipse were collabora-
tively editing the same data. This meant that the installations performed live synchro-
nization. The synchronization layer could be viewed as a different kind of frontend,
running in parallel with the graphical user interface.

18.4.1 Transferring data
Interactions between the core and the GUI layer usually happen asynchronously, re-
sults are returned via a continuation. A frequent pattern is that of model data being
transferred between the layers: The core layer creates the model data and provides it
with everything so that it can be used even when there is no direct access to the RDF
repository. For example, a labeled node pairs an RDF node with its label, a text string,
so that the node can both be displayed in a human readable way and be used in oper-
ations that change RDF data. The GUI layer displays the model data, changes it and
sometimes sends pieces of it back to the core layer to change the RDF repository. From
the above description, it follows that model data needs to be as modular as possible.
Especially HYENA/Web often uses resources as references. For example, a projection
does not refer directly to its lens, but only stores the resource. Thus, lenses can remain
a server-only data structure.

18.5 Help content 183

18.5 Help content

LaTeX

HTML

Eclipse
help TOC

(XML)

Help topic
constants

(Java)

PDF

Figure 18.2: Help content. All of the help content is authored as LaTeX. From the
LaTeX sources, HTML files and a PDF file a produced via standard tools. A custom
process translates the HTML file to an Eclipse Table of Contents file and a Java source
file with constants for context-sensitive help.

One of the challenges of help content is that it appears in several places and in
different shapes:

• At the HYENA web site: The help content should be directly browsable as HTML
and downloadable as a ZIP archive of HTML files and as a PDF file.

• HYENA/Web: should come bundled with the help content so that it is always
available. Context-sensitive links in some of the views should jump to a descrip-
tion in the help content.

• HYENA/Eclipse: has the same requirements as HYENA/Web, except that there
is a standard format for help content that consists of XML files with the table of
contents and a set of HTML files with the actual content.

The solution is as follows. All of the content is authored as LaTeX source files, from
which all other formats are generated. Standard tools are used to translate LaTeX to
HTML files and a PDF file. The HTML is served by HYENA/Web as a sub-website
http://server/webapp/help/ A custom program parses the HTML to pro-
duce the Eclipse TOC files and a Java source file with enum constants for help topics.
The former enables the help content to be bundled with HYENA/Eclipse. The latter is
used by dialogs and views to specify where they are explained. Each constant contains
the data that is necessary for HYENA/Web and HYENA/Eclipse to jump to the correct
location in the bundled help content. A final deployment step generates a ZIP archive of
the HTML files and copies all generated files to the appropriate places (Eclipse projects
etc.).

18.6 Discussion
Dependency injection solves the challenges facing component-based frameworks that
were outlined at the beginning of this chapter: Scaling to many components is not a

184 18. Architecture: Hyena as an implementation framework

problem. Accessing one of many components at runtime is as simple as mentioning its
interface in the constructor; there is no additional knowledge required to receive an in-
stance. Setting up many components is performed by the container, which ensures that
they are instantiated in the right order, receive all their dependencies, etc. The container
also detects dependency cycles and displays descriptive warnings. Dependency injec-
tion also makes Java more dynamic and thus components are better decoupled: If one
decides that a component needs one more service, one just adds the corresponding com-
ponent to its constructor arguments. Usually, changing a constructor signature forces
one to change all of its invocations. With dependency injection, this is not necessary.
Adapting to different scenarios is handled by writing scenario-specific configurators
that are used to initialize the container.

Additionally, HYENA provides conventions that help with several practical prob-
lems: By using a development environment to look up implementors, standard inter-
faces are used to find components that provide services and to find ways of contributing
to them. Components implement life cycle interfaces to be informed of events such as
startup and shutdown. Lastly, HYENA’s way of mixing dependency injection and the
service locator pattern brings the advantages of dependency injection to objects that
are used internally by components.

Chapter 19

Multiple interpretations of
resources

Contents
19.1 Overview . 185
19.2 Requirements . 185
19.3 Multi-models . 186
19.4 Embedders . 187
19.5 Inspectors . 187
19.6 Model piece methods . 188

19.1 Overview

The same resource can be interpreted in several ways, be it at a low level, looking at
the raw RDF, or at a high level, by giving more meaning to its content. Some interpre-
tations can also be derived from others, e.g. if a resource contains a query that can be
interpreted as either the query (when editing it) or as the query results. The derivation
has to be updated when the interpretation it is derived from changes. Interpretations are
a way of parsing RDF, to actually use them, they need to be presented to the user, by
either embedding them inside a wiki page or by editing them with a graphical widget.

A model piece object holds a single interpretation, multi-models contain all model
pieces of a resource. Embedders are responsible for translating model pieces to Wikked.
Inspectors are graphical widgets for editing model pieces. Event handling ensures that
model pieces, their derivations and their presentations are all kept in sync.

19.2 Requirements

RDF’s basic building blocks are very fine-grained. On one hand that is the reason of
its versatility. On the other hand, one usually needs to interpret the data before it can
be used. Additionally, there are generally multiple possible interpretations of the same
resource. One might use a wiki page editor to change its content, use the meta-data

186 19. Multiple interpretations of resources

lens to add the name of the author, or the “all properties” lens to show the complete
resource.

This shows that the interpretations are means to an end, one wants to present such
an interpretation, to either edit it via an inspector (a graphical widget) or to embed
it inside a wiki page. The same interpretation can be presented in different ways.
One (hypothetical) inspector can edit an interpretation of a resource as a wiki page in
WYSIWYG mode, where text styles are directly visible. Another inspector can edit
the same interpretation as plain text, where text styles show up as markup commands.
Both interpretations and their presentation can come from multiple sources. At any
time, there might be a new plugin that provides a new way of interpreting a resource or
a new way of presenting an existing interpretation.

Some interpretations might be derived from others. For example, if a resource
contains a SPARQL query, there will be one interpretation for editing the query and
another interpretation for displaying the result of the query. If an interpretation is
derived from another one, the former interpretation is called the derivation and the
latter interpretation the base. Whenever a base changes, its derivations need to be
updated, as well as their presentations. HYENA/Eclipse uses this mechanism to show
a preview of a wiki page while editing it. Finally, as some interpretations are costly to
create, one should only do so on demand, if they are needed by a presentation.

Speaking in terms of the model-view-controller pattern, what has been called an
interpretation is analogous to a model, what has been called a presentation is analogous
to a view.

19.3 Multi-models

dereference()

ModelPieceHandle ModelPiece

collectDerivations(ModelPieceHandle)
ModelPieceFactory

anchor : Resource
MultiModel

collectDerivations()

custom fields
CustomHandle

dereference()

modelPieceHandles

CustomModelPiece

basebase

Figure 19.1: Model piece handles are produced by a factory and added to a multi-
model. Each model piece handle points to at most one model piece handle it is derived
from (its base). Model pieces also point to their base.

A single interpretation of a resource is called a model piece in HYENA. All model
pieces of a resource are collected in a multi-model. A model piece handle (Fig. 19.1) is

19.4 Embedders 187

a reference to a model piece. The model piece is created on demand, when the derefer-
ence() method is invoked for the first time, and cached afterwards. A handle must have
enough descriptive data so that one can determine, for example, what inspectors can
be used and what titles they should have. An example is the model piece handle for
projections where the label of the lens is needed for the inspector title and the resource
of the lens is needed to create the model piece.

Interpretations are provided via model piece factories. Each factory attaches deriva-
tions (as handles) to a model piece handle. The derivation process starts with a default
model piece for a resource. Each newly created model piece handle is again offered for
derivation to all factories.

19.4 Embedders

simpleClassName
parameter

EmbedderId

collectConfigs(ModelPieceHandle)
embed(EmbedderId, ParameterMap, ModelPiece)

Embedder

Unique among all embedder
configurations for a given
MultiModel

Singleton factory for Wikked expressions

label : String
EmbedderConfiguration

collectConfigs()

id

Figure 19.2: An embedder produces Wikked expressions and declares what it can em-
bed by returning configurations.

An embedder (Fig. 19.2) presents a model piece inside a wiki page. It is a factory
that translates a model piece to a Wikked expression. The same model piece can possi-
bly be embedded in several different ways. An embedder declares its capabilities in this
regard by returning zero or more embedder configurations, given a model piece handle.
The most important part of such a configuration is the ID which uniquely identifies a
way of embedding among all embedder configurations for all model piece handles of
a single multi-model. Thus, an embedding command can precisely specify how to em-
bed by providing a resource and an embedder ID (there is a simple serialization of an
embedder ID as a text string). If only the resource is provided, the best embedder ID
is picked according to an internal ranking system. An example of the same embedder
producing configurations with different IDs are the projections of a resource. They all
have the same embedder, but the parameter field of the ID contains the URI of the
lens.

19.5 Inspectors
Inspectors (Fig. 19.3) are graphical widgets for editing model pieces. They are created
with an indirection similar to model pieces: A factory takes a model piece handle and
returns inspector configurations. These are used for constructing an inspector menu:

188 19. Multiple interpretations of resources

createControl(ModelPiece, InspectorId)
Inspector

simpleClassName
parameter

InspectorId

id : InspectorId
label : String
rank : PresentationRank
mode : PresentationMode
group : PresentationGroup
inspectorClass : Class

InspectorConfiguration

Information for constructing
the inspector menu and for
creating inspectors

collectConfigs(ModelPieceHandle)
InspectorFactory

collectConfigs()

Unique among all inspector
configurations for a given
MultiModel

id

Figure 19.3: An inspector factory declares what can be graphically represented by
returning configurations. An inspector is created from the class included in a configu-
ration and initialized with a model piece and an ID.

A rank determines what inspectors to prefer by default. A mode indicates whether
an inspector edits, displays, or configures. A group provides a title for a group of
related inspectors (for example, all wiki page inspectors: edit page, display page, page
history, etc.). The inspector is created on demand, using the inspector ID to distinguish
different ways of inspecting, in a manner similar to embedder IDs.

19.6 Model piece methods
The methods of model pieces are concerned with saving and keeping derivations and
presentations in sync. In many ways, RDF resources are treated like document files;
they can be read into RAM, saved, etc.

Model pieces are always sent back and forth between the core layer and the GUI
layer (Sect. 18.4), which, if they are hosted by different systems, are at least separate
threads. They read from RDF and write to RDF at the core layer and are displayed and
edited at the GUI layer. There are the following groups of methods in model pieces:

• Change propagation: a recompute() method is invoked any time a model
piece has been changed. This informs the derivations that they have to adapt to
they new content of the base.

• Read, write, reset the state: Reset is used for initialization, too, even if the model
piece is never saved in RAM. This group of commands includes a method to
remove the RDF at a given resource from the repository. By default, saving is a
combination of removing the old content and writing the new content. Whenever

19.6 Model piece methods 189

the model piece is changed by one of the methods in this group, the changes have
to be propagated to the derivations.

• GUI update: After a change has been propagated through a derivation chain at
the core layer, an event for GUI updating is sent through the same chain, but
at the GUI layer. Inspectors react to this kind of event and update their display
when they receive it.

Dirtiness is a boolean property of an entity. It indicates that the entity has changed
and that the changes have not yet been “saved” to a more permanent storage; entity
and storage are out of sync. Dirtiness serves two purposes. First, it enables some kind
of “save” operation, which it only makes sense to execute if there are changes to be
saved. Second, it indicates that action has to be taken when closing a dirty entity:
One can warn about changes being lost or save automatically. There are two kinds of
dirtiness related to model pieces:

• Model piece dirtiness: indicates that changes in the model piece have not yet
been written to RDF. If a model piece is dirty, the operation to save it is enabled.

• Inspector dirtiness: indicates that changes in the inspector have not yet been
written to the model piece. Most inspectors always immediately commit changes
to the model piece. One example of an exception is wiki page editing where
the content of the text field is only written to the model piece upon saving. A
“preview” operation is used to perform an intermediate step: The edited text is
written to the model piece, but not to RDF (yet). In HYENA/Eclipse, this allows
one to use a second inspector for previewing the edited page. This inspector
is shown side by side with the editing inspector and displays the rendered wiki
page. It is updated whenever the model piece changes.

190 19. Multiple interpretations of resources

Chapter 20

Importing and exporting RDF

Contents
20.1 Overview . 191
20.2 Importing . 191
20.3 Exporting . 193

20.1 Overview
Especially when starting to work with HYENA, a problem is how to get data into it.
Thus, HYENA can import several file formats: CSV (data entries encoded in plain text),
web browser bookmarks, and BibTeX (bibliographical) entries. The main challenge
when importing is to assign stable URIs to imported entities, so that the same data can
be re-imported after it has changed.

The export capabilities of HYENA ensure that its data can be processed by dedi-
cated applications: Wiki pages can be exported as LaTeX to start a document in that
typesetting system or as HTML for printing. News and comment feeds can be exported
as RSS, which allows one to read the entries in an RSS news reader, in a manner sim-
ilar to emails in an email program. Data entries can be exported as JSON. Client-only
data browsers run in a web browser and make this JSON accessible interactively, with-
out the need for a special server. The main challenge of exporting was to support an
additional way of authentication, to keep exported data safe: Web applications have
cookie-based authentication, while external programs, such as RSS readers, that access
files on the Web use HTTP authentication.

20.2 Importing
The main requirement when data to RDF is change preservation: Importing external
data, changing the data externally and importing it again should add the changes made
externally, but keep the changes made in RDF. Thanks to named graphs, there is a
simple way of fulfilling this requirement, if the URIs of imported entities are stable:
One reserves one named graph for each external data source. When importing, the
named graph is cleared and all of the data is imported. Additions to the imported

192 20. Importing and exporting RDF

Family name #prop foaf:givenname #prop tagging:tag #type my:Contact
#labelToResource

Doe Jane friend
Smithee Alan work

Table 20.1: Example CSV table that is ready to be imported into RDF. The first column
has the human readable title “Family name” that is converted to a property URI. The
second and third column directly specify a property URI. The last column assigns the
same type to each imported resource. In the third column, #labelToResource is used to
look up tag URIs by label.

entities by the user are stored in a separate graph and are thus preserved. As the URIs
are stable, the connection between the additions and the imported data does not break.
The following sections describe how stable URIs are created for different data formats.

20.2.1 CSV
Data entries, such as lists of things, are some of the most useful information to be man-
aged by CoIM. This information is often kept in spreadsheets and relational databases,
both of which can export files in the Comma-Separated Values (CSV) file format. The
translation consists of converting each row to a resource and the cells in that row to
properties of that resource. The first row contains column specifications to indicate
how to translate a cell to a property: What predicate to use, how to convert the cell
value etc. Several challenges arise:

• Keeping property URIs stable: Each column must have either a human readable
name or a URI as its title. In the former case, HYENA deterministically converts
the name to a URI via URL-encoding. In the latter case, the URI is directly used
for properties.

• Keeping entity URIs stable: The default is to combine the URI of the named
graph and the row number to an entity URI. Alternatively, one use an extra col-
umn to manually assign a URI or a unique key (which will be URI-fied).

• Resource-valued properties: One can either directly enter URIs into cells or let
HYENA look up the label of a resource to find its URI.

• Several values per cell: If an attribute of an entity can have several values, one
often uses a single column and writes several values in a single cell. HYENA
allows one to specify a regular expression to split this kind of text into multiple
values before continuing processing.

• A fixed value for each row (such as the resource type): can be assigned via a
column specification.

Tab. 20.1 shows an example CSV table.

20.2.2 Web browser bookmarks
HYENA imports web browser bookmarks in the standard Firefox format which is JSON-
based. Firefox assigns each bookmark a stable integer ID, so generating stable URIs is

20.3 Exporting 193

not a problem. Bookmark fields are translated using a Firefox-specific vocabulary that
has been created as part of HYENA. The main challenge was handling tags properly, as
Firefox encodes them with much redundancy. To allow users to only import part of the
bookmarks (where privacy can be an issue), they can choose to only import bookmarks
in a given folder or with a given tag.

20.2.3 BibTeX
The author has implemented an external tool called Bibolizer that converts BibTeX data
to the Bibliographic Ontology1. BibTeX entries already have unique key which helps
with generating stable URIs. It is also possible to override the automatic conversion of
keys to URIs via a “uri” BibTeX field.

So the main challenge is to consolidate names, as the Bibliographic Ontology uses
resources for the entities behind these names. Entities to consolidate are books, jour-
nals, persons (authors, editors), proceedings. One can provide Bibolizer with manual
mappings in an external CSV file. Each row in that file is a mapping and contains the
kind of name (book etc.), the name, and either a URI or a reference to another name.
This kind of reference helps when the same name appears in different versions in a data
set. When Bibolizer encounters a name, it uses the following strategy to convert it to a
URI:

• If there is a manual mapping, that mapping is used.

• If the name is a journal, book, or proceedings, and a corresponding BibTeX entry
is found, the URI of that entry is used.

• If a resource exists whose type is appropriate for the name and whose label is the
name, then that resource is used.

• As a last resort, a new resource is created for the name and given the appropriate
label so that it can be found again later.

20.3 Exporting
As the world around HYENA still thinks in files, this is the usual unit of export. HYENA/
Eclipse writes exported data to files, HYENA/Web serves exported data as files. Be-
cause exported files will often not be accessed by someone who is logged into HYENA,
HYENA/Web performs HTTP-based authentication.

20.3.1 LaTeX
Wiki pages can be exported as LaTeX which is useful when keeping notes as bullet
lists that later should be integrated into, say, a paper written in LaTeX.

20.3.2 Printable HTML
Normally wiki pages are rendered as HTML with user interface elements (links to go
to an embedded page etc.) and displayed inside the HYENA user interface. In order to
have something that is easily printable, HYENA can export a wiki page as a stand-alone

1http://bibliontology.com/

http://bibliontology.com/

194 20. Importing and exporting RDF

printable HTML page. Links inside such a printable page do connect to other printable
pages. This enables search engine support for future versions of HYENA, as search
engines need access to linked HTML pages. Additionally, such support would entail
an automatically generated site map that points to the stand-alone pages.

20.3.3 RSS
HYENA has feeds (sequences) of wiki pages to manage news and comments. These
feeds can be embedded into a wiki page, so that one sees, for example, the four most
recent news messages or a count of the comments that have been made. By exporting
a feed as an RSS feed, one can use an external feed reader program with a comfortable
email-like user interface. Most of these programs support HTTP authentication so that
feeds can also be protected.

20.3.4 JSON
Exhibit2 and Facetator3 are two examples of frameworks that only need an HTML
page and a file with JavaScript Object Notation (JSON) data to publish that data on the
web. Compared with full-featured database web applications, one does not have editing
capabilities. On the flip side, no special server is needed for deployment. The resulting
web application is also very responsive, because no client-server communication is
necessary (apart from the initial loading of the database into RAM, which is fast for
small to medium-sized data sets). Exporting JSON from RDF is simple. HYENA uses
JSON hashes where the keys are the RDF predicates and the values are the RDF objects.
If a property has multiple values, they are exported as a JSON array.

2http://www.simile-widgets.org/exhibit/
3http://hypergraphs.de/facetator/

http://www.simile-widgets.org/exhibit/
http://hypergraphs.de/facetator/

Chapter 21

Synchronizing files and RDF
data

Contents
21.1 Overview . 195
21.2 Synchronizing files . 195
21.3 Synchronizing RDF . 197
21.4 Future research . 198
21.5 Discussion . 199

21.1 Overview
Synchronization is an important service of the HYENA platform. If there are two in-
stallations of HYENA that have the same project, the user can interactively reconcile
the differences between them. Both the file system and the RDF repositories are syn-
chronized. For synchronization, one compares a project on the local system (the local
project) with a project on a remote server (the remote project). Then the user can
choose how and if to propagate changes. Afterwards, both projects have the same
content (except for changes the user explicitly chose to ignore).

Unless the user chooses not to propagate some of the changes, both projects have
the same content afterwards. Synchronization starts by synchronizing the projects at
file level and continues by synchronizing repositories at resource level.

21.2 Synchronizing files
File synchronization compares the files in the local project and the remote project.
It has the following phases: Scanning shows all paths where the local file and the
remote file are different or where a file only exists at one location. Selecting lets the
user determine how and if the detected changes should be propagated. Committing
propagates the changes In more detail, the algorithm is as follows.

• Scanning: A summary of a file contains the path, a digest, and a file size. First,
the summaries for files of the remote project are created and sent to the local

196 21. Synchronizing files and RDF data

system. Then local summaries are created. Local and remote summaries that
have the same path are paired. If a pair has the same content (as determined by
the digest), we discard it, leaving only the pairs with changes.

• Selecting: Two kinds of changes exist: Either there are files on both sides that
are different, or only one side has a file. The latter case means that either a
new file has been created or an existing file has been deleted. The user can then
choose to keep the local state, to keep the remote state, or to do nothing and skip
the pair.

• Committing: If a change is made then either the side to keep has a file and it is
copied to the other side or it does not have a file, in which case the file on the
other side is deleted.

21.2.1 Special files
The structure of a project is as follows.

.hyena_project/ hidden project data
project.properties project properties
local/ data that is not synchronized

sync_journal/ keeps track of what has been synchronized
thumbs/ automatically generated thumb pictures

page_history/ histories of wiki pages
_bookmark_cache/ locally cached web sites
_repositories/ RDF files turned into websites by HYENA/Web
_uploads/ uploaded files

Two directories are exempt from file synchronization:

• .hyena_project/local/: the sync-journal is installation-specific and thumbs
are always created on demand, by scaling an image file (that is synchronized).

• _repositories/: A repository file is only copied if it only exists on one side.
Otherwise, HYENA always performs a synchronization with resource granularity
(see below).

Finally, the page history (Sect. 10.5) is synchronized, but hidden from the user. This
history grows monotonically1 and is guaranteed not to have clashes, because the file
names are globally unique and the files are immutable. Thus, synchronization can be
performed automatically.

21.2.2 Keeping a journal
Putting a project online means that it is managed by a server that applies changes to
it. Be it via synchronization, be it directly via the web application. If one assumes
that file changes rarely clash (the same file being changed in two locations at once),
one can virtually automate synchronization: After two parties have synchronized, they
store the state of their version of the project at that time in a journal. Before the
next synchronization that journal can be used to determine what has changed since
the last synchronization. This information can be used for two purposes: First, the

1In principle, the history grows monotonically, in practice some pruning is performed to ensure that
memory consumption does not explode.

21.3 Synchronizing RDF 197

change propagation can get a default setting so that we keep the change of the side
that actually changed. Second, labeling each side of differing files can be improved:
Without a journal, differing files could only be labeled as differing. With a journal,
one of the sides is labeled as “changed”, the other one (in most cases) as “unchanged”.
Without a journal, a file that only existed on one side was always labeled “new”. With
a journal, one side is labeled “unchanged”, while the other side is labeled as “removed”
(then the side with the existing file is unchanged) or “added” (then the side with the
missing file is unchanged). A journal does not reduce the number of displayed changes,
but it helps with handling them.

While each installation of HYENA keeps its own journal, it must keep a separate
one for each synchronization partner. Thus, we need a way to globally identify HYENA
installations. There are ways of doing this automatically (e. g. via a computer’s MAC
address), but none of them work for all scenarios (the installation might be copied to
another system etc.). HYENA lets users manually assign installation IDs. Optionally,
the user can let HYENA generate a unique ID and assign it. Not having assigned an
installation ID switches the journal off, but one still can synchronize.

Critical for synchronization bookkeeping is when to do it and with what informa-
tion, because the data to be synchronized constantly changes. To that end, HYENA
uses the digests collected during scanning as a snapshot of the system. If the digests
don’t match during committing, the change is not performed. The data written to the
journal comes from that snapshot, too2. Note that while pairs of files with the same
content are not displayed to the user, they still have to be put into the journal. Other-
wise, changing one of them leads to both of them being displayed as “new” during the
next synchronization, as a result of the files being different and not existing in either
journal.

21.3 Synchronizing RDF
The greatest challenge with synchronizing RDF is the existence of blank nodes. The
literature provides two possible solutions: Use inverse functional properties to assign
unique IDs to blank nodes [VG06] or use graph similarity [MTEBG07]. We use a
very simple solution and completely ignore blank nodes, but provide the user with an
operation that renames all blank nodes to generated URIs. In normal operation, HYENA
avoids blank nodes as much as possible. For example, new resources are created as
URIs that contain a generated globally unique identifier. This is in line with linked
data principles that demand that every resource have a URI.

