127,453 research outputs found

    Theory of anomalous collective diffusion in colloidal monolayers on a spherical interface

    Get PDF
    A planar colloidal monolayer exhibits anomalous collective diffusion due to the hydrodynamic interactions. We investigate how this behavior is affected by the curvature of the monolayer when it resides on the interface of a spherical droplet. It is found that the characteristic times of the dynamics still exhibit the same anomalous scaling as in the planar case. The spatial distribution, however, shows a difference due to the relevance of the radius of the droplet. Since for the droplet this is both a global magnitude, i.e., pertaining the spatial extent of the spherical surface, and a local one, i.e., the radius of curvature, the question remains open as to which of these two features actually dominates in the case of a generically curved interface.Comment: 7 pages, 2 figure

    A graph semantics for a variant of the ambient calculus more adequate for modeling SOC

    Get PDF
    In this paper we present a graph semantics of a variant of the well known ambient calculus. The main change of our variant is to extract the mobility commands of the original calculus from the ambient topology. Similar to a previous work of ours, we prove that our encoding have good properties. We strongly believe that this variant would allow us to integrate our graph semantics of our mobile calculus with previous work of us in service oriented computing (SOC). Basically, our work on SOC develops a new graph transformation system which we call temporal symbolic graphs. This new graph formalism is used to give semantics to a design language for SOC developed in an european project, but it could also be used in connection with other approaches for modeling or specifying service systems.Postprint (published version

    Collective dynamics of chemically active particles trapped at a fluid interface

    Full text link
    Chemically active colloids generate changes in the chemical composition of their surrounding solution and thereby induce flows in the ambient fluid which affect their dynamical evolution. Here we study the many-body dynamics of a monolayer of active particles trapped at a fluid-fluid interface. To this end we consider a mean-field model which incorporates the direct pair interaction (including also the capillary interaction which is caused specifically by the interfacial trapping) as well as the effect of hydrodynamic interactions (including the Marangoni flow induced by the response of the interface to the chemical activity). The values of the relevant physical parameters for typical experimental realizations of such systems are estimated and various scenarios, which are predicted by our approach for the dynamics of the monolayer, are discussed. In particular, we show that the chemically-induced Marangoni flow can prevent the clustering instability driven by the capillary attraction.Comment: 8 pages, 2 figure

    Humidity-insensitive water evaporation from molecular complex fluids

    Full text link
    We investigated theoretically water evaporation from concentrated supramolecular mixtures, such as solutions of polymers or amphiphilic molecules, using numerical resolutions of a one dimensional model based on mass transport equations. Solvent evaporation leads to the formation of a concentrated solute layer at the drying interface, which slows down evaporation in a long-time scale regime. In this regime, often referred to as the falling rate period, evaporation is dominated by diffusive mass transport within the solution, as already known. However, we demonstrate that, in this regime, the rate of evaporation does not also depend on the ambient humidity for many molecular complex fluids. Using analytical solutions in some limiting cases, we first demonstrate that a sharp decrease of the water chemical activity at high solute concentration, leads to evaporation rates which depend weakly on the humidity, as the solute concentration at the drying interface slightly depends on the humidity. However, we also show that a strong decrease of the mutual diffusion coefficient of the solution enhances considerably this effect, leading to nearly independent evaporation rates over a wide range of humidity. The decrease of the mutual diffusion coefficient indeed induces strong concentration gradients at the drying interface, which shield the concentration profiles from humidity variations, except in a very thin region close to the drying interface.Comment: 13 pages, 10 figure

    Detection of H-alpha emission from the Magellanic Stream: evidence for an extended gaseous Galactic halo

    Full text link
    We have detected faint, diffuse HαemissionfromseveralpointsalongtheMagellanicStream,usingtheRutgersFabryPerotInterferometerattheCTIO1.5mtelescope.AtpointsontheleadingedgesoftheHIcloudsMSII,MSIII,andMSIV,wedetectH\alpha emission from several points along the Magellanic Stream, using the Rutgers Fabry--Perot Interferometer at the CTIO 1.5-m telescope. At points on the leading edges of the H I clouds MS II, MS III, and MS IV, we detect H\alpha emission of surface brightness 0.37±0.020.37 \pm 0.02 Rayleighs, 0.21±0.040.21 \pm 0.04 R, and 0.20±0.020.20 \pm 0.02 R respectively, corresponding to emission measures of 1.0 to 0.5 \cmsixpc. We have observed several positions near the MS IV concentration, and find that the strongest emission is on the sharp leading-edge density gradient. There is less emission at points away from the gradient, and halfway between MS III and MS IV the Hαsurfacebrightnessis\alpha surface brightness is < 0.04R.WeattributetheH R. We attribute the H\alpha emission at cloud leading edges to heating of the Stream clouds by ram pressure from ionized gas in the halo of the Galaxy. These observations suggest that ram pressure from halo gas plays a large role in stripping the Stream out of the Magellanic Clouds. They also suggest the presence of a relatively large density of gas, nH104cm3n_{\rm H} \sim 10^{-4} cm^{-3}, in the Galactic halo at 50\sim 50 kpc radius, and far above the Galactic plane, b80degb \sim -80\deg. This implies that the Galaxy has a very large baryonic, gaseous extent, and supports models of Lyman-$\alpha and metal-line QSO absorption lines in which the absorption systems reside in extended galactic halos.Comment: 15 pages, aaspp latex, + 1 table & 3 figures. Accepted in A.J. Also available from http://www.physics.rutgers.edu/~bweiner/astro/papers
    corecore