
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

8-2018

Multi-dimensional data analytics and deep learning via tensor Multi-dimensional data analytics and deep learning via tensor

networks networks

Wenqi Wang
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Recommended Citation Recommended Citation
Wang, Wenqi, "Multi-dimensional data analytics and deep learning via tensor networks" (2018). Open
Access Dissertations. 2097.
https://docs.lib.purdue.edu/open_access_dissertations/2097

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_dissertations
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F2097&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/2097?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F2097&utm_medium=PDF&utm_campaign=PDFCoverPages

MULTI-DIMENSIONAL DATA ANALYTICS AND DEEP LEARNING VIA

TENSOR NETWORKS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Wenqi Wang

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Vaneet Aggarwal, Chair

School of Industrial Engineering, Purdue University

Dr. Shuchin Aeron

Department of Electrical and Computer Engineering, Tufts University

Dr. Christopher Quinn

School of Industrial Engineering, Purdue University

Dr. Gesualdo Scutari

School of Industrial Engineering, Purdue University

Approved by:

Dr. Abhijit Deshmukh

Head of the School Graduate Program

�

iii

c 2018 Wenqi Wang

iv

ACKNOWLEDGMENTS

First of all, I would like to express my sincerest gratitude to my advisor Vaneet

Aggarwal. I was so lucky to meet him during my graduate class Stochastic Process

in the Fall 2015 and started my research in machine learning and deep learning

since then. His patience during my early Ph.D. life, supervision in my research,

and guidance in my career development enlighten my way of thinking and shape my

philosophy in academic research. I especially thank him for giving me the academic

advice at the start and academic freedom as I grow, which allows me to work on

different projects of interest. Without him, I could not enter the world of machine

learning and complete my thesis.

I would like to thank my collaborator Shuchin Aeron for his mentoring in my

research. His guidance in my first several research works lays the foundation for

my fundamental knowledge in optimization and multi-dimensional data analytics.

Without the insightful thoughts and fruitful discussion from him, I could not make

so much progress in my research. Also, I want to thank the committee members,

Gesualdo Scutari and Christopher Quinn, for their valuable comments and thoughtful

suggestions to my thesis.

I would like to thank Brian Eriksson and Yifan Sun for offering me the great

internship at Technicolor Research AI Lab. It is a valuable learning and collaborating

experience, and I would like to especially thank Brain Eriksson for his mentoring on

my presentation techniques and Yifan Sun for her assistance in improving my writing

skills.

Next, I gratefully acknowledge the Bilsland Dissertation Fellowship from Purdue

University that supports my research and dissertation in my final year. This disser-

tation would not be possible without the funding support.

v

Last but not least, I would like to sincerely thank my father Shengguo Wang

and my mother Yumei Shao for their unconditional love and support throughout

my life, my twin brother Wenlin Wang for his constant accompanying in my growth

and selfless sharing of knowledge, and my beloved girlfriend Xiudan Wang for her

persistent trust, love, and encouragement. I would like to thank two more important

persons in my life, my aunt Xiurong Wang for taking care of me like her child for

more than six years from my elementary school age to high school age, and Yanping

Wang for her love and support in every possible way.

Wenqi Wang

Purdue University

August, 2018

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xi

SYMBOLS . xiv

ABBREVIATIONS . xv

ABSTRACT . xvi

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Tensor Decomposition . 4

1.2.1 CANDECOMP/PARAFAC (CP) Decomposition 4

1.2.2 Tucker Decomposition . 5

1.2.3 Tensor Train (TT) Decomposition 6

1.2.4 Tensor Ring (TR) Decomposition 6

1.3 Tensor Networks (TN) . 7

1.4 Notations . 10

2 DIMENTIONALITY REDUCTION . 11

2.1 Introduction . 11

2.2 Related Work . 12

2.3 Tensor Train PCA (TT-PCA) . 14

2.3.1 TT-PCA Algorithm . 14

2.3.2 Classification Using TT-PCA 18

2.3.3 Storage and Computation Complexity 18

2.3.4 Results . 21

2.4 Tensor Train Neighbor Preserving Embedding (TT-NPE) 27

vii

Page

2.4.1 Tensor Train Neighbor Preserving Embedding using Tensor Net-
work (TTNPE-TN) . 29

2.4.2 Tensor Train Neighbor Preserving Embedding using Approxi-
mated Tensor Network (TTNPE-ATN) 31

2.4.3 Classification Using TTNPE-TN and TTNPE-ATN 34

2.4.4 Storage and Computation Complexity 34

2.4.5 Results . 36

2.5 Conclusion . 42

3 MISSING DATA COMPLETION . 43

3.1 Introduction . 43

3.2 Related Work . 43

3.3 Background . 45

3.4 Tensor Ring Completion Algorithm . 47

3.4.1 Problem Formulation . 47

3.4.2 Tensor Ring Approximation (TRA) 48

3.4.3 Alternating Least Square . 50

3.4.4 Complexity Analysis . 52

3.4.5 Reshaping . 53

3.5 Results . 54

3.5.1 Synthetic Data . 54

3.5.2 Image Completion . 56

3.5.3 YaleFace Dataset Completion 57

3.5.4 Video completion . 58

3.6 Conclusion . 60

4 MODELl COMPRESSION . 62

4.1 Introduction . 62

4.2 Related Work . 64

4.3 Tensor Ring Nets . 65

4.3.1 Fully Connected Layer Compression 68

viii

Page

4.3.2 Convolutional Layer Compression 71

4.4 Results . 74

4.4.1 Fully connected layer compression 75

4.4.2 Convolutional layer compression 76

4.4.3 ResNet and Wide ResNet Compression 77

4.5 Conclusion . 82

5 SUMMARY . 83

REFERENCES . 84

A TENSOR NETWROK MERGING FOR COMPUTING A 92

B TENSOR NETWROK MERGING FOR COMPUTING B 94

C TENSOR NETWORK MERGING ORDERING FOR TENSOR RING NETS 95

D INITIALIZATION . 99

VITA . 100

ix

LIST OF TABLES

Table Page

2.1 Storage and computation complexity for PCA algorithm. The bold entry in
each column depicts the lowest order. 21

2.2 Storage and Computation Complexity Analysis for Embedding Methods. The
bold entry in each column depicts the lowest order. 34

3.1 Completion error of 10% observed Extended YaleFace data via TT-ALS and
TR-ALS under rank 5, 10, 15, 20, 25, 30. 58

3.2 Completion error of 10% observed Video data via TT-ALS and TR-ALS under
rank 10, 15, 20, 25, 30. 59

4.1 Fully connected compression. Dimensions of the three-fully-connected
layers in the uncompressed (left) and TRN-compressed (right) models.
The computational complexity includes tensor product merging (O(r3))
and feed-froward multiplication (O(r2)). 76

4.2 Fully connected results. LeNet-300-100 on MNIST datase, trained
to 40 epochs, using a minibatch size 50. Trained from random weight
initialization. ADAM [103] is used for optimization. Testing time is per
10000 samples. CR = Compression ratio. LR = Learning rate. 77

4.3 Small convolution compression. Dimensions of LeNet-5 layers in its
original form (left) and TRN-compressed (right). The computational
complexity includes tensor product merging and convolution operation
in (4.12) of O(r3), and convolution in (4.11) (4.13) of O(r2). 78

4.4 Small convolution results. LeNet-5 on MNIST dataset, trained to 20
epochs, using a minibatch size 128. ADAM [103] is used for optimization.
Testing time is per 10000 samples. CR = Compression ratio. LR =
Learning rate. 78

4.5 Large convolution compression. Dimensions of 32 layer ResNes on
Cifar10 dataset. Each ResBlock(p,I,O) includes a sequence: input →
Batch Normalization → ReLU → p× p× I× O convolution layer → Batch
Normalization → ReLU → p × p × O × O convolution layer. The input
of length I is inserted once at the beginning and again at the end of each
unit. See [8] for more details. 80

x

4.6 Large convolution results. 32-layer ResNet (first 5 rows) and 28-
layer Wide-ResNet (last 4 rows) on Cifar10 dataset and Cifar100 dataset,
trained to 200 epochs, using a minibatch size of 128. The model is trained
using SGD with momentum 0.9 and a decaying learning rate. CR = Com-
pression ratio. 81

xi

LIST OF FIGURES

Figure Page

1.1 CP decomposition for a 3-mode tensor. 4

1.2 Tucker decomposition for a 3-mode tensor. 5

1.3 Tensor train decomposition for a 3-mode tensor. 6

1.4 Tensor ring decomposition for a 3-mode tensor. 7

1.5 Tensor network notations. (a) a scalar s ∈ R0 , (b) a vector v ∈ Rm , (c) a
matrix M ∈ Rm×n , (d) a tensor T ∈ Rr×I×r , (e) trace operation tr(M), (f)
vector to matrix product between v ∈ Rm and M ∈ Rm×n , (g) matrix to
matrix product between M1 ∈ Rm×r and M2 ∈ Rr×n , (h) tensor to tensor
product between U1 ∈ Rr×I×r and U2 ∈ Rr×I×r 8

1.6 Tensor decompositions. Tensor diagrams for four popular tensor fac-
torization methods: (a) the CP decomposition (unnormalized), (b) the
Tucker decomposition, (c) the Tensor Train (TT) decomposition, and (d)
the Tensor Ring (TR) decomposition. As shown, TR can be viewed as
a generalization of both CP (with r > 1) and TT (with an added edge
connecting the first and last tensors). We also compare against Tucker
decomposition compression schemes. 9

2.1 TT-PCA: Tensor Train subspace L(U1U2U3). 16

2.2 First Eigen Face for PCA and First Tensor Face for T-PCA and TT-PCA under
different compression ratios. The number at top are the compression ratios. . . 22

2.3 Face denoising under PCA, T-PCA and TT-PCA. The reconstruction errors
are marked on top of each image. Different images in each row correspond to
decreasing compression ratios (increasing compression, increasing τ) from left to
right. The compression ratios for T-PCA and TT-PCA are the same (left-right)
as that in Fig. 2.2. 23

2.4 Reconstruction error versus Compressed Ratio for Extended YaleFace Dataset
B Dataset. 38 faces with noise are selected from the data set and the training
sample size f is 10, 20, 30 (from left to right) respectively. 24

2.5 Classification Error in log 10 scale versus Compressed Ratio for Extended Yale-
Face Dataset B Dataset. 38 faces with noise are selected from the data set and
the training sample size f is 10, 20, 30 (from left to right) respectively. 25

xii

Figure Page

2.6 Reconstruction Error versus Compression Ratio (left) and Classification Error
in log 10 scale versus Compression Ratio (right) for MNIST dataset. 26

2.7 Reconstruction Error versus Compression Ratio (left) and Classification Error
in log 10 scale versus Compression Ratio (right) for Cifar10 dataset. 27

2.8 Classification Error in log 10 scale for Weizmann Face Database for the three
models. 37

2.9 Classification Error in log 10 scale for Weizmann dataset under reshaping 4 ×
4 × 4 × 4 × 11 and 8 × 8 × 4 × 11. 38

2.10 Classification Error in log 10 scale for Weizmann dataset under noise level 20dB,
15dB, 10dB, and 5dB. 39

2.11 CPU time for TNPE, TTNPE-ATN and KNN on Weizmann dataset. From
left to right are cpu time for subspace learning, multi-dimensional data embed-

ding, and embedded data classification. The execution time is analyzed using
Weizmann dataset when K is chosen to be 10 39

2.12 Classification Error in log 10 scale for MNIST for the three models. 40

2.13 Classification Error in log 10 scale for Finance for the three models. 41

3.1 Reshaping a 4 × 4 matrix into a 2 × 2 × 2 × 2 tensor. 53

3.2 Completion for synthetic data. Synthetic data is a 4th order tensor of dimension
20 × 20 × 20 × 20 with TR-Rank being 8. 55

3.3 Completion for Einstein image. Einstein image is of size 600 × 600 × 3, and is
reshaped into a 7-order tensor of size 6 × 10 × 10 × 6 × 10 × 10 × 3 tensor for
tensor ring completion . 57

3.4 YaleFace dataset is sub-sampled to formulate into a tensor of size 48 × 42 × 64 ×
38, which is reshaped into a 8-order tensor of size 6 × 8 × 6 × 7 × 8 × 8 × 19 × 2
for tensor ring completion. 90% of the pixels are assumed to be randomly

completed images with TR-Ranks 10, 20, 30, and TT-ALS completed images
missing. From top to bottom are original images, missing images, TR-ALS

with TT-Ranks 10, 20, 30. 59

3.5 Gun Shot is a video of size 100 × 260 × 3 × 80 download from Youtube, which is
reshaped into a 11-order tensor of size 5×2×5×2×13×2×5×2×3×5×17 for
tensor ring completion. 90% of the pixels are assumed to be randomly missing.
(a) and (g) are the first frame of the original video and missing video. (b)-(f)
are the completed frame via TR-ALS using TR-Rank 10, 15, 20, 25, 30. (h)-(l)
are the completed frame via TT-ALS using TR-Rank 10, 15, 20, 25, 30. 60

xiii

Figure Page

4.1 Merge ordering. A 4th order tensor is merged from its factored form,
either hierarchically via (a)→(b)→(d), or sequentially via (a)→(c)→(d).
Note that the computational complexity of forming (b) is r3(I1I2 + I3I4)
and for (c) is r3(I1I2 + I1I2I4), and (c) is generally more expensive (if
I1 ≈ I2 ≈ I3 ≈ I4). This is discussed in detail in Appendix C. 67

4.2 Fully connected layer. Tensor diagram of a fully connected TRN, di-
vided into input and weights. The composite tensor is the input into the
next layer. 69

4.3 Tensor ring compressed convolutional layer. 73

4.4 Decision boundary for the mixture of two gaussian distribution in 2D. From left
to right are standard fully connected layer, tensor ring nets with rank 3, tensor
ring nets with rank 2, and tensor ring nets with rank 1. 74

4.5 Evolution. Evolution of training compressed 32 layer ResNet on Cifar100,
using TRNs with different values of r and the Tucker factorization method. 79

A.1 Tensor network merging operation to compute A. (a) Tensor Z (b) Tensor Ab

(c) Tensor Ac (d) Tensor Ad (e) Tensor Ae (f) Tensor A 92

B.1 Tensor network merging operation to compute B. (a) Tensor Z (b) Tensor Bb

(c) Tensor B . 94

C.1 Merge ordering for a 4th order tensor ring segment of shape R× I1 × I2 ×
I4 × I4 × R, with tensor ring rank R. In each node from top to bottom
are tensor notation, tensor shape, and flops to obtain the tensor. 95

�

xiv

SYMBOLS

x ∈ R a scaler

x ∈ R
n a vector

X ∈ R
m×n a matrix

X ∈ R
I1×···×Id a d-order tensor

X (i1, · · · , id) an element in tensor X

X (i1, · · · , ik−1, :, ik+1, · · · , id) a fiber along mode k in tensor X

X (i1, · · · , ik−1, :, :, ik+2, · · · , id) a slice along mode k and k + 1 in tensor X

V(•) vectorization operator

tri
j (•) trace operator along mode i and j

× standard matrix product operation

kronecker product

xv

ABBREVIATIONS

TT Tensor Train

TR Tensor Ring

TN Tensor Networks

ATN Approximated Tensor Networks

TTS Tensor Train Subspace

PCA Principle Component Analysis

NPE Neighbor Preserving Embedding

KNN K-Nearest Neighbor

ALS Alternating Least Square

FCL Fully Connected Layer

ConL Convolutional Layer

TRN Tensor Ring Nets

xvi

ABSTRACT

Wang, Wenqi PhD, Purdue University, August 2018. Multi-dimensional data analyt-
ics and deep learning via tensor networks. Major Professor: Vaneet Aggarwal.

With the booming of big data and multi-sensor technology, multi-dimensional

data, known as tensors, has demonstrated promising capability in capturing multi-

dimensional correlation via efficiently extracting the latent structures, and drawn

considerable attention in multiple disciplines such as image processing, recommender

system, data analytics, etc. In addition to the multi-dimensional nature of real data,

artificially designed tensors, referred as layers in deep neural networks, have also

been intensively investigated and achieved the state-of-the-art performance in imaging

processing, speech processing, and natural language understanding.

However, algorithms related with multi-dimensional data are unfortunately expen-

sive in computation and storage, thus limiting its application when the computational

resources are limited. Although tensor factorization has been proposed to reduce the

dimensionality and alleviate the computational cost, the trade-off among computa-

tion, storage, and performance has not been well studied.

To this end, we first investigate an efficient dimensionality reduction method using

a novel Tensor Train (TT) factorization. In particular, we propose a Tensor Train

Principal Component Analysis (TT-PCA) and a Tensor Train Neighborhood Preserv-

ing Embedding (TT-NPE) to project data onto a Tensor Train Subspace (TTS) and

effectively extract the discriminative features from the data. Mathematical analysis

and simulation demonstrate TT-PCA and TT-NPE achieve better trade-off among

computation, storage, and performance than the bench-mark tensor-based dimension-

ality reduction approaches. We then extend the TT factorization into general Tensor

Ring (TR) factorization and propose a tensor ring completion algorithm, which can

xvii

utilize 10% randomly observed pixels to recover the gunshot video at an error rate

of only 6.25%. Inspired by the novel trade-off between model complexity and data

representation, we introduce a Tensor Ring Nets (TRN) to compress the deep neu-

ral networks significantly. Using the benchmark 28-layer WideResNet architectures,

TRN is able to compress the neural network by 243× with only 2.3% degradation in

Cifar10 image classification.

1

1. INTRODUCTION

1.1 Motivation

The fast development of online data collection, the widespread use of multi-sensor

technology, and the emergence of the large datasets have enabled the possibilities of

utilizing a tremendous amount of data. Unlike the common one-dimensional or two-

dimensional data that are in the form of vectors or matrices, the current large-scale

datasets are collected with multi-dimensional correlated information and modeled into

multi-dimensional arrays, also referred as tensors. For instance, in recommender sys-

tem [1, 2], conventional recommender system only deals with users and items (posts,

movies, musics, etc.) while the modern context-aware recommender system is de-

veloped to make personalized recommendation by considering context information,

such as location (private location or public location), time (daytime or night), de-

vices (mobile devices or desktop), etc. Similarly, in modern healthcare imaging, such

as Electroencephalography (EEG) [3] or Functional Magnetic Resonance Imaging

(fMRI) [4], the video data is collected by using multiple sensors to record the bio-

signal from different domains of human bodies simultaneously, and the spatial and

sequential information the data consequently increases the dimensionality of the data.

Other popular examples are self-driving cars [5], which employ multiple cameras to

record live videos in the real-time and form the data in the multi-dimensional format.

In addition to the multi-dimensional nature of the large newborn datasets, arti-

ficially designed tensors have also been widely employed in Deep Neural Networks

(DNN). Convolutional Neural Networks (CNN) use tensors as kernels to exploit local

connectivity pattern between neurons of adjacent layers and achieve state-of-the-art

performance in multiple domains, including image classification [6–8], object detec-

tion [9–12], speech recognition [13], etc.

2

However, although tensors are efficient in modeling the multi-dimensional data,

algorithms related with multi-dimensional data are unfortunately expensive in com-

putation and storage. For example, a standard 100 frames color video with hight

and width of 256 has approximate 20 million pixels, and a conventional convolution

layer of shape 3 × 3 × 512 × 512 has approximate 2 million parameters. The problems

associated with the massive cost in computation and storage become more severe on

resources limited devices, such as mobile devices, smart watches, etc. Tensor factor-

ization approaches have been investigated to represent the tensor data via low-rank

tensor factors, thus reducing the computational complexity, while selecting a suit-

able latent structure to capture the low-rank property of tensor data and providing

a better trade-off among computation, storage, and performance have not been well

studied.

To this end, we investigate a particular class of hieratical Tensor Networks (TN),

specifically Tensor Train (TT) and Tensor Ring (TR) representations, apply them

into multi-dimensional data analytics and deep neural networks, and achieve superior

performance of trade-off in multiple disciplines. We summarize our main contribution

as follows:

• For efficient dimensionality reduction, we propose a new subspace embedded

with tensor train structures, denoted as Tensor Train Subspace (TTS), which

is useful in extracting the discriminative features from noise multi-dimensional

tensor data. With tensor train subspace, we further investigate two efficient

dimensionality reduction methods, Tensor Train Principle Component Analysis

(TTPCA) and Tensor Train Neighbor Preserving Embedding (TT-NPE), to ef-

ficiently reduce the dimensionality and computational complexity for the tensor

data.

• For efficient multi-dimensional data representation, we investigate an efficient

low-rank Tensor Ring (TR) completion algorithm to recover the multi-dimensional

data using only a small portion of partially observed entries. We demonstrate

3

tensor ring completion is better than the benchmark tensor completion algo-

rithm in various multi-dimensional data sets, including image, image sets, and

videos.

• For the implementation of multi-dimensional data computation on resources

limited devices, we introduce a new Tensor Ring Network (TRN) that can layer-

wise compress deep neural networks significantly. We further proposed a more

efficient convolutional operation between input data and the tensor ring layers.

TRN outperforms than the other benchmark tensor compression approaches

and demonstrates promising capability in model compressing.

Given the motivation of the thesis, the remaining of the thesis is organized as

follows: We first introduce the background about tensor decomposition in Section

1.2 and tensor networks in Section 1.3, followed by the introduction on notation in

Section 1.4. In Chapter 2 we introduce the concept of the tensor train subspace,

and its application in dimensionality reduction. In partial, we investigate a Tensor

Train Principle Component Analysis (TT-PCA) algorithm that reduces dimension-

ality of a tensor data by projecting data onto a tensor train subspace [14]. We then

investigate a non-linear tensor train embedding algorithm that reduces the dimen-

sionality of a tensor data by preserving its neighborhood information, namely Tensor

Train Neighborhood Preserving Embedding (TT-NPE) [15]. In Chapter 3 we inves-

tigate a more general tensor ring structured and proposed a tensor ring completion

algorithm [16]. In Chapter 4 we develop a tensor ring nets that layer-wise compress

neural networks and maintain a good trade-off in computational resources and per-

formance [17]. Chapter 5 concludes the thesis.

�

	 � �

�

�

�

4

We highlight that in Chapter 2, TT-PCA algorithm is based on [14] 1 and TT-

2 3 4NPE is based on [15] . Chapter 3 and Chapter 4 are based on [16] and [17]

respectively.

1.2 Tensor Decomposition

1.2.1 CANDECOMP/PARAFAC (CP) Decomposition

Definition 1.2.1 (CANDECOMP/PARAFAC(CP) Decomposition [18]) Each ele-

ment of a n-mode tensor Y ∈ R
I1×···×In is generated by

R

Y(i1, · · · , in) = A1(i1, r)A2(i2, r) · · ·An(in, r), (1.1)
r=1

where Ai ∈ R
Ii×R are the tensor factors of CP decomposition, and R is the CP-rank.