Furthermore, one has to decide on what should be the atomic units to be synchro-
nized. Resources are an obvious choice, but collections should also be treated specially,
because they are conceptually atomic, but stored as a chain of resources in RDF. Syn-
chronizing them as such would be very cumbersome for users. SPARQL helps us with
getting a list of relevant URIs:

• Non-collection resources: All resources that don’t have a collection predicate
(rdf:first, rdf:rest).

• Collection resources (first in a chain of collection elements): All resources that
have a collection predicate but are not pointed to by rdf:rest.

2That means that the client sends the digests back to the server so that it can save them to its journal. It
does not let the server compute its own digests, which might have changed since the last scan.

198 21. Synchronizing files and RDF data

21.3.1 Synchronization algorithm
RDF synchronization uses two data structures for holding resources: A holder contains
all the RDF data of a resource or collection, a digest contains only summary informa-
tion. A digest is created by translating a resource or collection to a text string and by
computing a digest for that text; using the same algorithm as for files. To ensure deter-
minism of the translation to text, the statements of a resource have to be ordered. This
can be done reliably, because there are no blank nodes involved.

1. Server: sends all digests and the installation ID.

2. Client: computes all holders, but only keeps those that are different from the
remote data (as determined via the digests). If a resource only exists on the
server, an empty holder is created. The resulting holders are annotated via the
journal (what is unchanged, removed, new, different).

3. Client: The URIs of the resulting holders (which all differ from the server) are
sent to the server.

4. Server: uses the URIs to compute holders (including empty ones) and annotates
them via the journal. All RDF data inside the holders is sent so that the changes
to be performed can be computed and offered to the user as a preview.

5. Client: constructs pairs of holders and presents them to the user.

Each of the pairs differs in some way and the user can choose to keep the local state,
to keep the remote state, or to ignore. These operations are the same as with files. Ad-
ditionally, RDF synchronization offers to merge, where both states are kept. Merging
an assembly (a collection or a container) is not really possible, instead, HYENA con-
catenates assemblies. The local assembly comes first, then the remote assembly. The
changes are computed on the client as four sets of RDF data:

• Add locally: If the remote data is kept or merged, it is added locally.

• Remove locally: If remote missing data is kept, it is removed locally.

• Add remotely: Upload local data if it is kept or merged.

• Remove remotely: Remove remote data if missing local data is kept.

21.4 Future research
The main topic of future research will be distributed version control (DVC) for RDF.
With DVC, no central server is need and changes can be freely synchronized between
peers. Furthermore, all copies of a main version control repository have all of the data
of the main repository, they are complete clones. This means that the complete history
is available, even when a copy cannot connect to the main repository. The choice of
the main repository is arbitrary, if it fails, any copy can replace it.

Examples of file-based DVC are Git3 and Pastwatch [YCM06]. Project files should
probably be synchronized using such a system, instead of implementing a custom so-
lution. Another challenge is how to handle long literals, such as the ones used for wiki

3http://git-scm.com/

http://git-scm.com/

21.5 Discussion 199

page content. File-based version control systems save space for text files by only sav-
ing change increments. RDF DVCs should do the same for long literals. Note that if
version control keeps prior versions, those take over the responsibilities of the journal.
The current user interface can still be used for reconciling changes.

21.5 Discussion
HYENA’s algorithm for synchronizing files uses the common practice of creating di-
gests to detect differences. The user interface for change reconciliation and the idea of
the journal was inspired by the open source Unison file synchronizer [PV04].

The actual contribution of this chapter is to apply these ideas to RDF synchroniza-
tion. To make this application possible, several problems had to be solved. Blank nodes
pose a problem, because they are often used in such a manner that nodes with differ-
ent IDs express the same entity. HYENA’s solution is to ignore blank nodes during
synchronization, to offer to the user to rename all blank nodes to URIs, and to avoid
blank nodes in normal operation. To avoid handling collections as a chain of resources
(making them cumbersome to synchronize), they are treated as an atomic unit, just like
plain resources. Digests for resources and collections are created by deterministically
translating them to text and computing the digest for the text.

The result is a simple, but reliably algorithm for synchronizing RDF. By ignoring
blank nodes, some complex issues were avoided. This may seem like an easy way out,
but there is actually a growing consensus in the community that blank nodes need more
permanent IDs.

200 21. Synchronizing files and RDF data

Part VI

Related work

22 Hypermedia and Hypertext 203

23 Annotating text 209

24 RDF editing 215

25 Information managers 221

26 Semantic wikis 231

27 Faceted navigation 235

28 Synchronization and versioning 243

This part examines the state of the art in several areas that are related to HYENA:
Hypermedia and Hypertext systems predate and inspired the world wide web. Yet, at
the same time, they still exceed it in power. As traditional wikis can be considered a
poor man’s hypertext, it serves any wiki implementation well to consider literature in
this area. Annotating text describes solutions for adding annotations to text, semantic
or otherwise. HYENA’s support for annotation is currently limited, so this section has
been mainly added for the sake of completeness. RDF editing has been implemented
by various programs, a section describes the most important ones. RDF editing is at the
core of HYENA, so these programs are closely related to it. A section on information
managers covers systems that are often based on semantic web technologies and are
similar in principle to RDF editing, but take a higher-level view. HYENA is currently
more generic and thus closer to being an RDF editor, but information managers provide
important ideas about how to improve usability. Semantic wikis extend wikis with
support for RDF data. HYENA is an RDF editor that has been extended with support for
wiki markup. Faceted navigation is a way of efficiently navigating sets of objects with
attributes. Some systems are described, including several ones that specifically apply
faceted navigation to the semantic web. Synchronization and versioning examines how
the problem of synchronizing RDF repositories has been solved in the literature. Most
effort has been focused on how to handle blank nodes properly, because to synchronize
blank nodes (whose IDs are not stable), one has to find isomorphic subgraphs; not an
efficient operation.

What sets CoIM apart from its competition is its vision of a ubiquitous platform for
information management with a unified model for the content. The most closely related
work are the information organizer Haystack, the social semantic desktop Nepomuk,

202

and the social semantic wiki Kiwi. Haystack does not include a wiki and is a Desktop-
only application without multi-user access. There is no unified model for its data with a
level of abstraction higher than RDF. Nepomuk is a collection of Desktop-only applica-
tions whose common foundation does not abstract beyond RDF. Furthermore, generic
RDF editing is not possible.

The closest relative of CoIM is Kiwi. This project, which has been started after
CoIM, shares many of its goals: It aims to provide a reusable ubiquitous platform where
information boundaries are broken down: System boundaries between applications and
between different kinds of information are abolished. The objective is to not just link
data, but to provide true integration. However, because CoIM and Kiwi have a different
focus, their contributions are complementary and not in conflict: CoIM focuses on
data, Kiwi focuses on knowledge. CoIM focuses on personal information management,
Kiwi focuses on social information management. CoIM focuses on generic browsing
and navigation, Kiwi focuses on a query language and reasoning. While both CoIM
and Kiwi provide a content model with a higher level of abstraction than RDF, their
approaches are different. Kiwi’s content items are a combination of unstructured text
(encoded as XML) and RDF and can be nested. CoIM also integrates unstructured text
and RDF, but provides an encoding in pure RDF. An advantage of the Kiwi approach is
that more structure is infused into text and can be used for more sophisticated querying.
An advantage of the CoIM approach is that it stays closer to raw RDF, facilitating future
integration with the linked data ecosystem.

Chapter 22

Hypermedia and Hypertext

Contents
22.1 Overview . 203
22.2 Conceptual Open Hypermedia (COHSE) 203
22.3 NoteCard and issues for hypermedia systems 204
22.4 Aquanet: a hypertext tool to hold your knowledge in place . . . 208

22.1 Overview
This chapter looks at work related to HYENA in the fields of hypermedia and hypertext.
Conceptual Open Hypermedia analyzes hypertext pages to dynamically add hyperlinks
to related content. Relatedness is determined via knowledge bases. The next paper
analyzes experiences with the NoteCard hypermedia system and posits seven issues for
hypermedia systems. Even though the paper is quite old, these issues are still relevant
today. Aquanet is a system that stores frame-based data and offers visual support for
knowledge structuring tasks.

22.2 Conceptual Open Hypermedia (COHSE)
The Conceptual Open Hypermedia Service (COHSE, [JSB+08]) aims to solve disad-
vantages of linking in traditional hypertext:

• Static links: cannot adapt to users’ needs, always reside at the link source, never
at the target (backlinks).

• Ownership: of a document is needed to add links. External updates are not
possible, neither are annotations.

• Legacy: link targets can become invalid.

• Binary links only: links always have a single target and no label.

COHSE is implemented as a browser that dynamically adds links to web pages, based
on a knowledge base (KB). The browser does this by mapping terms found in the

204 22. Hypermedia and Hypertext

document to lexicons in the KB, which contains the links. Links can be adapted to
different audiences by using corresponding KBs. Links can have multiple targets and
additional links are created by examining broader and narrower terms specified in the
KB.

The requirements on a knowledge base are as follows:

• It should provide rich lexical support for matching terms in documents.

• It should represent relationships between concepts, especially generalizations
and specializations.

• It should be flexible enough to accommodate data from many kinds of knowledge
bases, so that external data can be easily imported.

The authors found out that ontologies are too precise for their applications and that
the semantically looser knowledge organization systems (KOS) used in library and in-
formation science (thesauri, etc., see Chap. 4) are a better fit. The main difficulty is a
different notion of generalization and specialization: In ontologies, it implies subsump-
tion, whereas for humans, looser association is useful: Specializations of accident
in the Medical Subject Headings knowledge base include kinds of accidents such as
traffic accidents (which are subsumed by accident), but also accident
prevention (which is not subsumed by accident, but still a narrower concept).

COSHSE initially tried to import external knowledge bases into OWL, but many
had the above mentioned imprecision which was difficult to formalize in OWL. Instead,
the RDF-based standard Simple Knowledge Organization System (SKOS) for defining
knowledge organization systems was chosen. In SKOS, one defines concepts and for
each concept a preferred label, alternate labels and a definition. Concepts are arranged
into hierarchies by broader and narrower relations and linked via associative re-
lations. SKOS fulfills the requirements for knowledge bases: its labels provide lexical
support; broader and narrower specify generalization and specialization; its se-
mantics is loose enough to accommodate a variety of external sources.

22.2.1 Comparing with HYENA

HYENA does offer dynamic linking via its faceted navigation, but does not currently
offer related content for a wiki page.

22.3 NoteCard and issues for hypermedia systems
The paper “Reflections on NoteCards: Seven issues for the next generation of hyper-
media systems” [Hal01] describes the classic hypermedia system NoteCards and issues
for future systems that were discovered while implementing and using it. NoteCards
was created in the mid 1980ies and contained a number of very modern features that
make the conclusions drawn from their use in practice still relevant today.

The NoteCards information model is based on two main constructs: notecards and
links. Notecards are containers of something editable: text, graphics, etc. A link is
a directed connection between two notecards and has a label. The link shows up as
an icon in the source card. There are two special kinds of notecards for aggregating
information: a browser is a notecard with an editable diagram of a set of notecards and
the links between them. A filebox is similar to a directory in a file system: It holds
and categorizes other notecards and fileboxes, leading to a hierarchy of categories.

22.3 NoteCard and issues for hypermedia systems 205

NoteCards requires that notecards be contained in at least one filebox. Navigation in
NoteCards happens by following links (in content notecards, browsers and fileboxes)
and by searching the notecards for content.

The author characterizes hypermedia systems along three dimensions: scope (be-
tween the extremes of personal private use to global distributed use), browsing ver-
sus authoring (read-only systems such as instructional delivery environments will have
few or no editing tools when in use), target task domain (systems are never completely
generic, they reflect the needs of their target audience). Using these dimensions to cat-
egorize NoteCards, it is designed for individuals and small work groups; it is mainly
an authoring system; and it was originally designed as a tool for idea processing and
authoring in a research environment.

The seven issues for hypermedia systems are as follows:

1. Search and query. Navigational access worked well for NoteCards in the fol-
lowing situations: if the network was small (50 to 250 cards) and few people (2 to
3 persons) were involved; if the task was about visual editing of a diagram (where
mainly an overview browser was involved and the actual network played less of a
role); if the network was an online interactive presentation (as these are mainly about
navigation, about guiding a user through the content). On the flip side, if large unfamil-
iar, heterogeneously structured networks are involved, search is essential. The author
distinguishes content search (for example, looking for text in text cards) and structure
search (which additionally considers the structure of the network, such as “two con-
nected cards that both contain the word ‘hybrid’”). The former is well understood,
while the latter still holds research challenges: query languages need to be designed,
they need user-friendly ways of being expressed (visually, by example, etc.), and effi-
cient evaluation algorithms need to be found (possibly for subsets of the language). In
recent years, RDF query languages represent progress in this area, but many research
questions remain: simple user interfaces; support for custom datatypes such as date
intervals (“all entries that have been modified between March 1999 and September
2005”) or location-based search (“all entries whose coordinates are close to my current
location”); etc. The author envisions search to be used as a filtering mechanism, to
only display part of a network.

2. Composites. NoteCards lacks a way of representing composite nodes; links al-
ways designate reference and never inclusion. Overview browsers can display a sub-
network, but it doesn’t inherit its incoming and outgoing links. Document cards can
be compiled from a tree of text fragments and images, but changes are not propagated
automatically. One only can inspect the document at a single level; there is no way to
zoom into parts of it. Questions to be answered for composites include how versioning
of composites should work; whether a node can be included more than once; how com-
posites inherit incoming links from their parts and whether incoming links point to the
node itself or to the node as part of the composite (comparable to URL fragment IDs).

3. Virtual structures for dealing with changing information The static nature of
linking hampers the ability of hypermedia systems to react to changes in the content.
The “problem of premature organization” is encountered when one has to name and file
and segment content when creating it, often before one has a firm grasp of the infor-
mation space. When this space evolves, the initial decisions become obsolete. Possible
solutions to this problem are virtual structures and virtual links. Virtual structures are

206 22. Hypermedia and Hypertext

defined by search queries, by turning such a structure in a composite node, one could
annotate and complement it. Virtual links specify their source extensionally (explicitly)
and their destination intentionally (e.g. via a query).

4. Computation in hypermedia networks Normally, hypermedia systems passively
store information. In contrast, expert systems contain inference engines that actively
derive new information and add it to a system. One could add such an engine to a
hypermedia system, making it even more similar to a frame-based system. Note that
this issue is orthogonal to issue 7, extensibility and tailorability.

5. Versioning With a versioning system, users can look at a history of changes of
a hypermedia network or explore several alternate versions (so-called branches) at the
same time. This is an essential enabler for some applications, for example, in software
engineering where versions play an important role in release management. Version
control makes linking much more complicated, as one has to decide what is being
linked: specific versions of nodes, newest versions, or the newest versions in a partic-
ular branch. Additionally, one has to decide for composites if and when new versions
of their parts should lead to new versions for them. As a change often spans several
nodes, version sets are the idea of collecting all individual node versions that are the
result of that change. Layers, an alternative to version sets, encode changes so that one
can explore their effects by applying layers or sets of layers to a base version. This is
especially useful in a collaborative system.

6. Support for collaborative work The paper mentions several collaborative activi-
ties that are all well supported by hypermedia systems: creating annotations, maintain-
ing multiple organizations of a single set of materials, transferring messages between
asynchronous users. Collaboration builds on two kinds of foundations that need to
be improved: the mechanics of multiuser access and the social interactions involved
in editing. The former consists in extending the standard technologies for shared
databases (transactions, concurrency control, and change notification, etc.) to hyperme-
dia systems. For example: transactions in hypermedia systems tend to be long-running;
locking must be very fine-grained; new ideas for conflict management need to be ex-
plored (e.g. create a version branch if editing changes conflict); interested parties need
to be notified of changes, possibly even before a change happens. Support for social
interactions involved in collaborative hypermedia editing centers on the idea of mutual
intelligibility. The paper lists three kinds of collaborative activities: substantive activ-
ities (creating content), annotative activities (annotating the content with comments,
critiques, questions, etc.), and procedural activities (discussions about how to edit the
content, agreement on conventions, etc.). The last activity is not well supported in hy-
permedia systems and would involve functionality such as change histories, discussion
forums, tracking individual contributions, recording usage conventions. To make con-
tent easier to understand for people it is shared with, a rhetoric of hypermedia should
be developed. An already developed example are Landow’s discourse techniques for
link traversal: the rhetoric of arrival has to describe why the link should be followed,
the rhetoric of arrival needs to describe how the node one has just arrived at relates to
where the user departed from.

7. Extensibility and Tailorability The genericity of hypermedia systems is a bless-
ing and a curse. It is a blessing, because such a system can be used for almost any

22.3 NoteCard and issues for hypermedia systems 207

task. It is a curse, because it is never well suited for a specific task. The most frequent
request from the NoteCards user community was a manual showing examples of the
system being used for specific tasks. To remedy the problems of genericity, hyperme-
dia systems are extensible and tailorable. At the time of the paper, this was supported
via a programming interface, which precludes non-programmers for adapting such a
system to their needs, even if the changes would be minor. The challenge is to provide
minor modifications for non-experts, while keeping the powerful programming inter-
face. GNU Emacs is cited as an example of a system that is built around an interpreter
for a full-featured programming language. Its extensibility scales from simple calls
into the system via a built-in command line to full-blown changes of its internals.

22.3.1 Comparing with HYENA

HYENA solves some of the issues raised by the paper; offering support for structured
(meta-)data, in addition to hypertext, is essential for doing so. Other issues still remain
to be solved and the relevancy of the paper even today is surprising and shows how
little has changed in recent years.

1. Search and query. Having the structure of a HYENA repository explicit in RDF
enables the kind of structural query that the paper mentions. Currently still miss-
ing is more efficient content search (which would have to be combined with
SPARQL for structural search) and more sophisticated datatype-specific search.
HYENA’s resource sets represent the vision of using search for filtering a net-
work.

2. Composites: HYENA has composites and distinguishes between linking and em-
bedding. It currently does not let composites inherit incoming links of their parts.

3. Virtual structures: HYENA has resource sets that can be manifested and anno-
tated, but only limited support for virtual linking (related content etc.). Prema-
ture segmentation is also a problem and can be fixed by providing operations for
refactoring between in-resource structures and embedded content. Additionally,
in-resource structure should be better supported (referencing, annotation).

4. Computation: HYENA does not currently use an inference engine. Two routes
in this direction are possible: On one hand, simple inference for things such
as transitive properties and for declaring to resources as equal. On the other
hand, special-purpose inferencing for time, geolocation, aggregating values, etc.
Currently, there is no obvious need for an advanced logic inference engine (e.g.,
one that supports full description logics).

5. Versioning: HYENA has a history for single wiki pages. Versioning for all RDF
data would be nice, as would be branches. Ideally, one would have all the capa-
bilities of a modern distributed version control system, which would lead to new
interesting usability challenges.

6. Collaboration: HYENA only has very rudimentary conflict management. One
possible feature for the future is live collaboration: Changes of several users
are displayed directly, at the same time at for each user that makes a change.
The idea of a rhetoric for hypertext is intriguing, but much more complex. If
successful, information would be easier to understand for more people and over
a possibly very long time.

208 22. Hypermedia and Hypertext

7. Extensibility and tailorability: The programming framework of HYENA has al-
ways been very important (simple extensibility of the wiki markup language,
invocation of GUI operations, etc.). In the future, this aspect will probably be ex-
panded, even an evolution into a full-featured programming environment is con-
ceivable, as software engineering and information management face many simi-
lar problems (manage complexity, be self-explanatory, easy exploration, etc.).

22.4 Aquanet: a hypertext tool to hold your knowledge
in place

AquaNet [MHRJ91] has been developed based on the experiences with NoteCards. Its
goal is to support knowledge structuring tasks that is the encoding and manipulation
of knowledge for which traditional hypertext offers rudimentary support, but is not
explicit enough. AquaNet stores its information in a frame-based database and focuses
on flexible diagrammatic editing of this information. How data is represented as a
diagram can be specified declaratively.

22.4.1 Comparing with HYENA

In contrast to AquaNet, HYENA has currently very little support for diagrams, but offers
better integration of structured and unstructured data, and better search and navigation.

Chapter 23

Annotating text

Contents
23.1 Overview . 209
23.2 Annotation and navigation in semantic wikis 209
23.3 Unstructured Information Management Architecture (UIMA) . 211
23.4 Open Calais . 213

23.1 Overview
This chapter surveys papers that investigate the semantic and non-semantic annotation
of text. The first paper describes how annotation and navigation is handled in current
semantic wikis. The Unstructured Information Management Architecture is a platform
for unstructured information management solutions (text analysis, image recognition,
etc.). Open Calais is a web service provided by Reuters that converts natural-language
text to entities, facets, and events encoded in RDF.

23.2 Annotation and navigation in semantic wikis
The paper [ODM+06] defines a conceptual model where an annotation is a quadruple
(subject, predicate, object, context) where the annotation itself is considered the object
and is connected to the subject to be annotated via a predicate. The context of the
annotation is also recorded. The paper distinguishes three levels of annotations in
semantic wikis: layout (bold, italics, . . .), structure (headings, hyperlinks, bullet lists,
. . .), and semantics (annotations that relate page elements to resources). Traditional
wikis only provide the first two kinds of annotations while semantic wikis have all of
them.

The authors describe a challenge for wikis: to distinguish a concept from the
wiki page about it. For example, if a wiki page is about a book and located at a
URI for that book, it is not clear what the value of property dcterms:created
means: the creation date of the wiki page or the creation date of the book? Sem-
perWiki, an implementation of the ideas in the paper, solves this problem by using
resource names (such as urn:w3.org) for concepts and resource locators (such as

210 23. Annotating text

http://wikibase/W3C) for documents and uses the property semper:about
to link a document to the concept it describes.

23.2.1 Annotations in wikis

dimension \ wiki SMW SemperWiki KiWi HYENA
attribution current current, any URI current current
granularity page page, doc. fragment content item page, loc. in page
repr. distinction no yes no no
terminology reuse no yes yes yes
object type literal, page literal, page, URI lit., res. lit., res.
context no no yes yes

Table 23.1: Annotation in the semantic wikis Semantic MediaWiki (SMW), Semper-
Wiki, KiWi and HYENA.

The authors distinguish three levels of annotations in semantic wikis (Tab. 23.1):

Subject attribution What is the subject of the annotation? Semantic MediaWiki (SMW)
and SemperWiki mostly author RDF via a special syntax inside wiki pages. Sem-
perWiki can also create properties for resources other than the current page.
KiWi and HYENA don’t have that option, because RDF can be edited directly
which avoids the problems of duplicating RDF data inside wiki pages.

Granularity How fine-grained are the annotated entities? SMW annotates pages,
SemperWiki can additionally annotate a fragment of an external XML docu-
ment by creating a statement whose subject points to the fragment via XPointer.
But that is more a theoretical than a practical feature. KiWi and HYENA can in
principle add RDF data anywhere. Furthermore, KiWi has a fine grained unit
of information called content item and HYENA can embed small pages. HYENA
can also place annotation links anywhere in a wiki page.

Representation distinction Can one distinguish a wiki page and the concept it de-
scribes? SemperWiki has a scheme where one can point from the page to the
concept and annotate either one of them. KiWi and HYENA have support for
editing RDF outside of a page and thus do not need direct support for this fea-
ture.

Terminology reuse Can an existing vocabulary be used for annotations?

Object type What kinds of objects can an annotation have?

Context KiWi and HYENA can record who made an annotation and when, but only for
externally assigned data, not for annotations made from inside the wiki content.

23.2.2 Comparing with HYENA

The kind of RDF annotations that can be made in wiki markup by SemperWiki are
treated as a separate concern in HYENA and handled by lenses. This approach is less
brittle than duplicating the data (which HYENA avoids as much as possible). HYENA
does not currently make the distinction between documents and concepts. Should the

23.3 Unstructured Information Management Architecture (UIMA) 211

need arise, a predicate similar to semper:about could be supported. Apart from
that, one can always use lenses to edit data-only resources and refer to those resources
from wiki pages.

Broad facet values are added externally to wiki pages and can hold context data
(such as who created the annotation). Links, embeddings, and normal annotations are
narrow and do not store context.

23.3 Unstructured Information Management Architec-
ture (UIMA)

Quoting from [Apa08]:

UIMA is an open, industrial-strength and extensible platform for creating,
integrating and deploying unstructured information management solutions
from powerful text or multi-model analysis and search components.

