1,802 research outputs found

    Face Recognition Using Double Sparse Local Fisher Discriminant Analysis

    Get PDF

    Sparsity Analysis for Computer Vision Applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Multi-dimensional data analytics and deep learning via tensor networks

    Get PDF
    With the booming of big data and multi-sensor technology, multi-dimensional data, known as tensors, has demonstrated promising capability in capturing multidimensional correlation via efficiently extracting the latent structures, and drawn considerable attention in multiple disciplines such as image processing, recommender system, data analytics, etc. In addition to the multi-dimensional nature of real data, artificially designed tensors, referred as layers in deep neural networks, have also been intensively investigated and achieved the state-of-the-art performance in imaging processing, speech processing, and natural language understanding. However, algorithms related with multi-dimensional data are unfortunately expensive in computation and storage, thus limiting its application when the computational resources are limited. Although tensor factorization has been proposed to reduce the dimensionality and alleviate the computational cost, the trade-off among computation, storage, and performance has not been well studied. To this end, we first investigate an efficient dimensionality reduction method using a novel Tensor Train (TT) factorization. In particular, we propose a Tensor Train Principal Component Analysis (TT-PCA) and a Tensor Train Neighborhood Preserving Embedding (TT-NPE) to project data onto a Tensor Train Subspace (TTS) and effectively extract the discriminative features from the data. Mathematical analysis and simulation demonstrate TT-PCA and TT-NPE achieve better trade-off among computation, storage, and performance than the bench-mark tensor-based dimensionality reduction approaches. We then extend the TT factorization into general Tensor Ring (TR) factorization and propose a tensor ring completion algorithm, which can utilize 10% randomly observed pixels to recover the gunshot video at an error rate of only 6.25%. Inspired by the novel trade-off between model complexity and data representation, we introduce a Tensor Ring Nets (TRN) to compress the deep neural networks significantly. Using the benchmark 28-layer WideResNet architectures, TRN is able to compress the neural network by 243× with only 2.3% degradation in Cifar10 image classification

    Salient Object Detection via Structured Matrix Decomposition

    Get PDF
    Low-rank recovery models have shown potential for salient object detection, where a matrix is decomposed into a low-rank matrix representing image background and a sparse matrix identifying salient objects. Two deficiencies, however, still exist. First, previous work typically assumes the elements in the sparse matrix are mutually independent, ignoring the spatial and pattern relations of image regions. Second, when the low-rank and sparse matrices are relatively coherent, e.g., when there are similarities between the salient objects and background or when the background is complicated, it is difficult for previous models to disentangle them. To address these problems, we propose a novel structured matrix decomposition model with two structural regularizations: (1) a tree-structured sparsity-inducing regularization that captures the image structure and enforces patches from the same object to have similar saliency values, and (2) a Laplacian regularization that enlarges the gaps between salient objects and the background in feature space. Furthermore, high-level priors are integrated to guide the matrix decomposition and boost the detection. We evaluate our model for salient object detection on five challenging datasets including single object, multiple objects and complex scene images, and show competitive results as compared with 24 state-of-the-art methods in terms of seven performance metrics

    Deep Image Retrieval: A Survey

    Get PDF
    In recent years a vast amount of visual content has been generated and shared from various fields, such as social media platforms, medical images, and robotics. This abundance of content creation and sharing has introduced new challenges. In particular, searching databases for similar content, i.e.content based image retrieval (CBIR), is a long-established research area, and more efficient and accurate methods are needed for real time retrieval. Artificial intelligence has made progress in CBIR and has significantly facilitated the process of intelligent search. In this survey we organize and review recent CBIR works that are developed based on deep learning algorithms and techniques, including insights and techniques from recent papers. We identify and present the commonly-used benchmarks and evaluation methods used in the field. We collect common challenges and propose promising future directions. More specifically, we focus on image retrieval with deep learning and organize the state of the art methods according to the types of deep network structure, deep features, feature enhancement methods, and network fine-tuning strategies. Our survey considers a wide variety of recent methods, aiming to promote a global view of the field of instance-based CBIR.Comment: 20 pages, 11 figure
    corecore