� ����� �

� � � � �� �� �� �� �� �� �� �� �� �� �� �� � � �� �� �� �� ��

Fig. 1.1.: CP decomposition for a 3-mode tensor.

Fig 1.1 provides an example of a 3-order tensor that with CP rank r, and the high-

lighted green entry is the summation of r entries that generated by the outer-product

of CP factors.
1A version of this Chapter is under review by Pattern Recognition Letters.
2 c 2018 IEEE. Reprinted with permission from Wenqi Wang, Tensor Train Neighborhood Preserving
Embedding, IEEE Transactions on Signal Processing, 2018
3 c 2018 IEEE. Reprinted with permission from Wenqi Wang, Efficient Low Rank Tensor Ring
Completion, IEEE International Conference on Computer Vision, 2017
4 c 2018 IEEE. Reprinted with permission from Wenqi Wang, Wide Compression: Tensor Ring
Nets, IEEE Conference on Computer Vision and Pattern Recognition, 2018

� �

�

� � �

�

�

�

��������

�

5

1.2.2 Tucker Decomposition

Definition 1.2.2 (Tucker Decomposition [19,20]) Element in a n-mode tensor tensor

Y ∈ R
I1×···×In is generated by

R1 Rn

Y(i1, · · · , in) = · · · C(r1, · · · , rn)A1(i1, r1)A2(i2, r2) · · ·An(in, rn), (1.2)
r1=1 rn=1

where the n-order tensor C ∈ RR1×···×Rn is the core tensor of Tucker decomposition,

and the array [R1, R2, · · · , Rn] is the Tucker-rank.

� � �

� ��� �� �

�� � ��

�� ���

Fig. 1.2.: Tucker decomposition for a 3-mode tensor.

In Fig 1.2 a Tucker decomposition for a 3-order tensor is provided, and a larger

tensor Y is projected into a small core tensor C through a sequence of linear trans-

formation A1,A2, and A3.

It is worthy to point out that with the constraint that when C is a super-symmetric

diagonal tensor, which satisfies R1 = R2 = · · · = Rn and
⎧ ⎪ ⎪ ⎪ ⎪ ⎨ = 0, i1 = i2 = · · · = in,

C(i1, · · · , in) (1.3) ⎪ ⎪ ⎪ = 0, otherwise. ⎪

� � 	 	� 	

� �

6

(1.3) is the same as (1.1), thus CP decomposition is a Tucker decomposition with

diagonal core tensor.

1.2.3 Tensor Train (TT) Decomposition

Definition 1.2.3 (Tensor Train Decomposition [21, 22]) Each element of a n-mode

tensor Y ∈ R
I1×···×In in tensor train representation is generated by

Y(i1, · · · , in) = U1(i1, :)U2(:, i2, :) · · ·Un−1(:, in−1, :)Un(:, in), (1.4)

where U1 ∈ R
I1×R1 and Un ∈ R

Rn−1×In are the boundary matrices and Ui ∈ R
Ri−1×Ii×Ri , i =

2, · · · , n−1 are the decomposed tensors. The tensor train rank is the array [R1, R2, · · · , Rn−1].

���� � �

Fig. 1.3.:

� � �

����� � 	 �� � � � �� �

Tensor train decomposition for a 3-mode tensor.

Tensor train decomposition for a 3-mode tensor Y is illustrated in Fig. 1.3, where

Y(i1, i2.i3) is the sequential matrix product of vector U1(i1, :), matrix U2(:, i2, :), and

vector U3(:, i3).

1.2.4 Tensor Ring (TR) Decomposition

Definition 1.2.4 (Tensor Ring Decomposition [23]) Let X ∈ R
I1×···×In be an n-order

tensor with Ii-dimension along the ith mode, then any entry inside the tensor, denoted

as X(i1, · · · , in), is represented by

R1 Rn

X(i1, · · · , in) = · · · U1(rn, i1, r1) · · ·Un(rn−1, in, rn), (1.5)
r1=1 rn=1

https://Y(i1,i2.i3

�

7

where Ui ∈ RRi−1×Ii×Ri is a set of 3-order tensors, also named matrix product states

(MPS), which consist the bases of the tensor ring structures. Note that Uj (:, ij , :) ∈

R
Rj−1×1×Rj can be regarded as a matrix of size RRj−1×Rj , thus (1.5) is equivalent to

X(i1, · · · , in) = tr(U1(:, i1, :) × · · · × Un(:, in, :)). (1.6)

� �

��� �� �� � �� � 	 ���� �� 	 ���� �� 	

Fig. 1.4.: Tensor ring decomposition for a 3-mode tensor.

Tensor ring decomposition for a 3-mode tensor Y is illustrated in Fig. 1.4, where

Y(i1, i2.i3) is the trace of a matrix that is the sequential matrix product of matrix

U1(:, i1, :), matrix U2(:, i2, :), and matrix U3(:, i3, :).

Remark 1 (Tensor Ring Rank (TR-Rank)) In the formulation of tensor ring, we

note that tensor ring rank is the vector [R1, · · · , Rn]. In general, Ri are not necessary

to be the same. In our set-up, we set Ri = R i = 1, · · · , n, and the scalar R is

referred as the tensor ring rank.

Remark 2 (Tensor Train [21]) Tensor train is a special case of tensor ring when

Rn = 1.

1.3 Tensor Networks (TN)

Unlike single dimensional vectors or two dimensional matrices that operations

between two objects can be pair-wise depicted efficiently, the operation among tensors

construct a network structure and pair-wise relationship is not sufficient to capture

https://Y(i1,i2.i3

8

� � � � �

�

� ��

(�) (�) (�)

� � �

(�)

� �

� �

	

�

� �

(�) () (�) ()

Fig. 1.5.: Tensor network notations. (a) a scalar s ∈ R0 , (b) a vector v ∈ Rm ,

(c) a matrix M ∈ Rm×n , (d) a tensor T ∈ Rr×I×r , (e) trace operation tr(M), (f)

vector to matrix product between v ∈ Rm and M ∈ Rm×n , (g) matrix to matrix

product between M1 ∈ Rm×r and M2 ∈ Rr×n , (h) tensor to tensor product between

U1 ∈ Rr×I×r and U2 ∈ Rr×I×r .

the structure within the tensor data. Tensor network is a graphical representation

of multi-dimensional data and multi-dimensional data operations, and it enables the

multi-dimensional data analytics via a network analysis. In tensor network notations

[24,25], each node represents a tensor and the number of edges determines the mode

of a tensor. For instance, a scaler is a tensor of mode 0, which is thus a tensor without

any edges as illustrated in Fig 1.5(a), and a vector is a tensor of mode 1, which is

consistent with the node with only one edge in Fig 1.5(b). The same logic applies to

high order tensors, thus a matrix of shape m×n, and a 3-order tensor of shape r×I ×r

are equivalent to the graphical representation of the tensor network notations in Fig

1.5 (c) and Fig 1.5 (d) respectively. The edge connecting two nodes is the operation of

tensor merging product, which is the summation between the particular dimensions

of the two connected tensors. Fig 1.5 (e-h) are the graphical representation of popular

multi-dimensional data operations, including matrix trace, vector inner product x y,

matrix to matrix product AB and tensor to tensor production U1U2 [16]. Using the

tensor network representation, the common tensor factorization can be graphically

described in 1.6, which gives a better comparison among the different models.

9

�

�

�

�
��	

� 	

��	

��

�

�

� ��	

��	

��	

��

� �

� �

�

��

��

��

���

� � �

�

�
�

�

�
�

��	 ��	

��	

��	

� 	

��	 ��

��

�

�

�

�
��	

� 	

��	

��

� ��	 �

�

�
��	

��	

��
� �

�
�� �� ��

�� �
� �

� �� ��

��

��

��

��

� ��

� � �
�

�

�
��

�
� �

�

��	 ��	

��	� 	

��	��	

(a) CP Decomposi- (b) Tucker (c) Tensor Train (d) Tensor

tion (TT) Ring(TR)

Fig. 1.6.: Tensor decompositions. Tensor diagrams for four popular tensor factor-

ization methods: (a) the CP decomposition (unnormalized), (b) the Tucker decom-

position, (c) the Tensor Train (TT) decomposition, and (d) the Tensor Ring (TR)

decomposition. As shown, TR can be viewed as a generalization of both CP (with

r > 1) and TT (with an added edge connecting the first and last tensors). We also

compare against Tucker decomposition compression schemes.

10

1.4 Notations

We now introduce the set of notation we uses throughout the paper. Vectors

and matrices are represented by boldface lower letters (e.g. x) and boldface capital

letters (e.g. X), respectively. An n-order tensor is denoted by calligraphic letters X ∈

R
I1×I2×...×In , where Ii, i = 1, 2, ..., n denotes the dimensionality along the ith order.

An element of a tensor X is represented as X(i1, i2, · · · , in), where ik, k = 1, 2, .., n

denotes the location index along the kth order. A colon is applied to represent all

the elements of an order in a tensor, e.g. X(:, i2, · · · , in) represents the fiber along

order 1 and X[:, :, i3, i4, · · · , in] represents the slice along order 1 and order 2 and so

forth. V(·) is a tensor vectorization operator such that X ∈ RI1×···×In is mapped to

a vector V(X) ∈ RI1···In . × and ⊗ represent matrix product and kronecker product

respectively. Let tri
j be a tensor trace operation, which reduces 2 tensor orders by

getting the trace along the slices formed by the ith and jth order (assuming Ii = Ij).

As an example, let U ∈ R
I1×I2×I1 be a 3-mode tensor, then v = tr31(U) ∈ R

I2 is given

as v(i2) = trace(U(:, i2, :)), i2 = 1, · · · , I2.

11

2. DIMENTIONALITY REDUCTION

2.1 Introduction

Robust feature extraction and dimensionality reduction are among the most fun-

damental problems in machine learning and computer vision. Assuming that the data

is embedded in a low-dimensional subspace, popular and effective methods for fea-

ture extraction and dimensionality reduction are the Principal Component Analysis

(PCA) [26, 27], and the Laplacian eigenmaps [28]. However, simply projecting data

to a low dimensional subspace may not efficiently extract discriminative features.

Motivated by recent works [15,29,30] that demonstrate applying tensor factorization

(after reshaping matrices to multidimensional arrays or tensors) improves data repre-

sentation, we consider reshaping vision data into tensors and embedding the tensors

into Kronecker structured subspaces, i.e. tensor subspaces, to further refine these

subspace based approaches with significant gains. In this context, a very popular

representation format namely Tucker format has shown to be useful for a variety of

applications [31–34]. However, Tucker representation is exponential in storage re-

quirements [35]. In [22], it was shown that hierarchical Tucker representation, and in

particular Tensor Train (TT) representation is a promising format for the approxima-

tion of solutions in high dimensional data and can alleviate the curse of dimensionality

under fixed rank, which inspires us to investigate its application in efficient dimen-

sionality reduction and embedding. Tensor train representation has also been shown

to be useful for dimensionality reduction in [17, 36, 37].

In this section, we begin by noting that TT decompositions are associated with

a structured subspace model, namely the Tensor Train subspace [38]. Using this no-

tion, we extend a popular approach, namely the Neighborhood Preserving Embedding

(NPE) [39] for unsupervised classification of data. In the past, the NPE approach has

12

been extended to exploit the Tucker subspace structure on the data [40, 41]. Here,

we embed the data into a Tensor Train subspace and propose a computationally ef-

ficient Tensor Train Neighbor Preserving Embedding (TTNPE) algorithm. We show

that this approach achieves significant improvement in the storage of embedding and

computation complexity for classification after embedding as compared to the em-

bedding based on the Tucker representation in [40, 41]. An approximation method

for TTNPE, called TTNPE-ATN (TTNPE- Approximated Tensor Networks) is pro-

vided to decrease the computational time for embedding the data. We validate

the approach on classification of MNIST handwritten digits data set [42], Weizmann

Facebase [43], and financial market dataset.

The key contributions of this paper are as follows. (i) We formulate the problem

of embedding the data into a low-rank Tensor Train subspace, and propose a TTNPE

algorithm for embedding the data. (ii) We give an approximation method to the

embedding algorithm, TTNPE-ATN, to achieve faster computational time. (iii) We

show that embedding based on TTNPE-ATN achieves significant improvement in the

storage of embedding and computation complexity for classification after embedding

as compared to the embedding based on the Tucker representation. Finally, the re-

sults on the different datasets show significant improvement in classification accuracy,

computation and storage complexities for a given compression ratio, as compared to

the baselines.

2.2 Related Work

We consider a tensor train decomposition for a tensor data set, which is an n+1

mode tensor X ∈ R
I1×···×In×Rn , where each element is represented as

X(i1, · · · , in, rn) = U1(i1, :)U2(:, i2, :) · · ·Un−1(:, in−1, :)Un(:, in, rn). (2.1)

Without loss of generality, we let R0 = 1 and define U1 ∈ R
R0×I1×R1 as the tensor

representation of U1. Thus, the tensor train decomposition for X ∈ R
I1×···×In×Rn is

X(i1, · · · , in, rn) = U1(1, i1, :) · · ·Un−1(:, in−1, :)Un(:, in, rn).

�

13

The TT-Rank of a tensor is denoted by a vector of ranks (R1, · · · , Rn) in the tensor

train decomposition.

Left and right unfoldings reshape tensors into matrix, and are defined as follows.

Definition 2.2.1 (Left and Right Unfolding) Let X ∈ RI1×···×In×Rn be a n+ 1 mode

tensor. The left unfolding operation is the matrix obtained by taking the first n mode

as row indices and the last mode as column indices such that L(X) ∈ R(I1···In)×Rn .

Similarly, the right unfolding operation produces the matrix obtained by taking the 1st

mode as row indices and the remaining n mode as column indices such that R(X) ∈

R
I1×(I2···InRn).

We further introduce a tensor operation and show the equivalence of tensor oper-

ations to matrix product.

Definition 2.2.2 (Tensor Merging Product) Tensor merging product is an operation

∈ RI1×···×Into merge the two tensors along the given sets of mode indices. Let U1

∈ RJ1×···×Jmand U2 be two tensors. Let gi, i ∈ {1, 2}, be a k − dimensional vector

such that gi(p) ∈ {1, · · · , n}, 1 ≤ p ≤ k and Ig1(p) = Jg2(p). Then, the tensor merging

product is

U2 ∈ R
{×p/ Ip}×{×p/ Jp}∈g1 ∈g2U3 = U1 ×g

g
2

1
, (2.2)

which is a m+ n− 2k mode tensor, given as

U3(it t /∈ g1, jq q /∈ g2) = U1(a1, · · · , an)U2(b1, · · · , bm), (2.3)
d1,··· ,dk

where ar = ir for r /∈ g1, br = jr for r /∈ g2, ag1(p) = dp for p = 1, · · · , k, and

bg2(p) = dp for p = 1, · · · , k.

Based on tensor merging product, we note that recovering a tensor from tensor

train decomposition is a process of applying tensor merging product on tensor train

factorizations. Let R0 = 1, Ui ∈ RRi−1×Ii×Ri , i = 1, · · · , n, be n 3 order tensors. The

recovery of the n + 1 order tensor is equivalent to find a set of 3 order tensors such

that

1 1 ∈ R
I1×···×In×RnU = U1 ×3 U2 × · · · ×3 Un . (2.4)

�

�

14

Tensor merging product also applies in the matrix product. For instance, the matrix

product between A ∈ Rm×r and B ∈ Rr×n is equivalent to A ×2
1 B. This is because

if C = A ×B, then C(i, j) = k A(i, k)B(k, j). Similarly, A ×B = B ×1
2 A.

and B ∈ RR1×···×Rk×NLemma 1 Let A ∈ RM×R1×···×Rk be two k + 1 mode tensors,

and let A ∈ R
M×(R1···Rk) and B ∈ R

(R1···Rk)×N be the right and left unfolding of A and
1,··· ,k

B. Tensor merging product, A × B, is the same as A ×B.2,··· ,k+1

Proof The (m, n)th entry in the result gives

1,··· ,n(A × = A(m, r1, · · · , rn)B(r1, · · · , rn, n), (2.5)2,··· ,n+1 B)m,n

r1,··· ,rn

which is the same as the (m, n)th entry given by A ×B.

2.3 Tensor Train PCA (TT-PCA)

2.3.1 TT-PCA Algorithm

Definition 2.3.1 (Tensor Train Subspace (TTS)) A tensor train subspace, STT ⊆

R
I1×I2×···×In , is defined as the span of a n-order tensor that is generated by the tensor

merging product of a sequence of 3-order tensors. Specifically,

1 1 1 = Δ {U1 × U2 × · · · × Un ×3 a| a ∈ R
Rn }. (2.6)STT 3 3

For comparison with vector subspace model, tensors can be vectorized into vectors

and the tensor train subspace expressed under matrix form gives

STT = {L(U1 ×1
3 U2 × · · · ×3

1 Un)a| a ∈ R
Rn }. (2.7)

We note that a tensor train subspace is determined by U1, U2, · · · , Un, where Ui ∈

R
Ri−1×Ii×Ri , R0 = 1. When n = 1, the proposed tensor train subspace reduces to the

linear subspace model under matrix case.

Lemma 2 (Subspace Property) STT is a Rn dimensional subspace of RI1···In for a

given set of decomposed tensors., {U1, U2, · · · , Un}.

�

�

15

We next briefly outline some useful properties of the TT decomposition that will

be used in this paper.

Lemma 3 (Left-Orthogonality Property [22, Theorem 3.1]) For any tensor X ∈ R
I1×···×In×Rn

of TT-rank R = [R1, · · · , Rn−1], the TT decomposition can be chosen such that L(Ui)

∈ RRi×Riis left-orthogonal for all i = 1, · · ·n, or L(Ui) L(Ui) = IRi . As a conse-

quence of this result we have the following Lemma.

Lemma 4 (Left-Orthogonality of Tensor Merging Product) If L(Ui) is left-orthogonal

for all i = 1, · · · , n, then L(U1 ×1
3 · · · ×3

1 Uj) is left-orthogonal for all 1 ≤ j ≤ n.

Proof Let Bj = L(U1 ×1
3 · · · ×3

1 Uj). We first show Bj+1 = (IIj+1 ⊗Bj) × L(Uj+1).

Using this, and induction (since the result holds for j = 1), the result follows. Bj

is a matrix of shape (I1I2 · · · Ij) × Rj . When Ij+1 = 1, Uj+1 is a 3rd order tensor

of shape Rj × 1 × Rj+1, which is equivalent to a matrix of shape Rj × Rj+1, thus

Bj+1 = Bj ×Uj+1 becomes standard matrix multiplication. When Ij+1 > 1, the tensor

merging product is equivalent to the concatenation of Ij+1 matrix multiplications,

which thus is Bj+1 = (IIj+1 ⊗Bj) × L(Uj+1).

Thus, we can without loss of generality, assume that L(Ui) are left-orthogonal for

all i. Then, the projection of a data point y ∈ RRn on the subspace STT is given by

L(U1 ×1
3 U2 × · · · × Un) y.

Tensor Train Principle Component Analysis (TT-PCA) Given a set of

tensor data Xi ∈ RI1×···×In , i = 1, · · · , N , we intend to find rn principal vectors that

convert a set of observations of possibly correlated variables into a set of values of

linearly uncorrelated variables. The rn principal vectors can be stacked as a matrix

) ∈ RI1···In×rn ∈ Rri−1×Ii××riL(U1U2 · · ·Un such that Ui , with r0 = 1. The objective

of Tensor Train PCA (TT-PCA) is to find such U1,U2, · · · ,Un such that the distance

of the points from the TTS formed by U1,U2, · · · ,Un is minimized. We note that for

n = 1, this is the same objective as that for standard PCA [44]. In Fig 2.1, we provide

a TT-PCA example for a set of N tensor data of dimension I1 × I2 × I3 and tensor

16

�� �� ��

�

��

��

��

��

��

��

� � �

	 	 	

� � 	 	 	

� �

� � ���

Fig. 2.1.: TT-PCA: Tensor Train subspace L(U1U2U3).

train rank [r1, r2, r3]. The tensor train subspace is given by the left unfolding after the

tensor connect product of U1,U2,U3. Intuitively, tensor train subspace seeks a more

···In×Nefficient and compressible structure within the PCA subspace. Let D ∈ R
I1 be

the matrix that concatenates the N vectorizations such that the ith column of D is

V(Xi). The goal then is to find U1,U2, · · · ,Un such that the distance of points from

the subspace is minimized. More formally, we wish to solve the following problem,

min L(U1 · · ·Un)A −D 2
F . (2.8)

Ui,i=1,··· ,n,A

This optimization problem in (2.8) is a non-convex problem. We however note

that the problem is convex w.r.t. each of the variables (Ui, i = 1, · · · , n,A) when the

rest are fixed. Thus, one approach to solve the problem is to alternatively minimize

over the variables when the rest are fixed. We propose an alternate approach that

is based on successive SVD-algorithm for computing TT Decomposition in [22]. It is

worthy to point that the proposed TT-PCA algorithm is a one-pass successive SVD-

algorithm, rather than an iteration algorithm. The theoretical analysis in [22] shows

that the successive SVD-algorithm is able to efficiently find the low rank tensor train

decomposition that is close to the optimal. The algorithm steps are given in Algorithm

1. The algorithm steps assume that rank vector is not known, and estimates the ranks

based on thresholding singular values. However, if the ranks are known, the threshold

will be at the ri number of singular values rather than at τ fraction of the maximum

�

�

�

�

17

Algorithm 1 Tensor Train Principle Component Analysis (TT-PCA) Algorithm

Input: N tensors Xi ∈ R
I1×I2×···×In , i = 1, · · · , N , threshold parameter τ

Output: Decomposition for tensor train subspace U1,U2, · · · ,Un and the represen-

tation A

Y ∈ RI1×I2×···×In×N1: Form Y as an order n + 1 tensor s.t. , which is formed by

concatenating all data points Xi in the last mode.

∈ RI1×(I2···InN)2: Set X1 to be the Y[1] and apply SVD to Y1 such that Y1 =

U1S1V1 . Threshold singular values in S1 by maintaining the singular value

larger than τσmax1 , where σmax1 is the largest singular value of S1, to get S̃
1 and

the number of non-zero singular values in S̃
1 as r1, calculate X2 = S̃

1V and set

U1 = L−1(U1) ∈ R
1×I1×r1 .

3: for i = 2 to n do

∈ Rri−1×(Ii···InN) to Yi4: Reshape Xi ∈ R(ri−1Ii)×(Ii···InN) and apply SVD to Yi

such that Yi = UiSiVi

5: Threshold singular values in Si by maintaining the singular value larger than

τσmaxi to get S̃
i and the number of non-zero singular values in S̃

i as ri.

6: Set Ui = L−1(Ui) ∈ R
ri−1×Ii×ri and Xi+1 = S̃

iVi

7: end for

8: Set A = Xn+1

� � �

18

singular value. The proposed algorithm goes from left to right and find the different

Uis. We note that this algorithm extends computing TT Decomposition in [22] by

thresholding over the singular values, which tries to find the low rank approximation

since the data is not exactly low rank. Such approaches for thresholding singular

values for data approximation to low rank have been widely used for matrices [45,46].