UIMA originated at IBM in 2005 and has become an Apache Software Foundation
incubator project in October 2008.

Unstructured data is a large and quickly growing source of information, it includes
text, voice and video. While unstructured data contains content that is both high-value
and most current, that content is also buried in noise, semantics are implicit and search
is inefficient. Unstructured information management applications can be characterized
as analyzing large volumes of unstructured data to discover, organize, and deliver rele-
vant knowledge. This usually means that concepts of interest (for example, named en-
tities such as persons, organizations, locations, etc.) are detected in unstructured data.
More advanced analyses can detect opinions, complaints, threats, or facts. Also de-
tectable are relations such as located-in, finances, supports, purchases, etc. The results
of these analyses are exported as a special data structure from which one can feed con-
ventional data processing and search technologies such as search engines, databases,
or data mining applications.

Unstructured information management employs a variety of analysis technologies,
including: natural language processing, information retrieval, machine learning, au-
tomated reasoning, ontologies and knowledge sources (such as CYC, WordNet, etc.).
They are usually developed independently, using different techniques, interfaces, and
platforms. The Unstructured Information Management Architecture (UIMA) is a frame-
work that integrates these analysis technologies and builds a bridge between unstruc-
tured information and structured information. UIMA is language-independent, cur-
rently supported languages are Java and C++. The following terms form the conceptual
foundation of UIMA.

Analysis engines, annotators and results. Analysis engines perform analyses by
invoking one or more annotators “inside” them and return annotations as so-called
analysis results.

Representing analysis results in the Common Analysis Structure (CAS). The
CAS is an object-based data structure where objects have types (organized in a single-
inheritance hierarchy) and properties with values. For text documents, there is a pre-
defined annotation type with a begin and an end. Other types such as Organization,
Phone Number, Noun Phrase can inherit from this type. If at least two annotations

212 23. Annotating text

refer to the same entity, an entity type instance is introduced, it contains occurrences,
that is, the annotations that refer to it.

Component descriptors. The building blocks of the UIMA framework are called
components, annotators and analysis engines being two examples. Components consist
of two parts: the component descriptor with component meta-data and the implemen-
tation, for example a Java program. The descriptor contains standard meta-data such
as the component’s name, author, version. But it also contains the required input CAS
and the types that exist in the output CAS.

Aggregate analysis engines. While simple analysis engines (AE) only contain a sin-
gle annotator, many contain a chain of annotators. An example would be an entity
detector that contains the following annotators:

• language identifier

• tokenizer

• part of speech annotator

• shallow parser

• named entity annotator

Each annotator adds more data to the CAS. Users of the aggregate AE don’t need to
know about the internal structure, aggregate AE descriptors only note the input require-
ments and output types. The chain itself can be specified declaratively or programmat-
ically.

Multimodal processing. For multiple modalities and other applications, UIMA sup-
ports the simultaneous analysis of multiple views of a document, in the form of CAS
views. A CAS view holds both the data to be analyzed and the analysis results. For
example, for speech analysis, one might first segment the audio data, then transcribe it
to text, and finally detect named entities in the text. The first step annotated audio data,
the second step produced text, the third step annotated text. Thus, two CAS views were
involved, one for audio, another one for text. Applications of CAS views for text are
transforming an HTML document to plain text or translating a text from one language
to another.

Example application: semantic search. If a search engine not only indexes key-
words, but also entities, one can perform searches such as “the island Java” and “the
mythical person Paris” (avoiding obvious synonyms).

23.3.1 Comparing with HYENA

UIMA is completely complementary to RDF and HYENA. In fact, when HYENA’s fo-
cus turns to features such as analyzing wiki content and making tag recommendations,
it might very well use UIMA to implement them.

The CAS is a language-independent runtime data structure. Introducing RDF-
specific ideas is not necessary, because it already supports arbitrary ontologies and
export formats. In the future, one might define RDF-based exchange formats for the
UIMA.

23.4 Open Calais 213

23.4 Open Calais
Open Calais is a web service maintained by Thomson Reuters. It converts a natural-
language1 text into RDF data that describes the meaning of the text: It identifies entities
and the facts and events they are involved in. Open Calais explicitly sees itself as part
of Linked Data on the Web (Chap. 3), integrates with a number of tools such as Drupal
and Wordpress, and is used by online news services such as CBS Interactive / CNET
and Huffington Post. Furthermore, they provide the a tool called Marmoset that inserts
RDFa (Sect. 3.3.3) into an article. For example, given the input

Angela Merkel has visited Barack Obama at the White House.

Then Open Calais infers the following data:

• Entities

– Category “Organization”: White House

– Category “Person”: Angela Merkel, Barack Obama

• Events & Facts

– Generic Relations: visit, Angela Merkel, Barack Obama

– Person Communication: Barack Obama, announced

23.4.1 Comparing with HYENA

Similar to UIMA, future versions of HYENA might rely on Open Calais for semantic
analysis.

1Currently, English, French and Spanish are supported, with plans to support more languages.

214 23. Annotating text

Chapter 24

RDF editing

Contents
24.1 Overview . 215
24.2 The Protégé OWL plugin . 215
24.3 Tabulator redux: writing into the semantic web 217
24.4 OntoWiki . 218
24.5 TopBraid suite . 219
24.6 Annotation profiles . 220

24.1 Overview

This chapter presents work related to HYENA that concerns RDF editing. The Protégé
OWL plugin is an OWL-based editor that is based on the frame-based ontology editor
Protégé. Tabulator is an RDF editor for distributed editing based on the linked data
principles. OntoWiki is an RDF editor with wiki-like editing interface. Apart from
database features, it also provides social features such as rating of resources and pop-
ularity tracking. The TopBraid suite is a family of products for ontology-supported
RDF editing, visually specified data mashups, and semantic rich internet applications.
Annotation profiles is a framework that turns declarative specifications into editors for
metadata expressed in RDF.

24.2 The Protégé OWL plugin

The paper [HKM04] argues that RDF syntax is complicated and error-prone. As there
are no comprehensive methodologies for authoring ontologies, tools play an even more
important role. Tools should intelligently support authoring and debugging ontologies
and turn-around should be quick to enable interactive ontology development. Two
dimensions of scalability are important: First, ontologies can grow quite large. Second,
authoring might be done collaboratively. Finally, tools should be extensible, because
customization will be frequently necessary. They can provide a useful platform for
experimenting with new technologies (such as new OWL reasoners).

216 24. RDF editing

Protégé. Protégé is an ontology editor and a knowledge acquisition system. OWL
support has been added via a plugin. Protégé has a simple and flexible metamodel
that is similar to UML’s Meta-Object Framework: It provides modeling constructs and
is meta-circular (modeled in itself). The metamodel represents ontologies as classes,
properties (slots), property characteristics (facets and constraints), and instances. Pro-
tégé provides a Java API to query and manipulate its models. It can automatically cre-
ate user interfaces for editing instances. Plugins can extend Protégé with new widgets
for editing instances and larger sub-tools called tabs. Examples of tabs are performing
queries, accessing data repositories, visualizing ontologies graphically and managing
ontology versions. Furthermore, Protégé has a multi-user mode where several users can
edit the same ontology at the same time, distributedly. Protégé’s database for ontology
storage is highly scalable.

The OWL plugin. Protégé is frame-based and OWL is description-logic-based. Thus,
not everything can be mapped directly, but Protégé’s flexible meta-classes help. For
example, to represent disjoint class relationships, a new property :OWL-DISJOINT-
CLASSES was added to Protégé’s owl:Class metaclass. Other constructs required
more work to bring them to Protégé. For example: OWL stores cardinality restric-
tions in anonymous superclasses, while Protégé stores them as facets with the property
declarations. Thus, the OWL plugin automatically synchronizes facet values with re-
striction classes. As an alternative to the verbose OWL RDF syntax and the more
compact OWL abstract syntax, Protégé opted for an even more concise syntax that is
based on description logics. Classes are displayed in a hierarchy, like in frame-based
systems. Class definition components are partitioned into “necessary&sufficient” (≡
equivalence), “necessary” (v subclass-of), and “inherited” (from subclasses).

Ontology Maintenance and Evolution. To ease ontology development, the OWL
plugin borrows ideas from integrated programming environments, where, during com-
pilation, one receives a list of errors and can use test cases to check programs. Test
cases find a loose analogon in making class definitions very specific and then using de-
scription logic (DL) reasoners to reveal inconsistencies, hidden dependencies, redun-
dancies, and misclassifications. So-called ontology testing also mimics test cases and
compile buttons. Support for DL reasoners allows for consistency checking (whether
a class could have instances) and classification (inferring a subsumption tree from the
asserted definitions). To help users, the plugin displays both the manual assertions
and what the reasoner has inferred. Asserted information is annotated with inferred
information, where relevant.

24.2.1 Comparing with HYENA

Protégé is the platform of the OWL plugin in much the same way that Eclipse (and,
to a lesser degree, GWT) is the platform for HYENA. The Protégé OWL plugin does
not offer HYENA’s integration of structured and unstructured data, but is similar in
many regards when it comes to editing structured data. For example, it argues for ex-
tensibility via a general-purpose programming language and automatically generates
from-based graphical user interfaces for editing. Furthermore, Protégé’s data model is
frame-based and similar to the CoIM RDF editing metamodel (REMM). An example
of this similarity is Protégé supporting abstract classes (that cannot have instances). In
contrast, OWL does not and the authors of the paper have defined an annotation prop-

24.3 Tabulator redux: writing into the semantic web 217

erty for declaring OWL classes abstract. Furthermore, the plugin provides a simplified
mode for users that shows properties together with their restrictions (as opposed to a list
of generic conditions). REMM also prefers this way of displaying schema information.

24.3 Tabulator redux: writing into the semantic web
The paper [BLHL+08] argues that the semantic web lacks an element that made the
web (of documents) so popular: instant gratification by seeing the results of one’s work.
Instead, semantic web technology is mainly used in the back end. Tabulator has origi-
nally been written as a browser of linked data (Chap. 3), without any domain-specific
programming, except for a few common concepts such as time and geographical lo-
cation. To turn the web into a read-write space, tabulator needed to provide editing in
addition to browsing. When implementing editing of linked data, one faces a number
of challenges: With the web of data, linked data introduces a new level of abstraction
above the web of documents. This complicates the user interface, as breaking levels
is sometimes necessary, for social reasons and for helpful error reports. Editing will
involve a potentially unbounded vocabulary. Lastly, with multiple data sources, one
faces the view update problem when trying to understand the effects of editing.

The above mentioned breaking of levels happens in two cases. First, with data
coming from many sources (including inference), the user needs to be able to find out
where it comes from to properly use it. Second, if an error happens, the error might
be caused at document/repository level or below. For example, data might be missing
in a document, a document might have syntax errors or network errors might prevent
one from reading a document at all. Thus, Tabulator displays resources with a visual
indicator of the status (unfetched, fetching, ok, error) of the document they are from.
More information about the document and possible errors are given on hover. There
are three ways of editing distributed RDF data: First, one document at a time is read
and written. Second, several documents are accessible read-only, additions are written
to a single document. Third, several documents are read simultaneously and a subset
(possibly all) can be written to. Tabulator opted for the third alternative. It tightly
couples vocabulary URIs and editable documents. For example, if the subject of a
triple has the URI doc#name and doc is the URI of an editable document, the triple
is written to that document.

There are two editing modes in Tabulator: Outline mode incrementally expands a
tree starting at a given resource. Table mode constructs a table from a set of properties:
All resources that have those properties are table rows, the properties themselves are ta-
ble columns. Tabulator caches all displayed data locally and additionally automatically
retrieves property and class definitions. Panes display additional information about a
resource underneath the pane for the outline. For a class, a pane lists the instances.
For a document, a pane shows network transactions and the content (which might be
HTML or RDF).

During editing, Tabulator uses the cached RDF data to hide URIs as much as possi-
ble. To specify a URI, one types labels (assisted by auto-completion) or drags existing
URIs. Predicates are selected from a list of predicates that have already been encoun-
tered during browsing, be it directly in RDF or in the schema.

Protocol-wise, Tabulator uses HTTP for reading, WebDAV for writing files, and
SPARQL/Update for RDF changes. Plans for the future include an offline mode, real-
time collaboration (currently one only sees changes when retrieving new information),
and spreadsheet operations for the table mode.

218 24. RDF editing

24.3.1 Comparing with HYENA

Tabulator offers distributed editing of data, that is, multiple data sources to which one
has read and write access. But it does not provide access control, nor offline capabili-
ties. Tabulator has universal versions of HYENA’s lens-defined form and table editing.
For form-based editing, HYENA uses fixed definitions for what properties are shown
and how deeply the tree of RDF data is expanded. Tabulator always shows all properties
and expands the tree on demand, to arbitrary depth. For table-based editing, HYENA
again pre-defines a set of properties via a lens (which also filters by type what resources
to display). Tabulator lets one pick a set of properties and displays all resources in the
table that have those properties.

Tabulator hides URIs whenever possible, even for entering data. HYENA uses URIs
for entering data, but displays the labels otherwise, whenever possible. HYENA sup-
ports any kind of literal, Tabulator currently only supports plain literals.

24.4 OntoWiki
OntoWiki [ADR06] is not a true semantic wiki, but rather an RDF editor with wiki-
like editing features. The paper observes the following problems with most current
semantic wikis:

• Usability: wiki markup becomes complicated, because it needs to be able to
express RDF statements.

• Redundancy: RDF data is both stored in a repository and encoded in wiki markup.

• Scalability: when changing statements, one has to modify both wiki markup and
RDF data.

In OntoWiki, browsing happens in a three-part interface. A bar on the left offers starting
points for browsing: available knowledge bases, a class hierarchy, and a text box for
searching. The content area in the center displays the initial results as lists whose
entries link to more detailed individual views. In addition to lists, sets of resources can
also be displayed on a map or a calendar. A bar on the right holds tools and context
information for the content area.

OntoWiki has widgets for statements, nodes, resources, literals, literals with a spe-
cific datatype (dates, HTML fragments, . . .), and file uploading. These widgets can be
styled and configured depending on the context where they appear. The context is the
property, the datatype of a literal, the property and the class of its value, the knowledge
base, the user, or the group of the user. Widgets are aggregated in three kinds of views:
Metadata views edit data such as labels, and annotations that can be attached to any
resource. Instance views use the OWL class of an instance to find widgets for editing
it (optionally hiding properties that appear in the schema, but never in the repository).
Compound views edit several resources at once, for example in a table. Social collabo-
ration is supported by

• change tracking: Every change is tracked and one can subscribe via RSS/Atom
or email to change notifications. Such notifications can be restricted to specific
instances, to all instances of a given class, or to changes made by a specific user.

• commenting on statements: which is implemented via RDF reification.

24.5 TopBraid suite 219

• rating of resources: along several dimensions that can be defined per class. For
example, publications could be rated according to originality, quality, and pre-
sentation.

• popularity tracking: Accesses to resources are tracked, allowing to determine
how often they are visited.

• activity/provenance: The system records who contributed what.

Search is supported in the form of faceted browsing and full-text search. The latter
can be refined by property (e.g., only search in values of rdfs:label) or type of the
resource (e.g., only search in publications).

24.4.1 Comparing with HYENA

HYENA aggrees with the OntoWiki observation that duplicating RDF data in wiki
pages is not a good idea. But it still considers wiki markup essential for integrated
data management. OntoWiki does not have a construct that corresponds to HYENA’s
lenses. Even though its widgets are context-dependent, there is no way to offer alterna-
tives for the same context. Lastly, HYENA’s search is more powerful than OntoWiki’s.
For example, faceted navigation and keyword search can be used in parallel.

24.5 TopBraid suite
The TopBraid suite (TBS) is a family of products:

• TopBraid Composer: an Eclipse-based semantic modeling tool. External data
sources such as spreadsheets, XML and UML can be integrated. It can also be
used to develop semantic client/server applications based on TopBraid Ensemble
and TopBraid Live.

• TopBraid Ensemble: allows one to deploy rich internet business applications that
are dynamic and model-based. It supports data mashups (that is, data processing
chains and visualizations of the results) via the SPARQLMotion visual scripting
language.

• TopBraid Live: a semantic web application platform with a focus on service-
orientation and dynamic, model-based, multi-user applications.

24.5.1 Comparing with HYENA

TBS focuses on enterprise applications and semantic applications. HYENA focuses on
personal and collective information management and data modeling. TBS is a very
powerful software package, much larger than HYENA. Similar to HYENA, it comes
in both an Eclipse-based desktop version and a web version. HYENA’s different focus
affords it the following advantages:

• Standard-based form editing: HYENA extends the Fresnel display vocabulary
standard where TBS is built with proprietary technology.

• Ajax-based: HYENA does not require any kind of browser plugin, TBS relies on
Flex/Flash.

220 24. RDF editing

• Manual synchronization: TBS does automatic replication and partial caching,
HYENA/Web manually synchronizes complete repositories, for total offline op-
eration.

• Wiki: TBS is purely form-based, HYENA can integrate structured and unstruc-
tured data via its wiki functionality.

24.6 Annotation profiles
Annotation profiles [PENN07] are a framework that turns declarative specifications
into editors for metadata expressed in RDF. The authors focus on end user friendliness
and call their approach a configurable annotation tool. They contrast it with generic
annotation tools which are not end user friendly and fixed annotation tools which are
not as easily adaptable to new metadata vocabularies. Annotation profiles currently
provide form-based editing and need two models to define an editor:

• The graph pattern model contains SPARQL-style triple patterns to parse and
produce RDF. The subject of a pattern is always a variable. The predicate is al-
ways a URI. Path triple patterns have variables as objects while constraint triple
patterns have (ground) nodes as objects. The patterns form a tree connected by
variables. When parsing RDF, path patterns read objects from RDF, while con-
straint patterns prevent a resource from being parsed (e.g. when it does not have
the right type). When editing RDF, constraint patterns are hidden from the user,
but add information (such as types) to newly created data.

• The form template model is a tree that references the variables defined in the
graph pattern model. It provides order, grouping, language-specific labels, and
descriptions. Controls determine how values are edited. For example, a literal
can be edited in a text field or chosen from a list of defaults. The form template
model can also specify cardinalities for properties.

The form model is an instantiation of the form template model with data parsed from
RDF via the graph pattern model. It is used to construct a graphical user interface.

24.6.1 Comparing with HYENA

Separating graph pattern and form template makes annotation profiles more complex,
but also more universal. For example, annotation profiles could be used for SQL by
using an SQL-compatible version of the graph pattern model. Annotation profiles do
not have an exchange format, while HYENA’s lenses can be delivered together with the
RDF data.

Chapter 25

Information managers

Contents
25.1 Overview . 221
25.2 Information scraps . 221
25.3 Lifestreams . 224
25.4 Haystack . 226
25.5 The Social Semantic Desktop (NEPOMUK project) 227
25.6 The DBin platform: A complete environment for Semantic Web

Communities . 229

25.1 Overview
This chapter covers programs that perform information management in a way that is
related to HYENA. The paper on information scraps is a study on small units of infor-
mation that are hard to capture digitally, either because it is not convenient or because
dedicated tools are not available. The paper makes interesting observations about the
nature of information scraps that are directly relevant for HYENA. Lifestreams is a
novel way of doing document management. Its main modeling element is called a
stream of documents and integrates several services while being conceptually simple:
quick filing, dynamic classification, archiving, reminding, etc. Haystack is a platform
for personal information management that has many similarities with HYENA. The
Social Semantic Desktop extends the classic desktop environment with semantic tech-
nologies and data replication to integrate data between applications and between users
or systems. DBin is a system for peer-to-peer sharing of RDF data in so-called topic
channels. Optionally, custom user interfaces can be retrieved as part of such a channel.

25.2 Information scraps
Even though information scraps have a narrow definition [BVKKS08], they do appear
frequently in daily life: They are about managing pieces of information when one does
not want to encode them with explicit detail and the right tools are either non-existent,
unavailable or too complicated to use. Information scraps fail us if we cannot retrieve

222 25. Information managers

them later or if we cannot make sense of their content. Excluded from this definition is
email used for communication, word processor documents with papers or full essays,
contact information in the computer address book. In contrast, using a tool for infor-
mation that it has not been created for often does lead to information scraps: an email
with a todo, a word processor document with a list of contacts, etc. Examples: of 533
scraps studied for the paper, 92 were todos, 44 meeting notes, 38 name and contact
information, 25 how-to guides. Distribution of scrap types is long-tailed: scraps of
rare types cumulatively appear as often as scraps of common types. Information scraps
play various roles. They are used as temporary storage, to supplement short-term mem-
ory; for archiving, to hold information for long periods of time; for cognitive support,
to brainstorm, design, help with thinking; for reminding, to inform one’s actions in
the future. Information scraps exist, because the existing tools could not capture the
information properly.

The nature of information scraps informed the tool created for managing them.
Such as tool has to support

• Lightweight capture: Low time and effort barriers for creation.

• Mobility and availability: Migrate information to and from mobile devices. Dif-
ferent capture methods may be necessary in different situations.

• Visibility and reminding: Information has to appear at the right place at the right
time.

• Flexible content and representation: Support multiple capture modalities. Record
any kind of data, at any level of completeness. Be flexible about the schema.

• Flexible use and organization: Integrate existing tools. Make categorization easy
and flexible. Allow to add meta-data.

The authors describe a few of the psychological foundations: Channel factors are
“small but critical facilitators or barriers” to action. Thus: Even a small hindrance
can prevent users from using a computer to capture an information scrap. Classifica-
tion or filing is a cognitively difficult activity: If the cost of filing is perceived to be to
high, one often creates an information scrap. The flow state is a meditation-like state
of mind where the concentration is highest. Then unrelated thoughts and ideas may
be unwanted which is why they should be written down quickly to keep the interrupt
low (and the ability to resume the original activity high). Scraps can serve as exoso-
matic memory (a memory prosthesis) by later reminding us of our original thought.
This is helped by a variety of cues that index into our memory: such as location, when
and where a scrap was created, contextual information such as textual content, visual
elements, implicit narratives around creation, etc.

Use of information scraps is driven by several factors. In a study, most workers’
desks were piled rather than filed, but computers required to file rather than pile. The
reason for the prevalence of paper in most office workplaces is its ease of annotation,
its flexible navigation, its spatial reorientability and its support for collaboration. For
files, people use few categories and often rely on location to find files in these cate-
gories. This suggests again the usefulness of location for human recall. Information
scraps tend to have a short shelf life, are loosely filed or not at all, and are difficult
to manage in large quantities. The paper cites a study where the semantics of file
system folders changed continuously, to reflect the evolving understanding of the in-
formation. Only few items of high perceived value were filed, while the remainder

25.2 Information scraps 223

was left unorganized (3% of files, 41.6% of email, and 38.8% of bookmarks). Finally,
with information scraps, one has to contend with information fragmentation, which
happens across devices, applications and media. Negative consequences are file com-
partmentalization across tools, lack of ability to coordinate work activity between tools,
inconsistent design vocabularies, and the inability to gather all data about a single topic
or to effectively link such data.

The paper quotes studies of specific data types where information scrap phenomena
showed up:

• Email: is used for many information scrap purposes. Emails are used as re-
minders, todos, drafts, etc. A study revealed that nearly a third of all archived
e-mail was sent by the owners to themselves.

• Todos: A study found out that todos are created by expending as little effort as
necessary and “only elaborated enough to provide a salient clue”. A large num-
ber of separate tools (an average 11.25 per person) are being used for managing
todos. Todos are usually not kept in a special-purpose application, but in many,
often non-digital, locations: backs of hands, scraps of paper, unstructured text
files, post-it notes.

• Calendaring tools: Example uses include keeping track of the week of the semester,
diary entries with references to supporting material, reminders, logs of how time
was spent, notes of prospective, but not finalized events.

• Photos: Cameraphones allow pictures to be used much more spontaneously. The
pictures they take can be considered information scraps, as they are often hard to
categorize with unclear semantics.

In the study undertaken by the authors, several kinds of tools were used. Electronic
tools comprised e-mail (26.4%), text editors (16.8%) and word processors (6.4%).
Physical tools comprised paper notebooks (37.2%) and post-it notes (23.7%). Tools
needed to adapt to novel uses, to be general-purpose. Annotation and revision were
common. The paper makes several observations regarding the information scrap life
cycle:

• Capture: creation needs to be quick. “When time and effort were at such a
premium, the fastest tool would often win out.” Even a few clicks made a dif-
ference. “Even when data was implicitly structureable, such as with potential
calendar events, participants chose the faster, structureless route of recording a
scrap”. Three major sources of information during capture are directly authored
material (representing an intentional effort to record information), automatically
archived material (external source, e.g. email), copy-pasted material (when only
parts of external data are interesting).

• Transfer: Moving the information scrap from one medium to another after it has
been captured occurs for three major reasons: First, transcription to fill in in-
complete details and to make more appropriate for archiving or for consumption
by others. Second, information was only in a preliminary state and necessitated
a specialized tool for further processing. Third, mobility: Carrying post-its to
another room, sending information via email so that it is available on the road or
at home.

224 25. Information managers

• Organization: Users had different criteria for grouping. Prevalent were grouping
by time of creation and grouping by type or purpose. Users reported difficulty fil-
ing information scraps accurately and created a “miscellaneous” group for scraps
that were difficult to categorize.

• Reference, retrieval, and recall: only few scraps were referenced regularly. One
group of scraps (to-do list, post-it notes) was referenced frequently until it lost
its usefulness and was either archived or thrown away. A second group of scraps
was archived immediately, without a period of active reference.

As an anecdote, the paper describes that while information scraps were ubiquitous,
many participants were slightly ashamed of having them and thought they ran counter
the ideal of being organized.

25.2.1 Comparing with HYENA

HYENA is already well equipped to handle information scraps: New resources do not
need to be given a name or a category. Some meta-data such as date of creation is
added automatically. Batch operations help with managing large quantities of scraps.
HYENA’s wiki syntax, automatic operations for URLs (retrieval of the page title, local
caching), and efficient tagging, help with quick capture.

25.3 Lifestreams
Lifestreams [FG96] were created to correct some of the shortcomings of document
management when used for personal information management. Even today, document
management is still the dominant way of information management, both conceptually
and as a user interface metaphor. Some of the shortcomings are:

1. Naming a file and choosing a storage location is unneeded overhead.

2. Directories are inadequate as a classification mechanism. Classification should
be dynamic and multi-dimensional (more than one “directory” a file can be in).

3. Archiving should be automatic. Often users completely remove files to avoid
clutter. Putting them away in an organized (and retrievable) way is difficult.

4. Summarizing, compressing, visualizing groups of documents is important and
should scale.

5. Computers should make “reminding” convenient. The goal should be to make
calendars active (send an email etc.) and integrate them into the system.

6. Personal data should be accessible anywhere and compatibility should be auto-
matic.

Lifestreams correct these shortcomings by having streams of documents as a storage
model. Time is the basic ordering principle and split into past, present, and future.
The past is used for archiving. The present holds what the user is currently working
on. The future is about reminding: documents that have to be worked on in the future,
emails that have to be sent, upcoming events, etc. This time-centric approach leads
to temporal correlation of documents, something that is often prohibited by directo-
ries. Operations on documents are mostly generic and include “new” for creating a

25.3 Lifestreams 225

new unnamed document, without having to specify a location; “clone” for duplicat-
ing documents; “freeze” for making documents read-only; “transfer” for distributing
documents, sending emails etc.; and “print” for printing documents.

Figure 25.1: The graphical user interface of the Lifestreams application.

Streams of documents are displayed as a diagonal stack of thumbnails (Fig. 25.1)
with visual clues for properties such as “not yet read” or “writable”. A full-text “find”
operation allows one to create a dynamic substream of the current stream. A substream
only comprises those documents of its superstream that contain the search text. It
is again a stream and can be recursively filtered into substreams. A summary of a
stream is a dynamic document that summarizes one aspect of that stream. For example,
“by document size” shows a table with document sizes. An agent is like a plugin for
lifestreams and provides new application-specific functionality. Support for several
applications shows how universal the lifestreams model is:

• Email: is sent via the “transfer” operation. Automatic sending in the future is
done by place the email creation date in the future. The future is thus a conve-
nient metaphor for automation.

• Phone call records: the agent-supplied “make a phone call” creates a phone call
record. A calling list can be created by finding and summarizing.

• Stock portfolio management: Each stock is a document. Summaries provide lists
and graphs.

• Bookmark management: A daemon watches web browsers and automatically
adds new bookmarks to a stream (as a URL document). These documents can be
easily transfered to other users, via the “transfer” operation.

226 25. Information managers

25.3.1 Comparing with HYENA

The main contribution of lifestreams is the concept of streams and how they are used.
In contrast, the fine-grained documents and meta-data find a superior replacement in
RDF resources. HYENA’s resource sets are directly inspired by streams and offer a few
enhancements. Using a future creation date for reminding is an intriguing idea, but
problematic, because one might still want to know when one has created the reminder.
HYENA’s solution is to be multi-dimensional about time and separate the time of cre-
ation and the time when something is due. Time-related searches can easily be refined
to any of these dimensions. Similarly, using the temporal concept “now” to denote
data one is currently working on is problematic, association by tag can be used instead,
again in a multi-dimensional manner.

Making time the dominant criterion for ordering and retrieval is very clever. In
the future, location can play a similarly important role, because computers are increas-
ingly capable of geolocation, so that this information can be automatically added to
resources. Archiving is not yet completely solved in HYENA. The editing history for
wiki pages are a first step, in the future full support for distributed versioning of RDF
will have to be added. Lastly, Lifestreams always needs a server, it does not support
offline operation the way HYENA does.

25.4 Haystack

Haystack [QHK03] is a platform that enables users to manage their information in a
customized fashion. In this vein, Haystack solves a number of problems that traditional
approaches for desktop information management have. In the traditional setting, appli-
cations are isolated information islands. The paper gives several examples where a user
is in one application and wants to find related information in another application, but
finds it impossible to do so. Similarly, explicitly linking information is impossible. To
bridge the application gap, Haystack proposes the obvious solution: Store everything
in the same repository. The authors argue that RDF offers the necessary flexibility
and power to do so. Humans often seek information by orienteering, by first loosely
finding the general “area” where the information might be and then zooming in on it
by a series of associative steps. RDF’s relational nature supports this kind of associa-
tive navigation. On the desktop, there usually is much external data. Haystack uses
pluggable extractors to import file directory hierarchies, documents in various formats,
music and ID3 tags, email (through an IMAP or POP3 interface), Bibtex files, LDAP
data, photographs, RSS feeds, and instant messages.

To display the data in the repository, Haystack offers a variety of mechanisms.
The system manages a set of application-specific views that have a nested rendering
strategy: The view renders much internal information itself. Whenever an embedded
resource needs to be displayed, the view asks the system for a view that fits the current
data and display constraints. Views are defined in RDF via view prescriptions that state
how to divide the display region up, what to display where and with what graphical
widgets. Parameters for view prescriptions are passed down dynamically and include
available space, colors, and fonts sizes. Selection criteria for view prescriptions are
the type of a resource and the available space (thumbnail versus full picture). Lenses
are used for aspects of resources that cross-cut types. They mainly specify a set of
properties and can be applied to any resource; if a resource does not have any of those
properties, nothing is displayed. Sets of lenses can either be displayed in a view to dis-

25.5 The Social Semantic Desktop (NEPOMUK project) 227

play information about the currently selected resource or they can be used to customize
a table view for a collection of resources. Furthermore, lenses are context-sensitive to
the currently active tasks. For example, a “recommended categories” lens is only active
if the user is performing the task “organizing information”. A “help” lens would only
be shown if a help mode is active.

Being able to switch between different views for the same data is especially useful
for collections where Haystack provides several options: row layout (the usual table
widget, configurable via lenses), calendar (places collection members chronologically),
graphical (as a graph diagram, with boxes and arrows), “last resort” (just shows all
properties of the collection resources). Collections can also be turned into menus.
These menus are easy to configure, because the user just edits the collection. They
appear either as a popup menu when clicking on the name of the collection somewhere
or as task menu for task-specific operations and items.

Program functionality is made available to users in a tangible way via operations.
They are defined in RDF and appear in context menus when they are applicable in
the current context. Furthermore, the user can create new operations from existing
ones by pre-filling arguments1. Thus, given the operation sendEmail(data, receiver), if
pre-filling the receiver as “Joe”, results in a new operation that emails data to Joe. The
target of the context menu is filled in as the first argument. If there are more arguments,
a mask for entering them is added to the Haystack window. Views can also choose an
operation to perform if something is dragged on them.

Haystack supports orienteering by giving users a fitting starting point (“in the
neighborhood” of the relevant information) and then offering associative links to con-
tinue. This kind of navigation is complemented by text search. Haystack does not
strive to make its search interface general-purpose. Instead, developers are expected to
pre-package queries as operations for end users. Haystack applies information retrieval
techniques to RDF by turning RDF resources into pseudo text documents. The tech-
niques used with these “documents” are similarity search (finding similar resources)
and query refinement (suggesting ways for continuing search).

25.4.1 Comparing with HYENA

HYENA and Haystack have many things in common: Multiple views for the same re-
source, flexible collections of resources, tagging, etc. Haystack goes beyond HYENA
with its powerful (but also complex) view prescriptions. Tasks, making the user’s ac-
tivity explicit for context-sensitive adaptation, are an intriguing concept that should
probably be added to HYENA in the future. Extractors integrate Haystack into the
desktop environment and are something that HYENA currently does not have. On
the other hand, HYENA goes beyond Haystack by offering more RDF-specific func-
tionality. That functionality is less suited for end users where Haystack’s focus lies.
HYENA provides more flexible authoring abilities, thanks to its semantic wiki compo-
nent. Haystack also does not have multi-user support and access control; it is a purely
personal application.

25.5 The Social Semantic Desktop (NEPOMUK project)
The Social Semantic Desktop (SSD, [BDE+08]) is the vision of enhancing the desktop
environment with semantic web technologies to help bridge two kinds of data islands:

1This is called “currying” in functional programming.

228 25. Information managers

On one hand, applications are isolated islands of data; it is difficult to exchange and link
data between different applications. On the other hand, desktops of different users are
isolated islands, exchanging data is difficult, especially if live collaboration is involved.

Services. SSD is envisioned as a service-oriented architecture (SOAP-based) that
spans desktops and provides various services to users and application implementors:
Resource management allow users to manipulate semantic relations about anything on
the desktop. Application integration integrates legacy applications with the SSD (for
example by importing pictures and their meta-data from a photo application). Notifi-
cation management informs of important events via emails, RSS, text messaging, etc.
Offline access ensures that important data is available when a desktop is not connected.
Resource sharing enables different SSD users to work on the same resources. Search
works either locally or across a peer-to-peer network of semantic desktops. It exploits
semantic relations and can find related items. Access rights management and user
group management is used to secure shared data. A publish and subscribe mechanism
offers feeds of relevant information. More advanced features include profiling to in-
telligently support the user and ensure trustworthiness of communication partners; and
data analysis to support finding and presenting information.

Ontologies. Ontologies are a crucial element for making the exchange of data easy
on the SSD. The authors distinguish four levels of ontologies:

• Representational ontologies: define the vocabulary for defining other ontologies.
Examples include RDFS and OWL. Concepts appearing at this level: classes,
properties, constraints.

• Upper-level ontologies: are high-level and domain-independent and provide ba-
sic concepts on which more specific ontologies can be based. These are often
called “common sense concepts” that are basic for human understanding of the
world. Concepts appearing at this level: person, organization, process, event,
time, location, collection.

• Mid-level ontologies: Provide a bridge between the very abstract upper-level
ontologies (hard to understand) and the very specific domain ontologies. They
are also called “utility ontologies”. Concepts appearing at this level: company,
employer, employee, meeting.

• Domain ontologies: describes concepts and relations specific to a particular do-
main of interest. The same concept may have different representations in differ-
ent domains reflecting domain contexts and assumptions. Domain ontologies are
often partially based on mid-level and upper-level ontologies. Concepts appear-
ing at this level: group leader, software engineer, executive committee meeting,
business trip, conference.

25.5.1 Comparing with HYENA

Much of the Social Semantic Desktop is still vision, some of it has been integrated into
the KDE Linux desktop system. As such, it is difficult to compare it with HYENA.
In general, HYENA focuses on specific usability problems and the web environment,
NEPOMUK has a very broad scope and focuses on the Desktop.

25.6 The DBin platform: A complete environment for Semantic Web
Communities 229

25.6 The DBin platform: A complete environment for
Semantic Web Communities

The paper [TM08] presents a system for publishing RDF data among communities, in a
peer-to-peer (P2P) fashion. This includes mechanisms for presenting and for distribut-
ing the data. The user interface has been implemented as an Eclipse plugin. A Brainlet
is a plugin for DBin that supports a particular RDF ontology. It can contain

• Ontology data, to support editing and displaying the RDF data.

• A declarative definition of a graphical user interface for displaying data. This
definition specifies both widget layout and interactions between widgets. For
example, selecting a class from a tree might lead to its instances being displayed
in a table.

• Templates for form-based editing.

• Templates for form-based querying. Blanks in the query are filled in by the form.

• A trust model and information filtering rules.

• Scripts for helping with entering URIs, e.g. to make sure that existing URIs are
reused or that a given scheme is adhered to.

• Scripts for adding menu commands or buttons to the user interface.

• Supporting files for icons, help content, etc.

• Java code for user interfaces that cannot be implemented with the built-in mech-
anisms.

Usage of DBin is focused on browsing data: One initially creates an identity as a pair
of a public and a private key (Sect. 3.4.2). Then one subscribes to P2P topic channels,
depending on one’s interests. A subscription to such a channel is bidirectional; adding
new data makes it available to all subscribers. At any time, a topic channel can contain
links to new data and communities. Improved support for new communities is provided
by ad hoc installation of Brainlets.

The most common approach to P2P distribution of RDF data is to distribute query
evaluation across peers. In contrast, DBin synchronizes the data denoted by a topic
channel with peers. Thus, all data is available locally, offline and disconnecting peers
are not critical. Each topic channel uses a GUED (Group URIs Exposing Definition)
to specify what data is relevant for it. The first step to collecting this data is to compute
a list of resources, usually via queries such as “Select all resources of type ‘Paper’
which have the topic ‘Semantic Web’”. The actual data being synchronized between
peers is each statement whose subject or object is among the computed resources. The
RDFGrowth server is used (and necessary) for hosting topic channels. Apart from the
GUED, it also tracks the URIs published per channel, allowing clients to look up related
channels. Files are supported by DBin by designating web servers to which files can be
uploaded and then have a stable URL. This URL is used as the subject or object of RDF
statements. RDF data can be published as an RDF dump on the web, in one of the RDF
exchange formats that can be processed by non-DBin clients. RDFGrowth servers can
be queried for a list of communities where each has zero or more dumps associated
with it. Pieces of data, usually statements, are digitally signed to track authorship. As

230 25. Information managers

data normally grows monotonically, explicit revocation commands need to be issued
to remove it. These revocation commands show up as RDF data and are also digitally
signed. Local trust policies allow one to specify what data (including revocations) to
show and what data to ignore.

25.6.1 Comparing with HYENA

DBin focus is on supporting communities via topic channels one can subscribe to.
HYENA’s unit of synchronization are projects or repositories. DBin’s way of repli-
cating all shared information locally is similar to how HYENA handles this task. An
RDFGrowth server is needed to host channels; this diminishes the P2P capabilities of
DBin. The cross-cutting nature of topic channels makes it easy to share data between
communities. One difficulty arises when browsing a resource that has been extracted
for a channel: If it contains a link to an external resource, it is not clear how to fol-
low it. Linked data principles won’t work, because data is managed in a decentralized
fashion. Digital signing and revocation are powerful features, but they also add much
overhead. File handling is a weak point of DBin: They are hosted by a single server
and not synchronized.

Chapter 26

Semantic wikis

Contents
26.1 Overview . 231
26.2 Semantic MediaWiki . 231
26.3 The KiWi platform . 232
26.4 AceWiki . 233

26.1 Overview

Semantic wikis are wikis to which RDF support has been added. HYENA can be seen as
a semantic wiki turned inside out: it is a generic RDF editor to which wiki support has
been added. This chapter reviews a few representative semantic wikis and compares
them to HYENA. Semantic MediaWiki builds on Wikipedia’s MediaWiki engine and
adds semantic annotations. The KiWi platform is a comprehensive vision for a social
semantic wiki platform. AceWiki is a semantic wiki with support for controlled English.

26.2 Semantic MediaWiki

Semantic MediaWiki (SMW, [KVV+07]) has been created with the goal of making it
possible to annotate typical wiki data semantically and not to offer full-blown ontol-
ogy editing. SMW identifies three problems with current wikis: First, consistency of
content: Content is often duplicated and thus prone to be inconsistent. Second, access-
ing knowledge: Finding and comparing information in large wikis is difficult. Third,
reusing knowledge: The text format of wikis does not make it easy to import and export
information.

MediaWiki (on which SMW is based) provides several means for structuring con-
tent. The basic structure in wiki text consists of text style and hyperlinks. Additionally
there are categories where each page can be assigned zero or more categories. Each cat-
egory is reified as a wiki page. Categories can be organized hierarchically. Synonyms
lead to redirection: Pages with different names for the same topic redirect to one stan-
dard page for that topic. Homonyms lead to disambiguation pages: Ambiguous page
names are disambiguated by appending more information in parentheses (example:

232 26. Semantic wikis

“1984 (book)”). All variants are then listed on a disambiguation page. Lastly, one can
include external template pages in a page and optionally fill in content via parameters.

Semantic MediaWiki builds on these basics and supports semantic annotations.
SMW sees pages as concepts and introduces mechanisms to better describe them. Its
properties and types correspond almost directly to RDF, but the core construct is not
the resource, but the wiki page. This makes it easier to use for people who are already
familiar with wikis. Properties are either links to other pages or values that are at-
tached to a page. Both are characterized by a property key. Example: London is
the capital city of [[capital of::England]]. The only addition to
a traditional wiki link is the property key. Properties are introduced by using them on
a page, they can be further configured by editing a wiki page that has the name of the
property. On that page, one can assign a type to a property (which in RDF would be
its range). Types also have dedicated wiki pages and a few of them are predefined. For
example “String” (character sequences), “Date” (calendar dates), “Geographic coordi-
nate” (locations on earth) or “Page” (wiki pages).

These structures can be mapped to OWL: pages correspond to abstract individuals,
properties correspond to OWL properties, categories correspond to OWL classes, prop-
erty values can be abstract individuals or typed literals. The schema modeling power
of SMW has intentionally been kept simple, but it has also been used in conjunction
with more expressive background ontologies.

To exploit the semantics, a “factbox” below the page content lists all properties
of a page and all properties whose value the page is. Queries can be formulated in
a description-logic-like syntax and either be invoked interactively or their result can
be embedded in a wiki page. The semantic data of a wiki can also be exported as
OWL/RDF. In that RDF, page URLs are converted to special URIs that use content
negotiation to either serve the corresponding wiki page (human access, via a web
browser) or the exported RDF (automated access). This corresponds to the linked data
principles (Chap. 3).

26.2.1 Comparing with HYENA

HYENA solves the issues of traditional wikis, that have been raised by SMV, quite will.
it goes further than SMW when it comes to content-specific editing and finer-grained
pages. Pages can even be queried for, because they are stored in resources. On the other
hand, SMV’s lightweight semantic enhancements of wiki data is clever and completely
complementary to integrated ontology editing or form-based editing.

26.3 The KiWi platform
KiWi [SEG+09] is a platform for managing databases with structured and unstructured
data. Small web applications are used to display the data. A semantic wiki would be
one such application. The paper argues that while there are already platforms that sup-
port diverse kinds of content, they are often not able to change data so that it meets
unforeseen uses or it is difficult to support new kinds of data. Contrarily, KiWi builds
on what it calls “content versatility”: content items, its atomic pieces of information
hold both human readable content (in XHTML) and meta-data (in RDF). The KiWi
platform can be extended via KiWi applications, KiWi services (for managing the con-
tent), KiWi widgets, KiWi actions (invocable by the end user), and exporters/importers.
The paper describes the following KiWi applications:

26.4 AceWiki 233

• KiWi wiki: a typical semantic wiki.

• Dashboard: a FaceBook-like homepage of a user that displays a user’s recent ac-
tivities (edits, ratings, watched content items, information derived from a user’s
network of trust), recommendations of things that might be relevant to the user,
a history of recently edited content items, tags applied by the user.

• TagIT: conceived as a “youth atlas of Salzburg”, lets users collaboratively anno-
tate a map to point out interesting locations.

• KiWi search: a generic, centralized search that directs back to the previous ap-
plication when a content item is inspected. The search provides keyword search
and faceted navigation (by tag, type, and person).

• KiWi inspector: lets advanced users access more detailed information about con-
tent items.

The most interesting aspect of the KiWi architecture is its service-orientation with ser-
vices such as a revision service, a transaction service, or a content item service (to
manipulate content items). The core concept of the data model is the content item
which is any unit of information (wiki pages, multimedia, users, roles, rule definitions,
layout definitions, widgets, and so on, extensibly). Each content item is identified by
a URI. It consists of core (meta-)data (author, creation date), content, and associated
RDF data. Core data and content are stored as XML in a relational database, while RDF
data is stored in a special RDF repository. The content supports linking, is versioned,
can be queried and transformed via XSLT. It is the human-readable representation of a
content item. The RDF repository attaches custom attributes to each triple to support
things such as versioning, transactions, authorship, and reason maintenance.

KiWi distinguishes explicit tagging (manually assigned; records the tag, the tagger
and the tagged content item) and implicit tagging (automatically assigned; directly
relates two content items).

26.3.1 Comparing with HYENA

KiWi is an impressive vision for social semantic wikis and similar in many regards to
HYENA (which predates KiWi). KiWi’s focus is on social applications and inference,
HYENA’s focus is on personal information management and direct manipulation (e.g.
via lenses). HYENA’s generic interface is currently more powerful than KiWi’s, which
has better support for special purpose applications. KiWi’s versioning and provenance
tracking of RDF go beyond HYENA’s abilities.

HYENA’s core data management is simpler, it only has resources, not a combi-
nation of content and RDF. This does not mean that it is less capable, except in one
way: KiWi’s markup is stored as XML and its structure can be exploited in queries.
HYENA’s conceptual model comprises the search calculus which goes beyond KiWi’s
formalizations. KiWi does not provide synchronization between systems.

26.4 AceWiki
AceWiki [Kuh08] uses Attempto Controlled English (ACE) to let end users collabo-
ratively edit and query ontologies. Thus it is more an ontology editor with wiki-style
editing. ACE has a bi-directional mapping with OWL and can even store facts whose

234 26. Semantic wikis

expressiveness is beyond OWL. It can also be used to query ontologies. Reasoning is
performed with existing OWL reasoners. Prior evaluation confirmed that ACE, sup-
ported by a predictive editor (which is loosely similar to auto-expanding editors for
programming languages), allows non-experts to author quite complex ontologies.

26.4.1 Comparing with HYENA

While a fascinating feature, controlled English is not currently relevant for HYENA, as
it does not focus as much on knowledge management.

Chapter 27

Faceted navigation

Contents
27.1 Overview . 235
27.2 Extending faceted navigation for RDF data 235
27.3 Ontogator—a semantic view-based search engine service for

web applications . 237
27.4 /facet: a browser for heterogeneous semantic web repositories . 239
27.5 gFacet: a browser for the web of data 241

27.1 Overview
This chapter explores the state of the art in faceted navigation. We first look at a paper
that extends faceted navigation so that it works for RDF data. This paper identifies
faceted navigation as working well for RDF data, introduces basic operations and de-
fines metrics for automatically ranking facets. The second system is called Ontogator
and answers the question: What kind of search engine service and application pro-
gramming interface are needed for supporting a variety of semantic view-based search
interfaces? The third system, /facet, applies faceted browsing to heterogeneous seman-
tic web repositories where scalability is an issue: multiple types need to be supported
(as opposed to a single type being supported by many faceted browsers) and relations
between types need to be made navigable. The last system, gFacet implements hierar-
chical facets: facet values can, recursively, be specified via faceted browsing.

27.2 Extending faceted navigation for RDF data
The paper [ODD06] describes RDF data as large, interconnected and heterogeneous
(no fixed schema). Thus, navigation mechanisms should be scalable, allow graph-
based access (following links), not depend on a fixed schema and not require users to
know the structure of the data beforehand (it has to be exploratory). Four traditional
navigation mechanisms have been identified as suitable for RDF:

• keyword search: difficult to explore data, not graph-oriented.

236 27. Faceted navigation

• explicit queries: difficult to write, require a-priori knowledge of the data.