The advantage of the approach include the following: (i) There are no iterations

like in Alternating Minimization based approach, and the complexity is low. (ii) The

obtained L(Ui) is left-orthogonal for all i = 1, · · · , N . Due to this property, we have

by Lemma 4 that L(U1 · · ·Un) is left-orthogonal. Thus, the projection of a data point

D ∈ R
I1×···×In onto the TT subspace formed is (L(U1 · · ·Un))

T V(D) .

2.3.2 Classification Using TT-PCA

In order to use TT-PCA for classification, we assume that we have Ntr data points

Xi ∈ RI1×I2×···×In , i = 1, · · · , Ntr for training, each having label li ∈ {1, · · · , C} that

identify the association of the data points to the C classes, and let Nte data points

as test data points that we wish to classify into the C classes. The first step is to

perform TT-PCA for each of the C classes based on the data points that have that

particular label among the N training data points. Let the corresponding Ui:i=1,··· ,n

(j) (j) (j)
for class j be denoted as U . Further, let U(j) = L(U · · ·Un). For a datai:i=1,··· ,n 1

point in the testing set Y ∈ R
I1×···In , we wish to decide its label based on its distance

to the subspace. Thus, the assigned label is given by

U(j)U(j) 2Label(Y) = arg min V(Y) −V(Y) 2. (2.9)
j=1,··· ,C

2.3.3 Storage and Computation Complexity

In this subsection, we will give the amount of storage needed to store the sub-

space, and complexity for doing TT-PCA and classification based on TT-PCA. For

comparisons, we consider the standard PCA, CANDECOMP/PARAFAC baed PCA

� �

19

(CP-PCA) [47], and Tucker based PCA (T-PCA) algorithm [31]. We let d = I1 · · · In

be the dimension of each vectorized nth order tensor data. Suppose we have N data

points. We assume that I1 = · · · = In. Further, rank for PCA is chosen to be r,

rank in each unfold for T-PCA is assumed to be r, and the ranks ri = r for i ≥ 1

are chosen for TT-PCA. We note that ranks in each decomposition have a different

interpretation and not directly comparable.

Storage of subspace: Under PCA model, the storage needed is for a d × r matrix

which is left-orthogonal, and thus

dim(PCA) = dr − r(1 + r)/2, (2.10)

where the r(1+r)/2 component is saved in storage as a result of orthonormal property

of the PCA bases.

Under T-PCA model, n linear transformations and r core tensors need to be

stored, and thus

1
dim(T-PCA) = r n+1 + n dn r − r(1 + r)/2 , (2.11)

where rn+1 is the storage for r cores, each ∈ R
r×···×r , and n(dn

1
r − r(1 + r)/2) is the

storage for n linear transformations. nr(1 + r)/2 amount of storage is saved due to

the orthonormal property of the linear transformation matrices.

Under CP-PCA model, the reconstruction of the tensor data requires to store r

vector sets, and each vector set is a best rank-1 CP approximation of the tensor data,

thus the overall storage cost for the CP-PCA is

1
n .dim(CP-PCA) = rnd (2.12)

It is worthy to hight that CP-PCA is actually a tensor reconstruction algorithm

without specifying the tensor subspace. Thus although CP-PCA provides a way to

reduce the dimensionality of tensor data via searching a CP structure, it can not

provide a subspace like PCA subspace where data can be projected on.

Under TT-PCA model, we need to store U1, · · · , Un which are all left-orthogonal,

and thus
1

dim(TT-PCA) = dn r(r(n − 1) + 1) − r(1 + r)n/2, (2.13)

20

where U1 takes dn
1
r − r(1 + r)/2 and the remain n − 1 MPS takes (n − 1)(dn

1
r2 −

r(1 + r)/2).

We also consider a metric of normalized storage, compression ratio, which is the

ratio of subspace storage to the entire Nd amount of data storage, or equivalently
dim(ST)ρST =
Ntrd , where ST can be any of PCA, T-PCA, or TT-PCA.

Computation Complexity of finding reduced subspace: We will now find the

complexity of the three PCA algorithms (standard PCA, T-PCA, and TT-PCA). We

assume that there are C classes, Ntr is the total number of training data points, and

Nte be the total number of test data points. To compute standard PCA, we first

compute the covariance matrix of the data, whose complexity is O(d2Ntr). This is

followed by eigenvalue decomposition of the covariance matrix, whose complexity is

O(d3). Thus, the overall complexity is O(d2 max(Ntr, d)). To compute the subspace

corresponding to T-PCA, we first compute n orthonormal linear transformations using

SVD, which takes O(nd
1 2) [21] time. This is followed by finding the subspace n r

basis for the dimensional reduced tensor by PCA, which takes O(r2n max(Ntr, r
n))

time. Thus, the total computation complexity is O(r2n max(Ntr, r
n) + nd

1 2). Then r

computation complexity for finding the tensor train subspace needs the recovery of

the n components (U1, · · · ,Un), which takes O(ndn
1
r3) time for calculation based on

Algorithm 1.

Classification Complexity: Prediction under standard PCA model is equiva-

lent to solving (2.9), whose computation complexity is O(NteCdr). For T-PCA, we

need additional step to make U for each class, which required an additional com-

plexity of O(dCr2). Thus, the overall complexity for prediction based on T-PCA is

O(Cdr max(Nte, r)). TT-PCA needs the same steps as T-PCA where first a conver-

sion to U is needed which has a complexity of O(dCr2) for each class giving an overall

complexity of O(Cdr max(Nte, r)).

These results for PCA, T-PCA and TT-PCA are summarized in Table 2.1, where

the lowest complexity entries in each column are bold-faced. We can see that TT-

PCA has advantages in both storage and subspace computation. Although TT-PCA

21

Table 2.1.: Storage and computation complexity for PCA algorithm. The bold entry in

each column depicts the lowest order.

Storage Subspace Computation Classification

PCA dr − r(1+r)
2 O(d2 max(Ntr, d)) O(CdrNte)

T-PCA n+1 r − r(r+1)r + n(d)
2

1
n O(r2n max(Ntr + rn) + nd r2)

1
n O(Cdr max(Nte, r))

TT-PCA
1

dn r(r(n − 1) + 1) − r(r+1)n
2

1
O(ndn r3) O(Cdr max(Nte, r))

1
CP-PCA rnd n N/A N/A

degrades in computation complexity compared with PCA in making prediction, the

extra complexity is dependent on amount of testing data and is negligible for Nte > r.

2.3.4 Results

In this section, we compare the proposed TT-PCA algorithm with the T-PCA

[48–50], CP-PCA [47], and the standard PCA algorithms. T-PCA is a Tucker de-

composition based PCA that has been shown to be effective in face recognition, and

CP-PCA is a CP decomposition based PCA that has been shown to be efficient in

dimensionality reduction for tensor data.

We first compare the low rank reconstructed data using PCA, CP-PCA, T-PCA,

and TT-PCA algorithms, and the algorithm performance is evaluated by the recon-

struction error at different compression. Specifically, efficient PCA algorithms give

low reconstruction error at the same compression ratio. We then compare the clas-

sification error among all algorithms, and the label is selected by the label of the

subspace that gives the minimal residual errors, as depicted in (2.9). However, since

CP-PCA [47] does not have a subspace structure, the classification is only compared

among PCA, T-PCA, and TT-PCA.

The evaluation is conducted in the Extended YaleFace Dateset B [51, 52], which

consists of 38 persons with 64 faces each that are taken under different illumination.

Extended YaleFace Dateset B has been shown to satisfy subspace structure [53],

22

Fig. 2.2.: First Eigen Face for PCA and First Tensor Face for T-PCA and TT-PCA under

different compression ratios. The number at top are the compression ratios.

which motivates our choice for exploring multi-dimensional subspace structures in

this dataset. For the experiments each image of a person is reshaped as Xi ∈ R6×8×6×7

to validate the approach using tensor subspaces. In addition, the TT-PCA algorithm

is further evaluated in MNIST Dataset and Cifar10 Dataset.

Extended YaleFace Dataset B

We first compare the first dominant eigen-face for PCA and the first dominant

tensor-face for T-PCA and TT-PCA by sampling Ntr = 20 images from one randomly

selected person, and reshape each of the images into a 4th order tensor for tensor

PCA analysis. We add a Gaussian noise N (0, 900) to each pixel of the image. TT-

PCA and T-PCA have the flexibility in controlling compression ratio by switching

τ , where larger τ gives high compression ratio and less accuracy in approximation

and vice versa. Figure 2.2 shows the tensor-face for T-PCA and TT-PCA under

different compression ratio, and the eigen-face for PCA, where the compression ratio

(marked on top) is decreasing from left-right (implying increasing data compression)

for the tensor PCA algorithms. TT-PCA shows a better performance in constructing

23

Fig. 2.3.: Face denoising under PCA, T-PCA and TT-PCA. The reconstruction errors are

marked on top of each image. Different images in each row correspond to decreasing com-

pression ratios (increasing compression, increasing τ) from left to right. The compression

ratios for T-PCA and TT-PCA are the same (left-right) as that in Fig. 2.2.

tensor-face than both the T-PCA and PCA algorithms since the dominant eigen-face

pictorially takes more features of the noiseless image of the person. As τ increases

(which changes compression, from left to right), tensor rank becomes lower and tensor-

face degrades to more blurry images. Under similar compression ratio, such as 6.86%

for TT-PCA and 9.72% for T-PCA, TT-PCA performs better than T-PCA since the

tensor face is less affected by noise.

We further illustrate one image sampled from the 20 noisy images and its projec-

tion onto (a) the linear subspace given by PCA with ranks being 16, 14, 12, 10, 8, 6, 4, 2

(from left-to-right), which gives compression ratios of 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1,

(b) the multi-linear subspace given by T-PCA with compression ratio 1, 0.638.0.228,

0.972, 0.038, 0.021, 0.011, 0.005, and (c) tensor train subspace given by TT-PCA with

compression ratio 1, 0.901, 0.293, 0.142, 0.069, 0.041, 0.028, 0.003. The reconstruction

� �

0.5

0.4

0.3

0.2

24

0.6 0.6 0.6

0.5 0.5

0.4 0.4

PCA
T-PCA
TT-PCA
CP-PCA

0 0.2 0.4 0.6 0.8 1

R
ec

on
st

ru
ct

io
n

E
rr

or

PCA
T-PCA
TT-PCA
CP-PCA

0 0.2 0.4 0.6 0.8 1

R
ec

on
st

ru
ct

io
n

E
rr

or

PCA
T-PCA
TT-PCA
CP-PCA

0 0.2 0.4 0.6 0.8 1

R
ec

on
st

ru
ct

io
n

E
rr

or
0.3 0.3

0.2 0.2

0.1 0.1 0.1

0 0 0

Compression Ratio Compression Ratio Compression Ratio

Fig. 2.4.: Reconstruction error versus Compressed Ratio for Extended YaleFace Dataset B

Dataset. 38 faces with noise are selected from the data set and the training sample size f

is 10, 20, 30 (from left to right) respectively.

error, defined as the distance between the original image (without noise) and the

projection of the noisy image to the subspace, is depicted at the top of images in

Figure 2.3. As seen from the figure the reconstruction errors of T-PCA and TT-

PCA are significantly lower than that of PCA, and TT-PCA gives the lowest 15.31%

reconstruction error under 0.069 compression ratio.

Reconstruction using TT-PCA-Next, we evaluate the reconstruction error

of PCA, T-PCA, CP-PCA and TT-PCA. Since PCA is a dimensionality reduction

algorithm that minimizes the reconstruction error under limited parameter budget,

we test the reconstruction error, defined as �Xreconstruct − X F / �X F , versus the

compression ratio for the four algorithms in Fig 2.4. We also note that unlike the

other PCA algorithm where the maximal rank is known, it is unclear the maximal

rank for CP-PCA algorithm. Meanwhile, CP-PCA is a sequential PCA algorithm

where a rank r approximation of a tensor depends on the rank r − 1 approximation.

Considering the time budget for the computation, we chose the maximum rank of

CP-PCA to be 100 that leads the maximum compression ratio for CP-PCA to be 0.1.

The numerical results on YaleFace Dataset demonstrate that disregard the training

sample size, TT-PCA gives lower reconstruction error than PCA, T-PCA, and CP-

PCA under any compression ratios.

-0.2

-0.4

-0.6

-0.8

-1

-1.2

25

0 0 0

-0.5 -0.5

PCA
T-PCA
TT-PCA

0 0.2 0.4 0.6 0.8 1

C
la

ss
if

ic
at

io
n

E
rr

or
 (

lo
g1

0)

PCA
T-PCA
TT-PCA

0 0.2 0.4 0.6 0.8 1

C
la

ss
if

ic
at

io
n

E
rr

or
 (

lo
g1

0)

PCA
T-PCA
TT-PCA

0 0.2 0.4 0.6 0.8 1

C
la

ss
if

ic
at

io
n

E
rr

or
 (

lo
g1

0)
-1 -1

-1.5 -1.5

-2 -2

Compression Ratio Compression Ratio Compression Ratio

Fig. 2.5.: Classification Error in log 10 scale versus Compressed Ratio for Extended Yale-

Face Dataset B Dataset. 38 faces with noise are selected from the data set and the training

sample size f is 10, 20, 30 (from left to right) respectively.

Classification using TT-PCA - Next, we test the performance of PCA, T-

PCA, and TT-PCA for classification. For classification, we choose f training data

points (at random) from each of the 38 people, and thus the amount of training data

points is Ntr = 38f . The remaining data of each person is used for testing, and

thus Nte = 38(64 − f). For training sizes f = 10, 20, 30, Figure 2.5 compares the

classification error of the different algorithms as a function of compression ratio for

each f . We note that as f increases, the classification performance becomes better

for all algorithms. We further see that TT-PCA performs better at low compression

ratios, and the classification error increases after first decreasing. This is because with

higher compression ratios (low compression), the approaches will try to over-fit noise

leading to lower classification accuracy. This indicates that human face data under

different illumination conditions lies not only close to the subspace models, but are

better approximated by tensor train subspace models. Further we note that TT-PCA

requires far less training sample size compared to other approaches.

MNIST Dataset MNIST dataset includes 60,000 hand written digits from 0 to

9, and each image is of size 28 × 28. To evaluate the TT-PCA algorithms, we ran-

domly select 1000 images for each digit, which are further split to 100 for training

and 900 for testing. Reconstruction error and classification error versus compression

ratio is shown in Fig 2.6. TT-PCA outperforms than PCA, T-PCA, and CP-PCA

26

0.8

0.7
PCA
T-PCA

-0.4

-0.5
PCA
T-PCA

TT-PCA TT-PCA
CP-PCA0.6 -0.6

R
ec

on
st

ru
ct

io
n

E
rr

or
0.5

0.4

0.3

0.2

C
la

ss
if

ic
at

io
n

E
rr

or
 (

lo
g1

0)

-0.7

-0.8

-0.9

-1

0.1 -1.1

0 -1.2
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Compression Ratio Compression Ratio

Fig. 2.6.: Reconstruction Error versus Compression Ratio (left) and Classification Error in

log 10 scale versus Compression Ratio (right) for MNIST dataset.

by a large margin for the reconstruction error, and at the compression ratio 0.8, TT-

PCA gives very small amount of reconstruction error, demonstrating the efficiency in

capturing the low-dimensional structure in the image data. Even though TT-PCA

performs slightly worse than PCA and T-PCA in classification when the compression

ratio is larger than 0.4, TT-PCA still shows improved classification performance at

compression ratio 0.1 that is attributes to the efficient extraction of the discrimina-

tive features from the images. It is worthy to note that better reconstruction does

not indicate better classification, and the better classification requires better feature

extraction.

CIFAR-10 Dataset CIFAR-10 dataset consists of 60000 32x32 color images in

10 classes. It is selected because CIFAR-10 is a colorful data with more noise, and

is harder to reconstructed and classified. The TT-PCA algorithms are evaluated

by randomly sampling 1000 images from each class, where 100 images are used for

training and the remaining 900 images are used for testing. Each colorful image of

size 32 × 32 × 3 is heuristically reshaped into 4 × 8 × 4 × 4 × 3 for tensor PCA analysis.

Similar to the performance of TT-PCA for MNIST dataset, TT-PCA outperforms

than the others in image reconstruction and classification by a larger margin, which

in part is due to improved capability in de-noising of noisy data. However, the overall

27

0.4 -0.12
PCA PCA

0.35 T-PCA T-PCA
TT-PCA -0.13 TT-PCA
CP-PCA0.3

R
ec

on
st

ru
ct

io
n

E
rr

or
0.25

0.2

0.15

0.1

C
la

ss
if

ic
at

io
n

E
rr

or
 (

lo
g1

0)

-0.14

-0.15

-0.16

-0.17
0.05

0 -0.18
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Compression Ratio Compression Ratio

Fig. 2.7.: Reconstruction Error versus Compression Ratio (left) and Classification Error in

log 10 scale versus Compression Ratio (right) for Cifar10 dataset.

classification performance for PCA, T-PCA, and TT-PCA down-grades significantly

as compared to the classification results for MNIST, demonstrating the difficulty in

classifying noisy dataset. Nevertheless, TT-PCA still gives the best classification

results at the compression ratio 0.2.

2.4 Tensor Train Neighbor Preserving Embedding (TT-NPE)

Unlike TT-PCA that maintains the global information of the data distribution

and reduces the dimensionality of tensor data by projecting data onto a tensor train

subspace to minimize the reconstruction error, an tensor train neighbor preserving em-

bedding algorithm seeks a projection with a tensor train structure that maintains the

local information (in particular neighborhood information). Mathematically, given

∈ RI1×···×Ina set of tensor data Xi , i = 1, · · · , N , we wish to project the data Xi

to vector ti ∈ RRn , satisfying ti = L(U1 ×1
3 U2 × · · · × Un)

T V(Xi) and preserving

neighborhood among the projected data. We first construct a neighborhood graph

� �

�

�

�
� � � � �

� � � �

� �

� �

� �

28

to capture the neighborhood information in the given data and generate the affinity

matrix F as ⎧ ⎨ 2exp(−� Xi − Xj /�), if Xj:j=i ∈ O(K, Xi)
Fij = F

(2.14) 0, otherwise,

where O(K, Xi) denotes the subset of data excluding Xi that are within the K-nearest

neighbors of Xi, and is the scaling factor. By definition, Fii = 0. We also note that

this is an unsupervised tensor embedding method since the label information is not

used in the embedding procedure. Without loss of generality, we set S = F + F and

S is further normalized by dividing entries of each row by the row sum such that each

row sums to one.

The goal is to find the decomposition U1, · · · , Un that minimizes the average

distance between all the points and their weighted combination of remaining points,

weighted by the symmetrized affinity matrix in the projection, i.e.

min L (U1 ×· · ·×Un)V(Xi)− Sij L (U1 ×· · ·×Un)V(Xj) 2
2 . (2.15)

Uk:∀k=1,··· ,n
i jL(Uk) is Unitary

Let D ∈ RI1···In×N be the matrix that concatenates the N vectorized tensor data

such that the ith column of D is V(Xi), and let E = L(U1 × · · · × Un). Then, (2.15)

is equivalent to

min E (D −DS) 2
F . (2.16)Uk:∀k=1,··· ,n

L(Uk) is Unitary

∈ R(I1···In)×NSince D − DS is determined, we set Y = D − DS . Thus the

Frobenius norm in (2.16) can be further expressed in the form of matrix trace to

reduce the problem to

min tr(Y EE Y). (2.17)
Uk:∀k=1,··· ,n

L(Uk) is Unitary

Based on the cyclic permutation property of the trace operator, (2.17) is equivalent

to

min tr(E YY E). (2.18)
Uk:∀k=1,··· ,n

L(Uk) is Unitary

�

�

�

� �

�
�

29

Let Z = YY ∈ R(I1···In)×(I1···In) be the constant matrix. Then, the problem (2.18)

becomes

min tr(E ZE). (2.19)
Uk :∀k=1,··· ,n

L(Uk) is Unitary

We will use the alternating minimization method [54] to solve (2.19) such that each

Uk is updated by solving

min tr(E ZE). (2.20)
Uk:L(Uk) is unitary

In order to solve (2.20), we use an iterative algorithm. Each Uk:k=1,··· ,n is initialized

by tensor train decomposition [21] with a thresholding parameter τ , which zeros out

the singular values which are smaller than τ times the maximum singular value, such

that tensor train ranks (R1, · · · , Rn) are determined. The larger the thresholding

parameter τ , the smaller the tensor train ranks. Typically, τ could be chosen via

cross validation such that the classification error in the validation set is minimized.

2.4.1 Tensor Train Neighbor Preserving Embedding using Tensor Net-

work (TTNPE-TN)

Let Z ∈ R
I1×···×In×I1×···×In be the reshaped tensor of Z, and

= U1 × · · · × Uk−1 ∈ R
I1×···×Ik−1×Rk−1T1 ,

(2.21)
∈ R

Rk ×Ik+1×···×In×RnTn = Uk+1 × · · · × Un .

For updating Uk:k=1,··· ,n−1, based on Lemma 1, we note that (2.20) can be written

as

1,2,3 8 2,··· ,n−k+1 1,··· ,k−1 2,··· ,n−k+1 1,··· ,k−1min Uk ×1,2,3tr4 Z × Tn × ,n+k−1T1 × Tn ×1,··· T1n+k+1,··· ,2n n+1,··· k+1,··· ,n ,k−1
Uk

L(Uk) is unitary

1,2,3× Uk. (2.22)1,2,3

2,··· ,n−k+1Let A ∈ R
Rk−1×Ik×Rk×Rk−1×Ik×Rk be the 6-order tensor, given as tr8 Z × Tn4 n+k+1,··· ,2n

1,··· ,k−1 2,··· ,n−k+1 1,··· ,k−1× ,n+k−1T1 × Tn ×1,··· ,k−1T1 , where the details to compute A via tensor n+1,··· k+1,··· ,n

merging product is given in Appendix A.

�

� �

� �

� � �

30

Thus (2.22) becomes

1,2,3 1,2,3min Uk ×1,2,3 A ×1,2,3 Uk. (2.23)
Uk:L(Uk) is unitary

Based on Lemma 1, the tensor merging product (2.23) can be transformed into

matrix product. Thus, (2.23) becomes

min V(Uk) AV(Uk), (2.24)
Uk:L(Uk) is unitary

where A ∈ R(Rk−1IkRk)×(Rk−1Ik Rk) is the reshaped form of A. A differentiable function

under unitary constraint can be solved by the algorithm proposed in [55]. In problem

(2.24), the gradient of objective function to V(Uk) is 2AV(Uk).