• graph visualization: does not scale.

• faceted browsing: manually constructed, domain-dependent, only partial support
for graph-based navigation.

In faceted browsing, one classifies an entity by attaching a set of key-value pairs to it.
A facet means viewing a key as the set of all values that appear at its side. As such, it is
a summary of all currently shown entities. For navigation, the facet values are used as
restrictions: When the user selects one of them, only entities are shown that have the
corresponding key-value pair. Advantages of faceted browsing are: it is exploratory, as
the system suggests next steps via the restriction values; it is visual, there is no need to
type anything; and it prevents meaningless queries by only showing restrictions that do
not lead to empty results.

To formalize faceted navigation, the paper introduces the following operations:

• Basic selection: selects resources that have a given key-value pair.

• Existential selection: the pseudo facet values NONE and ANY indicate that a
property should have the cardinality zero or a cardinality greater than zero.

• Join selection: creates paths of operators to express queries such as “all resources
who know somebody, who in turn knows somebody named Stefan”.

• Intersection: Combines operators that all have to hold at the same time. A con-
junction of the conditions.

• Inverse selection: Resources are often just as determined by properties pointing
to them as they are by their properties. Inverse selection adapts basic selection,
existential selection and join selection to incoming properties.

Next, the paper defines metrics for automatically ranking facets.

Descriptors: What data best describes entities for humans? According to Ran-
ganathan, a good facet candidate is data that is either temporal (year of publication,
date of birth), spatial (conference location, place of birth), personal (author, friend),
material (topic, color) or energetic (activity, action). Automatically finding good de-
scriptors is very difficult and beyond the scope of the paper.

Navigators: What facets allow for efficient navigation? If one views faceted nav-
igation as traversing a decision tree, then one is looking for facets that minimize path
lengths in such a tree. The paper defines three metrics for good navigators. These
metrics are combined by weighted multiplication and have to be recomputed for each
navigation step, because the information space changes. The first metric is predicate
balance, as balanced trees optimize decision power. Intuitively, it measures how evenly
a property attaches objects to subjects. The second metric is object cardinality mea-
sures that a property has neither too little values to choose from, nor too many. The
third metric is predicate frequency which ensures that entities use a property as often
as possible. Then, restrictions affect as many entities as possible.

27.3 Ontogator—a semantic view-based search engine service for web
applications 237

27.2.1 Comparing with HYENA

HYENA does not just use facets for navigation, but also for editing. It advocates using
assisted querying (Sect. 7.6) for path queries instead of making faceted navigation more
complicated. HYENA does have existential qualification, though: When using a only
facet key as a restriction (and not a key and a value), the facet value is assumed to
be ANY. This allows one, for example, to select all resources that have types. In the
future, negation would be an interesting feature, both as NOT (key=value) and as NOT
(key=ANY).

Finding intuitive facets is hard which is why HYENA relies of manually defined
facets. Lastly, HYENA supports broad facets where the assignment of a facet value
can be annotated, for example: Who made the assignment? When was the assignment
made?

27.3 Ontogator—a semantic view-based search engine
service for web applications

While the semantic web makes large amounts of relational data available, querying
that data is difficult. Thus, much research has focused on making specifying complex
queries as simple as possible. View-based search is rooted in the tradition of faceted
classification. It uses multiple simultaneous views on an information space, each show-
ing a different classification. Search consists of restricting the result by selecting values
in a view. A key differentiating feature between view-based search on one hand and
traditional keyword and boolean search on the other hand is that with the former, views
are used for both querying and for summarizing the result. Each restriction is annotated
with the number of items that a restricted result would have. This kind of look-ahead
prevents the user from making selections that return no items or too many items.

Ontogator [MHS06] solves the following problem: What kind of search engine ser-
vice and Application Programming Interface (API) are needed for supporting a variety
of semantic view-based search interfaces? Where traditional keyword search can make
do with fairly simple APIs, the requirements for a general view-based search API are
much more complicated: facet visualization (including hit counting), facet selection,
and result visualization are needed in addition to the search logic.

27.3.1 Requirements for a view-based search API
A view-based search API needs to provide the following services:

1. Return facets and facet values, including hit counts.

2. Basic view-based search: Facet-based boolean querying.

3. Specifying the shape and content of the result.

4. Reclassifying a result set along different facets. For example, when the user
opens a new view on an existing result set.

5. Combining traditional keyword-based search with view-based search.

6. Knowledge-based semantic search: Inferred categories allows one to find data
that is only implicitly related to the search categories.

238 27. Faceted navigation

More abstractly, Ontogator strives for adaptability and domain independence, standards
compliance, extensibility (with regard to querying mechanisms), and scalability.

27.3.2 View projection: preprocessing the knowledge

In the view projection phase, Ontogator translates RDF data into a set of trees whose
roots are facet keys, with (possibly hierarchical) facet values underneath them. These
trees form the categories of the items to be categorized. This phase consists of two
steps:

1. Projecting the view (facet value) tree from the RDF graph. A mix of RDF-based
data and Prolog-like rules are used to specify how to project a category tree (per
facet) from the RDF domain data. This might involve dropping categories in
the middle of the tree, pruning category subtrees, eliminating cycles in the data,
and expanding categories with multiple parents into separate subtrees. Category
identification assigns unique identifiers to categories whose URI might appear
several times across facets or several times within a facet (if it has multiple par-
ents within that facet).

2. Linking items to the projected categories. Categories can be directly attached to
a domain resource or via a path of properties.

View projection encapsulates the domain semantics and thus makes the components
feeding on the data it produces domain-independent. View projection generates indices
that enable search to efficiently scale to millions of search items. A disadvantage of
this phase is that one cannot incrementally add data.

27.3.3 Queries and extensibility

One uses queries to request data from Ontogator. Basic queries contain two clauses.
An items clause selects items, a categories clause selects category subtrees to be used
for grouping items. This allows users, for example, to search for items by keyword
and group them according to geolocation-based proximity. Each clause is specified
by combining selectors with union and intersection operators. Item selectors include
a category selector (returns all items in matching categories), an item URI, a keyword
(to be found in the item data). Category selectors include a category URI, a category
identifier (disambiguated URI), a keyword (to be found among facet keys and values).
Extensibility is achieved because new selectors just need to return a list of matching
items. That means that it is relatively easy to integrate external services.

27.3.4 Indexing

View-based search requires efficient access to the following data: Given a category, one
needs direct subcategories, directly linked items, all transitively linked items, and the
path to the tree root. Given an item, one needs the categories it belongs to. Ontogator
generates indices for direct subcategories and directly linked items, but generates the
transitive closure on the fly, which can be done efficiently, because the category IDs
adhere to a prefix labeling scheme. The scheme means that the IDs also contain the
path to the root.

27.4 /facet: a browser for heterogeneous semantic web repositories 239

27.3.5 Comparing with HYENA

HYENA’s faceted navigation works dynamically and does not scale as well as the view
projection approach of Ontogator. On the other hand, incremental changes are directly
considered, without having to recompute the view projection. The reloading phase
of HYENA, where it parses data in RDF such as schema and facet definitions, is a
loose equivalent of view projection. HYENA facet modeling is less powerful than On-
togator’s, but most common use cases are easier to specify. In addition to navigation,
HYENA also supports facet editing. Lastly, HYENA handles both narrow and broad
facets, where Ontogator only handles narrow facets.

27.4 /facet: a browser for heterogeneous semantic web
repositories

The paper [HvOH06] explores how heterogeneity of data affects faceted navigation.
Two key points are that such a browser needs to support multiple types (where many
faceted browsers specialize on a single type) and that with multiple types, the necessity
increases to make relations between types navigable.

27.4.1 Requirements for multi-type facet browsing
The authors describe the following requirements for multi-type facet browsing:

• Dynamic selection of facets: faceted navigation scales fairly well to large facet
sets, because it only displays the facets that apply to the current result set. Two
phenomena require special consideration:

– rdfs:subClassOf hierarchy: For a single class the approach to only
show the facets/properties of the result set works well. With subclasses,
one has to decide between showing the union of facets and the intersection
of facets. The difference is noticeable for classes that are higher up in the
hierarchy: The union always allows one to start browsing, but might show
too many facets. The intersection focuses on the facets that the subclasses
have in common, which usually are the most important ones. But if the
subclasses have too few facets in common, one cannot continue browsing.
The paper excludes customization as an alternative to union and intersec-
tion as being out of scope. Note that this discussion applies to any kind of
value hierarchy, not just to subclasses (which are the primary facet of the
implementation presented in the paper).

– rdfs:subPropertyOf: structures the facet keys hierarchically. While
that structure can help with organizing the facets, it also leads to more
facets (and more complexity).

• Search in addition to navigation: Navigating deeply nested facet trees is com-
plex. And so is handling many facets or unknown facets. Both problems can be
alleviated by allowing one to select facets by search.

• Multi-type queries: If a facet has many values and if these values are also faceted,
then it makes sense to use faceted navigation to filter the values. The paper views
this problem differently, as relating two sets of entities. It assumes that each set

240 27. Faceted navigation

holds instances of a single type and offers a relation that connects both types as
a filter criterion. For example: “created by” is a relation that connects the types
“Work of art” and “Person”.

• Run-time facet specification: The paper advocates configurable facet definitions
(as opposed to hard-coded ones). Automatic generation of such definitions is
desirable, as is the ability to later adjust generated definitions to the needs of,
say, less technical users that might not want to see all details.

• Facet-dependent user interfaces: Some facet values are better displayed using a
custom technique. For example, locations on a map or dates in a calendar.

27.4.2 Functional design for multi-type facet browsing

The authors have taken the following design decisions:

1. Browsing multiple resource types: the type of a resource is one of the facets, it is
primary among the facets inasmuch as it is always shown and browsing usually
starts with it.

2. Semantic keyword search: Keyword search with auto-expansion works for

• the facet values in a single facet box. Helps with navigating the hierarchy
of a single facet.

• the facet values in a tree of all facets. Helps with finding the right facet.

• property values of instances, via the type facet box. It displays matching
instances in a tree, as children of their type. Helps with finding the right
type to start navigation.

3. Specifying queries over multiple resource types: happens in two steps. First one
queries for a set of instances of a type A. Then one switches to another type B.
/facet now gives the option of relating the old set and the new set of B instances
by showing all properties whose domain is A and whose range is B.

4. Run-time facet specifications: are stored in a separate RDF file that is automati-
cally generated and then usually customized by hand.

5. Facet-specific interface extensions: can be plugged in. /facet comes standard
with a timeline visualization that displays several time-ranged facets in parallel,
across all currently active sets of instances.

27.4.3 Comparing with HYENA

Making type the dominant facets does not always work. For example with tagging,
some tags are almost like types, such as all wiki pages about books being tagged with
#book. Relating two result sets is something that will be investigated for future versions
of HYENA. In this case, /facet limits itself by relying on types. This does not work well
when a facet relates resources and literals. It is also problematic whenever the type is
not the defining characteristic of a result set.

27.5 gFacet: a browser for the web of data 241

27.5 gFacet: a browser for the web of data
gFacet [HZL08] implements what the paper calls hierarchical facets: facet-based brows-
ing where facet values can, recursively, be specified via faceted browsing. Its main
contribution is that of using a graph-based visualization of the facet paths. The paper
gives the impression that gFacet combines graph-based browsing and faceted brows-
ing, but it actually only uses graph-based visualization techniques to better present the
chained facet restrictions. gFacet also uses data-specific visualizations for facet val-
ues, currently the only special case (apart from value lists) is a map visualization for
geographical data.

27.5.1 Comparing with HYENA

HYENA advocates assisted querying (Sect. 7.6) for path queries, the usefulness of
chained facet restrictions is under investigation.

242 27. Faceted navigation

Chapter 28

Synchronization and versioning

Contents
28.1 Overview . 243
28.2 RDFSync: efficient remote synchronization of RDF models . . . 243
28.3 A versioning and evolution framework for RDF knowledge bases244
28.4 SemVersion: an RDF-based ontology versioning system 245

28.1 Overview
This chapter reviews literature about RDF synchronization and versioning. Synchro-
nization means computing the changes necessary so that two different repositories end
up containing the same data. Versioning means keeping a history of changes with the
ability to look up old versions or to revert to them. One crucial problem in this area is
how to handle blank nodes. HYENA avoids the issue by ignoring blank nodes, with the
option to rename them to URIs. This is in line with linked data principles which advise
to avoid blank nodes.

The first paper is about RDFSync. Its unit of synchronization, the minimum self-
contained graph (MSG), ensures that blank nodes are synchronized correctly, even if
they have different (internal, temporary) IDs. The second paper presents a framework
for RDF versioning and evolution. It defines small-grained evolution operations that
can be scaled up to support powerful ontology changes. If blank nodes are encountered,
their statements are grouped similarly to MSGs to ensure that they are properly han-
dled. The last paper is about SemVersion a system for versioning RDF ontologies that
draws its inspiration from CVS. Blank notes are made identifiable by adding inverse
functional properties.

28.2 RDFSync: efficient remote synchronization of RDF
models

This paper [MTEBG07] solves the blank node problem by computing so called mini-
mum self-contained graphs (MSG). The definition of an MSG is recursive:

• The MSG of a ground statement (no blank nodes) is the statement itself.

244 28. Synchronization and versioning

• The MSG of a statement with (at most two) blank nodes is the MSG of all state-
ments that contain one of those blank nodes.

This explains the adjective “self-contained”, the statements within an MSG do not refer
to any blank nodes outside the MSG. Decomposing a graph into MSGs is unique. By
applying a deterministic labeling algorithm to MSGs, one can give them unique hashes.
These hashes are then used for synchronization.

Compared to HYENA, the main advantage is the handling of blank nodes. Dis-
advantages are that no equivalent to HYENA’s journal exists which allows one to list
changes on either side that happened since the last synchronization. Handling of blank
nodes suffers somewhat, because, small changes (such as changing a property) result
in new MSGs, instead of indicating what blank nodes have changed. Lastly, which side
to keep versus merging is specified for the complete sync, and not per resource, as in
HYENA.

28.3 A versioning and evolution framework for RDF
knowledge bases

The paper [AH06] presents an approach to versioning and evolving RDF data and
ontologies. Blank nodes are considered when it comes to specifying atomic changes.
There are positive atomic changes (adding statements) and negative atomic changes
(removing statements). The statements of an atomic change are defined via the concept
of an atomic graph:

A graph is atomic if it cannot be split into two non-empty graphs whose
blank nodes are disjoint.

That means that a graph with a single statement that does not contain blank nodes is
atomic. So are graphs that, for a given set of blank nodes, comprise exactly those
statements that contain any of those blank nodes. Thus, an atomic graph is the same as
the minimum self-contained graph from the previous section. To handle blank nodes
properly, the blank nodes of a positive atomic change must be disjoint with the blank
nodes of the graph to change. A negative atomic change CG must contain all statements
of the graph to change that contain blank nodes from CG. These requirements ensure
proper handling of blank nodes in distributed settings. A drawback of this approach is
that one often has to remove and add many statements if just a single statement with
blank nodes is to be changed.

Atomic changes can be group into nested sequences, so-called change hierarchies.
This allows one to review changes at various levels of detail (statement level, ontology
level, domain level, etc.) and to improve transaction management. For distribution,
change hierarchies can be encoded in RDF and annotated with data such as IDs identi-
fying predefined action classes, the name of the editing user, the time of the change, or
a string with a human-readable description of the change.

Evolution patterns support higher-level changes and are an extension of the con-
cepts that have been introduced so far. An evolution pattern comprises graph patterns
with variables that encode changes and a migration algorithm. The former can be con-
sidered templates for change hierarchies with parameters to be filled in. The latter is
necessary if the evolution pattern applies to ontology classes. Then the instances of a
changed class must be migrated so that the ontology is consistent again. An example

28.4 SemVersion: an RDF-based ontology versioning system 245

includes removing a property from a class resulting in the property being removed from
its instances.

28.4 SemVersion: an RDF-based ontology versioning
system

SemVersion [VG06] draws its inspiration from the CVS version control system. It
versions ontologies stored as models, sets of triples. Versions are arranged in a directed
acyclic graph that denotes how versions were derived and includes version branches.
A version can contain its own meta-data such as a comment. To create a new version
that is stored in the DAG, one commits a complete model, one commits a diff between
the previous version and the current version, or one merges two versions (usually the
most current versions of two branches). Structural diffs contain statements added and
statements removed and are useful if a new version contains only few changes. To
merge a branch c into a branch b, one looks for the most recent common version a and
then adds the diff between c and a to b. In addition to structural diffs, SemVersion also
provides semantic diffs whose content depends on the ontology language used to define
the semantics of the content. It is defined as the structural diff between the asserted and
inferred triples of two models.

Blank nodes are handled by adding inverse functional properties with unique IDs
to them. This is similar to HYENA’s renaming of blank nodes to URIs.

246 28. Synchronization and versioning

Part VII

Evaluation, summary, and
future research

29 Integrating structured and unstructured data 249

30 User study 259

31 A survey on wikis: What features have long-term merit? 263

32 Summary and future research 267

This part evaluates HYENA. The chapter on integrating structured and unstructured
data shows how HYENA supports this kind of integration. It also elaborates the require-
ments of quick note taking and how these requirements influenced HYENA’s features.
A user study examines how a group of test users applied HYENA: How they searched
and navigated, what data they created and how, and what data they revisited after cre-
ation. Many web 2.0 applications such as calendars and discussion forums are partially
replacing (and improving on) wikis. Thus, the author has surveyed a random group of
wiki users to find out what wiki features will survive in the long term. The last chapter
offers a summary of this dissertation and describes future research.

248

Chapter 29

Integrating structured and
unstructured data

Contents
29.1 Overview . 249
29.2 Wikis and structured data . 249
29.3 Incrementally introducing structure 250
29.4 Small notes and meta-data . 251
29.5 Browsing resource sets . 253
29.6 Collating data . 255
29.7 Files and data export . 257
29.8 Discussion . 258

29.1 Overview
This chapter makes the case as to why wikis are great for note taking and how HYENA
improves on them by integrating structured and unstructured data. First, it is shown
how one can start with unstructured data in HYENA and incrementally introduce struc-
ture. Then, it is explained how small notes, a frequent source of unstructured data, are
stored, annotated with meta-data, and retrieved. The chapter finishes by showing how
data can be collated and how files (another kind of data that is unstructured to HYENA)
are handled. Many of the mechanisms that have been introduced in previous chapters
are shown in use, together.

29.2 Wikis and structured data
Wikis are very popular as a general purpose tool for many kinds of information man-
agement: On one hand, they can handle many kinds of data, because they can simulate
more specialized tools. For example, an outline can be simulated by having a bullet
list; forms can be simulated by creating a skeleton with data to fill in; tables are entered
as plain text. In all cases, the flexibility of unstructured text and the ability to edit and
save are what makes the simulation possible. In that regard, wikis share many of the

250 29. Integrating structured and unstructured data

desirable properties of paper: location can be used, one is relatively free when entering
data, annotations can be put anywhere.

On the other hand, data entry is quick. Whereas with specialized tools, one has to
frequently use the mouse or is relatively fixed in one’s way of managing data. Three
examples: First, creating a table in a word processing program takes a while; in a wiki,
a table is created by typing only. Second, using a spreadsheet program limits one to
tables only; in a wiki, tables can be changed to something else should the need arise.
Third, a database management systems such as Microsoft Access require one to prepare
for new kinds of data and data entry is slowed by having to use forms; in a wiki, data
entry is free-form.

But while wikis often come close enough to more specialized tools, they have one
obvious deficiency: handling structured data. While there is structured data in wikis
(tables, lists), it is difficult to retrieve, process, and export: Data inside a wiki page is
static, it cannot be sorted or filtered. It is difficult to share data. If it is needed in two
places, one has to copy and paste. Exporting implicit structured data is also relatively
complicated.

Similarly, structured data about wiki pages (meta-data) is useful for retrieving and
collating them. For example, one could use a query to display all pages with a given tag
or that have been created before a given date. Meta-data can enable multi-dimensional
classification, where “linking as classification” in traditional wikis is much more lim-
ited.

HYENA has been created to meet the above mentioned challenges, with the goal to
go beyond either-or when it comes to structured and unstructured data. The wish was
to freely mix both. While doing so, one should initially profit from a wiki’s ability to
quickly enter data. Structure should be something one optionally adds afterwards, in
an incremental fashion. The result turned out to benefit both the wiki side of HYENA
(which became more expressive, because more things were modeled explicitly) and the
database side of HYENA (which became more flexible in presenting information). Ad-
ditionally, HYENA provides proxies for external data such as files that stay up-to-date
when that data changes. Its project-centric approach makes backup and synchroniza-
tion of content easy.

29.3 Incrementally introducing structure
Users like wikis for information management, because they allow them to introduce
a small amount of structure, on demand. That is, initially, one uses the freedom of
unstructured text to quickly put down information. Afterwards, one can introduce more
structure—in the form of pages and links—to better organize the data. This is similar
to creative writing [Mag] where one initially brainstorms and then introduces structure
and linearization.

Traditional wikis have pages and links, HYENA has three more means of structur-
ing:

1. Medium-grained subpages: blocks of content that are usually manually assem-
bled into a compound page.

2. Structured data: RDF data can be embedded inside a wiki page.

3. Fine-grained notes: contain often just one sentence. They are annotated with
meta-data that helps collating them via queries.

29.4 Small notes and meta-data 251

Notes are the topic of Sect. 29.4, the following example illustrates the first two items.
Let us assume that we start with one large page:

My page
Topic: Gardening
= Indoor =

* Plants that need little light
= Outdoor =

* Evergreens
= Guerrilla gardening =

* History: Green Guerrilla group, 1973

Then one might decide to turn “Outdoor” into a sub-page that is embedded. This has
the advantage of simplifying independent editing and sharing. To do so, one uses an
empty \embed{} command which when displaying the page turns into a link offering
to create a new RDF resource (which can be a page or data). Furthermore, “Guerrilla
gardening” is turned into link in a similar way:

My page
Topic: Gardening
= Indoor =

* Plants that need little light
= \embed{} =
= Miscellaneous =

* \link{}

We add content to the newly created pages and they look as follows.
Outdoor

* Evergreens

Guerrilla gardening
* History: Green Guerrilla group, 1973

Lastly, we turn the line

Topic: Gardening

into structured data. This is done by creating a new wiki page for the topic whose title
is “Gardening”. Then one adds a property with the key tagging:tag to the original
page that refers to the topic page. Inside original page, we can now refer to the value
of property tagging:tag instead of mentioning the topic directly. This has two
advantages: the topic becomes a link one can click on to get more information; and
one can use the topic in queries and navigation (see Sect. 29.4).

Topic: \prop{tagging:tag}

Fig. 29.1 shows what the final version of the page looks like in a web browser. Creating
the embedded and the linked page has filled in page IDs and titles.

29.4 Small notes and meta-data
In everyday life, there are all kinds of small notes that come up: What to remember,
who to meet, a bookmark, etc. Furthermore, brainstorming can be viewed as collecting
notes and collating them in various ways. Often, people find it too complicated to

252 29. Integrating structured and unstructured data

Figure 29.1: The version of the compound wiki page where the links have been filled
into the external text. To the right is a preview area. It shows the embedding structure
on mouse-over (only).

manage this kind of note with a computer and rely on post-it notes instead. This way,
it is simple to create a note, but recall and archiving are a problem [BVKKS08]. On
the computer, wikis are already a great improvement for note-taking over standard
software such as word processors or spreadsheets. The free-form way of data entry
reduces the typical barriers for quickly getting the data into the computer. Alas, wikis
are not ideal for the fine granularity of notes. One usually collects several notes on a
single page where the page also serves to categorize the notes on it. But classification
of notes often needs to be multi-dimensional. For example, what domain (“private”,
“business”, “my sister’s wedding”) a note applies to and when it is “due”. Thus, the
note would need to be put on two pages, one for the domain, one for the due date. Even
if there was no other category, the latter way of time-based organization is not ideal.
HYENA uses a combination of ideas to ease note taking:

• Quick entry: A key combination brings up a dialog to enter a single line of
text, return commits the note. The latter is in line with web applications such as
Google Maps that let the user enter data in a single text field instead of forcing
them to switch between several ones.

• Adding meta-data: HYENA has a simple syntax for adding meta-data (such as
tags, dates, persons or other context) to a note. In the user interface, tags are
auto-expanded to a list of all tags that already exist. Similarly, dates can either
be entered via a simple syntax or via a calendar widget.