Updating Un is different from solving Uk:k=1,··· ,n−1 since the trace operation

merges the tensor Un with itself, thus (2.23) does not apply for solving Un. Instead,

updating Un in (2.20) is equivalent to solving

2 1,2 1,··· ,n−1 1,··· ,n−1 1,2min tr Un× (Z × T1 × T1)× Un .1 1,2 n+1,··· ,2n−1 1,··· ,n−1 1,2
Un:L(Un) is unitary

1,··· ,n−1Let B ∈ RRn−1×In×Rn−1×In be the 4-th order tensor formed by (Z ×n+1,··· ,2n−1

1,··· ,n−1
T1 × where the details to compute B via tensor merging product is given 1,··· ,n−1 T1),

in Appendix B. Thus updating Un is equivalent to solving

2 1,2 1,2min tr × , (2.25)1 Un 1,2B×2,3Un
Un:L(Un) is unitary

which by Lemma 1, can be transformed into the matrix form

min trace(L Un) BL(Un) , (2.26)
Rn−1×In×RnUn∈R

L(Un) is unitary

R
(Rn−1In)×(Rn−1In)where B ∈ is reshaped from B. The gradient of the objective

function to L(Un) is 2BL(Un).

We now analyze the computation and memory complexity of TTNPE-TN

algorithm, where the memory complexity indicates the memory required to store all

� �

�

31

the intermediate variables. For Uk:k=1,···n−1, the generation of A requires merging the

tensor networks, which has a computation complexity of

Rk−1
O (I1 · · · In)2Rk−1 + (I1 · · · In)2()2RkRn ,

I1 · · · Ik−1

and solving (2.24) takes O (Rk−1IkRk
2) time. Thus, the computation of A dominates

the complexity. The memory requirement for generating A is O ((Rk−1IkRkRn)
2),

which is large when the tensor train ranks are high. Similarly, the generation of B

to solve Un takes O ((I1 · · · In)2Rn−1) time and solving (2.26) takes O(Rn−1InRn
2),

and the memory for generating B is O ((I1 · · · In)2), indicating solving for Un is less

expensive than that for solving for Uk in terms of both memory and computation

complexity.

Although TTNPE-TN algorithm gives an exact solution for updating Ui in each

alternating minimization step, the memory and computation cost prohibits its appli-

cation when the tensor train ranks are large. In order to address this, we propose

a Tensor Train Neighbor Preserving Embedding using Approximate Tensor Network

(TTNPE-ATN) algorithm in the next section, to approximate (2.20), aiming to reduce

computation and memory cost.

2.4.2 Tensor Train Neighbor Preserving Embedding using Approximated

Tensor Network (TTNPE-ATN)

Our main intuition is as follows. Without the TT decomposition constraint, the

solution to minimize the quadratic form tr(E ZE) where E is unitary is given by E

being the matrix formed by eigenvectors corresponding to the lowest eigenvalues of Z

and the value of the objective is the sum of the lowest eigenvalues of Z [56]. Let the

matrix corresponding to the eigenvectors corresponding to rn smallest eigenvalues of

Z be Vrn . With the additional constraint that E has TT decomposition, the above

� �

� �

� �

� �
� �

32

choice of E may not be optimal. Thus, we relax the original problem to minimize the

distance between E and Vrn . Thus, the relaxed problem of (2.20) is

min L(U1 × · · · × Un) −Vrn
2
F , (2.27)

Uk
L(Uk) is unitary

···In)×rnwhere L(U1 × · · · × Un),Vrn ∈ R
(I1 .

Let Tk be a reshaping operator that change the dimension of a matrix from

R
(I1···In)×rn ···Ik)×(Ik+1 ···Inrn)to R(I1 , thus (2.27) is equivalent to

1 1 2min Tk(L(T1 ×k Uk ×3 Tn)) −Tk(Vrn) F , (2.28)
Uk:L(Uk) is unitary

which is equivalent to

min (IIk ⊗ L(T1)) L(Uk)R(Tn) −Tk(Vrn)
2
F , (2.29)

Uk:L(Uk) is unitary

which has the same format as minimizing PXQ − C F
2 under unitary constraint.

Since the gradient is P (PXQ −C)Q , (2.29) can be solved by the algorithm pro-

posed in [55].

After the relaxation, the computation complexity is O (Rk−1IkI1 · · · InRn) for cal-

culating the gradient, O ((I1 · · · In)2) for generating Vrn , and O(Rk−1IkRk
2) for solving

(2.29). Thus the eigenvalue decomposition for generating Vrn dominates the compu-

tational complexity. The memory for computing P and Q is

max(I1 · · · Ik−1Rk−1, RkIk+1 · · · InRn).

Thus both memory and computation cost of TTNPE-ATN are much less than those

in TTNPE-TN algorithm. Therefore in the simulation section, we will only consider

the TTNPE-ATN algorithm. We validated for a small experiment that the embed-

ding performance for the two are similar, where the validation results are omitted

in this paper. The two algorithms (TTNPE-TN and TTNPE-ATN) are described in

Algorithm 2.

�

� �

�

�

�

33

Algorithm 2 TTNPE-TN and TTNPE-ATN Algorithms

,N ∈ R
I1×I2×···×InInput: A set of N tensors Xi=1,··· , denoted as X, threshold parameter

τ , kernel scaling parameter , number of neighbors K, thresholding parameter

τ , and max iterations maxIter

Output: Tensor train subspace factors U1, U2, · · · , Un

1: Compute affinity matrix F by
⎧ ⎨ 2exp(−� Xi − Xj F /�), if Xj:j=i ∈ O(K, Xi),

Fij = 0, otherwise,

S = F + F and normalize S such that each row sums to 1.

2: Form D ∈ R
I1···In×N as a reshape of the input data, compute Y = D −DS , and

compute Z = YY .

3: Apply tensor train decomposition [21] on X to initialize Ui=1,··· ,n with thresholding

parameter τ , and the tensor train ranks are determined based on selection of τ .

4: Solve VRn by applying eigenvalue decomposition on Z.

5: Set iter = 1

6: while iter ≤ maxIter or convergence of U1, · · · , Un do

7: for i = 1 to n do

8: (TTNPE-TN) Update Ui in (2.24) for i < n and in (2.26) for i = n,

using the algorithm proposed in [55].

9: (TTNPE-ATN) Update Ui in (2.29) by algorithm proposed in [55].

10: end for

11: iter = iter + 1

12: end while

�

34

Table 2.2.: Storage and Computation Complexity Analysis for Embedding Methods. The

bold entry in each column depicts the lowest order.

Storage Subspace Computation Classification

KNN dNtr 0 O(NteNtrd)

2n
n r.TNPE rnNtr + nd
1

O(n(Ntrrd + Ntrr + r3n)) O(Nter
2d + NteNtrr

n)

3
n rTTNPE-ATN (n − 1)(dn

1
r2 − r2) + (dn

1
r − r2) + rNtr O(nd

1
+ dNtr

2 + d2Ntr) O(Nter
2d + NteNtrr)

2.4.3 Classification Using TTNPE-TN and TTNPE-ATN

The classification is conducted by first solving a set of tensor train factors U1, · · · , Un.

Then, the training data and testing data is projected onto the tensor train subspace

bases as follows:

ti = L(U1 × · · · × Un) V(Xi) ∈ R
Rn . (2.30)

Any data point in the testing set is labeled by applying k-nearest neighbors(KNN) [57]

classification with K neighbors in the embedded space RRn .

2.4.4 Storage and Computation Complexity

In this section, we will analyze the amount of storage to store the high dimen-

sional data, complexity for finding the embedding using TTNPE-ATN and the cost of

projection onto the TT subspace for classification. KNN and TNPE [41] algorithms

are considered for comparison. For the computational complexity analysis, let d be

the data dimension, n and r be the reshaped tensor order and rank in TTNPE-ATN

model, K be the number of neighbors, and Ntr (Nte) be the total training (testing)

data. We assume the dimension along each tensor mode is the same, thus each tensor

mode is d
1
in dimension.n

Storage of data Under KNN model, the storage required for Ntr training data

is Storage(KNN) = dNtr. Under TNPE model, the storage for the Ntr training data

needs the space for n linear transformation which is n(dn
1
r), and the space for Ntr

embedded training data of size Ntrr
n , requiring the total storage Storage(TNPE) =

35

1 11
n r−r2)2−r2)+(drnNtr+nd Under TTNPE-ATN model, we need space (n−1)(dn r. n r

[22] to store the projection bases U1, · · · , Un, and Ntrr to store the embedded training
1

data. Thus the total storage is Storage(TTNPE-ATN) = (n −1)(d
1
n r2 −r2)+(dn r −

r2)+rNtr. We consider a metric of normalized storage, compression ratio, which is the

ratio of storage required under the embedding method and storage for the entire data,
Storage(ST)calculated by ρST = , where ST can be any of KNN, TNPE, TTNPE-ATN.

Ntrd

Computation Complexity for estimating the embedding subspace The

computation complexity includes computation for both the addition and multipli-

cation operations. Under KNN model, data is directly used for classification and

there is no embedding process. Under TNPE model, the embedding needs 3 steps,

where solving n linear transformations takes O(Ntrrd) for embedding raw data, ma-

trix generation for an eigenvalue problem takes O(Ntrr
2n), and eigenvalue decompo-

sition for updating each linear transformation takes r3n , giving a total computational

complexity O(n(Ntrrd + Ntrr
2n + r3n)). Under TTNPE-ATN model, the embedding

takes 3 steps, where the initialization by tensor train decomposition algorithm takes

O(nd
1
n r3), the generation of Z takes O(dNtr

2 +d2Ntr), and updating Uk, which includes
1

a gradient calculation by merging a tensor network, takes O(nd 3)), thus giving an r

total computational complexity O(nd
1
n r3 + dN2 + d2Ntr).tr

Classification Complexity Under KNN model, classification is conducted by

pair-wise computations of the distance between a testing point with all training points,

which has a computational complexity of O(NteNtrd). Under TNPE model, an extra

time is required for embedding the testing data, which is O(r2dNte). However, less

time is needed in classification by applying KNN in a reduced dimension, which is

O(NtrNter
n). Thus the total complexity is O(r2dNte + NtrNter

n). Similarly, under

TTNPE-ATN algorithm, embedding takes an extra computation time of O(Nter
2d),

but a significantly less time used in classification, which is O(NteNtrr). Thus the total

complexity is O(Nter
2d + NteNtrr).

36

The comparison of the three algorithms is shown in Table 2.2, where TTNPE-

ATN exhibates a great advantage in storage and computation for classification after

embedding.

2.4.5 Results

In this section, we test our proposed tensor embedding on image datasets, where

the 2D images are reshaped into multi-mode tensors. Reshaping images to tensors is

a common practice to compare tensor algebraic approaches [58] since it captures the

low rank property from the data and exhibits improved data representation. The em-

bedding is evaluated based on KNN classification, where an effective embedding that

preserves neighbor information would give classification results close to that of KNN

classification at lower compression ratios. We compare the proposed TTNPE-ATN

algorithm with Tucker decomposition based neighbor preserving embedding (TNPE)

algorithm as proposed in [41]. We further note that the authors of [41] compared

their approach with different approaches based on vectorization of data, including

Neighborhood Preserving Embedding (NPE), Locality Preserving Projection (LPP),

Principal Component Analysis (PCA), and Local Discriminant Embedding (LDE).

Since the approach in [41] was shown to outperform these approaches, we do not

consider these vectorized data approaches in our comparison. Note that the tensor

train rank, which determines the compression ratio, is learnt from the Algorithm 2

based upon the selection of τ ∈ (0, 1].

Weizmann Face Database Weizmann Face Database [43] is a dataset that

includes 26 human faces with different expressions and lighting conditions. 66 images

from each of the 10 randomly selected people are used for multi-class classification,

where 20 images from each person are selected for training and the remaining images

are used for testing. The experiment is repeated 10 times (for the same 10 people, but

random choices of the 20 training images per person) and the averaged classification

errors are shown in Fig. 2.8. Each image is down sampled to 64 × 44 for ease of

����� �����������
� ��� ��� ��� ��� �

�
��
��
��
��
��
��
�
��
��
�
��
��
�
�
�
�

����

����

����

����

�
���������

����� �����������
� ��� ��� ��� ��� �

�
��
��
��
��
��
��
�
��
��
�
��
��
�
�
�
�

���

����

���

����

����

�
� ��

��� ��
���� � ��

37

-0.05

-0.1

g
1

0
)

�
-0.15

-0.2

ic
at

io
n

 E
rr

o
r(

lo

-0.25

C
la

ss
if

� -0.3
0 0.5 1

Compression Ratio

 � ���
 � � ���

0
��� ���

Fig. 2.8.: Classification Error in log 10 scale for Weizmann Face Database for the three

models.

computation and is further reshaped to a 5-mode tensor of dimension 4×4×4×4×11

to apply the TNPE and TTNPE-ATN algorithms. 10, 50, and 100 neighbors are

considered to build the graph (from left to right) and the KNN from the same number

of neighbors in the embedded space are used for classification. Since KNN does not

compress the data, it results in a single point at a compression ratio of 1.

We show that TTNPE-ATN performs better than TNPE when the compression

ratio is lower than 0.9, indicating TTNPE-ATN better captures the localized features

in the dataset thus yielding better embedding under low compression ratios. With the

increase of compression ratio, the classification error for TTNPE-ATN algorithm first

decreases, which is because the data structure can be better captured with increasing

compression ratio (lower compression). The classification error then increases with

compression ratio since the embedding overfits the background noise in the images.

Similar trend happens for TNPE algorithm. We note that for a compression ratio of

1, the result for TTNPE-ATN do not match that of KNN since we are learning at-

most 200-rank space (due to 20 training images for each of 10 people) while the overall

data dimension is 64×44, thus giving an approximation at the compression ratio of 1.

Increasing K helps preserve more neighbors for embedding, and the neighbor structure

is preserved better. Further, the best classification results given by TTNPE-ATN

are even better than the classification results given by KNN algorithm, indicating

TTNPE-ATN gives better neighborhood preserving embedding as compared to the

TNPE algorithm.

!�"�������
!!�"��#!�������

KNN(K=100)

TNPE(K=100)

TTNPE-ATN(K=100)

����� �����������
� ��� ��� ��� ��� �

�
��
��
��
��
��
��
�
��
��
�
��
��
�
�
�
�

���

���

���

���

�
��� � � � ���
� �� � � � ���

��� � � ���
� �� � � ���

38

Reshaping is investigated to verify if the performance of the embedding is sub-

ject to the empirically selected reshaping dimension (4 × 4 × 4 × 4 × 11). The optimal

reshaping dimension has been empirically investigated in [15], where a moderate re-

shaping gives the best data representation of the multi-dimensional data. Fig. 2.9

considers two of the possible reshapings, 4 × 4 × 4 × 4 × 11 and 8 × 8 × 4 × 11, and

illustrates that both TTNPE-ATN and TNPE are not very sensitive to the reshaping

method. Further, TTNPE-ATN performs better than TNPE in both the considered

reshaping scenarios.

��� � � � �
���� � �� � � � �
��� � � �
���� � �� � � �

Fig. 2.9.: Classification Error in log 10 scale for Weizmann dataset under reshaping 4 × 4 ×

4 × 4 × 11 and 8 × 8 × 4 × 11.

Noise perturbation has been investigated for TTNPE-ATN algorithm in Fig.

2.10, where 20dB, 15dB, 10dB, and 5dB Gaussian noise is added to the data. The

performance of TTNPE-ATN algorithm downgrades when the noise increases, while

TTNPE-ATN still out-performs than TNPE on clean data when noise is less then

10dB.

Execution time for tensor embedding on Weizmann dataset is illustrated in Fig.

2.11, where we see that the proposed TTNPE-ATN is faster than TNPE in all of sub-

space learning, multi-dimensional data embedding, and embedded data classification

operations. We also note the time for subspace learning dominates the computation

����� �����������
� ��� ��� ��� ��� �

�
��
��
��
��
��
��
�
��
��
�
��
��
�
�
�
�

����

����

����

����

�
���
� �
� �� �
� �� ���� �
� �� ��� �
� �� ���� �
� �� ��� �

����� �����������
� ��� ��� ��� ��� �

��
��

 �
�
��

��

�

��

����

� ��

����

���
���

����� �����������
� ��� ��� ��� ��� �

�
�

�

��

�
��

��

�

���

���

���

���

�
���

���

����� �����������
� ��� ��� ��� ��� �

�
��
��
��
��
��
��
�
��
��

 �
�

�

���

�

���

�

���
�	
���

�	
���
�	
���

39

� �
�� � ��
�� � �� ��
�� � �� ��
�� � �� ��
�� � �� ��

Fig. 2.10.: Classification Error in log 10 scale for Weizmann dataset under noise level 20dB,

15dB, 10dB, and 5dB.

�
	

�

�

�� ����� �	
��
� �	

�
 �

�������� �	

� ���	

�

�
����� ���
����
��

Fig. 2.11.: CPU time for TNPE, TTNPE-ATN and KNN on Weizmann dataset. From

left to right are cpu time for subspace learning, multi-dimensional data embedding, and

embedded data classification. The execution time is analyzed using Weizmann dataset

when K is chosen to be 10

time. Further, the summation of embedding time and classification time is also lower

for TTNPE-ATN as compared to KNN.

MNIST Dataset We use the MNIST dataset [42], which consists 60000 handwrit-

ten digits of size 28×28 from 0 to 9, to further investigate the embedding performance

when the number of training samples is large. Each image is reshaped to 4 × 7 × 4 × 7

tensor. We perform binary classification for digits 1 and 2 by using 600 training sam-

ples from each digit. Figure 2.12 shows the classification performance of the three

algorithms (KNN on data directly, TNPE, and TTNPE-ATN) when different values

40

0 0.2 0.4 0.6 0.8 1

C
la

ss
if

ic
at

io
n

E
rr

or
 (

lo
g1

0)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

TTNPE-ATN (K=3)
TNPE (K=3)
KNN (K=3)

0 0.2 0.4 0.6 0.8 1

C
la

ss
if

ic
at

io
n

E
rr

or
 (

lo
g1

0)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

TTNPE-ATN (K=5)
TNPE (K=5)
KNN (K=5)

0 0.2 0.4 0.6 0.8 1

C
la

ss
if

ic
at

io
n

E
rr

or
 (

lo
g1

0)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

TTNPE-ATN (K=7)
TNPE (K=7)
KNN (K=7)

Compression Ratio Compression Ratio Compression Ratio

Fig. 2.12.: Classification Error in log 10 scale for MNIST for the three models.

of K = 3, 5, 7 neighbors are used to construct the graph (from left to right). The

same value of K is used for classification in the embedded space. 1000 out of sample

images from each digit are selected for testing.

The results in Fig. 2.12 are averaged over 10 independent experiments (over the

choice of 600 training and 1000 test samples).

We first note that the proposed TTNPE-ATN is the same as the standard KNN

for that point when the training sample size is sufficient large (since the number of

training samples do not limit the performance). Further, as the compression ratio

increases, the classification error of the proposed TTNPE-ATN decreases first, since

TTNPE-ATN model can effectively capture the embedded data structure. The clas-

sification error then increases since it fits the inherent noise as compared to the low

TT-rank approximation of the data. Overall, TTNPE-ATN algorithm shows com-

parable embedding performance as TNPE algorithm in the compression ratio region

around 0.1, outperforms TNPE for higher compression ratios (lesser compression),

and converges to KNN results at compression ratio of 1.

We note that TTNPE-ATN shows a different behavior for compression ratios close

to 1 in Fig. 2.12 as compared to Fig. 2.8. This is in part since the number of training

samples are lower than the dimension of the data in Fig. 2.8 which implies there is

����� �����������
� ���

�
��
��

�
��
��
�
�
��
�
�

�
�
	

���

��	�

��	

��

��

��
� �

�

��

����� �����������
� ��

�
��
��

�
��
��
�
�
��
�
�

�
�

��

��

��

��

���

��
� �

�

��

41

�
�
�

�

��
 �

�

�

�

� ��

� �

� ��
�� �� �� �
� ��	
���

�

�

�
�
�

�

�
�

 �

 �

 ��

 �

 �

 ��
�� �� �� ���
� ��	
����

���

0 0.5 1

C
la

ss
if

ic
at

io
n

 E
rr

o
r(

lo
g

1
0

)

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25
TTNPE-ATN(K=63)
TNPE(K=63)
KNN(K=63)

Compression Ratio

Fig. 2.13.: Classification Error in log 10 scale for Finance for the three models.

an overfitting of noise, while the number of training samples are higher than the data

dimension for the results in Fig. 2.12.

Financial Market Dataset In this section, tensor embedding method is applied

to four year stock price data to determine whether the stock belongs to financial or

technology sector. The stock prices used in this section are the daily adjusted closing

prices for the top 400 companies, ranked by the market capital as of the end of

2017, from financial and technology sectors, respectively. The data is collected from

01/10/2014 to 12/29/2017 using [59], and the daily return of each stock is computed

to be used as data. We did not use the absolute stock prices, but the return rates

over these days to avoid the information in the absolute value of the stock price.

The time-range mentioned above had 1001 business days, thus giving us 1000 data

points for stock returns. 300 stocks from each sector (out of 400) are randomly

sampled for training and the remaining data are used for testing. Each time series is

reshaped to a 3rd mode tensor 10 × 10 × 10 for tensor embedding analysis. In the

TTNPE-ATN, TNPE, and KNN algorithms, 31, 47, and 63 neighbors are selected

for implementing the algorithm, respectively. Large number of neighbors empirically

gives better and stable performance. Fig. 2.13 illustrates the average results of 10

independent experiments over random choice of 300 training data for each of the two

sectors.

Financial data is known to be noisy. However, we note that both the TNPE and

TTNPE-ATN embedding algorithms outperform KNN, thus the low dimensional ten-

42

sor embedding is able to better reduce noise from the data. TTNPE-ATN algorithm

classifies data more accurately in the low compression ratio regime while starts to

degrade for compression ratio greater than 0.1, which is mainly due to over-fitting

the noise. However, TTNPE-ATN still outperforms TNPE when the compression

ratio is smaller than 0.3.

2.5 Conclusion

This paper proposes a novel algorithm for non-linear Tensor Train Neighborhood

Preserving Embedding (TTNPE-ATN) for tensor data classification. We investi-

gate the tradeoffs between error, storage, and computation and evaluate the method

on several vision datasets. We further show that TTNPE-ATN algorithm exhibits

improved classification performance and better dimensionality reduction among the

baseline approaches, and has lower computational complexity as compared to Tucker

neighborhood preserving embedding method. In the future, we will investigate the

convergence of tensor network optimization and provide the theoretical gap between

TTNPE-ATN and TTNPE-TN. While there has been work on parameter selection

for matrix-based approaches [60,61], finding the thresholding parameter for TTNPE

is an interesting future research direction.