• Bookmarking: If the note is a URL, HYENA downloads the web page title as the
content of the note and attaches the URL to the created resource. Meta-data can
be added in the same manner as for text notes.

Below there are three notes to illustrate the syntax (each note is a single line). Details
on the syntax are given in Chap. 8.

• Write paper #todo #due=dec-19
File the note to write a paper that is due next December 19 under “todo”.

• http://www.amazon.com/dp/1847064140/ #read #when=2010-01-01
A note whose title is retrieved from amazon.com as “Amazon.com: Discourse of

29.5 Browsing resource sets 253

Blogs and Wikis (Continuum Discourse): Greg Myers: Your Store”. The note is
tagged with “read” (i.e., things to read), and is due in January 2010.

• Dinner #time=tom @Jill
Dinner tomorrow, with Jill.

Further speed-up is achieved by the fact that you don’t have to pick a place where to
store your note before creating it. That is, the note is piled, not filed [BVKKS08]. It
is initially “orphaned” and retrieved by its meta-data: At the very least, one can find
it by date (of creation or last modification) and in the list of all wiki pages. The next
section describes various ways for easily accessing resources. As an aside, while notes
start out as empty pages with the note text in the title, one often later elaborates them
and adds content. Tags and facets can be edited at any time, using the same notation as
during creation.

Other meta-data such as the date of last modification is handled in a way that is
generic for all RDF resources. RDF does not make much distinction between meta-
data and data. Both are used extensively to search and browse resources, as we shall
see in the next section.

29.5 Browsing resource sets
Notes are initially not linked to anything. Thus it is important that there be other means
for finding them. HYENA provides a variety of search and browsing mechanisms for
resources that work well for wiki pages, too. All of the views listed below visualize
resource sets.

Figure 29.2: Master view, “List” tab. Displays resources in a table, each row holds a
resource’s label, its types and its tags. The table can be filtered via the controls to the
right: One can limit the amount of resources displayed, one can filter by type, by text,
or by graph (which are URI-named partitions of an RDF repository).

List tab

The list tab shows a table where each resource is a row and the columns display the
label, the types, and the tags (Fig. 29.2). This list can be filtered by type (e.g. to focus
just on wiki pages), by text or by graph (sub-sections of an RDF repository).

254 29. Integrating structured and unstructured data

Figure 29.3: Master view, “Month” tab. Resources are placed on a month grid de-
pending on what time information is contained in them. The same resource can appear
multiple times, such as “Guerrilla gardening” which has been created on March 29 and
modified on March 30.

Month tab

The month tab shows a month grid where resources are placed according to time infor-
mation that is attached to them (Fig. 29.3). That means that due dates, date of creation,
date of last modification are ways of locating a resource.

Figure 29.4: Master view, “Day tab”. Lists resources by time. By focusing on the
future, one gets a list of reminders and things happening in the future.

Day tab

HYENA’s “day” tab displays a set of resources depending on their time (Fig. 29.4).
By limiting the time to the future, one gets a list of reminders, similar to Gelernter’s
lifestreams [FG96].

Faceted navigation

If a resource is a set of (key,value) pairs then a key can be seen as a facet across a
set of resources. Put simply, a facet is a group of tags; facet members are usually
shown annotated together with their facet to ease navigation. Music programs are good
examples of faceted navigation; genre, artist, album are all facets. When displaying

29.6 Collating data 255

Figure 29.5: For a list of resources, this tree aggregates the values for the two facets
rdf:type (the types of a resource) and tagging:tag (the tags of a resource).
Accordingly, one resource in the list has the type bookmark:Place, four have the
type tagging:Tag, etc. Clicking on one of the values filters the resource list to
contain only those resources that contain the given (key,value) pair.

a list of resources, HYENA aggregates the values of some properties into a facet tree
(Fig. 29.5). When clicking on one of the values, the list only shows those resources
where the corresponding (key,value) pair appears. Then the facet tree is recomputed
for the new list, again giving contextual information.

29.6 Collating data
Embedding resource sets

Sect. 29.5 described resource sets as the underlying data structure for browsing RDF.
The configuration of such a set can be saved to RDF and retrieved later. Resource
sets are not static, they are computed each time they are displayed or embedded and
thus always reflect the current state of the RDF repository. The options for embed-
ding a resource set are: comma-separated links, bullet list with links, or a sequence of
embeddings.

SPARQL queries

Meta data is stored in the same RDF resource as the wiki page content and can thus
be accessed by the RDF query language SPARQL. In HYENA, one can save SPARQL
queries to a resource and display or embed their result as a sequence of pages, a ta-
ble, a bullet list of links, or a comma-separated list of links. This allows us to answer
two common requests for wiki page meta-data: “What pages have been changed last?”
(Fig. 29.6) and “what pages are orphaned?” (Fig. 29.8). Fig. 29.7 shows the result of
the former query displayed as a table. Note that HYENA does not expect end users to
write queries, resource sets can be seen as a limited end user friendly version of queries.
But whenever they are not powerful enough, one can resort to SPARQL queries. Stor-
ing them in a resource makes it possible for experts to author them and end users to
just use them, without knowing SPARQL.

News feeds and comment feeds

Feeds are sequences of small-grained wiki pages. A news feed displays entries with
a title and the date of last modification (Fig. 29.9). New entries are added first. A

256 29. Integrating structured and unstructured data

Query: last changes
1 SELECT ?resource ?modified WHERE {
2 ?resource dcterms:modified ?modified .
3 } ORDER BY DESC(?modified)

Figure 29.6: Lists all wiki pages with the ones that have been most recently modified
appearing first. The first line specifies what to display in the table of results. The
second line says that we are looking for any resource (see below for how to restrict
this to just wiki pages) that has a date of last modification attached to it. The last line
describes how to order the result.

Figure 29.7: Displaying the result of Fig. 29.6 as a table, using the embedding style
“all columns as a table”. Other embedding options are “first column as bullet link list”,
“first column as comma-separated links”, “first column as table via a lens”.

Query: orphaned pages
1 SELECT ?page WHERE {
2 ?page rdf:type wikked:Page .
3 OPTIONAL { ?s2 ?p2 ?page }
4 FILTER (!bound(?s2))
5 }

Figure 29.8: Lists all pages that have no inlinks. Line 2 states that we are looking for
wiki pages. We then try to find other wiki pages that point to the current one (line 3)
and reject the current page if anything can be found (line 4).

Figure 29.9: Displaying a news feed. A news feed is basically a sequence of small wiki
pages, which are highlighted when the mouse is over them, as is the case for the first
entry.

29.7 Files and data export 257

comment feed additionally displays the author of an entry. New entries are added last.
Feeds can be embedded anywhere on a wiki page and can be published as RSS feeds
(Sect. 29.7.2).

Tags as compound pages

Tags can become compound pages (Fig. 29.10): One adds wiki content to the tag re-
source and a special \linkin command lists all resources that that refer to the tag
(which includes resources where it is the value of tagging:tag, the RDF property
for tagging). If one would rather embed the tagged resources, one uses \embedin.

Figure 29.10: The tag “Gardening” has been turned into a wiki page that links to all
pages that are tagged with it. Such a wiki page is the ideal place to describe what a tag
is about.

29.7 Files and data export

29.7.1 Using files
Any file can be linked to. Clicking the link in HYENA/Web will download (or display,
depending on the web browser) the file. In HYENA/Eclipse, it will be opened in the
appropriate program. Image files in a project can be displayed inside a wiki page. And
one can configure a resource to list the files in a directory (Fig. 29.11). Images in the
directory are displayed as thumbnails (Fig. 29.12). All proxies for files (including the
one in the file list resource) are kept up-to-date should a file be moved or renamed
(Sect. 9.5.3).

Figure 29.11: Using a lens to edit a file list resource. The path img/ of the directory
with the files is given as a literal. Future versions of HYENA will use proxy resources
(Sect. 9.5.3) for this purpose.

29.7.2 Publishing resources as files
HYENA has a generic mechanism for publishing resources, for exporting them to files.
In HYENA/Web that means that resources are served as files. In HYENA/Eclipse, we

258 29. Integrating structured and unstructured data

Figure 29.12: Displaying the file list resource from Fig. 29.11.

write the published data to a file and open it in an external program. Wiki pages can
be published as printable HTML pages or as LaTeX source. News feeds or comment
feeds can be published as RSS feeds. The published feeds are protected via normal
HTTP authentication (in contrast to the cookie-based authentication of the HYENA
web application), so that they can be accessed by feed reader programs.

29.8 Discussion
This chapter explained how HYENA integrates various kinds of data. Special care has
been taken that small notes were easy to capture and manage. For more information on
small notes consult Sect. 25.2 about related work on information scraps. An extended
version of this chapter has been published as [Rau10].

Chapter 30

User study

Contents
30.1 Overview . 259
30.2 Structure of the RDF repository 259
30.3 Use of features . 260
30.4 Questionnaire . 261
30.5 Discussion . 262

30.1 Overview
A user study was performed to find out how people used the CoIM implementation
HYENA. 5 people1 participated in the study which lasted a week. They used online
HYENA accounts that the author provided for them. This made it possible to log user
interface activity. The evaluation comprises the following parts:

• Structure of the RDF repository: What data was stored in the repository, what
structure does it have?

• Use of features: What features were used and how often?

• Questionnaire: A questionnaire allowed participants to go into detail about how
they used HYENA, what they perceived as strengths and weaknesses and what
features they wanted to have in future versions.

30.2 Structure of the RDF repository
After the study, the repositories filled by the participants were examined automatically.
This revealed the following details about their contents.

• Tags: Each user created an average of 2.8 tags of which 1.6 were used once, 0.4
were used twice, 0.4 were used three times, and 0.4 were used four times. The tag
average is relatively low, as is reuse. This can be attributed to the learning curve
and to some users spending considerable less time with HYENA than others.

1See the discussion as to why the group of participants was so small.

260 30. User study

• Types: Each user created an average of 15 resources. 64% were wiki pages, 21%
were tags, 4% were bookmarks. The remainder consisted of lens-related con-
structs and persons (created when a person is mentioned in the title tags). This
shows that HYENA was mainly used as a wiki, although wiki pages performed a
variety of functions (see questionnaire results below).

• Wiki pages: Users created an average of 9.6 wiki pages. Per page, there were
0.33 references to other resources (made from within the wiki content, which
excludes tags), 0.48 references from other resources to the page and 0.5 tags.
This shows that HYENA enables two complementary ways of wiki usage. First,
the traditional wiki way where all pages are interconnected and are usually rooted
in a single start page. Second, access via tags. In the latter case, the wiki page
is orphaned (not referenced by another resource) and can only be accessed via
its tag. This is reflected in the fact that approximately half the pages had an
incoming link and half the pages had a tag.

These numbers can be compared to the HYENA repository of the author which has been
in heavy use for over a year.

• Tags: There were 73 tags, of which the top 4 tags were used 50 times, 36 times,
23 times, and 13 times. On the other hand, the bottom 28 tags were only used
once, and 15 tags were used twice.

• Types: The repository contained 443 resources of which 56% were wiki pages,
28% were bookmarks, and 16% were tags.

• Wiki pages: There were 247 wiki pages. Per page, there were 0.05 outlinks, 0.17
inlinks, and 1.21 tags.

30.3 Use of features
The logging of user interface actions during the study showed what features were used
and how. By summarizing the differences between time stamps, rough estimates of
usage times can be given.

• Search: 98% of the time, facet-based navigation was used. Type-based filtering
was used 2% of the time. Text-based search was never used. Facet-based navi-
gation subsumes type filtering via a combo box that is shown close to the table
of the resource set. The study suggests that this additional way of providing this
functionality is not necessary. That text-based search is used so little is a surprise
and warrants further investigation. Two reasons can be assumed: Due to tagging,
users did not find text-based search as important (this corresponds to the author’s
experience). Or that the text box for full-text search was difficult to find.

• Creating a resource: There are four ways to create new resources in HYENA.
The menu command “New wiki page” was used 34% of the time. 34% of the
time, a reference (a link or an embedding) to a new page was inserted into an
existing page. This is the traditional wiki way of creating a wiki page. The menu
command “New any resource” was used 24% of the time. The menu command
“New lens” was used 7% of the time. This shows again how the traditional way
of creating wiki pages is complemented by the creation of orphaned wiki pages,
which are usually accessed via their tags.

30.4 Questionnaire 261

• Changing the inspector: Per user, the “display” mini-link was used 19.4 times,
the “edit” mini-link was used 17.2 times, and the inspector combo box was used
14.4 times. Thus, while the combo box is an important user interface element,
the mini-links are used more often to change the inspector.

• Revisiting resources: Each resource that was manually created (this excludes
resources that were, for example, imported from a CSV file) was, on average,
visited 2.07 times during the first hour after its creation and 1.4 times afterwards.
There were also resources that were visited only after the first hour or only during
it. This result is congruent with note-taking studies, where not all notes were
revisited after their creation.

• Skill level: The simple “wiki” level was used an average 22min per person, “wiki
+ tags” was used 38min, “wiki + tags + database” was used 1h 27min, “wiki +
tags + DB + semantic web” was used 19min. This shows that the skill levels
were used and fulfill a need for task-specific interfaces. For example, in “pure
wiki” mode, HYENA’s user interface becomes much simpler and one can focus
on using it as just a wiki.

• Tabs: The tabs “Vocabulary”, “Query” and “Assisted Query” were each used
under 5s per user. The “Day” tab was used an average 7min 31s per user, “Di-
agram” was used 14min 32s, “Month” was used 14min 39s, “List” was used 1h
48min 57s. As expected, the standard table tab dominates usage, but showing
the data in a calendar and visualizing it as a diagram was also popular.

30.4 Questionnaire

Three of the participants filled out a questionnaire which provided more information
on how they used HYENA, what they liked or disliked, and their feature wishes. Partic-
ipants used HYENA to keep notes, journal entries, ideas, links, appointments, outlines,
and wish lists. They liked title tags for quickly adding meta-data, web page titles be-
ing fetched automatically when adding a URL, and light markup (tables, bullets) for
structuring their content. Data they imported included HTML files, text files, tables,
and pictures. While using HYENA, the participants appreciated the multiple ways of
visualizing and accessing data: Journal entries could be displayed in a calendar view,
the data and its relationships could be displayed as a diagram, and faceted navigation
could be used to browse the data.

Participants also mentioned what they might use HYENA for in the future: col-
laboration, journaling and blogging. For collaboration, live editing was considered a
useful future feature. For journaling, HYENA is currently missing encryption and more
control over text styling and layout. For blogging, more sophisticated text styling and
layout was on the wish list, as was the ability to export blog posts to blogging web
applications such as Blogger or Wordpress. Participants would like more extensive ex-
port of data, for example: tables, text files, PDFs of wiki pages, and diagrams (graphs,
trees, mindmaps). Exporting the complete repository as a ZIP file for backup was also
mentioned (which would complement synchronization in this regard). Further sugges-
tions for improvement were to make entities such as images and PDFs true first-class
citizens; currently, handling files is not as comfortable as handling other entities such as
wiki pages. More help content and tighter integration of it was asked for, to cope with

262 30. User study

the breadth of features provided by HYENA. Lastly, a WYSIWYG wiki page editor
was considered desirable.

30.5 Discussion
This study is still ongoing. The work involved in participating in the study (learning
HYENA, using it for a week, filling out the questionnaire) makes it difficult to find
volunteers. Nevertheless, the five participants cover a broad spectrum of users: Four
Germans participated–––two colleagues of the author’s, a journalist, a student––and a
Nigerian small business owner2.

The study confirmed the decisions that were made for HYENA. As expected, wiki
pages were used in various capacities (notes, journal entries, outlines, wish lists, . . .).
The wiki features were used in two ways, with similar frequency. On one hand, in
traditional wikis, there is a single start page and all other pages are reachable from
it via hyperlinks. New pages are created by going to an existing page and adding a
link to a page that does not exist yet. On the other hand, CoIM supports note taking
via orphaned3 pages that are accessed via their tags. New pages are created directly,
without first having to find a page from which to link. The popularity of the latter way
of wiki use shows that it does help users. Finding pages via their tags was also very
popular, far more so than via full text search.

Bookmarks were the most frequently used kind of structured data. This shows
the usefulness of structured data at the object level. To further encourage this kind
of use, creating and managing lenses probably has to be simplified even further, so
that it becomes practical even for casual users. In general, participants liked HYENA’s
versatility and embraced quick note taking, tagging, faceted navigation, the calendar
views, and the structure diagram. They also suggested many new use cases, proving
that there is a need for the versatility offered by HYENA. On the flip side, participants
sometimes found the complexity of the generic user interface intimidating. Skill levels
(and their acceptance) hint at a solution to this problem: By providing more special-
purpose views on the CoIM data, particular tasks can be greatly simplified.

2He found a blog post where the author of this dissertation asked for participants in the study and was
willing to participate.

3Not linked to from another page.

Chapter 31

A survey on wikis: What
features have long-term merit?

Contents
31.1 Overview . 263
31.2 The survey . 263
31.3 Discussion . 265

31.1 Overview
Wikis have been a popular web application for some time now. But the recent rise of
Ajax [Gar05] has changed the perception of web applications: Many wiki-like web
sites have been appearing, often specialized to do a single task well (where wikis are
more universal). Examples include Google Calendar and Flickr.

This begs the question: What aspects of wikis will survive in the Web 2.0 age?
What aspects are worth preserving? To answer this question, one has to find out what
people use wikis for, what features they like and what features they are missing. A
small survey on this topic [Rau08b] helped the author do that. This chapter interprets
the survey results as requirements for the next generation of wikis and then argues
that HYENA, by mixing wiki pages and RDF data, is well equipped to meet those
requirements.

31.2 The survey
The survey has intentionally been relatively simple. For example, it was probably not
representative for all potential wiki users, because the participants (a total of 23) were
chosen in an ad-hoc fashion by announcing the survey to the author’s colleagues and
to a mailing list about semantic wikis. But the results are still interesting and point out
several possible trends for wikis.

The survey participants answered in percentages indicating how important a given
fact was to them or how often they performed a given activity. The reported percentages
are averages of these answers. Note that the answers do not necessarily apply to a single

264 31. A survey on wikis: What features have long-term merit?

wiki; many participants use several wikis. The following sections present groups of
questions and observations that the author derived from the answers.

31.2.1 What is the purpose of your wiki? What do you use it for?
(Table 31.1)

Even though traditional wikis are all about text, people use the flexibility of text to store
data inside wiki pages. Intuitively, this is already obvious, if one looks at all the lists
and tables that are contained in traditional wikis. The survey made this hunch more
concrete: On average, 91% of the wiki use is about collecting data or knowledge. Nat-
urally, this data and/or knowledge could be more flexibly processed if it were explicitly
stored and had dedicated editors. For example, spreadsheets handle tabular data well,
so it would be nice if one could embed little spreadsheets inside a wiki page. Note that
the survey results do not indicate that wikis should become pure databases. Rather,
being able to mix text and data is what seems to make wikis attractive.

Collect data or knowledge 91%
Coordination, planning, project management 56.75%
Web site, light-weight content managment system 54.5%
Document creation (and later publishing) 48.75%
Discussions, forum 42%
Brainstorming, (possibly shared) whiteboard 39.75%
Weblog, relatively small journal-style entries 16%

Table 31.1: Question: What is the purpose of your wiki? What do you use it for?

31.2.2 Who uses the wiki? (Table 31.2)
Observations: At heart, wikis can be considered groupware. Still, having the wiki
information available anywhere and the flexibility in structuring information, makes
wikis good personal information managers: Survey participants attributed an average
importance of 50% to this task.

Several collaborators, all reading and writing 60.25%
Personal use, a single person 50%
Few editors, many readers 46.5%

Table 31.2: Question: Who uses the wiki?

31.2.3 Current and future wiki features, wiki alternatives
The following is a list of web applications that the survey participants use as alterna-
tives to wikis for some tasks:

1. BackPack

2. Blogger

3. del.icio.us

31.3 Discussion 265

4. Facebook

5. Flickr

6. Google Calendar

7. Google Docs

8. iusethis

9. Online Contacts

10. Trac

11. Wordpress

12. WikipediaReview.com

Interestingly, the majority (all except 1, 4, 11) of the web applications is very task-
specific. Accordingly, Table 31.4 indicates that users would like to see more task-
specific editing support in wikis. The difficulty is to do so without significantly raising
the learning curve.

It is curious to note that wiki users do like that a wiki is available anywhere you
can connect to the web (Table 31.3) and use it for personal information (Table 31.2),
but rank offline use relatively low (which would increase the availability of wiki infor-
mation for personal use).

Information roaming: the wiki information is available anywhere you
can connect to the web.

78.5%

Collaborating: a wiki is useful for sharing and jointly editing informa-
tion.

77.25%

Linking: a wiki allows me to relate and collate pieces of information. 72.75%
Publishing: a wiki is useful for disseminating information. 67%

Table 31.3: What core aspects of (traditional) wikis are you interested in?

31.3 Discussion
The users’ need to collect knowledge or data is met by HYENA by its support for struc-
tured data and the ability to annotate it with wiki markup. The typical scenario of
everyone writing and reading a wiki occurred most frequently, but so did personal use
and having few editors and many readers. The former is supported by synchronization
so that one’s personal data is available offline, too. The latter is support by access man-
agement. Users expressed a need for comfortable task-specific editing, which HYENA
provides via editors which are can be considered small task-specific web applications.
Among the important wiki features, HYENA offers the highest ranked ones such as an
editing history, file upload, wiki page metadata and easy printing. Others such as a
WYSIWYG editor and live collaboration still need to be implemented.

266 31. A survey on wikis: What features have long-term merit?

Version control (editing history, who edited what, unlimited undo, etc.) 78.5%
File upload and management 69.25%
Wiki page meta-data (annotations and labels describing the content of
the page)

58%

WYSIWYG text editor 56.75%
Generate a PDF file from a wiki page 52.25%
Diagrams (UML, mind maps, organizational charts, etc.) 48.75%
Finer-grained wiki pages 47.75%
Outliners (edit indented lists such as tables of contents) 46.5%
Live collaborative editing (all editors work on the same copy of the
document, changes show up immediately)

46.5%

Spreadsheets (with calculation) 46.5%
Discussions (forums) 41%
Offline editing, synchronization 37.5%
Calendars 37.5%
Form-based data entry (similar to MS Access) 37.5%
Blogs 25%

Table 31.4: Question: How important are the following features to you (independently
of whether your wiki has them or not)?

Chapter 32

Summary and future research

Contents
32.1 Overview . 267
32.2 Summary . 267
32.3 Future research . 268

32.1 Overview
This chapter summarizes this dissertation and describes future research.

32.2 Summary
Despite the positive effects of the proliferation of information in modern society, it has
also made information management more difficult. There is an ever increasing amount
of information and it exists as disconnected heterogeneous islands. Connected informa-
tion management (CoIM) investigates how to build the next generation of information
management systems that prevents disconnectedness. It presents a ubiquitous platform
with a unified model for the content.

Two technologies exist that remedy two kinds of disconnectedness: Dynamic,
Ajax-based web applications lead to ubiquitous availability of information and ap-
plications, semantic web technologies integrate many kinds of data. CoIM and its
implementation HYENA have been created to continue these threads and enhance both
technologies with more integration abilities and formal foundations. Where the se-
mantic web data format RDF can be used to integrate various kinds of structured data,
CoIM extends it so that all kinds of data can be integrated. A CoIM repository is
truly universal and can contain unstructured text, structured data, and files. That means
that data that was previously spread across applications can be managed in one place,
for example, all data relevant to a given project such as database entries with contact
information, notes in unstructured text, diagrams in PDF files. This data is not just
consolidated in a single place, but can be mixed via wiki markup and queries. For
example, a wiki page can be created that explains a sub-project and lists all contacts
pertinent to that sub-project. Furthermore, even though the database entries are stored
in RDF, CoIM’s RDF editing meta-model ensures that it can be edited with forms like

268 32. Summary and future research

in relational database applications such as MS Access or Filemaker. Contrary to those
applications, the schema is very dynamic and extensible; tags, links, and other kinds
of data and meta-data can be added. CoIM data does not exist in isolation, thus two
kinds of external data are supported: Data in files can be imported and exported. For
example, Firefox bookmarks and BibTeX files can be imported and JSON data can
be exported. Data in external databases can be integrated dynamically, by storing live
references in RDF. Integration of files is based on this mechanism, the file system is
considered an external database of the RDF repository.