43

3. MISSING DATA COMPLETION

3.1 Introduction

Using the matrix product state (MPS) representation of the recently proposed

tensor ring (TR) decompositions, we propose a TR completion algorithm, which is

an alternating minimization algorithm that alternates over the factors in the MPS

representation. This development is motivated in part by the success of matrix com-

pletion algorithms that alternate over the (low-rank) factors. We propose a novel

initialization method and analyze the computational complexity of the TR comple-

tion algorithm. The numerical comparison between the TR completion algorithm and

the existing algorithms that employ a low rank tensor train (TT) approximation for

data completion shows that our method outperforms the existing ones for a variety of

real computer vision settings, and thus demonstrates the improved expressive power

of tensor ring as compared to tensor train.

3.2 Related Work

Tensor decompositions for representing and storing data have recently attracted

considerable attention due to their effectiveness in compressing data for statistical

signal processing [35, 36, 62–64]. We focus on Tensor Ring (TR) decomposition [23]

and in particular its relation to Matrix Product States (MPS) [65] representation

for tensor and use it for completing data from missing entries. In this context our

algorithm is motivated by recent work in matrix completion where under a suitable

initialization an alternating minimization algorithm [66,67] over the low rank factors

is able to accurately predict the missing data.

44

Recently, tensor networks, considered as the generalization of tensor decomposi-

tions, have emerged as the potentially powerful tools for analysis of large-scale tensor

data [65]. The most popular tensor network is the Tensor Train (TT) representation,

which for an order-d tensor with each dimension of size n requires O(dnr2) parameters,

where r is the rank of each of the factors, and thus allows for the efficient data repre-

sentation [21]. Tensor train decompositions have been recently considered in [29, 68]

and the authors in [29,68] considered the completion of data via an alternating least

square method.

Although TT format has been widely applied in numerical analysis, its applica-

tions to image classification and completion are rather limited [29, 36, 68]. As out-

lined in [23], TT decomposition suffers from the following limitations. Namely, (i)

TT model requires rank-1 constraints to the border factors, (ii) TT ranks are typ-

ically small for near-border factors and large for the middle factors, and (iii) the

multiplications of the TT factors are not permutation invariant. In order to alleviate

those drawbacks, a tensor ring (TR) decomposition has been proposed in [23]. TR

decomposition removes the unit rank constraints for the boundary tensor factors and

utilizes a trace operation in the decomposition. The multilinear products between

factors also have no strict ordering and the factors can be circularly shifted due to

the properties of the trace operation. This paper provides novel algorithms for data

completion when the data is modeled as a TR decomposition.

For data completion using tensor decompositions, one of the key attributes is the

notion of the rank. Even though the rank in TR is a vector, we can assume all ranks

to be the same, unlike that in TT case where the intermediate ranks are higher, thus

providing a single parameter that can be tuned based on the data and the number

of samples available. The use of trace operation in the tensor ring structure brings

challenges for completion as compared to that for tensor train decomposition. The

tensor ring structure is equivalent to a cyclic structure in tensor networks [66], and

understanding this structure can help understand completion for more general tensor

networks. We propose an alternating minimization algorithm for the tensor ring

45

completion. The initialization of the algorithm is an extension of TT approximation

algorithm in [21] after zero-filling the missing data. Further, all the sub-problems

in alternating minimization are converted to efficient least square problems, thus

significantly improving the complexity of each sub-problem. We also analyze the

storage and computational complexity of the proposed algorithm.

We note that, to the best of our knowledge, tensor ring completion has never been

investigated for tensor completion, even though tensor ring factorization has been

proposed in [23]. The different novelties as compared to [23] include the initialization

algorithm, exclusion of tensor factor normalization, conversion of tensor completion

problem into different least square sub-problems, and analysis of complexity in storage

and computation.

The proposed algorithm is evaluated on a variety of datasets, including Einstein’s

image, Extended YaleFace Dataset B, and high speed video. The results are compared

with the tensor train completion algorithms in [29, 68], and the additional structure

in the tensor ring is shown to significantly improve the performance as compared to

using the TT structure.

3.3 Background

We first provide the fundamental background knowledge on tensor operation.

Definition 3.3.1 (Mode-i unfolding [69]) Let X ∈ RI1×···×In be a n-mode tensor.

Mode-i unfolding of X, denoted as X[i], matrized the tensor X by putting the ith mode

in the matrix rows and remaining modes with the original order in the columns such

that

X[i] ∈ RIi×(I1···Ii−1Ii+1···In). (3.1)

Definition 3.3.2 (Mode-i canonical matrization [69]) Let X ∈ RI1×···×In be an nth

order tensor, the mode-i canonical matrization gives

�i �
It)×(It)t=1 t=i+1X<i> ∈ R(n

, (3.2)

�

�

46

such that any entry in X<i> satisfies

k−1

X<i>(i1 + (i2 − 1)I1 + · · ·+ (ik − 1) It,
t=1

n−1
(3.3)

ik+1 + (ik+2 − 1)Ik+1 + · · ·+ (in − 1) It)
t=k+1

=X(i1, · · · , in).
Definition 3.3.3 (Tensor Connect Product) Let Ui ∈ RRi−1×Ii×Ri , i = 1, · · · , n be n

3rd-order tensors, the tensor connect product between Uj and Uj+1 is defined as,

Uj Uj+1 ∈ R
Rj−1×(Ij Ij+1)×Rj+1 = reshape (L(Uj) ×R(Uj+1)) . (3.4)

Thus, the tensor connect product n MPSs is

∈ R
R0×(I1···In)×RnU = U1 · · ·Un . (3.5)

Tensor connect product gives the product rule for the production between 3-order

tensors, just like the matrix product as for 2-order tensor. Under matrix case,

∈ R1×Ij ×Rj ∈ RRj ×Ij+1×1Uj , Uj+1 . Thus tensor connect product gives the vector-

ized solution of matrix product.

We then define an operator f that applies on U. Let U ∈ RR0×(I1···In)×Rn be the

3-order tensor, R0 = Rn, and let f be a reshaping operator function that reshapes a

3-order tensor U to a tensor of dimension X of dimension RI1×···×In , denoted as

X = f(U), (3.6)

where X(i1, · · · , in) is generated by

X(i1, · · · , in) = tr(U(:, i1 + (i2 − 1)I1 + · · ·+ (in − 1)In−1, :)). (3.7)

Thus a tensor X ∈ R
I1×···×In with tensor ring structure is equivalent to

X = f(U1 · · ·Un). (3.8)

Similar to matrix transpose, which can be regarded as an operation that cyclic

swaps the two modes for a 2-order tensor, we define a ‘tensor permutation’ to describe

the cyclic permutation of the tensor modes for a higher order tensor.

47

Definition 3.3.4 (Tensor Permutation) For any n-order tensor X ∈ RI1×···×In , the

∈ R
Ii×Ii+1×···×In×I1×I2×···×Ii−1ith tensor permutation is defined as XPi such that i, ji ∈

[1, Ii]

XPi (ji, · · · , jn, j1, · · · , ji−1) = X(j1, · · · , jn). (3.9)

Then we have the following result.

Lemma 5 If X = f(U1 · · ·Un), then XPi = f(UiUi+1 · · ·UnU1 · · ·Ui−1).

Proof Based on definition of tensor permutation in Definition 3.3.4, on the left hand

side, the (j1,, jn) entry of the tensor is

XPi (j1, ..., jn) = X(jn−i+2, ..., jn, j1, ..., jn−i+1). (3.10)

On the right hand side, the (j1,, jn) entry of the tensor gives

f(Ui · · ·Ui−1)(j1, · · · , jn)
(3.11)

=Trace(Ui(:, j1, :)Ui+1(:, j2, :)...Un(:, jn−i+1, :)U1(:, jn−i+2, :) · · ·Ui−1(:, jn, 1)).

Since trace is invariant under cyclic permutations, we have

Trace(Ui(:, j1, :)Ui+1(:, j2, :)...Un(:, jn−i+1, :)U1(:, jn−i+2, :) · · ·Ui−1(:, jn, :))

=Trace(U1(:, jn−i+2, :) · · ·Ui−1(:, jn, :)Ui(:, j1, :)Ui+1(:, j2, :)...Un(:, jn−i+1, :)) (3.12)

=f(U1 · · ·Un)(jn−i+2, · · · , jn, j1, · · · , jn−i+1),

which equals to the right hand side of equation (3.10). Since any entries in XPi are

the same as those in UiUi+1 · · ·UnU1 · · ·Ui−1, the claim is proved.

With this background and basic constructs, we now outline the main problem

setup.

3.4 Tensor Ring Completion Algorithm

3.4.1 Problem Formulation

Given a tensor X ∈ RI1×···×In that is partially observed at locations Ω, let PΩ ∈

R
I1×···×In be the corresponding binary tensor in which 1 represents an observed entry

� �

48

and 0 represents a missing entry. The problem is to find a low tensor ring rank

(TR-Rank) approximation of the tensor X, denoted as f(U1 · · ·Un), such that the

recovered tensor matches X at PΩ. This problem is referred as the tensor completion

problem under tensor ring model, which is equivalent to the following problem

min PΩ ◦ (f(U1 · · ·Un) − X) 2
F . (3.13)

Ui:i=1,··· ,n

Note that the rank of the tensor ring R is predefined and the dimension of Ui:i=1,··· ,n

is RR×Ii×R .

To solve this problem, we propose an algorithm, referred as Tensor Ring comple-

tion by Alternating Least Square (TR-ALS) to solve the problem in two steps.

• Choose an initial starting point by using Tensor Ring Approximation (TRA).

This initialization algorithm is detailed in Section 3.4.2.

• Update the solution by applying Alternating Least Square (ALS) that alter-

natively (in a cyclic order) estimates a factor say Ui keeping the other factors

fixed. This algorithm is detailed in Section 3.4.3.

3.4.2 Tensor Ring Approximation (TRA)

A heuristic initialization algorithm, namely TRA, for solving (3.13) is proposed

in this section. The proposed algorithm is a modified version of tensor train de-

composition as proposed in [21]. We first perform a tensor train decomposition on

the zero-filled data, where the rank is constrained by Singular Value Decomposition

(SVD). Then, an approximation for the tensor ring is formed by extending the ob-

tained factors to the desired dimensions by filling the remaining entries with small

random numbers. We note that the small entries show faster convergence as compared

to zero entries based on our considered small examples, and thus motivates the choice

in the algorithm. Further, non-zero random entries help the algorithm initialize with

larger ranks since the TT decomposition has the corner ranks as 1. Having non-zero

�

�

�

�

49

Algorithm 3 Tensor Ring Approximation (TRA)

Input: Missing entry zero filled tensor X ∈ R
I1×I2×···×In , TR-Rank R, small random

variable depicting the standard deviation of the added normal random variable σ

∈ R
R×Ii×ROutput: Tensor train decomposition Ui:i=1,··· ,n

1: Apply mode-1 canonical matricization for X and get matrix X1 = X<1> ∈

R
I1×(I2I3···In)

2: Apply SVD and threshold the number of singular values to be T1 =

∈ RI1×T1 ∈ RT1×T1min(R, I1, I2 · · · In), such that X1 = U1S1V1 ,U1 ,S1 ,V1 ∈

R
T1×(I2I3···In) ∈ RR×I1×R . Reshape U1 to R1×I1×T1 and extend it to U1 by filling

the extended entries by random normal distributed values sampled from N (0, σ2).

∈ R
T1×(I2I3···In)3: Let M1 = S1V1 .

4: for i = 2 to n− 1 do

to Xi ∈ R
(Ti−1Ii)×(Ii+1Ii+2···In)5: Reshape Mi−1 .

6: Compute SVD and threshold the number of singular values to be Ti =

R
(Ti−1Ii)×Timin(R, Ti−1Ii, Ii+1 · · · In), such that Xi = UiSiVi ,Ui ∈ ,Si ∈

R
Ti×Ti R

Ti×(Ii+1Ii+2···In) R
Ti−1×Ii×Ti ,V ∈ . Reshape Ui to and extend it to

Ui ∈ R
R×Ii×R by filling the extended entries by random normal distributed values

sampled from N (0, σ2).

∈ R
Ti×(Ii+1Ii+2···In)7: Set Mi = SiVi

8: end for

∈ RTn−1×In ∈ RR×In×R9: Reshape Mn−1 to RTn−1×In×1 , and extend it to Un by

filling the extended entries by random normal distributed values sampled from

N (0, σ2) to get Un

10: Return U1, · · · ,Un

entries can help the algorithm not getting stuck in a local optima of low corner rank.

The TRA algorithm is given in Algorithm 3.

� �

�

� �

� �

� �

� �

� �

50

3.4.3 Alternating Least Square

The proposed tensor ring completion by alternating least square method (TR-

ALS) solves (3.13) by solving the following problem for each i iteratively. The factors

are initialized from the TRA algorithm presented in the previous section.

Ui = arg min PΩ ◦ f(U1 · · ·Ui−1YUi+1 · · ·Un) − XΩ) F
2 . (3.14)

Y

Lemma 6 When i = 1, solving

Ui = arg min PΩ ◦ f(U1 · · ·Ui−1YUi+1 · · ·Un) − XΩ) F
2 (3.15)

Y

is equivalent to

PPi 2Ui = arg min Ω ◦ f(YUi+1 · · ·UnU1 · · ·Ui−1) − XΩ
Pi

F . (3.16)
Y

Proof First we note that tensor permutation does not change tensor Frobenius norm

as all the entries remain the same as those before the permutation. In Lemma 2, we

have

Ui = arg min PΩ ◦ f(U1 · · ·Ui−1YUi+1 · · ·Un) − XΩ) F
2 . (3.17)

Y

Since the permutation operation does not change the Frobenius norm, equivalently

we have

PPi 2Ui = arg min Ω ◦ (f(U1 · · ·Ui−1YUi+1 · · ·Un))
Pi − XΩ

Pi
F . (3.18)

Y

Based on Lemma 1, we have

(f(U1 · · ·Ui−1YUi+1 · · ·Un))
Pi = f(YUi+1 · · ·UnU1 · · ·Ui−1), (3.19)

thus equation (3.18) becomes

= arg min PPi ◦ f(YUi+1 · · ·UnU1 · · ·Ui−1) − XPi 2 (3.20)Ui Ω Ω F .
Y

Thus we prove our claim.

� �

� �

� �

� �

�
� �

� �

51

Since the format of (3.16) is exactly the same for each i when the other factors are

known, it is enough to describe solving a single Uk without loss of generality. Based

on Lemma 6, we need to solve the following problem.

PPk 2Uk = arg min Ω ◦ f(YUk+1 · · ·UnU1 · · ·Uk−1) − XP
Ω
k

F . (3.21)
Y

We further apply mode-k unfolding, which gives the equivalent problem

PPk − XPk 2Uk = arg min ◦ f(YUk+1 · · ·UnU1 · · ·Uk−1) Ω [k] F , (3.22)Ω [k] [k]
Y

where PP
Ω
k
[k], f(YUk+1 · · ·UnU1 · · ·Uk−1) and XPk are matrices with dimension[k] Ω [k]

R
Ik ×(Ik+1 ···InI1···Ik−1).

The trick in solving (3.22) is that each slice of tensor Y, denoted as Y(:, ik, :), ik ∈

{1, · · · , Ik} which corresponds to each row of PΩ
Pk

[k], f(YUk+1 · · ·UnU1 · · ·Uk−1) and[k]

XPk
Ω [k], can be solved independently, thus equation (3.22) can be solved by solving Ik

equivalent subproblems

PPk 2Uk(:, ik, :) = argmin (ik, :) ◦ f(ZUk+1 · · ·Uk−1) − XPk (ik, :) F . (3.23)Ω [k] Ω [k]
Z∈RR×1×R

∈ RR×(Ik+1 ···InI1···Ik−1)×R, ΩikLet B(k) = Uk+1 · · ·UnU1 · · ·Uk−1 be the observed
(k) R×(Ik+1 ···InI1···Ik−1)Ωik

×R
entries in vector X[k](ik, :), thus B ∈ R are the components Ωik

in B(k) such that PPk (ik, (Ik+1 · · · InI1 · · · Ik−1)Ωik
) are observed. Thus equationΩ [k]

(3.23) is equivalent to

(k) 2Uk(:, ik, :) = argmin f(ZB) − XPk (ik, (Ik+1 · · · InI1 · · · Ik−1)Ωik
)) F . (3.24)Ωik Ω [k]

Z

We regard Z ∈ RR×1×R as a matrix Z ∈ RR×R . Since the Frobenius norm of a

vector in (3.24) is equivalent to entry-wise square summation of all entries, we rewrite

(3.24) as

Uk(:, ik, :) = arg min tr(Z ×B
(k)

(:, j, :)) − XPk (ik, j) F
2 .Ωik Ω [k] (3.25)

Z∈RR×R
j∈Ωik

Lemma 7 Let A ∈ R
r1×r2 and B ∈ R

r2×r1 be any two matrices, then

Trace(A ×B) = vec(B) vec(A). (3.26)

�
� � � �

�

�
�

52

Based on Lemma 7, (3.25) becomes

(k) 2Uk(:, ik, :) = arg min vec((B (:, j, :))) vec(Z) − XPk (ik, j) F .
Z

Ωik Ω [k] (3.27)
(k)

j∈Ωik

Then the problem for solving Uk[:, ik, :] becomes a least square problem. Solving Ik

least square problem would give the optimal solution for Uk. Since each Ui:i=1,··· ,n can

solved by a least square method, tensor completion under tensor ring model can be

solved by taking orders to update Ui:i=1,··· ,n until convergence. We note the completion

algorithm does not require normalization on each MPS, unlike the decomposition

algorithm [23] that normalizes all the MPSs to seek a unique factorization. The

stopping criteria in TR-ALS is measured via the changes of the last tensor factors

Un since if the last factor does not change, the other factors are less likely to change.

Details of the algorithm are given in Algorithm 3.

3.4.4 Complexity Analysis

Storage Complexity Given an n-order tensor X ∈ RI1×···×In , the total amount of

parameters to store is n
i=1 Ii, which increases exponentially with order. Under tensor

ring model, we can reduce the storage space by converting each factor (except the

last) one by one to being orthonormal and multiply the product with the next factor.

Thus, the number of parameters to store the MPSs Ui:i=1,··· ,n−1 with orthonormal
n−1property requires storage i=1 (R

2Ii − R2), and Un with parameter R2In. Thus, the

total amount of storage is R2(n
i Ii − n + 1), where the tensor ring rank R can be

adjusted to fit the tensor data at the desired accuracy.

Computational Complexity For each Ui, the least square problem in (3.22)

solved by pseudo-inverse gives a computational complexity max(O(PR4), O(R6)),

where P is the total number of observations. Within one iteration when n MPSs

need to be updated, the overall complexity is max(O(nPR4), O(nR6)).

53

We note that tensor train completion [68] gives the similar complexity as tensor

ring completion. However, tensor train rank is a vector and it is hard for tuning

to achieve the optimal completion. The intermediate ranks in tensor train are large

in general, leading to significantly higher computational complexity of tensor train.

This is alleviated in part by the tensor ring structure which can be parametrized by

the tensor ring rank which can be smaller than the intermediate ranks of the tensor

train in general. In addition, the single parameter in the tensor ring structure leads to

an ease in characterizing the performance for different ranks and can be easily tuned

for practical applications. The lower ranks lead to lower computational complexity

of data completion under the tensor ring structure as compared to the tensor train

structure.

3.4.5 Reshaping

Fig. 3.1.: Reshaping a 4 × 4 matrix into a 2 × 2 × 2 × 2 tensor.

In the real-settings, images are reshaped into higher order tensors by re-arranging

the pixels into high-dimensional array, which although is a common practice in many

literatures [29, 36, 58], fundamental analysis on the reasoning of the reshaping has

never been provided. As shown in Fig 3.1, reshaping a 4×4 matrix into a 2×2×2×2

captures the low rank structure of the image data in the sense that the sub-image

� �
� �

54

by pixels (1, 3, 9, 11) would be similar to that by pixels (5, 7, 13, 15), (6, 8, 14, 16) and

pixels (2, 4, 10, 12). This is attributes the spatial property of vision datasets, where

the downsampled sub-image is the original image data at low resolution. In the

remaining of the work, the tensor ring completion algorithm is applied to the image

after reshaping into high-dimensional tensors.

3.5 Results

In this section, we compare our proposed TR-ALS algorithm with tensor train

completion under alternating least square (TT-ALS) algorithm [68], which solves the

tensor completion by alternating least squares under tensor train format. SiLRTC

algorithm is another tensor train completion algorithm proposed in [29] and the tensor

train rank is tuned based on the dimensionality of the tensor. It is selected for

comparison as it shows good recovery in image completion [29]. The evaluation merit

we consider is Recovery Error (RE). Let X̂ be the recovered tensor and X be the

ground truth of the tensor. Thus, the recovery error is defined as

X̂ − X F
RE = .

X F

Tensor ring completion by alternating least square (TR-ALS) algorithm is an iterative

algorithm and the maximum iteration, maxiter, is set to be 300. The convergence is

captured by the change of the last factorization term Un, where the error tolerance

is set to be 10−10 .

In the remaining of the section, we first evaluate the completion results for syn-

thetic data. Then we validate the proposed TR-ALS algorithm on image completion,

YaleFace image-sets completion, and video completion.

3.5.1 Synthetic Data

In this section, we consider a completion problem of a 4-order tensor X ∈ R20×20×20×20

with TR-Rank being 8 without loss of generality. The tensor is generated by a se-

55

2

0

5
-2 0.1 0.2 0.4

0.15 0.3 0.5
TR
LR-TT
HR-TT
SiLRTC

0.1 0.2 0.3 0.4 0.5 0.6

R
ec

ov
er

y
E

rr
or

 (
lo

g1
0)

-4

-6

-8

R
ec

ov
er

y
E

rr
or

 (
lo

g1
0) 0

-5

-10

0 20 40 60 80 100

-10

-12

Observation Ratio

-15(a) Recovery error (log 10) versus observation
Iteration

Ratio. The plots are the average of 10 experi-

ments and the error bar are marked using one (b) Convergence plot for TR-ALS under ob-

standard deviation. servation ratio from 0.1 to 0.5

Fig. 3.2.: Completion for synthetic data. Synthetic data is a 4th order tensor of dimension

20 × 20 × 20 × 20 with TR-Rank being 8.

,4 ∈ R8×20×8quence of connected 3-rd order tensor Ui:i=1,··· and every entry in Ui are

sampled independently from a standard normal distribution.

TT-ALS is considered as a comparable to show the difference between tensor

train model and tensor ring model. Two different tensor train ranks are chosen

for the comparisons. The first tensor-train ranks are chosen as [8, 8, 8], and the

completion with these ranks is called Low rank tensor train (LR-TT) completion.

The second tensor-train ranks are chosen as the double of the first ([16, 16, 16]), and

the completion with these ranks is called High rank tensor train (HR-TT) completion.

Another comparable used is the SiLRTC algorithm proposed in [29], where the rank

is adjusted according to the dimensionality of the tensor data, and a heuristic factor

of f = 1 in the proposed algorithm of [29] is selected for testing.

Fig.3.2a shows the completion error of TR-ALS, LR-TT, HR-TT, and SiLRTC

for observation ratio from 10% to 60%. TR-ALS shows the lowest recovery error

compared with other algorithms and the recovery error drops to 10−10 for observation

ratio larger than 14%. The large completion errors of all tensor train algorithm at

https://Fig.3.2a

56

every observation ratio show that tensor train algorithm can not effectively complete

the tensor data generated under tensor ring model. Fig. 3.2b shows the convergence

of TR-ALS under sampling ratios 10%, 15%, 20%, 30%, 40%, and 50%, and the plot

indicates the higher the observation ratios, the faster the algorithm converges. When

the observation ratio is lower than 10%, the tensor with missing data can not be

completed under the proposed set-up. The fast convergence of the proposed TR-ALS

algorithm indicates that alternating least square is effective in tensor ring completion.

3.5.2 Image Completion

In this section, we consider the completion of RGB Einstein Image [70], treated

as a 3-order tensor X ∈ R600×600×3 . A reshaping operation is applied to transform the

image into a 7-order tensor of size R6×10×10×6×10×10×3 . Reshaping low order tensors

into high order tensors is a common practice in literature and has shown improved

performance in classification [36] and completion [29]. Fig. 3.3a shows the recovery

error versus rank for TR-ALS and TT-ALS when the percentage of data observed are

5%, 10%, 20%, 30%. At any considered ranks, TR-ALS completes the image with a

better accuracy than TT-ALS. For any given percentage of observations, the recovery

error first decreases as the rank increases which is caused by the increased information

being captured by the increased number of parameters in the tensor structure. The

recovery error then starts to increase after a thresholding rank, which can be ascribed

to over-fitting. The plot also indicates that higher the observation ratio, larger the

thresholding rank, which to the best of our knowledge is reported for the first time.

Fig. 3.3b shows the recovered image of Einstein image when 10% pixels are randomly

observed. TR-ALS with rank 28 gives the best recovery accuracy in the considered

ranks.

57

(b) Einstein image completion when 10%

R
ec

ov
er

y
E

rr
or

 (
lo

g1
0)

-0.4

-0.6

-0.8

-1

-1.2

Rank
5 10 15 20 25 30

TR(5%)
TT(5%) TT(10%) TT(20%) TT(30%)

TR(10%) TR(20%) TR(30%)

(a) The recovery error versus rank for TR-

ALS and TT-ALS under observation ratio

5%, 10%, 20%, 30%.

of pixels are randomly observed. (a)

and (f) are the original Einstein image

and the Einstein image with 10% ran-

domly observed entries. (b)-(e) are the

completed images via TR-ALS with TR-

Rank 2, 10, 18, 28 and completion errors

33.97%, 14.03%, 10.83%, 14.55% respectively.

(g)- (j) are the completed images via TT-ALS

with TT-Rank 2, 10, 18, 28 and completion er-

rors 38.51%, 22.89%, 20.70%, 23.19% respec-

tively.

Fig. 3.3.: Completion for Einstein image. Einstein image is of size 600 × 600 × 3, and is

reshaped into a 7-order tensor of size 6 × 10 × 10 × 6 × 10 × 10 × 3 tensor for tensor ring

completion

3.5.3 YaleFace Dataset Completion

In this section, we consider Extended YaleFace Dataset B [71] that includes 38

people with 9 poses under 64 illumination conditions. Each image has the size of

192 × 168, where we down-sample the size of each image to 48 × 42 for ease of

computation. We consider the image subsets of 38 people under 64 illumination

with 1 pose by formatting the data into a 4-order tensor in R48×42×64×38 , which is

further reshaped into a 8-order tensor X ∈ R6×8×6×7×8×8×19×2 . We consider the case

58

Table 3.1.: Completion error of 10% observed Extended YaleFace data via TT-ALS and

TR-ALS under rank 5, 10, 15, 20, 25, 30.

Rank 5 10 15 20 25 30

TT-ALS (R6×8×6×7×8×8×19×2) 37.08% 29.65% 27.91% 26.84% 26.16% 25.55%

TR-ALS (R6×8×6×7×8×8×19×2) 33.45% 24.67% 20.72% 18.47% 16.92% 16.25%

TR-ALS (R2×3×2×4×2×3×7×8×8×19×2) 33.73% 25.08% 21.20% 18.97% 17.34% 16.34%

TR-ALS (R48×42×64×38) 30.36% 26.08% 23.74% 22.22% 21.48% 21.57%

when 10% of pixels are randomly observed. YaleFace sets completion is considered to

be harder than an image completion since features under different illumination and

across human features are harder to learn than information from the color channels of

images. Table 3.1 shows that for any considered rank, TR-ALS recovers data better

than TT-ALS and the best completion result in the given set-up is 16.25% for TR-

ALS as compared with 25.55% given by TT-ALS. Further we reshape the data into

an 11-order tensor and 4-order tensor to evaluate the effect of reshaped tensor size on

tensor completion. The result in Table 3.1 shows that in the given reshaping set-up,

reshaping tensor from 4-order tensor to 7-th order tensor significantly improve the

performance of tensor completion by decreasing recovery error from 21.48% to 16.25%.

However, further reshaping to 11-order tensor slightly degrades the performance of

completion, resulting in an increased recovery error to 16.34%.

Fig. 3.4 shows the original image, missing images, and recovered images using

TR-ALS and TT-ALS algorithms for ranks of 10, 20, and 30, where the completion

results given by TR-ALS better captures the detail information given from the image

and recovers the image with a better resolution.

3.5.4 Video completion

The video data we used in this section is high speed camera video for gun shooting

[72]. It is downloaded from Youtube with 85 frames in total and each frame is

https://ALSascomparedwith25.55
https://30.36%26.08
https://R2�3�2�4�2�3�7�8�8�19�2)33.73

59

Original

Missing

TR(10)

TR(20)

TR(30)

TT(10)

TT(20)

TT(30)

Fig. 3.4.: YaleFace dataset is sub-sampled to formulate into a tensor of size 48×42×64×38,

which is reshaped into a 8-order tensor of size 6 × 8 × 6 × 7 × 8 × 8 × 19 × 2 for tensor ring

completion. 90% of the pixels are assumed to be randomly missing. From top to bottom

are original images, missing images, TR-ALS completed images with TR-Ranks 10, 20, 30,

and TT-ALS completed images with TT-Ranks 10, 20, 30.

Table 3.2.: Completion error of 10% observed Video data via TT-ALS and TR-ALS under

rank 10, 15, 20, 25, 30.

Rank 10 15 20 25 30

TT-ALS 19.16% 14.83% 16.42% 16.86% 16.99%

TR-ALS 13.90% 10.12% 8.13% 6.88% 6.25%

consisted by a 100 × 260 × 3 image. Thus the video is a 4-order tensor of size

100 × 260 × 3 × 85, which is further reshaped into a 11-order tensor of size 5 ×2 × 5×

2 ×13 × 2 × 5 × 2 × 3 × 5 × 17 for completion. Video is a multi-dimensional data with

different color channel a time dimension in addition to the 2D image structure.

60

Fig. 3.5.: Gun Shot is a video of size 100 × 260 × 3 × 80 download from Youtube, which

is reshaped into a 11-order tensor of size 5 × 2 × 5 × 2 × 13 × 2 × 5 × 2 × 3 × 5 × 17 for

tensor ring completion. 90% of the pixels are assumed to be randomly missing. (a) and (g)

are the first frame of the original video and missing video. (b)-(f) are the completed frame

via TR-ALS using TR-Rank 10, 15, 20, 25, 30. (h)-(l) are the completed frame via TT-ALS

using TR-Rank 10, 15, 20, 25, 30.

In Table 3.2, we show that TR-ALS achieves 6.25% recovery error when 10% of

the pixels are observed, which is much better than the best recovery error of 14.83%

achieved by TT-ALS. The first frame of the video is shown in Fig. 3.5, where the first

row shows the original frame and the completed frames by TR-ALS, and the second

row shows the frame with missing entries and the frames completed by TT-ALS. The

resolution, and the display of the bullets and the smoke depict that the proposed

TR-ALS achieves better completion results as compared to the TT-ALS algorithm.

3.6 Conclusion

We propose a novel algorithm for data completion using tensor ring decompo-

sition. This is the first paper on data completion exploiting this structure which

is a non-trivial extension of the tensor train structure. Our algorithm exploits the

matrix product state representation and uses alternating minimization over the low

rank factors for completion. The evaluation of the proposed approach on a vari-

ety of datasets, including Einstein’s image, Extended YaleFace Dataset B, and video

61

completion demonstrates the significant improvement of tensor ring completion as

compared to tensor train completion.

Deriving provable performance guarantees on tensor completion using the pro-

posed algorithm is left as further work. In this context, the statistical machinery for

proving analogous results for the matrix case [66, 67] can be used.

62

4. MODELL COMPRESSION

4.1 Introduction

Deep neural networks have demonstrated state-of-the-art performance in a variety

of real-world applications. In order to obtain performance gains, these networks have

grown larger and deeper, containing millions or even billions of parameters and over

a thousand layers. The trade-off is that these large architectures require an enormous

amount of memory, storage, and computation, thus limiting their usability. Inspired

by the recent tensor ring factorization, we introduce Tensor Ring Networks (TR-Nets),

which significantly compress both the fully connected layers and the convolutional

layers of deep neural networks. Our results show that our TR-Nets approach is able to

compress LeNet-5 by 11× without losing accuracy, and can compress the state-of-the-

art Wide ResNet by 243× with only 2.3% degradation in Cifar10 image classification.

Overall, this compression scheme shows promise in scientific computing and deep

learning, especially for emerging resource-constrained devices such as smartphones,

wearables, and IoT devices.

Deep neural networks have made significant improvements in a variety of appli-

cations, including recommender systems [73,74], time series classification [75], nature

language processing [76–78], and image and video recognition [79]. These accuracy

improvements require developing deeper and deeper networks, evolving from AlexNet

[6] (with P = 61 M parameters), VGG19 [7] (P = 114 M), and GoogleNet (P = 11

M) [80], to 32-layer ResNet (P = 0.46 M) [8,81], 28-layer WideResNet [82] (P = 36.5

M), and DenseNets [83]. Unfortunately, with each evolution in architecture comes a

significant increase in the number of model parameters. On the other hand, many

modern use cases of deep neural networks are for resource-constrained devices, such

as mobile phones [84], wearables and IoT devices [85], etc. In these applications,

63

storage, memory, and test runtime complexity are extremely limited in resources,

and compression in these areas is thus essential.

After prior work [86] observed redundancy in trained neural networks, a useful area

of research has been compression of network layer parameters (e.g., [87–90]). While a

vast majority of this research has been focused on the compression of fully connected

layer parameters, the latest deep learning architectures are almost entirely dominated

by convolutional layers. For example, while only 5% of AlexNet parameters are from

convolutional layers, over 99% of Wide ResNet parameters are from convolutional

layers. This necessitates new techniques that can factorize and compress the multi-

dimensional tensor parameters of convolutional layers.

We propose compressing deep neural networks using Tensor Ring (TR) factor-

izations [58],which can be viewed as a generalization of a single Canonical Polyadic

(CP) decomposition [18, 19, 91], with two extensions:

1. the outer vector products are generalized to matrix products, and

2. the first and last matrix are additionally multiplied along their outer edges,

forming a “ring” structure.

Note that this is also a generalization of the Tensor Train factorization [21], which

only includes the first extension. This is inspired by previous results in image pro-

cessing [16], which demonstrate that this general factorization technique is extremely

expressive, especially in preserving spatial features.

Specifically, we introduce Tensor Ring Nets (TRN), in which layers of a deep

neural network are compressed using tensor ring factorization. For fully connected

layers, we compress the weight matrix, and investigate different merge/reshape orders

to minimize real-time computation and memory needs. For convolutional layers, we

carefully compress the filter weights such that we do not distort the spatial properties

of the mask. Since the mask dimensions are usually very small (5 × 5, 3 × 3 or even

1 × 1) we do not compress along these dimensions at all, and instead compress along

the input and output channel dimensions.

64

To verify the expressive power of this formulation, we train several compressed

networks. First, we train LeNet-300-100 and LeNet-5 [42] on the MNIST dataset,

compressing LeNet-5 by 11× without degradation and achiving 99.31% accuracy,

and compressing LeNet-300-100 by 13× with a degrading of only 0.14% (obtaining

overall accuracy of 97.36%). Additionally, we examine the state-of-the-art 28-layer

Wide-ResNet [82] on Cifar10, and find that TRN can be used to effectively compress

the Wide-ResNet by 243× with only 2.3% decay in performance, obtaining 92.7%

accuracy. The compression results demonstrates the capability of TRN to compress

state-of-the-art deep learning models for new resources constrained applications.

4.2 Related Work

Past deep neural network compression techniques have largely applied to fully

connected layers, which previously have dominated the number of parameters of a

model. However, since modern models like ResNet and WideResNet are moving

toward wider convolutional layers and omitting fully connected layers altogether, it

is important to consider compression schemes that work on both fronts.

Many modern compression schemes focus on post-processing techniques, such as

hashing [87] and quantization [92]. A strength of these methods is that they can

be applied in addition to any other compression scheme, and are thus orthogonal

to other methods. More similar to our work are novel representations like circulant

projections [93] and truncated SVD representations [90].

Low-rank tensor approximation of deep neural networks has been widely inves-

tigated in the literature for effective model compression, low generative error, and

fast prediction speed [84,94,95]. Tensor Networks (TNs) [24,25] have recently drawn

considerable attention in multi-dimensional data representation [15, 16, 30, 41], and

deep learning [96–99].

One of the most popular methods of tensor factorization is the Tucker factorization

[20], and has been shown to exhibit good performance in data representation [35,41,

�

�

�
�

65

100] and in compressing fully connected layers in deep neural networks [99]. In [84],

a Tucker decomposition approach is applied to compress both fully connected layers

and convolution layers.

Tensor train (TT) representation [21] is another example of TNs that factorizes

a tensor into boundary two matrices and a set of 3rd order tensors, and has demon-

strated its capability in data representation [29, 30, 101] and deep learning [36, 79].

In [16], the TT model is compared against TR for multi-dimensional data comple-

tion, showing that for the same intermediate rank, TR can be far more expressive

than TT, motivating the generalization. We investigate TR for deep neural network

compression.

4.3 Tensor Ring Nets

X ∈ RI1×···×Id dis a d mode tensor with i=1 Ii degrees of freedom. A tensor ring

decomposition factors such an X into d independent 3-mode tensors, U(1), . . . ,U(d)

such that each entry inside the tensor X is represented as

(1) (2) (d)
= U U · · ·U , (4.1)Xi1,··· ,id rd,i1,r1 r1,i2,r2 rd−1,id,rd

r1,··· ,rd

∈ RR×Ii×R U(i)where U(i) , and R is the tensor ring rank. More generally, ∈

R
Ri×Ii×Ri+1 and each Ri may not be the same. For simplicity, we assume R1 =

· · · = Rd = R. Under this low-rank factorization, the number of free parameters is

reduced to R2 d
i=1 Ii in the tensor ring factor form, which is significantly less than

d
i=1 Ii in X .

For notational ease, let U = {U(1), · · · ,U(d)}, and define decomp(X; R, d) as the

operation to obtain d factors U(i) with tensor ring rank R from X, and construct(U)

as the operation to obtain X from U.

�

�

�

66

Additionally, for 1 ≤ k < j ≤ d, define the merge operation as M = merge(U, k, j)

such that Uk,Uk+1, · · · ,Uj are merged into one single tensor M of dimension R×Ik ×

Ik+1 × · · · × Ij ×R, and each entry in M is

Mrk−1,ik,ik+1,··· ,ij ,rj =

(k) (k+1) (j) (4.2)
U U rk,ik+1,rk+1

· · ·U . rk−1,ik,rk rj−1,ij ,rj

rk ,··· ,rj−1

Note that construct operator is the merge operation merge(U, 1, d), which results in

a tensor of shape R× I1 × I2 × · · · × Id ×R, followed by summing along mode 1 and

mode d+ 2, resulting in a tensor of shape I1 × I2 × · · · × Id; e.g.

R

construct(U) = merge(U, 1, d)r,:,r.
r=1

Merge ordering The computation complexity is measured in flops (counting ad-

ditions and multiplications). The number of flops for a construct depends on the

sequence of merging U(i), i = 1, · · · , d. (See figure 4.1). A detailed analysis of the two

schemes is given in appendix C, resulting in the following conclusions.

Theorem 4.3.1 Suppose I1 = · · · = Id ≥ 2 and I = d
i=1 Ii. Then

1. any merge order costs between 2R3I and 4R3I flops,

2. any merge order costs requires storing between R2I and 2R2I floats, and

3. if d is a power of 2, then a hierarchical merge order achieves the minimum flop

count.

Proof See appendix C.

Several interpretations can be made from these observations. First, though dif-

ferent merge orderings give different flop counts, the worst choice is at most 2x more

expensive than the best choice. However, since we have to make some kind of choice,

we note that since every merge order is a combination of hierarchical and sequential

67

�� � ��

� �
� ��

�� ��

�� � �� � �� �� � ��� �
� �
�� � �� ��� �

�� �� �	���� �� � ��

� �
� �� ����

���

Fig. 4.1.: Merge ordering. A 4th order tensor is merged from its factored form,

either hierarchically via (a)→(b)→(d), or sequentially via (a)→(c)→(d). Note that

the computational complexity of forming (b) is r3(I1I2 + I3I4) and for (c) is r3(I1I2 +

I1I2I4), and (c) is generally more expensive (if I1 ≈ I2 ≈ I3 ≈ I4). This is discussed

in detail in Appendix C.

�

� �

68

merges, striving toward a hierarchical merging is a good heuristic to minimize flop

count. Thus, in our paper, we always use this strategy.

A Tensor Ring Network (TRN) is a tensor factorization of either fully connected

layers (FCL) or convolutional layers (ConvL), trained via back propagation. If a

pre-trained model is given, a good initialization can be obtained from the tensor ring

decomposition of the layers in the pre-trained model.

4.3.1 Fully Connected Layer Compression

In feed-forward neural networks, an input feature vector x ∈ RI is mapped to an

output feature vector y = Ax ∈ RO via a fully connected layer A ∈ RI×O . Without

loss of generality, x, A, and y can be reshaped into higher order tensors X, A, and Y

with

Yo1,...,o ̂ = Ai1,...,id,o1,...,o ̂ Xi1,...,id (4.3)
d d

i1,...,id

where d and d̂ are the modes of X and Y respectively, and ik’s ad ok’s span from 1 to

Ik and 1 to Ok respectively, and

ˆd d

Ii = I, Oi = O.
i=1 i=1

To compress a feed-forward network, we decompose as U = {U (1), . . . ,U (d+d̂)} =

decomp(A; R, d + d̂) and replace A with its decomposed version in (4.3). A tensor

diagram for this operation is given in Figure 4.2, which shows how each multiplication

is applied and the resulting dimensions.

Computational cost The computational cost again depends on the order of merg-

ing X and U. Note that there is no need to fully construct the tensor A, and a tensor

representation of A is sufficient to obtain Y from X. To reduce the computational

69

� � �

�

�

��

�

�
� � ��

�� �� ��

�� �� ��

��

�

�

�

�

�

�
�

�� �� �� ��

�� �	 �
 ��

�����

�
�

�����
� ���� �����

	
�
�

Fig. 4.2.: Fully connected layer. Tensor diagram of a fully connected TRN, divided

into input and weights. The composite tensor is the input into the next layer.

�
�

�� � �

70

cost, a layer separation approach is proposed by first using hierarchical merging to

obtain

F(1) = merge(U, 1, d) ∈ R
R×I1×···×Id×R

(4.4)
F(2) d) ∈ R

R×O1×···×Od̂×R = merge(U, d + 1, d + ˆ ,

which is upper bounded by 4R3(I + O) flops. By replacing A in (4.3) with F(1) and

F(2) and switching the order of summation, we obtain

(1)
Zrd,rd+ˆ = F

d,i1,··· ,id,rd
Xi1,...,id , (4.5)

d rd+ˆ

i1,...,id

F(2)Yo1,...,o ̂ = Zrd,rd+ˆ . (4.6)rd,o1,··· ,od̂,rd+ˆd d d
rd+d̂,rd

The summation (4.5) is equivalent to a feed-forward layer of shape (I1 · · · Id) × R2 ,

which takes 2R2I flops. Additionally, the summation over r and rd is equivalent d+d̂

to another feed-forward layer of shape R2 ×(O1 · · ·Od̂), which takes 2R2O flops. Such

analysis demonstrates that the layer separation approach to a FCL in a tensor ring

net is equivalent to a low-rank matrix factorization to a fully-connected layer, thus

reducing the computational complexity when R is relatively smaller than I and O.

Define PFC and CFC as the complexity saving in parameters and computation,

respectively, for the tensor net decomposition over the typical fully connected layer

(4R3 + 2BR2)(I + O)

forward propagation. Thus we have

IO
PFC =

R2 d
i Ii + d̂

j Oj

. (4.7)

and
2BIO

CFC ≥ , (4.8)

where B is the batch size of testing samples. Here, we see the compression benefit

in computation; when B is very large, (4.8) converges to IO/(R2(I + O)), which for

large I, O and small R is significant. Additionally, though the expensive reshaping

step grows cubically with R (as before), it does not grow with batch size; conversely,

the multiplication itself (which grows linearly with batch size) is only quadratic in R.

In the paper, the parameter is selected by picking small R and large d to achieve the

optimal C since R needs to be small enough for computation saving.

� �
� �

�

�

�

�

71

4.3.2 Convolutional Layer Compression

In convolutional neural networks (CNNs), an input tensor X ∈ R
H×W ×I is con-

voluted with a 4th order kernel tensor K ∈ R
D×D×I×O and mapped to a 3rd order

tensor Y ∈ R
H×W ×O , as follows

D I

Yh,w,o = Xh ,w ,iKd1,d2,i,o,
d1,d2=1 i=1

(4.9)
h = (h− 1)s+ d1 − p,

w = (w − 1)s+ d2 − p,

where s is stride size, p is zero-padding size. Computed as in (4.9), the flop cost is

D2 · IO ·HW . 1

In TRN, tensor ring decomposition is applied onto the kernel tensor K and fac-

torizes the 4th order tensor into four 3rd tensors. With the purpose to maintain the

spatial information in the kernel tensor, we do not factorize the spatial dimension of

K via merging the spatial dimension into one 4th order tensor V(1)
, thus we R1,D1,D2,R2

have

R

ˆKd1,d2,i,o = Vr1,d1,d2,r2 Ur2,i,r3 Ur3,o,r1 . (4.10)
r1,r2,r3=1

In the scenario when I and O are large, the tensors U and Û are further decomposed

into U(1), . . . ,U(d) and U(d+1), . . . ,U(d+d̂) respectively. (See also Figure 4.3.)

1For small filter sizes D log(HW), as is often the case in deep neural networks for image process-
ing, often direct multiplication to compute convolution is more efficient than using an FFT, which for
this problem has order IO(HW (log(HW))) flops. Therefore we only consider direct multiplication
as a baseline.