Traditionally, one had to choose between offline access to one’s data via desktop
applications and online access via web applications. Web applications have recently
made progress by providing offline modes, often by temporarily storing data in the
SQL databases provided by web browsers. HYENA goes one step further. All data
can be edited either online or offline and synchronized between the two modes. This
synchronization is universal, no preparation or adjustment is needed to support new
kinds of data. Currently, different kinds of data have different navigation metaphors.
Files are browsed as trees of nested directories, web pages are searched with keywords,
music is explored using faceted navigation. CoIM provides multi-paradigm navigation:
several kinds of navigation are integrated and work for all kinds of data. Additionally, a
new kind of navigation is investigated, one that is based on facets that cross-cut facets.
This new kind of facet is called meta-facet. Examples include “time” (which comprises
facets such as “time of creation” and “time of last modification”) and “text” (where
the search text can appear in any facet). One pervasive kind of data that is difficult
to integrate are small notes such as reminders, todos, and ideas. They are usually
managed either externally to the computer or by applications that were never intended
for this task (such as word processors and spreadsheet programs). HYENA encourages
note taking via several measures: Creating notes is easy, one can pile instead of file
(no category or title needed), some meta-data for retrieval is added automatically, and
more can be added effortlessly. Multi-paradigm navigation ensures that notes can be
recalled, synchronization ensures their availability.

The core of HYENA is an extensible framework with services for both information
management and user interface interactions. This framework serves several purposes:
HYENA itself is based on it and it allows one to add support for new kinds of data.
Additionally, it can be seen as a foundation on which to base one’s data-intensive ap-
plications.

32.3 Future research
Several themes for future research have emerged as a result of the experience gained
with HYENA.

Special-purpose applications. At the moment, HYENA is a generic tool where in-
spectors provide some degree of special-purpose editing. The problem with generic
tools is that while they are usually very powerful, they are also difficult to understand,
especially for non-technical users. Thus, the next version of HYENA will have special-
purpose sub-applications that occupy the complete browser window. For example,
discussion forums, a blog editor, or a calendar. The generic foundations of HYENA
remain, meaning that all these sub-applications operate on a common database and can
reuse modeling constructs such as tags. How to do this will be informed by the re-
sults of the survey that determined what features of wikis should stay generic and what

32.3 Future research 269

features should be replaced by special-purpose mechanisms.

Note taking. The author has extensively used HYENA for managing small notes and
organizing them in multiple dimensions. Note taking can be extended in two ways.
First, one can support more modalities. The ubiquity of cameras and microphones in
desktop computers and mobile devices, makes photos and sound recordings an attrac-
tive way of taking notes. Sketches are another promising candidate. Second, one can
support more meta-data, to improve recall. As even a small additional effort might pre-
vent users from capturing a note electronically, automatically added meta-data is to be
preferred. The most prominent example is location information, which can be retrieved
using the W3C standard for geo-location1.

Collaboration. HYENA’s current focus is on personal information management. Col-
laboration is already supported via authentication, synchronization, and conflict man-
agement for page editing. Several features are envisioned to extend this support. Com-
menting on someone else’s data is an important part of collaboration. Inspiration can be
drawn from the annotation features of Adobe Acrobat where things like virtual post-it
notes can be added to text. HYENA should offer something similar, if possible for both
wiki pages and locally cached HTML pages. Distributed version control (DVC) should
be enabled for all of HYENA’s data. DVC allows peers to synchronize and preserves all
old versions, even if they have been created on different peers. Peer-to-peer synchro-
nization is currently possible for all data, but distributed versioning is only available
for wiki pages. It still has to be designed and implemented for RDF, where one faces
several challenges (Sect. 21.4). In recent years, live collaborative editing has become
increasingly popular. The most recent entrant into this arena is Google Wave2. This
kind of editing is especially useful for wikis, because many kinds of conflicts can be
avoided.

More external data. For many personal information management and groupware
tasks, more external data needs to be integrated. One example is email. In teams,
individuals often exchange emails that are either important for the project history or
that need to be read by several team members. If one can import these emails into
HYENA, they can be accessed and annotated by the whole team. Even for personal
use, being able to file emails with other data is useful. Other examples of external
data whose integration and ubiquitous availability would be beneficial are calendars,
contacts, and bookmarks.

A middleware for social linked data. More and more web applications are being
written that need to support heterogeneous data and social features such as collabora-
tion. Each one tends to reinvent features that are already part of HYENA. And the next
version will gain even more of those features. If linked data principles are integrated
into HYENA, it should thus become a middleware for social linked data.

REMM, data editing. There are several areas in which REMM could be improved:
Editing data in a table is a proven techniques for quickly accessing several entities at
the same time, while having a good overview. The usability role model in this case are

1http://dev.w3.org/geo/api/spec-source.html
2http://wave.google.com/

http://dev.w3.org/geo/api/spec-source.html
http://wave.google.com/

270 32. Summary and future research

spreadsheets. Naturally, columns would be typed, but there are spreadsheet programs,
such as Apple Numbers or the discontinued Lotus Improv, that also work this way.

Usability could also be improved by hiding more of RDF’s complexities. An un-
solved problem is how to handle data that is shared by several entities. Currently, if the
data is displayed inline in a form, it will be removed when only one of the entities is
removed. If the shared data is only shown as a link, it won’t be removed, even if all
of the entities are removed. The more general problem is called extent computation:
How far does a given entity extend? Is the extent context-dependent or fixed? Another
challenge with RDF is vocabulary management. End users should be able to get started
quickly. The current solution is to start with generated predicate URIs that have human
readable labels and can be renamed to more “beautiful” URIs later. This should be
complemented by making existing vocabularies easy to (re-)use via cheat sheets and
similar means. Experts will want more sophisticated tools for vocabulary management
such as statistics on the use of a particular URI.

Furthermore, advanced features for data management and meta-data management
can be envisioned. Data refactoring would change the schema while adapting the data
it describes. Operations include extracting classes, merging classes, and moving data
between classes. Visual editing of the schema would also help and could be based on
the unified modeling language UML [BRJ99]. The author has had positive experiences
with using UML class diagrams for sketching REMM schema ideas. Both are a nat-
ural fit, due to the object-oriented feel of RDF data management. Lastly, the REMM
schema should probably get its own serialization to RDF, instead of being derived from
OWL. The author believes that there is room for a schema language specializing on data
modeling with an expressiveness between RDF schema and OWL.

Software engineering. Information management is about managing a multitude of
small pieces of data. Software engineering faces similar challenges, which is why one
can probably apply many of the ideas of CoIM to software engineering. Folksonomies
are one especially promising candidate; it could add a lightweight semantic layer on
top of programming language source code that greatly helps with navigating the code.
Work in this area would build on research already performed by the author [ZR04,
RR04b, RR04a, Rau04, RR05b, RR05a, RAN07]. Another possible research direction
is to improve the reflective capabilities of programs [Rau05c], by expressing part of the
internal structure in RDF. HYENA has already started to do so, as it can be configured
via the RDF repositories it contains. Ideas for using HYENA as a universal model editor
for software engineering have been collected in [Rau05a, Rau05b].

More future research. More future research is listed at the end of some of the chap-
ters. App. B describes the benefits and challenges of implementing inferencing and
sketches a solution.

Part VIII

Appendix

272

Appendix A

Wikked syntax

A.1 Wiki Creole

Tab. A.1 summarizes the WikiCreole1 markup standard.

A.2 LaTeX

This section gives a brief overview of the LaTeX markup constructs in HYENA. The
next section goes into more detail.

A.2.1 Resources
\link{uri} → link to resource
\link{} → “create page” link
\embed{uri} → embedded resource
==\embed{uri}== → embedded resource with a second-level title
\embed[nohead]{uri} → embedded resource without a title
\annotate{uri} → add resource as annotation

A.2.2 Files
\imgfile{picture.jpg} → image
\linkfile{picture.jpg} → link to file
\namefile{picture.jpg} → name of file

A.2.3 Other
\href{http://foo.com}{Foo Inc.} → link to external web site
\url{http:/bar.org} → link to external web site
\raw{html} → enter HTML directly

Inlinks, in-embeddings, links to other projects, links to published data: see Sect. A.3.1.

1http://www.wikicreole.org

http://www.wikicreole.org

274 A. Wikked syntax

//italics// → italics
bold → bold
˜**escaped bold** → **escaped bold**

* Bullet list → o Bullet list
* Second item o Second item
** Sub item o Sub item

Numbered list → 1. Numbered list
Second item 2. Second item
Sub item 2.2. Sub item

Link to [[wiki page]] → Link to wiki page
[[URL|link name]] → link name

= Large heading → 1. Large heading
== Medium heading → 1.1. Medium heading
=== Small heading → 1.1.1. Small heading
===* Unnumbered small heading → Unnumbered small heading

No → No line break!
linebreak!

Use empty line
Use empty line

Forced\\linebreak → Forced
line break

Horizontal line: → Horizontal line:

{{Image.jpg|title}} → Image with title

|=|=table|=header| → Table
|a|table|row|
|b|table|row|

{{{ → == [[Nowiki]]:
== [[Nowiki]]: //**don’t** format//
//**don’t** format//
}}}

Table A.1: WikiCreole markup

A.3 Commands 275

A.3 Commands

A.3.1 Linking and embedding
Resources:

• \link{uri}{label}: label is optional.

• \embed{uri}

– Option: @noframe

– No arguments: self-embedding

– Looking up embedder IDs: in the info dialog for the currently displayed
resource.

• \linkin: show incoming references as links.

• \embedin: show incoming references embedded (useful for tags).

• \annotate{uri}{label}: add resource as an annotation (similar to a post-
it note).

Files (the following commands create external literals for synchronization via Brij):

• \linkfile{file.txt}: link.

• \namefile{file.txt}: name.

• \imgfile{picture.jpg}: image.

Inter-project links

• \linkext[webapp=http://localhost/hyena]{proj:repository#resource}{label}
(project is optional, label is optional)

• \linkfileext[webapp=http://localhost/hyena]{proj:dir/file.txt}{label}
(project is required, label is optional)

Other:

• \url{url}

• \href{url}{label}

• \linkpub[@label=xxx,...]{publisherId}{uri}: link to published
data (feeds etc.). Works in web and in Eclipse mode. The URI argument is
optional; if missing, the current resource is used. You can look up the exact
command via the dialog that comes up after clicking on the “Publish” mini-link.

Notes:

• Labels next to RDF URIs are completely ignored and serve only to improve
readability for humans.

A.3.2 Miscellaneous commands
• \lastChanges[limit,style]: with limit an integer (default is 10) and

style either table or bullets (default is table).

276 A. Wikked syntax

A.3.3 Google gadgets
Include Google gadgets via the \gadget command:

• When you have found a gadget you like, use the configuration page “Add this
gadget to your webpage” until your gadget is set up according to your wishes.

• Then click the button “Get the Code”. The resulting code is

<script src="..."><script>

• Copy the value of the src parameter. It is the (only) argument to \gadget.

A.4 Mixing in structured data
• Self-embeddings: using \embed without an argument embeds the data of the

current resource. You do have to specify an embedder, though, because the de-
fault is the Wikked page embedder.

• wikked:useLens (via the Wikked page lens): Attaches a lens projection to
the bottom of a wiki page. That projection is present both during displaying the
page and editing it.

Appendix B

Inferencing

Contents
B.1 Overview . 277
B.2 Kinds of inferences . 277
B.3 Challenges of inferencing . 278
B.4 Outline of a solution . 279
B.5 Related work . 279

B.1 Overview
Inferencing is the process of deriving new RDF statements from existing ones. It is the
foundation of the semantics of RDF schema and of some parts of OWL. This chapter
first presents inferences from RDFS and OWL that are interesting for future versions
of HYENA. It also describes high-level HYENA-specific inferences such as inferring
facets or computing property values. Then the challenges involved in implementing
those inferences are explained and a solution is sketched. The chapter concludes by
enumerating some related work.

B.2 Kinds of inferences
The following inferences should be considered for future versions of HYENA. RDFS
inferences:

• rdfs:subClassOf is transitive.

• rdfs:subPropertyOf is transitive. Additionally, if b is a subproperty of a
then all statements whose predicate is b are also asserted for a.

• rdfs:domain infers the types of subjects.

• rdfs:range infers the types of objects.

Inferencing in OWL:

278 B. Inferencing

• owl:FunctionalProperty infers objects with the same subject as equiva-
lent.

• owl:InverseFunctionalProperty infers subjects that have the same
property value as equivalent.

• owl:SymmetricProperty infers symmetry.

• owl:TransitiveProperty infers transitivity.

• owl:equivalentClass infers two classes as equivalent. The simplest way
of implementing equivalent classes is to treat them as equivalent resources (see
below).

• owl:equivalentProperty infers equivalence between properties: If one
property in a set of equivalent properties is the predicate of a statement, all other
properties get a corresponding statement.

• owl:sameAs infers equivalence between resources: If one resource in a set
of equivalent resources is the subject of a statement, all other resources get a
corresponding statement.

Ideas for special-purpose inferencing in HYENA:

• Inferred facets: For example, every time a tag is present, a more general tag
should be added, too.

• Computed property values. All kinds of computations could become part of an
inferencing infrastructure.

Note that transitive properties p are often better handled by computing transitivity for
a separate property p′ and making p a subproperty of p′. As a result, all p statements
are also asserted for p′, but the transitive closure is only performed for p′. Thus, one
can use p to determine direct relatedness and p′ to determine transitive relatedness.
One example is the transitive ancestor-descendant relationship being derived from the
parent-child relationship.

B.3 Challenges of inferencing
The main challenge of inferencing is when to update. The simplest way to do that is
to recompute all inferences, at the same time. A decision must then be made when to
invoke that process. It cannot be performed too often, because it is time-consuming.
Thus, one usually lets the user invoke it manually, whenever she feels enough changes
have been made to warrant the time it consumes. For most data, this is not a problem
and can be handled similar to HYENA’s reloading life cycle event (Sect. 18.3.2). La-
beling is one area where this approach can be problematic. Labels need to be as current
as possible. Thus, if subproperties are used to infer rdfs:label then the inference
should be performed any time the subproperty changes.

Sometimes, having the result of an inference is not enough, one also needs to know
what caused the inference. An example is equivalence. If two resources A and B are
declared equivalent then properties of A will turn up in B. But those properties will be
read-only. As the intended effect of equivalence is to create the illusion that these two
resources have been merged, this is not satisfactory for editing. Instead, if the user tries

B.4 Outline of a solution 279

to edit the read-only property of B, one should change the original statement in A and
then redo the inference. This is a specific case of a general problem of inference: if
an output has been cause by an input, one cannot change the output directly, one must
change the input. Thus, one probably has to record for most (if not all) inferences what
caused them. In logic, this is called truth maintenance [McA90].

B.4 Outline of a solution
HYENA currently prefers a more dynamic solution to inference, because it avoids the
time lag of invoking inference. For example, subproperties of rdfs:label are col-
lected during reloading (Sect. 18.3.2) and used to dynamically look up the label of
resources. Inference will become more important as support for linked data is imple-
mented in HYENA, due to the distributed nature of that data and the integration that
inference enables.

One way of implementing inference is to store all inferred statements in a separate
named graph. Except to the inferencer, that graph is read-only. REMM would imme-
diately handle such a solution correctly, because it already supports read-only graphs.
Recomputation is triggered similarly to reloading and first clears the graph and then
computes the inferences. Integrating various kinds of inferencers is simple, they only
need to store their inferences in the graph. Truth maintenance could be performed by
logging the causes of an inference in a separate relational database. Maybe this data
can be used to implement incremental computation, because whenever a statement is
removed, one might be able to undo the inferences it caused. Undoing is particularly
challenging when inferring transitivity.

B.5 Related work
The SPARQL Inferencing Notation1 (SPIN) is “a collection of RDF vocabularies en-
abling the use of SPARQL to define constraints and inference rules on Semantic Web
models. SPIN also provides meta-modeling capabilities that allow users to define their
own SPARQL functions and query templates. Finally, SPIN includes a ready to use
library of common functions.” SPIN can be used to calculate the value of a property
based on other properties, to perform constraint-checking with closed-world seman-
tics, and to determine rules to be executed under certain conditions. Uses of the last
feature are incremental reasoning, interactive applications and automatic initialization
of properties after resource creation.

The NEPOMUK Representational Language (NRL, [SESH07]) assigns roles to
named graphs. That allows for data aggregation (via graph inheritance) and views that
apply different ways of inferencing or other kinds of transformations (such as hiding
statements) on data.

“Networked RDF Graphs2 extend named graphs with a SPARQL based view mech-
anism. Briefly, a networked graph, among other statements, contains statements de-
scribing the graph itself in terms of SPARQL queries against other graphs. The net-
worked graph then contains some explicitly listed content plus statements computed
from the views on other graphs.”

1http://spinrdf.org/
2http://www.uni-koblenz-landau.de/koblenz/fb4/institute/IFI/AGStaab/

Research/systeme/NetworkedGraphs/

http://spinrdf.org/
http://www.uni-koblenz-landau.de/koblenz/fb4/institute/IFI/AGStaab/Research/systeme/NetworkedGraphs/
http://www.uni-koblenz-landau.de/koblenz/fb4/institute/IFI/AGStaab/Research/systeme/NetworkedGraphs/

280 B. Inferencing

Bibliography

[AB06] Ben Adida and Mark Birbeck. RDFa primer 1.0: Embedding rdf
in XHTML. http://www.w3.org/TR/xhtml-rdfa-primer/,
accessed 2009-04-02, May 2006. W3C Working Draft.

[ACHZ] K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. void guide
– using the vocabulary of interlinked datasets. http://rdfs.org/
ns/void-guide, accessed 2009-09-04.

[ADR06] Sören Auer, Sebastian Dietzold, and Thomas Riechert. Ontowiki - a
tool for social, semantic collaboration. In International Semantic Web
Conference, pages 736–749, 2006.

[AH06] Sören Auer and Heinrich Herre. A versioning and evolution framework
for RDF knowledge bases. In Ershov Memorial Conference, pages 55–
69, 2006.

[AH08] Dean Allemang and James Hendler. Semantic Web for the Working On-
tologist: Effective Modeling in RDFS and OWL. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2008.

[AKD07] Hend S. Al-Khalifa and Hugh C. Davis. Towards better understanding
of folksonomic patterns. In HT ’07: Proceedings of the eighteenth con-
ference on Hypertext and hypermedia, pages 163–166, New York, NY,
USA, 2007. ACM.

[Apa08] Apache Software Foundation. UIMA Overview and SDK Setup, 2008.
Version 2.2.2-incubating.

[B+a] Sean Bechhofer et al. Owl web ontology language: Reference. http:
//www.w3.org/TR/owl-ref/, accessed 2009-04-02. W3C Rec-
ommendation.

[B+b] Diego Berrueta et al. SIOC core ontology specification. http://
rdfs.org/sioc/spec/, accessed 2009-06-29.

[BBL08] Dave Beckett and Tim Berners-Lee. Turtle—terse RDF triple lan-
guage. http://www.w3.org/TeamSubmission/2008/SUBM-
turtle-20080114/, 2008.

[BCH07] Chris Bizer, Richard Cyganiak, and Tom Heath. How to publish linked
data on the web. http://sites.wiwiss.fu-berlin.de/
suhl/bizer/pub/LinkedDataTutorial/20070727/, 2007.

http://www.w3.org/TR/xhtml-rdfa-primer/
http://rdfs.org/ns/void-guide
http://rdfs.org/ns/void-guide
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://rdfs.org/sioc/spec/
http://rdfs.org/sioc/spec/
http://www.w3.org/TeamSubmission/2008/SUBM-turtle-20080114/
http://www.w3.org/TeamSubmission/2008/SUBM-turtle-20080114/
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/20070727/
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/20070727/

282 BIBLIOGRAPHY

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors. The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, 2003.

[BDE+08] Ansgar Bernardi, Stefan Decker, Ludger van Elst, Gunnar Aastrand
Grimnes, Tudor Groza, Siegfried Handschuh, Mehdi Jazayeri, Cédric
Mesnage, Knud Müller, Gerald Reif, Michael Sintek, and Leo Sauer-
mann. The social semantic desktop: A new paradigm towards deploying
the semantic web on the desktop. In Jorge Cardoso and Miltiadis D.
Lytras, editors, Semantic Web Engineering in the Knowledge Society,
chapter XII, pages 290–312. IGI Global, 2008.

[BG04] Dan Brickley and R.V. Guha. RDF vocabulary description language 1.0:
RDF schema. http://www.w3.org/TR/rdf-schema/, accessed
2009-04-02, February 2004. W3C Recommendation.

[BHBL09] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the
story so far. International Journal on Semantic Web and Information
Systems, 2009.

[BLa] Tim Berners-Lee. Linked data. http://www.w3.org/
DesignIssues/LinkedData, accessed 2009-06-16.

[BLb] Tim Berners-Lee. Notation3 (N3) a readable RDF syntax.
http://www.w3.org/DesignIssues/Notation3.html, ac-
cessed 2009-04-02.

[BLHL+08] Tim Berners-Lee, J. Hollenbach, Kanghao Lu, J. Presbrey,
E. Prud’hommeaux, and Mc Schraefel. Tabulator redux: Brows-
ing and writing linked data. In Proc. Wsh. Linked Data on the Web
(LDOW), 2008.

[BLP] Chris Bizer, Ryan Lee, and Emmanuel Pietriga. Fresnel—display vo-
cabulary for RDF—user manual. http://www.w3.org/2005/04/
fresnel-info/manual/, accessed 2009-04-02.

[BM] Dan Brickley and Libby Miller. FOAF vocabulary specification. http:
//xmlns.com/foaf/spec/, accessed 2009-06-29.

[BPKL06] Christian Bizer, Emmanuel Pietriga, David Karger, and Ryan Lee. Fres-
nel: A browser-independent presentation vocabulary for RDF. In Proc.
5th Int. Semantic Web Conf. (ISWC), 2006.

[BRJ99] Grady Booch, Jim Rumbaugh, and Ivar Jacobsen. The Unified Modeling
Language User Guide. Addison-Wesley, 1999.

[BVKKS08] Michael Bernstein, Max Van Kleek, David Karger, and M. C. Schrae-
fel. Information scraps: How and why information eludes our personal
information management tools. ACM Trans. Inf. Syst., 26(4):1–46, 2008.

[C+] Jeremy Carroll et al. Named graphs. http://www.w3.org/2004/
03/trix/, accessed 2009-04-02. W3C Interest Group.

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/DesignIssues/LinkedData
http://www.w3.org/DesignIssues/LinkedData
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/2005/04/fresnel-info/manual/
http://www.w3.org/2005/04/fresnel-info/manual/
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/
http://www.w3.org/2004/03/trix/
http://www.w3.org/2004/03/trix/

BIBLIOGRAPHY 283

[CDG+06] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deb-
orah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: a distributed storage system for structured
data. In Proc. 7th USENIX Symp. Operating Systems Design and Im-
plementation (OSDI), pages 15–15, Berkeley, CA, USA, 2006. USENIX
Association.

[CSD+08] Richard Cyganiak, Holger Stenzhorn, Renaud Delbru, Stefan Decker,
and Giovanni Tummarello. Semantic sitemaps: Efficient and flexible
access to datasets on the semantic web. In Proc. 5th Europ. Semantic
Web Conf. Springer, 2008.

[dBLPF05] Jos de Bruijn, Rubén Lara, Axel Polleres, and Dieter Fensel. OWL DL
vs. OWL flight: conceptual modeling and reasoning for the semantic
web. In Proc. 14th int. conf. World Wide Web, pages 623–632, New York,
NY, USA, 2005. ACM.

[dcm] DCMI metadata terms. http://dublincore.org/documents/
dcmi-terms/, accessed 2009-06-29.

[DH76] Whitfield Diffie and Martin E. Hellman. Multiuser cryptographic tech-
niques. In AFIPS National Computer Conference, pages 109–112, 1976.

[FG96] Eric Freeman and David Gelernter. Lifestreams: a storage model for
personal data. SIGMOD Rec., 25(1):80–86, 1996.

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of California,
Irvine, 2000.

[FLGD87] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The
vocabulary problem in human-system communication. Commun. ACM,
30(11):964–971, 1987.

[Fow04] Martin Fowler. Inversion of control containers and the dependency
injection pattern. http://martinfowler.com/articles/
injection.html, accessed 2008-09-25, 2004.