� �
�

� �

� �
� �

�

� �

72

The kernel tensor factorization in (4.10) combined with the convolution operation

in (4.9) can be equivalently solved in three steps:

I

Ph ,w ,r2,r3 = (2)
Xh ,w ,iUr2,i,r3

(4.11)
i=1

D R

Qh,w,r3,r1 = (1)
Ph ,w ,r2,r3 Ur1,d1,d2,r2

(4.12)
d1,d2=1 r2

Zh,w,o = U(3)Qh,w,r3,r1 .r3,o,r1
(4.13)

r1,r3

where (4.11) is a tensor multiplication along one slice, with flop count HWR2I, (4.12)

is a 2-D convolution with flop count HWR3D2 , and (4.13) is a tensor multiplication

along 3 slices with flop count HWR2O. This is also equivalent to a three-layer convo-

lutional networks without non-linear transformations, where (4.11) is a convolutional

layer from I feature maps to R2 feature maps with a 1 × 1 patch, (4.12) contains R

convolutional layers from R feature maps to R feature maps with a D× D patch, and

(4.13) is a convolutional layer from R2 feature maps to O feature maps with with a

1 × 1 patch. This is a common sub-architecture choice in other deep CNNs, like the

inception module in GoogleNets [80], but without nonlinearities between 1 × 1 and

D × D convolution layers.

Complexity: We employ the ratio between complexity in CNN layer and the

complexity in tensor ring layer to quantify the capability of TRN in reducing compu-

tation (Cconv) and parameter (Pconv) costs,

D2IO
Pconv = ,

D2R2 + IR2 + OR2
(4.14)

IO · D2

Cconv = .
R2I + R3D2 + R2O

If, additionally, the tensors U(1) and U(2) are further decomposed to d and d̂ tensors,

respectively, then

D2IO
Pconv =

ˆ ,
D2R2 + R2(d Ii + d Oj)i j (4.15)

BIO · D2

Cconv = .
4R3(I + O) + BR2(I + O) + BR3D2

73

 �

�
���

�
�

� � �
��

� � �

�

 � �
���������

� �����	�

���
�

�
�

�� �� ��

Fig. 4.3.: Tensor ring compressed convolutional layer.

74

�
�

Fig. 4.4.: Decision boundary for the mixture of two gaussian distribution in 2D. From left

to right are standard fully connected layer, tensor ring nets with rank 3, tensor ring nets

with rank 2, and tensor ring nets with rank 1.

Note that in the second scenario, we have a further compression in storage require-

ments, but lose gain in computational complexity, which is a design tradeoff. In our

experiments, we further factorize U(1) and U(3) in to higher order tensors in order to

achieve our gain in model compression.

Initialization In general nonconvex optimization (especially for deep learning), the

choice of initial variables can dramatically effect the quality of the model training. In

particular, we have found that initializing each parameter randomly from a Gaussian

distribution is effective, with a carefully chosen variance. If we initialize all tensor

factors as drawn i.i.d. from N (0, σ2), then after merging d factors the merged ten-

sor elements will have mean 0 and variance Rdσ2d (See appendix D). By picking

σ =
N
2
�1/d 1

R
, where N is the amount of parameters in the uncompressed layer,

the merged tensor will have mean 0, variance 2/N , and in the limit will also be

Gaussian. Since this latter distribution works well in training the uncompressed mod-

els, choosing this value of σ for initialization is well-motivated, and observed to be

necessary for faster convergence.

4.4 Results

To evaluate the performance of TRN, we first evaluate the decision boundary of

TRN on the synthetic data, including 2D Gaussian Mixture data where the data

75

are generated from two random Gaussian distribution with mean μ1 = [0, 1] and ⎡ ⎤ ⎡ ⎤
1 0 1 0 ⎣ ⎦ ⎣ ⎦μ2 = [0, −1], and standard deviation Σ1 = and Σ2 = . 150 samples
0 1 0 1

drawn randomly from each class are used as the training data. The classifier is a

two layer neural networks that takes relu as activation function. Without loss of

generality, the hidden layer has a dimensionality 256, which is reshaped into [16, 16]

in the tensor ring nets. As shown in Fig 4.4, in the given set-up, the general fully

connected layer is able to cut the space into two separate domain, where the decision

boundary is smooth and flexible in its geometry. In contrast, tensor ring nets try to

separate the two class with sharping lines rather than smooth curves. As the tensor

ring rank decreases, the counter of the decision boundary becomes less free in shape.

When the tensor ring rank becomes 1, the tensor ring factorized layer is equivalent

to a rank-1 CP factorized layer, and the decision boundary becomes linear. In other

words, low-rank tensor ring nets seek a sharper decision boundary with less freedom

in the high dimensional space.

We now evaluate the effectiveness of TRN-based compression on several well-

studied deep neural networks and datasets: LeNet-300-100 and LeNet-5 on MNIST,

and ResNet and WideResNet on Cifar10 and Cifar100. These networks are trained

using Tensorflow [102]. All the experiments on LeNet are implemented on Nvidia

GTX 1070 GPUs, and all the experiments for ResNet and WideResNet are imple-

mented on Nvidia GTX Titan X GPUs. In all cases, the same tensor ring rank r is

used in the networks, and all the networks are trained from randomly initialization

using the the proposed initialization method. Overall, we show that this compres-

sion scheme can give significant compression gains for small accuracy loss, and even

negligible compression gains for no accuracy loss.

4.4.1 Fully connected layer compression

The goal of compressing the LeNet-300-100 network is to assess the effectiveness

of compressing fully connected layers using TRNs; as the name suggests, LeNet-300-

76

Table 4.1.: Fully connected compression. Dimensions of the three-fully-connected

layers in the uncompressed (left) and TRN-compressed (right) models. The compu-

tational complexity includes tensor product merging (O(r3)) and feed-froward multi-

plication (O(r2)).

Uncompressed dims. TRN dimensions

layer shape # params flops shape of composite tensor # params flops

fc1

fc2

fc3

784 × 300

300 × 100

100 × 10

235K

30K

1K

470K

60K

2K

(4 × 7 × 4 × 7) × (3 × 4 × 5 × 5)

(3 × 4 × 5 × 5) × (4 × 5 × 5)

(4 × 5 × 5) × (2 × 5)

239r

231r

221r

21177r3 + 1084r

2457r3 + 400r

2127r3 + 107r

Total - 266K 532K - 291r 21761r3 + 1591r

100 contains two hidden fully connected layers with output dimension 300 and 100,

and an output layer with dimension 10 (= # classes). Table 4.1 gives the parameter

settings for LeNet-300-100, both in its original form (uncompressed) and in its tensor

factored form. A compression rate greater than 1 is achieved for all r ≤ 54, and a

reduction in computational complexity for all r ≤ 6; both are typical choices.

Table 4.2 shows the performance results on MNIST classification for the original

model (as reported in their paper), and compressed models using both matrix fac-

torization and TRNs. For a 0.14% accuracy loss, TRN can compress up to 13×, and

for no accuracy loss, can compress 1.2×. Note also that matrix factorization, at 16×

compression, performs worse than TRN at 117× compression, suggesting that the

high order structure is helpful. Note also that low rank Tucker approximation in [84]

is equivalent to low rank matrix approximation when compressing fully connected

layer.

4.4.2 Convolutional layer compression

We now investigate compression of convolutional layers in a small network. LeNet-

5 is a (relatively small) convolutional neural networks with 2 convolution layers, fol-

77

Table 4.2.: Fully connected results. LeNet-300-100 on MNIST datase, trained

to 40 epochs, using a minibatch size 50. Trained from random weight initialization.

ADAM [103] is used for optimization. Testing time is per 10000 samples. CR =

Compression ratio. LR = Learning rate.

Method Params CR Err % Test (s) Train (s/epoch) LR

LeNet-300-100 [42] 266K 1× 2.50 0.011 ± 0.002 3.5 ± 1.0 −42e

M-FC [84, 90](r = 10)

M-FC (r = 20)

M-FC (r = 50)

16.4K

31.2K

75.7K

16.3×

5.3×

3.5×

3.91

3.0

2.62

0.016 ± 0.010

0.014 ± 0.010

0.021 ± 0.012

6.4 ± 1.2

5.2 ± 1.2

8.1 ± 1.2

−41e

−41e

−41e

TRN (r = 3) 0.8K 325.5× 8.53 0.015 ± 0.007 7.9 ± 1.4 −31e

TRN (r = 5) 2.3K 117.2× 3.75 0.015 ± 0.007 7.8 ± 1.4 −32e

TRN (r = 15) 20.5K 13.0× 2.64 0.015 ± 0.007 8.1 ± 1.4 −45e

TRN (r = 50) 227.5K 1.2× 2.31 0.022 ± 0.008 11.1 ± 1.4 −55e

lowed by 2 fully connected layers, which achieves 0.79% error rate on MNIST. The

dimensions before and after compression are given in Table 4.3. In this wider net-

work we see a much greater potential for compression, with positive compression rate

whenever r ≤ 57. However, the reduction in complexity is more limited, and only

occurs when r ≤ 4.

However, the performance on this experiment is still positive. By setting r = 20,

we compress LeNet-5 by 11× and a lower error rate than the original model as well

as the Tucker factorization approach. If we also require a reduction in flop count, we

incur an error of 2.24%, which is still quite reasonable in many real applications.

4.4.3 ResNet and Wide ResNet Compression

Finally, we evaluate the performance of tensor ring nets (TRN) on the Cifar10

and Cifar100 image classification tasks [104]. Here, the input images are colored, of

78

Table 4.3.: Small convolution compression. Dimensions of LeNet-5 layers in

its original form (left) and TRN-compressed (right). The computational complexity

includes tensor product merging and convolution operation in (4.12) of O(r3), and

convolution in (4.11) (4.13) of O(r2).

Uncompressed dims. TRN dimensions

layer shape # params flops shape # params flops

conv1

conv2

fc1

fc2

5 × 5 × 1 × 20

5 × 5 × 20 × 50

1250 × 320

320 × 10

0.5K

25K

400K

3K

784K

5000K

800K

6K

5 × 5 × 1 × (4 × 5)

5 × 5 × (4 × 5) × (5 × 10)

(5 × 5 × 5 × 10) × (5 × 8 × 8)

(5 × 8 × 8) × 10

219r

234r

246r

231r

333408r2 + 39245r

317840r2 + 5095r

31570r2 + 1685r

3330r2 + 360r

Total - 429K 6590K - 2130r 353148r2 + 46385r

Table 4.4.: Small convolution results. LeNet-5 on MNIST dataset, trained to 20

epochs, using a minibatch size 128. ADAM [103] is used for optimization. Testing

time is per 10000 samples. CR = Compression ratio. LR = Learning rate.

Method Params CR Err % Test (s) Train (s/epoch) LR

LeNet-5 [42] 429K 1× 0.79 0.038 ± 0.027 1.6 ± 1.9 −45e

Tucker [84] 189K 2× 0.85 0.066 ± 0.025 7.7 ± 3 −45e

TRN (r = 3) 1.5K 286× 2.24 0.058 ± 0.026 8.3 ± 4.5 −45e

TRN (r = 5) 3.6K 120× 1.64 0.072 ± 0.039 10.6 ± 7.1 −45e

TRN (r = 10) 11.0K 39× 1.39 0.080 ± 0.025 15.6 ± 4.6 −42e

TRN (r = 15) 23.4K 18× 0.81 0.039 ± 0.019 20.1 ± 16.0 −42e

TRN (r = 20) 40.7K 11× 0.69 0.052 ± 0.028 27.8 ± 7.4 −51e

size 32 × 32 × 3, belonging to 10 and 100 object classes respectively. Overall there

are 50000 images for training and 10000 images for testing.

Table 4.5 gives the dimensions of ResNet before and after compression. A similar

reshaping scheme is used for WideResNet. Note that for ResNet, we have compression

79

A
cc

ur
ac

y

1

0.8

0.6

0.4
r = 10 (train) r = 2 (train)

r = 10 (test) r = 2 (test)
0.2

r = 6 (train) Tucker (train)

r = 6 (test) Tucker (test)

0
0 2 4 6 8

Iteration ×104

Fig. 4.5.: Evolution. Evolution of training compressed 32 layer ResNet on Cifar100,

using TRNs with different values of r and the Tucker factorization method.

gain for any r ≤ 22; for WideResNet this bound is closer to r ≤ 150, suggesting high

compression potential.

The results are given in Table 4.6 demonstrates that TRNs are able to significantly

compress both ResNet and WideResNet for both tasks. Picking r = 10 for TRN on

ResNet gives the same compression ratio as the Tucker compression method [84],

but with almost 3% performance lift on Cifar10 and almost 10% lift on Cifar 100.

Compared to the uncompressed model, we see only a 2% performance degradation

on both datasets.

The compression of WideResNet is even more successful, suggesting that TRNs

are well-suited for these extremely overparametrized models. At a 243× compression

TRNs give a better performance on Cifar10 than uncompressed ResNet (but with

fewer parameters) and only a 2% decay from the uncompressed WideResNet. For

80

Table 4.5.: Large convolution compression. Dimensions of 32 layer ResNes on

Cifar10 dataset. Each ResBlock(p,I,O) includes a sequence: input → Batch Normal-

ization → ReLU → p × p × I × O convolution layer → Batch Normalization → ReLU

→ p × p × O × O convolution layer. The input of length I is inserted once at the

beginning and again at the end of each unit. See [8] for more details.

Uncompressed dims. TRN dimensions

layer shape # params shape of composite tensor # params

conv1

unit1

unit2

unit3

fc1

3 × 3 × 3 × 16

ResBlock(3, 16, 16)

ResBlock(3, 16, 16) × 4

ResBlock(3, 16, 32)

ResBlock(3, 32, 32) × 4

ResBlock(3, 32, 64)

ResBlock(3, 64, 64) × 4

64 × 10

432

4608

18432

13824

73728

55296

294912

650

9 × 3 × (4 × 2 × 2)

9 × (4 × 2 × 2) × (4 × 2 × 2)

9 × (4 × 2 × 2) × (4 × 2 × 2)

9 × (4 × 2 × 2) × (4 × 4 × 2)

9 × (4 × 4 × 2) × (4 × 4 × 2)

9 × (4 × 4 × 2) × (4 × 4 × 4)

9 × (4 × 4 × 4) × (4 × 4 × 4)

(4 × 4 × 4) × 10

220r

250r

2200r

256r

2232r

264r

2264r

222r

Total - 0.46M - 2908r

Cifar100, this decay increases to 8%, but again TRN of WideResNet achieves lower

error than uncompressed ResNet, with overall fewer parameters. Compared against

the Tucker compression method [84], at 5× compression rate TRNs incur only 2-3%

performance degradation on both datasets, while Tucker incurs 5% and 11% perfor-

mance degradation. The compressibility is even more significant for WideResNet,

where to achieve the same performance as Tucker [84] at 5× compression, TRNs can

compress up to 243× on Cifar10 and 286× on Cifar100. The tradeoff is runtime;

we observe the Tucker model trains at about 2 or 3 times faster than TRNs for the

WideResNet compression. However, for memory-constrained devices, this tradeoff

may still be desirable.

81

Table 4.6.: Large convolution results. 32-layer ResNet (first 5 rows) and 28-

layer Wide-ResNet (last 4 rows) on Cifar10 dataset and Cifar100 dataset, trained to

200 epochs, using a minibatch size of 128. The model is trained using SGD with

momentum 0.9 and a decaying learning rate. CR = Compression ratio.

Cifar10 Cifar100

Method Params CR Err % Params CR Err %

ResNet(RN)-32L 0.46M 1× 7.50 [105] 0.47M 1× 31.9 [105]

Tucker-RN [84] 0.09M 5× 12.3 0.094M 5× 42.2

TT-RN(r = 13) [36, 106] 0.096M 4.8× 11.7 0.102M 4.6× 37.1

TRN-RN (r = 2) 0.004M 115× 22.2 0.012M 39× 51.3

TRN-RN (r = 6) 0.03M 15× 19.2 0.041M 12× 36.6

TRN-RN (r = 10) 0.09M 5× 9.4 0.097M 5× 33.3

WideResNet(WRL)-28L 36.2M 1× 5.0 [105] 36.3M 1× 21.7 [105]

Tucker-WRN [84] 6.7M 5× 7.8 6.7M 5× 30.8

TT-RN(r = 13) [36, 106] 0.18M 201× 8.4 0.235M 154× 31.9

TRN-WRN (r = 2) 0.03M 1217× 16.3 0.087M 417× 43.9

TRN-WRN (r = 6) 0.07M 521× 9.7 0.126M 286× 30.3

TRN-WRN (r = 10) 0.15M 243× 7.3 0.21M 173× 28.3

TRN-WRN(r=15) 0.30M 122× 7.0 0.36M 100× 25.6

Evolution Figure 4.5 shows the train and test errors during training of compressed

ResNet on the Cifar100 classification task, for various choices of r and also compared

against Tucker tensor factorization. In particular, we note that the generalization gap

(between train and test error) is particularly high for the Tucker tensor factorization

method, while for TRNs (especially for smaller values of r) it is much smaller. For

r = 10, both the generalization error and final train and test errors improve upon the

Tucker method, suggesting that TRNs are easier to train.

82

4.5 Conclusion

We have introduced a tensor ring factorization approach to compress deep neural

networks for resource-limited devices. This is inspired by previous work that has

shown tensor rings to have high representative power in image completion tasks. Our

results show significant compressibility using this technique, with little or no hit in

performance on benchmark image classification tasks.

One area for future work is the reduction of computational complexity. Because

of the repeated reshaping needs in both fully connected and convolutional layers,

there is computational overhead, especially when r is moderately large. This tradeoff

is reasonable, considering our considerable compressibility gains, and is appropriate

in memory-limited applications, especially if training is offloaded to the cloud. Ad-

ditionally, we believe that the actual wall-clock-time will decrease as tensor-specific

hardware and low-level routines continue to develop–we observe, for example, that

numpy’s dot function is considerably more optimized than Tensorflow’s tensordot.

Overall, we believe this is a promising compression scheme and can open doors to

using deep learning in a much more ubiquitous computing environment.

83

5. SUMMARY

Multi-dimensional data brings the challenges to the popular machine learning and

deep learning algorithm from the perspective of computational complexity and storage

complexity, while developing efficient tensor algorithm is able to alleviate the multi-

dimensional data problem and achieves a better trade-off among computation, storage

and performance. In this thesis, we demonstrate the proposed tensor train subspace

enables efficient discriminative features extraction and enabled better dimensionality

reduction via either TTPCA and TTNPE. As an extension of popular known tensor

train representation, tensor ring representation provides improved capability in data

compression and exhibits superior performance in missing data completion. The

novel tensor ring representation is also investigated for its application in deep neural

networks compression, which again demonstrates the state-of-the-arts capability in

model compression.

REFERENCES

84

REFERENCES

[1] G. Adomavicius and A. Tuzhilin, “Context-aware recommender systems,” in
Recommender systems handbook. Springer, 2015, pp. 191–226.

[2] E. Frolov and I. Oseledets, “Tensor methods and recommender systems,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 7, no. 3,
2017.

[3] F. Cong, Q.-H. Lin, L.-D. Kuang, X.-F. Gong, P. Astikainen, and T. Ristaniemi,
“Tensor decomposition of eeg signals: a brief review,” Journal of neuroscience
methods, vol. 248, pp. 59–69, 2015.

[4] X. Song, L. Meng, Q. Shi, and H. Lu, “Learning tensor-based features for
whole-brain fmri classification,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, 2015, pp. 613–620.

[5] “Giving cars the power to see, think, and learn,” https://www.nvidia.com/en-
us/self-driving-cars/.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[9] R. Girshick, “Fast r-cnn,” arXiv preprint arXiv:1504.08083, 2015.

[10] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” in Advances in neural information
processing systems, 2015, pp. 91–99.

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 779–788.

[12] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[13] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative
model for raw audio,” CoRR abs/1609.03499, 2016.

https://www.nvidia.com/en

�

�

85

[14] W. Wang, V. Aggarwal, and S. Aeron, “Principal component analysis with
tensor train subspace,” arXiv preprint arXiv:1803.05026, 2018.

[15] ——, “Tensor train neighborhood preserving embedding,” IEEE Transactions
on Signal Processing, vol. 66, no. 10, pp. 2724–2732, May 2018.

[16] ——, “Efficient low rank tensor ring completion,” in 2017 IEEE International
Conference on Computer Vision (ICCV), Oct 2017, pp. 5698–5706.

[17] W. Wang, Y. Sun, B. Eriksson, W. Wang, and V. Aggarwal, “Wide compression:
Tensor ring nets,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

[18] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM
review, vol. 51, no. 3, pp. 455–500, 2009.

[19] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of products,”
Studies in Applied Mathematics, vol. 6, no. 1-4, pp. 164–189, 1927.

[20] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,” Psy-
chometrika, vol. 31, no. 3, pp. 279–311, 1966.

[21] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific
Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[22] S. Holtz, T. Rohwedder, and R. Schneider, “On manifolds of tensors of fixed
tt-rank,” Numerische Mathematik, vol. 120, no. 4, pp. 701–731, 2012.

[23] Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki, “Tensor ring decomposi-
tion,” arXiv preprint arXiv:1606.05535, 2016.

[24] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, D. P. Mandic et al.,
“Tensor networks for dimensionality reduction and large-scale optimization:
Part 1 low-rank tensor decompositions,” Foundations and Trends R in Machine
Learning, vol. 9, no. 4-5, pp. 249–429, 2016.

[25] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. Oseledets, M. Sugiyama, D. P.
Mandic et al., “Tensor networks for dimensionality reduction and large-scale
optimization: Part 2 applications and future perspectives,” Foundations and
Trends R in Machine Learning, vol. 9, no. 6, pp. 431–673, 2017.

[26] I. Jolliffe, Principal component analysis. Wiley Online Library, 2002.

[27] C. M. Bishop, “Pattern recognition,” Machine Learning, vol. 128, 2006.

[28] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction
and data representation,” Neural computation, vol. 15, no. 6, pp. 1373–1396,
2003.

[29] H. N. Phien, H. D. Tuan, J. A. Bengua, and M. N. Do, “Efficient tensor com-
pletion: Low-rank tensor train,” arXiv preprint arXiv:1601.01083, 2016.

[30] W. Wang, V. Aggarwal, and S. Aeron, “Tensor completion by alternating mini-
mization under the tensor train (TT) model,” arXiv preprint arXiv:1609.05587,
2016.

86

[31] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular value
decomposition,” SIAM journal on Matrix Analysis and Applications, vol. 21,
no. 4, pp. 1253–1278, 2000.

[32] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Multilinear principal
component analysis of tensor objects for recognition,” in 18th International
Conference on Pattern Recognition (ICPR’06), vol. 2. IEEE, 2006, pp. 776–
779.