[Gar05] Jesse James Garrett. Ajax: A new approach to web appli-
cations. http://www.adaptivepath.com/publications/
essays/archives/000385.php, accessed 2009-04-02, 2005.

[GH06] Scott A. Golder and Bernardo A. Huberman. Usage patterns of collabo-
rative tagging systems. J. Inf. Sci., 32(2):198–208, 2006.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns. Addison Wesley, 1995.

[Gro08] Object Management Group. Mof query / views / transformations.
http://www.omg.org/spec/QVT/1.0/, 2008. Version 1.0.

[gui08] Java on guice: Guice 1.0 user’s guide. http://code.google.
com/p/google-guice/wiki/UserGuide, accessed 2008-09-
25, 2008.

http://dublincore.org/documents/dcmi-terms/
http://dublincore.org/documents/dcmi-terms/
http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.omg.org/spec/QVT/1.0/
http://code.google.com/p/google-guice/wiki/UserGuide
http://code.google.com/p/google-guice/wiki/UserGuide

284 BIBLIOGRAPHY

[Hal01] Frank G. Halasz. Reflections on notecards: seven issues for the next
generation of hypermedia systems. ACM J. Comput. Doc., 25(3):71–87,
2001.

[Hea09] Tom Heath. Linked data tutorial at semantic web austin. http://
linkeddata.org/guides-and-tutorials, 2009.

[Hen06] Jim Hendler. The dark side of the semantic web. http:
//www.mindswap.org/blog/2006/12/13/the-dark-
side-of-the-semantic-web/, 2006.

[HKM04] N.F. Noy H. Knublauch, R. Fergerson and M.A. Musen. The Protege
OWL Plugin: An Open Development Environment for Semantic Web
Applications. In 3rd Int. Conf. Semantic Web (ISWC), 2004.

[HM76] J. W. Hunt and M. D. McIlroy. An algorithm for differential file com-
parison. Technical Report CSTR 41, Bell Laboratories, Murray Hill, NJ,
1976.

[HPSB+] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet,
Benjamin Grosof, and Mike Dean. SWRL: A semantic web rule
language combining OWL and RuleML. http://www.w3.org/
Submission/SWRL/, accessed 2009-06-26.

[HvOH06] Michiel Hildebrand, Jacco van Ossenbruggen, and Lynda Hardman.
/facet: A browser for heterogeneous semantic web repositories. In In-
ternational Semantic Web Conference, pages 272–285, 2006.

[HZL08] Philipp Heim, Jürgen Ziegler, and Steffen Lohmann. gfacet: A browser
for the web of data. In S. Auer, S. Dietzold, S. Lohmann, and J. Ziegler,
editors, Proc. int. wsh. interacting with multimedia content in the social
semantic web (IMC-SSW). CEUR-WS, 2008.

[iso07] Common logic (cl): a framework for a family of logic-based languages.
http://www.iso.org/iso/iso_catalogue/catalogue_
tc/catalogue_detail.htm?csnumber=39175, 2007.
ISO/IEC 24707:2007.

[JSB+08] Simon Jupp, Robert Stevens, Sean Bechhofer, Yeliz Yesilada, and Patty
Kostkova. Knowledge representation for web navigation. In Seman-
tic Web Applications and Tools for the Life Sciences (SWAT4LS 2008)
Workshop, 2008.

[Kuh08] Tobias Kuhn. AceWiki: Collaborative ontology management in con-
trolled natural language. In Proc. 3rd Wsh. Semantic Wikis. CEUR Work-
shop Proceedings, 2008.

[KVV+07] Markus Krötzsch, Denny Vrandečić, Max Völkel, Heiko Haller, and
Rudi Studer. Semantic wikipedia. Web Semant., 5(4):251–261, 2007.

[Mag] Patrick T. Magee. Three step creative writing process. http://
braindance.com/bdimmap4.htm, accessed 2009-04-02.

http://linkeddata.org/guides-and-tutorials
http://linkeddata.org/guides-and-tutorials
http://www.mindswap.org/blog/2006/12/13/the-dark-side-of-the-semantic-web/
http://www.mindswap.org/blog/2006/12/13/the-dark-side-of-the-semantic-web/
http://www.mindswap.org/blog/2006/12/13/the-dark-side-of-the-semantic-web/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39175
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39175
http://braindance.com/bdimmap4.htm
http://braindance.com/bdimmap4.htm

BIBLIOGRAPHY 285

[MAK+04] Martin Michalowski, José Luis Ambite, Craig A. Knoblock, Steve
Minton, Snehal Thakkar, and Rattapoom Tuchinda. Retrieving and se-
mantically integrating heterogeneous data from the web. IEEE Intelli-
gent Systems, 19(3):72–79, 2004.

[Mar06] Gary Marchionini. Exploratory search: from finding to understanding.
Commun. ACM, 49(4):41–46, 2006.

[MB] Alistair Miles and Sean Bechhofer. SKOS simple knowledge or-
ganization system reference. http://www.w3.org/TR/skos-
reference/, accessed 2009-06-29.

[McA90] David A. McAllester. Truth maintenance. In AAAI, pages 1109–1116,
1990.

[MHRJ91] Catherine C. Marshall, Frank G. Halasz, Russell A. Rogers, and
William C. Janssen, Jr. Aquanet: a hypertext tool to hold your knowl-
edge in place. In Proc. 3rd ACM Conf. Hypertext, pages 261–275, New
York, NY, USA, 1991. ACM.

[MHS06] Eetu Mäkelä, Eero Hyvönen, and Samppa Saarela. Ontogator - a seman-
tic view-based search engine service for web applications. In Interna-
tional Semantic Web Conference, pages 847–860, 2006.

[MHS09] Boris Motik, Ian Horrocks, and Ulrike Sattler. Bridging the gap between
OWL and relational databases. Web Semant., 7(2):74–89, 2009.

[MM] Frank Manola and Eric Miller. RDF primer. http://www.w3.org/
TR/rdf-primer/, accessed 2009-04-02. W3C Recommendation.

[MTEBG07] Christian Morbidoni, Giovanni Tummarello, Orri Erling, and Reto
Bachmann-Gmür. RDFSync: efficient remote synchronization of
RDF models. In Proc. 6th Int. and 2nd Asian Semantic Web Conf.
(ISWC+ASWC), pages 533–546, November 2007.

[New] Richard Newman. Tag ontology design. http://www.holygoat.
co.uk/projects/tags/, accessed 2009-06-19.

[NR] Natasha Noy and Alan Rector. Defining n-ary relations on the semantic
web. http://www.w3.org/TR/swbp-n-aryRelations, ac-
cessed 2009-05-21.

[ODD06] Eyal Oren, Renaud Delbru, and Stefan Decker. Extending faceted navi-
gation for RDF data. In Proc. Int. Semantic Web Conf. (ISWC). Springer,
2006.

[ODM+06] Eyal Oren, Renaud Delbru, Knud Möller, Max Völkel, and Siegfried
Handschuh. Annotation and navigation in semantic wikis. In Proc. 1st

Wsh. Semantic Wikis, 2006.

[omg09] Ontology definition metamodel. http://www.omg.org/spec/
ODM/1.0, 2009. Version 1.0.

http://www.w3.org/TR/skos-reference/
http://www.w3.org/TR/skos-reference/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.holygoat.co.uk/projects/tags/
http://www.holygoat.co.uk/projects/tags/
http://www.w3.org/TR/swbp-n-aryRelations
http://www.omg.org/spec/ODM/1.0
http://www.omg.org/spec/ODM/1.0

286 BIBLIOGRAPHY

[PENN07] Matthias Palmér, Fredrik Enoksson, Mikael Nilsson, and Ambjörn
Naeve. Annotation profiles: configuring forms to edit RDF. In DCMI
’07: Proceedings of the 2007 international conference on Dublin Core
and Metadata Applications, pages 10–21. Dublin Core Metadata Initia-
tive, 2007.

[PH03] J. Park and S. Hunting, editors. XML Topic Maps. Addison-Wesley,
2003.

[Pie] Emmanuel Pietriga. Fresnel Selector Language for RDF (FSL).

[Pro] The LaTeX Project. Latex – a document preparation system. http:
//www.latex-project.org/, accessed 2009-04-02.

[PS05] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language
for RDF. http://www.w3.org/TR/rdf-sparql-query/, ac-
cessed 2009-04-02, July 2005. W3C Working Draft.

[PSHH04] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL web
ontology language: Semantics and abstract syntax. http://www.w3.
org/TR/2004/REC-owl-semantics-20040210/, 2004.

[PV04] Benjamin C. Pierce and Jérôme Vouillon. What’s in Unison? A for-
mal specification and reference implementation of a file synchronizer.
Technical Report MS-CIS-03-36, Dept. of Computer and Information
Science, University of Pennsylvania, 2004.

[QHK03] Dennis Quan, David Huynh, and David R. Karger. Haystack: A plat-
form for authoring end user semantic web applications. In International
Semantic Web Conference (ISWC), pages 738–753, 2003.

[Qui05] Emanuele Quintarelli. Folksonomies: power to the people. http:
//www.iskoi.org/doc/folksonomies.htm, June 2005. Pre-
sented at the ISKO Italy-UniMIB meeting.

[RAN07] Axel Rauschmayer, Anita Andonova, and Patrick Nepper. Increasing
the versatility of Java documentation with RDF. In K. Tochtermann,
W. Haas, F. Kappe, A. Scharl, T. Pellegrini, and S. Schaffert, editors,
Proc. Int. Conf. Semantic Technologies (I-SEMANTICS), J.UCS. Graz
University of Technology, 2007.

[Rau] Axel Rauschmayer. Hyena manual. http://www.pst.ifi.lmu.
de/~rauschma/hyena/manual/.

[Rau04] Axel Rauschmayer. A recipe for more dynamic OOP: Mix a knowledge
representation and prototypes. In Proc. OOPSLA Wsh. Revival of Dy-
namic Languages, October 2004.

[Rau05a] Axel Rauschmayer. An RDF editing platform for software engineering.
In ISWC Wsh. Semantic Web Enabled Software Engineering (SWESE),
November 2005.

[Rau05b] Axel Rauschmayer. An RDF editing platform for software engineering.
Technical Report 0505, Ludwig-Maximilians-Universität München, In-
stitut für Informatik, July 2005.

http://www.latex-project.org/
http://www.latex-project.org/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/
http://www.iskoi.org/doc/folksonomies.htm
http://www.iskoi.org/doc/folksonomies.htm
http://www.pst.ifi.lmu.de/~rauschma/hyena/manual/
http://www.pst.ifi.lmu.de/~rauschma/hyena/manual/

BIBLIOGRAPHY 287

[Rau05c] Axel Rauschmayer. Semantic-web-backed gui applications. In ISWC
Wsh. End User Semantic Web Interaction. M. Jeusfeld c/o Redaktion
Sun SITE, Informatik V, RWTH Aachen, November 2005.

[Rau08a] Axel Rauschmayer. Lightweight data modeling in RDF. In Jörg Rech,
Björn Decker, and Eric Ras, editors, Emerging Technologies for Seman-
tic Work Environments: Techniques, Methods, and Applications. Idea
Group Inc., 2008.

[Rau08b] Axel Rauschmayer. Next-generation wikis: What users expect; how
RDF helps. In Christoph Lange, Sebastian Schaffert, Hala Skaf-Molli,
and Max Völkel, editors, Proc. 3rd Semantic Wiki Wsh. at ESWC. M.
Jeusfeld c/o Redaktion Sun SITE, Informatik V, RWTH Aachen, 2008.

[Rau10] Axel Rauschmayer. Structure your wiki: Improving support for struc-
tured data in wikis. Technical Report 1002, Ludwig-Maximilians-
Universität München, Institut für Informatik, 2010.

[rdf] RDFa bookmarklets. http://www.w3.org/2001/sw/
BestPractices/HTML/rdfa-bookmarklet/, accessed
2009-04-02.

[RK06] Axel Rauschmayer and Walter Christian Kammergruber. A wiki as an
extensible RDF presentation engine. In ESWC Wsh. Semantic Wikis—
From Wiki to Semantics. M. Jeusfeld c/o Redaktion Sun SITE, Informatik
V, RWTH Aachen, June 2006.

[RR04a] Axel Rauschmayer and Patrick Renner. Knowledge-representation-
based software engineering. Technical Report 0407, Ludwig-
Maximilians-Universität München, Institut für Informatik, May 2004.

[RR04b] Axel Rauschmayer and Patrick Renner. Tube: Interactive model-
integrated object-oriented programming. In Proc. IASTED Int. Conf.
Software Engineering and Applications (SEA), November 2004.

[RR05a] Axel Rauschmayer and Patrick Renner. Tube—structure-orientation in
a prototype-based programming environment. In Proc. Int. Conf. Pro-
gramming Languages and Compilers (PLC), June 2005.

[RR05b] Axel Rauschmayer and Patrick Renner. Tube: a prototype-based pro-
gramming environment. Technical Report 0502, Ludwig-Maximilians-
Universität München, Institut für Informatik, April 2005.

[Rul] The rule markup initiative. http://www.ruleml.org/, accessed
2009-04-02.

[SC] Leo Sauermann and Richard Cyganiak. Cool uris for the seman-
tic web. http://www.w3.org/TR/2008/NOTE-cooluris-
20081203/. W3C Interest Group Note.

[SEG+09] Sebastian Schaffert, Julia Eder, Szaby Grünwald, Thomas Kurz, Mihai
Radulescu, Rolf Sint, and Stephanie Stroka. Kiwi – a platform for se-
mantic social software. In Proc. 4th Wsh. Semantic Wikis, 2009.

http://www.w3.org/2001/sw/BestPractices/HTML/rdfa-bookmarklet/
http://www.w3.org/2001/sw/BestPractices/HTML/rdfa-bookmarklet/
http://www.ruleml.org/
http://www.w3.org/TR/2008/NOTE-cooluris-20081203/
http://www.w3.org/TR/2008/NOTE-cooluris-20081203/

288 BIBLIOGRAPHY

[SESH07] Michael Sintek, Ludger Elst, Simon Scerri, and Siegfried Handschuh.
Distributed knowledge representation on the social semantic desktop:
Named graphs, views and roles in nrl. In Proc. 4th European Conf.
The Semantic Web, pages 594–608, Berlin, Heidelberg, 2007. Springer-
Verlag.

[SHJJ09] Henry Story, Bruno Harbulot, Ian Jacobi, and Mike Jones. FOAF+SSL:
RESTful Authentication for the Social Web. In Michael Hausenblas,
Philipp Kärger, Daniel Olmedilla, Alexandre Passant, and Axel Polleres,
editors, Proc. 1st Wsh. Trust and Privacy on the Social and Semantic Web
(SPOT). CEUR-WS.org, 2009.

[sit] Microformats. http://microformats.org/, accessed 2009-04-
02.

[SMB+08] Andy Seaborne, Geetha Manjunath, Chris Bizer, John Breslin,
Souripriya Das, Ian Davis, Steve Harris, Kingsley Idehen, Olivier Corby,
Kjetil Kjernsmo, and Benjamin Nowack. Sparql update: A language
for updating RDF graphs. http://www.w3.org/Submission/
2008/SUBM-SPARQL-Update-20080715/, 2008.

[TB08] Michal Tvarožek and Mária Bieliková. Collaborative multi-paradigm
exploratory search. In WebScience ’08: Proceedings of the hypertext
2008 workshop on Collaboration and collective intelligence, pages 29–
33, New York, NY, USA, 2008. ACM.

[TM08] Giovanni Tummarello and Christian Morbidoni. The dbin platform: A
complete environment for semantic web communities. Web Semantics:
Science, Services and Agents on the World Wide Web, 6(4):257 – 265,
2008.

[Tun06] Daniel Tunkelang. Dynamic category sets: An approach for faceted
search. In Proc. SIGIR Wsh. Faceted Search. ACM, 2006.

[VG06] Max Völkel and Tudor Groza. Semversion: An RDF-based ontology
versioning system. In Proc. IADIS Int. Conf. WWW/Internet, volume 1,
pages 195–202, Murcia, Spain, OCT 2006. IADIS, IADIS.

[Wel07] Katrin Weller. Folksonomies and ontologies: Two new players in index-
ing and knowledge representation. In H. Jezzard, editor, Applying Web
2.0: Innovation, Impact and Implementation. Proc. Online Information
Conference. Learned Information Europe Ltd., 2007.

[wika] Creole: A common wiki markup language. http://wikicreole.
org/, accessed 2009-04-02.

[Wikb] Wikipedia. RDFa. http://en.wikipedia.org/wiki/RDFa,
accessed 2009-04-02.

[WP07] Katrin Weller and Isabella Peters. Reconsidering relationships for
knowledge representation. In Proc. I-KNOW, 2007.

http://microformats.org/
http://www.w3.org/Submission/2008/SUBM-SPARQL-Update-20080715/
http://www.w3.org/Submission/2008/SUBM-SPARQL-Update-20080715/
http://wikicreole.org/
http://wikicreole.org/
http://en.wikipedia.org/wiki/RDFa

289

[YCM06] Alexander Yip, Benjie Chen, and Robert Morris. Pastwatch: a dis-
tributed version control system. In Proc. 3rd Conf. Networked Systems
Design & Implementation (NSDI), pages 28–28, Berkeley, CA, USA,
2006. USENIX Association.

[ZR04] Christian Zimmer and Axel Rauschmayer. Tuna: Ontology-based source
code navigation and annotation. In OOPSLA Wsh. Ontologies as Soft-
ware Engineering Artifacts, October 2004.

290

Acknowledgements

I would like to thank the following people who accompanied my professional life while
I was writing this dissertation.

• Thanks to my professor, Martin Wirsing, for having provided me with a great
job and work environment for several years.

• I would like to thank the primary reviewers of this dissertation: Martin Wirsing,
Marcus Spies, and Don Batory. Their comments and their support were very
helpful.

• I would also like to thank my third and fourth reviewers, Claudia Linnhoff-
Popien and Christian Böhm for their time.

• The whole chair of Programming and Software Engineering was an incredible
source of information and inspiration. To name four important people among
many: Martin Wirsing (Grundlagen der Systementwicklung, process calculi),
Alexander Knapp (calculi, “how academia works”, history), Hubert Baumeis-
ter (Wikis, eXtreme Programming), Matthias Hölzl (Dylan, Lisp, programming
language design).

• I was fortunate to have many students collaborate with me on HYENA. This lead
to many fruitful discussions. Among others: Patrick Nepper, Christian Zimmer,
Thomas Müller, Anita Andonova, and Philipp Mpalampanis.

• Discussions with and tips from Malte Kiesel concerning wikis and the semantic
web were also highly instructional.

• Matthias Palmér provided valuable feedback on drafts of the REMM chapters.

• Michael Hausenblas wrote the wiki page on which the sections of write-enabling
linked data are based and answered questions I had.

• Helpful feedback on the wiki survey questions was given by Malte Kiesel, An-
dreas Schroeder, Philip Mayer, and Hubert Baumeister.

• Finally, members of the mailing list of the “Linking Open Data Project” patiently
answered my questions, helping me with understanding linked data principles
and ideas.

	Abstract
	Zusammenfassung
	Introduction: Connected information management
	Overview
	Connected information management
	Hyena, a platform for connected information management
	The structure of this dissertation
	Running example

	I Background
	Data modeling with RDF
	Overview
	Finding a data format for structured data
	Basic constructs and interpretations of RDF
	Advanced features
	Best practices for basic RDF constructs
	Schema, rules, and querying
	Useful vocabularies
	RDF applications

	Linked data on the web
	Overview
	Core concepts
	Discovery
	Write-enabling linked data
	Future research: linked data and Hyena

	Folksonomies and ontologies
	Overview
	Folksonomies
	Ontologies

	Schema and ontology languages
	Overview
	RDFS
	RDFS-Plus
	OWL Web Ontology Language
	Ontology Definition Metamodel (ODM)

	II User interface and navigation
	User interface
	Overview
	Skill levels
	Master tabs
	Detail pane and inspectors
	Sidebar
	Discussion

	Information navigation
	Overview
	Faceted navigation
	Defining and editing RDF facets
	Tagging
	Meta-faceted navigation
	Assisted querying
	Multi-paradigm search
	Running example
	Future research
	Discussion

	Title tags
	Overview
	Basics
	Attaching meta-data
	Simple time notation
	Running example
	Discussion

	III Foundations
	A model for connected information management
	Overview
	Requirements
	Projects and repositories
	Event operations
	Manifesting entities as resources
	Search calculus
	Example
	Discussion

	Wikked: A wiki markup language
	Overview
	Requirements
	The markup language and its processing
	Structure and wiki markup
	History and editing conflict management
	Future research
	Discussion

	Templates: A presentation language for RDF
	Overview
	Requirements for RDF templating
	Syntax and meta-syntax
	Example
	Discussion and future research

	RDF patterns
	Overview
	Encapsulating multiple resources as resources
	N-ary relations
	Configuration
	Discussion

	IV The RDF editing meta-model
	Introduction: The RDF editing meta-model (REMM)
	Overview
	RDF vocabularies that REMM is based on
	Conventions used in this document
	Building blocks for data modeling in RDF
	The main REMM constructs
	The user interface: REMM in use

	REMM schema
	Overview
	A type system for lightweight RDF editing
	Operations on class hierarchies
	Translation from OWL
	Discussion

	REMM presentation: Select, order and style the data to be edited
	Overview
	The abstract box model: Laying out RDF data
	Selectors: Matching resources and properties
	Groups: Context-specific containers for REMM constructs
	Lenses: Selecting trees of RDF data
	Formats: Styling RDF data
	Documenting lenses
	Example lenses
	Discussion

	REMM editing: Specify and apply changes to resources
	Overview
	The structure of a projection
	Creating a projection
	Editing a projection
	Applying the projection: changing the data
	Example

	Configuration in RDF
	Overview
	Designating primary classes
	Naming resources
	Summary: all configuration data parsed from RDF

	V The extension framework
	Architecture: Hyena as an implementation framework
	Overview
	Dependency injection
	The Hyena container API
	Core layer and GUI layer
	Help content
	Discussion

	Multiple interpretations of resources
	Overview
	Requirements
	Multi-models
	Embedders
	Inspectors
	Model piece methods

	Importing and exporting RDF
	Overview
	Importing
	Exporting

	Synchronizing files and RDF data
	Overview
	Synchronizing files
	Synchronizing RDF
	Future research
	Discussion

	VI Related work
	Hypermedia and Hypertext
	Overview
	Conceptual Open Hypermedia (COHSE)
	NoteCard and issues for hypermedia systems
	Aquanet: a hypertext tool to hold your knowledge in place

	Annotating text
	Overview
	Annotation and navigation in semantic wikis
	Unstructured Information Management Architecture (UIMA)
	Open Calais

	RDF editing
	Overview
	The Protégé OWL plugin
	Tabulator redux: writing into the semantic web
	OntoWiki
	TopBraid suite
	Annotation profiles

	Information managers
	Overview
	Information scraps
	Lifestreams
	Haystack
	The Social Semantic Desktop (NEPOMUK project)
	The DBin platform: A complete environment for Semantic Web Communities

	Semantic wikis
	Overview
	Semantic MediaWiki
	The KiWi platform
	AceWiki

	Faceted navigation
	Overview
	Extending faceted navigation for RDF data
	Ontogator—a semantic view-based search engine service for web applications
	/facet: a browser for heterogeneous semantic web repositories
	gFacet: a browser for the web of data

	Synchronization and versioning
	Overview
	RDFSync: efficient remote synchronization of RDF models
	A versioning and evolution framework for RDF knowledge bases
	SemVersion: an RDF-based ontology versioning system

	VII Evaluation, summary, and future research
	Integrating structured and unstructured data
	Overview
	Wikis and structured data
	Incrementally introducing structure
	Small notes and meta-data
	Browsing resource sets
	Collating data
	Files and data export
	Discussion

	User study
	Overview
	Structure of the RDF repository
	Use of features
	Questionnaire
	Discussion

	A survey on wikis: What features have long-term merit?
	Overview
	The survey
	Discussion

	Summary and future research
	Overview
	Summary
	Future research

	VIII Appendix
	Wikked syntax
	Wiki Creole
	LaTeX
	Commands
	Mixing in structured data

	Inferencing
	Overview
	Kinds of inferences
	Challenges of inferencing
	Outline of a solution
	Related work

	Acknowledgements