[33] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear subspace analysis of image
ensembles,” in Computer Vision and Pattern Recognition, 2003. Proceedings.
2003 IEEE Computer Society Conference on, vol. 2. IEEE, 2003, pp. II–93.

[34] J. Wu, S. Qiu, R. Zeng, Y. Kong, L. Senhadji, and H. Shu, “Multilinear princi-
pal component analysis network for tensor object classification,” IEEE Access,
vol. 5, pp. 3322–3331, 2017.

[35] M. Ashraphijuo, V. Aggarwal, and X. Wang, “Deterministic and probabilis-
tic conditions for finite completability of low rank tensor,” arXiv preprint
arXiv:1612.01597, 2016.

[36] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensorizing neural
networks,” in Advances in Neural Information Processing Systems, 2015, pp.
442–450.

[37] A. Tjandra, S. Sakti, and S. Nakamura, “Compressing recurrent neural network
with tensor train,” in Neural Networks (IJCNN), 2017 International Joint Con-
ference on. IEEE, 2017, pp. 4451–4458.

[38] W. Hackbusch, Tensor spaces and numerical tensor calculus. Springer Science
& Business Media, 2012, vol. 42.

[39] X. He, D. Cai, S. Yan, and H.-J. Zhang, “Neighborhood preserving embedding,”
in Tenth IEEE International Conference on Computer Vision (ICCV’05) Vol-
ume 1, vol. 2. IEEE, 2005, pp. 1208–1213.

[40] X. He, D. Cai, and P. Niyogi, “Tensor subspace analysis,” in Advances in neural
information processing systems, 2005, pp. 499–506.

[41] G. Dai and D.-Y. Yeung, “Tensor embedding methods,” in AAAI, vol. 6, 2006,
pp. 330–335.

[42] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[43] “Weizmann facebase,” ftp://ftp.idc.ac.il/pub/users/cs/yael/Facebase/.

[44] R. Vidal, Y. Ma, and S. Sastry, “Generalized principal component analysis
(gpca),” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 27, no. 12, pp. 1945–1959, 2005.

[45] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding algorithm
for matrix completion,” SIAM Journal on Optimization, vol. 20, no. 4, pp.
1956–1982, 2010.

ftp://ftp.idc.ac.il/pub/users/cs/yael/Facebase

87

[46] D. L. Donoho, “De-noising by soft-thresholding,” IEEE transactions on infor-
mation theory, vol. 41, no. 3, pp. 613–627, 1995.

[47] B. Jiang, S. Ma, and S. Zhang, “Tensor principal component analysis via convex
optimization,” Mathematical Programming, vol. 150, no. 2, pp. 423–457, 2015.

[48] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “A survey of multilinear
subspace learning for tensor data,” Pattern Recognition, vol. 44, no. 7, pp.
1540–1551, 2011.

[49] S. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, and H.-J. Zhang, “Multilinear
discriminant analysis for face recognition,” IEEE Transactions on Image Pro-
cessing, vol. 16, no. 1, pp. 212–220, 2007.

[50] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Uncorrelated multilinear
principal component analysis for unsupervised multilinear subspace learning,”
IEEE Transactions on Neural Networks, vol. 20, no. 11, pp. 1820–1836, 2009.

[51] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few to many:
Illumination cone models for face recognition under variable lighting and pose,”
IEEE transactions on pattern analysis and machine intelligence, vol. 23, no. 6,
pp. 643–660, 2001.

[52] K.-C. Lee, J. Ho, and D. J. Kriegman, “Acquiring linear subspaces for face
recognition under variable lighting,” IEEE Transactions on pattern analysis
and machine intelligence, vol. 27, no. 5, pp. 684–698, 2005.

[53] R. Basri and D. W. Jacobs, “Lambertian reflectance and linear subspaces,”
IEEE transactions on pattern analysis and machine intelligence, vol. 25, no. 2,
pp. 218–233, 2003.

[54] A. Beck, “On the convergence of alternating minimization for convex program-
ming with applications to iteratively reweighted least squares and decompo-
sition schemes,” SIAM Journal on Optimization, vol. 25, no. 1, pp. 185–209,
2015.

[55] Z. Wen and W. Yin, “A feasible method for optimization with orthogonality
constraints,” Mathematical Programming, vol. 142, no. 1-2, pp. 397–434, 2013.

[56] M. S. Moslehian, “Ky fan inequalities,” Linear and Multilinear Algebra, vol. 60,
no. 11-12, pp. 1313–1325, 2012.

[57] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric
regression,” The American Statistician, vol. 46, no. 3, pp. 175–185, 1992.

[58] Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki, “Tensor ring decomposi-
tion,” arXiv preprint arXiv:1606.05535, 2016.

[59] https://www.mathworks.com/matlabcentral/fileexchange/43627-download-
daily-data-from-google-and-yahoo--finance.

[60] S. Yadav, R. Sinha, and P. Bora, “An efficient svd shrinkage for rank estima-
tion,” IEEE Signal Processing Letters, vol. 22, no. 12, pp. 2406–2410, 2015.

https://www.mathworks.com/matlabcentral/fileexchange/43627-download

88

[61] S. Ubaru and Y. Saad, “Fast methods for estimating the numerical rank of
large matrices,” in International Conference on Machine Learning, 2016, pp.
468–477.

[62] T. Kolda and B. Bader, “Tensor decompositions and applications,” SIAM Re-
view, vol. 51, no. 3, pp. 455–500, 2009.

[63] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and
H. A. Phan, “Tensor decompositions for signal processing applications: From
two-way to multiway component analysis,” IEEE Signal Processing Magazine,
vol. 32, no. 2, pp. 145–163, 2015.

[64] M. Vasilescu and D. Terzopoulos, “Multilinear image analysis for face recogni-
tion,” Proceedings of the International Conference on Pattern Recognition ICPR
2002, vol. 2, pp. 511–514, 2002, quebec City, Canada.

[65] R. Orús, “A practical introduction to tensor networks: Matrix product states
and projected entangled pair states,” Annals of Physics, vol. 349, pp. 117–158,
2014.

[66] P. Jain, P. Netrapalli, and S. Sanghavi, “Low-rank matrix completion using
alternating minimization,” in Proceedings of the forty-fifth annual ACM sym-
posium on Theory of computing. ACM, 2013, pp. 665–674.

[67] M. Hardt, “On the provable convergence of alternating minimization for
matrix completion,” CoRR, vol. abs/1312.0925, 2013. [Online]. Available:
http://arxiv.org/abs/1312.0925

[68] L. Grasedyck, M. Kluge, and S. Kramer, “Variants of alternating least squares
tensor completion in the tensor train format,” SIAM Journal on Scientific Com-
puting, vol. 37, no. 5, pp. A2424–A2450, 2015.

[69] A. Cichocki, “Tensor networks for big data analytics and large-scale optimiza-
tion problems,” arXiv preprint arXiv:1407.3124, 2014.

[70] “Albert Einstein image,” http://orig03.deviantart.net/7d28/f/2012/361/1/6/
albert einstein by zuzahin-d5pcbug.jpg.

[71] A. S. Georghiades and P. N. Belhumeur, “Illumination cone models for faces
recognition under variable lighting,” in Proceedings of CVPR, 1998.

[72] “Pistol shot recorded at 73,000 frames per second,” https://youtu.be/
7y9apnbI6GA, published by Discovery on 2015-08-15.

[73] A. Van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based music
recommendation,” in Advances in neural information processing systems, 2013,
pp. 2643–2651.

[74] S. Zhang, L. Yao, and A. Sun, “Deep learning based recommender system: A
survey and new perspectives,” arXiv preprint arXiv:1707.07435, 2017.

[75] W. Wang, C. Chen, W. Wang, P. Rai, and L. Carin, “Earliness-aware deep
convolutional networks for early time series classification,” arXiv preprint
arXiv:1611.04578, 2016.

https://youtu.be
http://orig03.deviantart.net/7d28/f/2012/361/1/6
http://arxiv.org/abs/1312.0925

89

[76] R. Collobert and J. Weston, “A unified architecture for natural language pro-
cessing: Deep neural networks with multitask learning,” in Proceedings of the
25th International Conference on Machine Learning. ACM, 2008, pp. 160–167.

[77] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep re-
current neural networks,” in Acoustics, speech and signal processing (icassp),
2013 ieee international conference on. IEEE, 2013, pp. 6645–6649.

[78] W. Wang, Z. Gan, W. Wang, D. Shen, J. Huang, W. Ping, S. Satheesh,
and L. Carin, “Topic compositional neural language model,” arXiv preprint
arXiv:1712.09783, 2017.

[79] Y. Yang, D. Krompass, and V. Tresp, “Tensor-train recurrent neural networks
for video classification,” arXiv preprint arXiv:1707.01786, 2017.

[80] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1–9.

[81] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in European Conference on Computer Vision. Springer, 2016, pp.
630–645.

[82] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint
arXiv:1605.07146, 2016.

[83] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely con-
nected convolutional networks,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017.

[84] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression of
deep convolutional neural networks for fast and low power mobile applications,”
arXiv preprint arXiv:1511.06530, 2015.

[85] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, and F. Kawsar, “An
early resource characterization of deep learning on wearables, smartphones and
Internet-of-things devices,” in Proceedings of the 2015 International Workshop
on Internet of Things towards Applications. ACM, 2015, pp. 7–12.

[86] J. Ba and R. Caruana, “Do deep nets really need to be deep?” in Advances in
neural information processing systems, 2014, pp. 2654–2662.

[87] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compressing neu-
ral networks with the hashing trick,” in International Conference on Machine
Learning, 2015, pp. 2285–2294.

[88] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections
for efficient neural network,” in Advances in Neural Information Processing
Systems, 2015, pp. 1135–1143.

[89] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and huffman coding,” arXiv
preprint arXiv:1510.00149, 2015.

90

[90] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploit-
ing linear structure within convolutional networks for efficient evaluation,” in
Advances in Neural Information Processing Systems, 2014, pp. 1269–1277.

[91] M. Ashraphijuo, X. Wang, and V. Aggarwal, “An approximation of the cp-
rank of a partially sampled tensor,” in 55th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), 2017.

[92] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep convolutional
networks using vector quantization,” arXiv preprint arXiv:1412.6115, 2014.

[93] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, and S.-F. Chang,
“An exploration of parameter redundancy in deep networks with circulant pro-
jections,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 2857–2865.

[94] J. Sokolić, R. Giryes, G. Sapiro, and M. R. Rodrigues, “Generalization error
of deep neural networks: Role of classification margin and data structure,” in
Sampling Theory and Applications (SampTA), 2017 International Conference
on. IEEE, 2017, pp. 147–151.

[95] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky, “Speeding-
up convolutional neural networks using fine-tuned CP-decomposition,” in In-
ternational Conference on Learning Representations, 2015.

[96] N. Cohen, O. Sharir, and A. Shashua, “On the expressive power of deep learning:
A tensor analysis,” in Conference on Learning Theory, 2016, pp. 698–728.

[97] N. Cohen and A. Shashua, “Convolutional rectifier networks as generalized ten-
sor decompositions,” in International Conference on Machine Learning, 2016,
pp. 955–963.

[98] N. Cohen, O. Sharir, and A. Shashua, “Deep SimNets,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4782–
4791.

[99] J. Kossaifi, Z. C. Lipton, A. Khanna, T. Furlanello, and A. Anandkumar, “Ten-
sor regression networks,” arXiv preprint arXiv:1707.08308, 2017.

[100] M. Ashraphijuo, V. Aggarwal, and X. Wang, “A characterization of sampling
patterns for low-tucker-rank tensor completion problem,” in Information Theory
(ISIT), 2017 IEEE International Symposium on. IEEE, 2017, pp. 531–535.

[101] M. Ashraphijuo, X. Wang, and V. Aggarwal, “Rank determination for low-rank
data completion,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 3422–3450, 2017.

[102] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine
learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[103] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

91

[104] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny
images,” 2009.

[105] “Tensorflow Resnet,” https://github.com/tensorflow/models/tree/master/
research/resnet.

[106] T. Garipov, D. Podoprikhin, A. Novikov, and D. Vetrov, “Ultimate ten-
sorization: compressing convolutional and fc layers alike,” arXiv preprint
arXiv:1611.03214, 2016.

[107] https://socratic.org/questions/if-x-and-y-are-independent-random-variables-
what-is-var-xy.

https://socratic.org/questions/if-x-and-y-are-independent-random-variables
https://github.com/tensorflow/models/tree/master

APPENDICES

92

A. TENSOR NETWROK MERGING FOR COMPUTING A

�
�

��

�

����

�

���� ��
� �

� �
�� � �� �

�� �

�

�� �
�� � �� �

� �
� �

�� � � �
� � �� ��� ��� �

�� � �� �
��� ��

��� ���� ��
� � �� � �� � �� � �� � �� � �� � � �

��� ���� ���� ��
��� ���� ���� ��

� � � �

�

��

��

��

��

�� �

�� �

�� �

� �
� �� � � ���

�

��

� � � �

�

��

��

��

��

�� �

�� �

�� �

�� � � � � �

�

��

�

�

�

�

� ���

�

�

�

�

�

�

�

� ���

�

�

�

�

�

�

�

�

�

�

�

�

� �� � ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �� � ��

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �� � ��

� �

� � �

� � �

�� ����

� � �� � �� � �� � � �

� � � � � � � � � � � �

� �� � �� � � � �� � � � � � �� � � ��� �

� �� � � �� � � �� �

�� �

��

� � � � � � � � � �

� � � �

�� � �� � �� �

� � � � � �

� ��� � ��� �� ��

� � � ��� ��� ��

� �� � � �

Fig. A.1.: Tensor network merging operation to compute A. (a) Tensor Z (b) Tensor Ab

(c) Tensor Ac (d) Tensor Ad (e) Tensor Ae (f) Tensor A

Explanation of Tensor Network Merging Operation to compute A using

(2.22). Figure A.1 shows the steps to compute A. A tensor Z ∈ R
I1×···×In×I1×···×In

∈ R
Rk×Ik×···×In×Rnin Fig A.1 (a) merged with tensor Tn gives

2,··· ,n−k+1 = Ab ∈ R
I1×···×In×I1×···×Ik ×Rk×RnZ × Tn , (A.1)n+k+1,··· ,2n

as in Fig A.1 (b), where the merged dimensions Ik+1 × · · · × In are replaced by the

non-merged dimension Rk ×Rn. Following the same logic, we have

1,··· ,k−1 ∈ R
I1×···×In×Rk−1×Ik×Rk+1×Rn (A.2)Ab ×n+1,··· ,nk−1 T1 = Ac

93

as in Fig A.1 (c)), where the merged dimension I1 × · · · × Ik−1 are replaced by the

non-merged dimension Rk−1. We further give the results to obtain tensor Ad and

tensor Ae in Fig A.1 (d) and (e) as follows

2,··· ,n−k+1 = Ad ∈ R
I1×···×Ik×Rk×Rn×Rk−1×Ik×Rk+1×RnAc × Tn (A.3)

k+1×···×n

and

1×···×k−1 ∈ R
Rk−1×Ik×Rk+1×Rn×Rk−1×Ik ×Rk+1×RnAd × T1 = Ae (A.4)

1×···×k−1

The red marked trace operation in Fig. A.1(f) gets the trace along the 4th and 8th

mode of Ae, thus tensor A is obtained by A = tr84 (Ae) .

94

B. TENSOR NETWROK MERGING FOR COMPUTING B

Fig. B.1.: Tensor network merging operation to compute B. (a) Tensor Z (b) Tensor Bb

(c) Tensor B

Explanation of Computing B using (2.25). Figure B.1 shows the steps to

compute B. Computing B follows the same logic as computing A, and is simpler

since Tn does not involve in the computation. The step-by-step computation in Fig.

B.1 (b) and (c) are as follows

1,··· ,n−1 = Bb ∈ RI1×···×In×Rn−1×InZ × , (B.1)n+1,··· ,2n−1 T1

and
1,··· ,n−1 = B ∈ RRn−1×In×Rn−1×In . (B.2)Bb ×1,··· ,n−1 T1

95

C. TENSOR NETWORK MERGING ORDERING FOR

TENSOR RING NETS

U(1) × U(2) × U(3) × U(4)

Dim: R × I1 × I2 × I3 × I4 × R
Flops: 2I1I2I3I4R3

U(1) × U(2) × U(3)

U(4)
Dim: R × I1 × I2 × I3 × R

Dim: R × I4 × R
Flops: 2I1I2I3R3

U(1) × U(2)

U(3)
Dim: R × I1 × I2 × R

Dim: R × I3 × R
Flops: 2I1I2R3

U(1) U(2)

Dim: R × I1 × R Dim: R × I2 × R

(a) Sequential merging

(b) Hierarchical merging

Fig. C.1.: Merge ordering for a 4th order tensor ring segment of shape R × I1 × I2 ×

I4 × I4 × R, with tensor ring rank R. In each node from top to bottom are tensor

notation, tensor shape, and flops to obtain the tensor.

U(1) × U(2) × U(3) × U(4)

Dim: R × I1 × I2 × I3 × I4 × R
Flops: 2I1I2I3I4R3

U(1) × U(2)

Dim: R × I1 × I2 × R
Flops: 2I1I2R3

U(1)

Dim: R × I1 × R
U(2)

Dim: R × I2 × R

U(3) × U(4)

Dim: R × I3 × I4 × R
Flops: 2I3I4R3

U(3)

Dim: R × I3 × R
U(4)

Dim: R × I4 × R

96

For a merge operation, the order that each U(i) is merged determines the total flop

count and memory needs. When d is small, a sequential merging is commonly applied.

However, when d is large, we propose a hieratical merging approach instead. For

instance, Figures C.1a and C.1b show the two merge orderings when d = 4, arriving

at a total of 2I1I2R3 + 2I1I2I3R
3 + 2I1I2I3I4R

2 flops to construct U(1,2,3,4) using a

sequential ordering, and 2I1I2R3 + 2I3I4R
3 + 2I1I2I3I4R

2 flops using a hierarchical

ordering. To see how both methods scale with Ik and d, if and d = 2D , then a

sequential merging gives and Both quantities are upper bounded by 4R3Ĩd which is

a factor of 4R3 times the total degrees of freedom.

We can generalize this analysis by proving theorem 4.3.1.

Proof 1. Define Ĩ = I1 = · · · = Id. Any merging order can be represented by

a binary tree. Figures C.1a and C.1b show the binary trees for sequential and

hierarchical merging; note that they do not have to be balanced, but every non-

leaf node has exactly 2 children. Each U (i) corresponds to a leaf of the tree.

To keep the analysis consistent, we can say that the computational cost of every

leaf is 0 (since nothing is actually done unless tensors are merged).

At each parent node, we note that the computational cost of merging the two

child nodes is at least 2 × that required in the sum of both child nodes. This is

trivially true if both children of a node are leaf nodes. For all other cases, define

D the number of leaf node descendents of a parent node. Then the computational

cost at the parent is 2R3 · ĨD . If only one of the two child nodes is a leaf node,

then we have a recursion

2R3 · ĨD = 2R3Ĩ · ĨD−1 ≥ 4R3(ĨD−1)

which is always true if Ĩ ≥ 2. If both children are not leaf nodes, then define D1,

and D2 the number of leaves descendant of two child nodes, with D = D1 + D2.

Then the recursion is

2R3 · ĨD = 2R3ĨD1 ĨD2 ≥ 4R3(ĨD1 + ĨD2)

�
�

97

where the bound is always true for Ĩ ≥ 2 and D1, D2 ≥ 2. Note that every non-

leaf node in the tree necessarily has two children, it can never be that D1 = 1

or D2 = 1.

The cost of merging at the root of the tree is always 2R3Ĩd = 2R3I. Since each

parent costs at least 2× as many flops as the child, the total flop cost must

always be between 2R3I and 4R3I.

2. For the storage bound, the analysis follows from the observation that the storage

cost at each node is R2ĨD , where D is the number of leaf descendants. Therefore

˜if I ≥ 2, the most expensive storage step will always be at the root, with

R2(Ĩd1 + Ĩd2 + Ĩd) storage cost, where d = d1 + d2 for any partition. Clearly,

this value is lower bounded by R2Ĩd = R2I. And, for any partition d1 + d2 = d,

for Ĩ ≥ 2, it is always Ĩd1 + Ĩd2 ≤ Ĩd . Therefore the upper bound on storage is

2R2Ĩd = 2R2I.

3. It is sufficient to show that for any d power of 2, a sequential merging is more

costly in flops than a hierarchical merging, since anything in between has either

pure sequential or pure hierarchical trees as subtrees.

d Ĩ iThen a sequential merging gives 2R3
i=2 flops. If additionally d = 2D for

D 2D−iĨ2
i

some integer D > 0, then a hierarchical merging costs 2R3
i=2 flops.

To see this, note that in a perfectly balanced binary tree of depth D, at each

level i there are 2D−i nodes, each of which are connected to 2i leaves.

We now use induction to show that whenever d is a power of 2, hierarchical

merging (a fully balanced binary tree) is optimal in terms of flop count. If d = 2,

there is no variation in merging order. Taking d = 4, a sequential merging costs

2R3(Ĩ3 + Ĩ3 + Ĩ4) and a hierarchical merging costs 2R3(2Ĩ2 + Ĩ4), which is clearly

cheaper. For some d a power of 2, define S the cost of sequential merging and

H the cost of hierarchical merging. Define G = 2R3Ĩ2d the cost at the root for

any binary tree with 2d leaf nodes. (Note that the cost at the root is agnostic

� �

98

to the merge ordering.) Then for d̂ = 2d, a hierarchical merging costs 2H + G

flops. The cost of a sequential merging is

d d
3 d̃ i 3 d̃−1 i˜ ˜S + 2R I I = S + 2R I I + G

i=1 i=2

= S + SĨd−1 + G− 2R3d.

Since 2R3d is the cost at the root for d leafs, S > 2R3d, and therefore the above

d−1Squantity is lower bounded by G + Ĩ , which for d ≥ 2 and Ĩ ≥ 2, is lower

bounded by G + 2S. By inductive hypothesis, S > H, so the cost of sequential

merging is always more than that of hierarchical merging, whenever d is a power

of 2.

99

D. INITIALIZATION

If x and y are two independent variables, then Var[xy] = Var[x]Var[y]+Var[x](E[y])2+

Var[y](E[x])2 [107]. Thus a product of two independent symmetric distributed random

variables with mean 0 and variance σ2 itself is symmetric distributed with mean 0

and variance σ4 (not Gaussian distribution). Further extrapolating, in a matrix or

tensor product, each entry is the summation of R independent variables with the same

distribution. The central limit theorem gives that the sum can be approximated by

a Gaussian N (0, Rσ4) for large R. Thus if all tensor factors are drawn i.i.d. from

N (0, σ2), then after merging d factors the merged tensor elements will have mean 0

and variance Rdσ2d .

VITA

100

VITA

Wenqi Wang received his B.S. degree in Physics from Fudan University, Shanghai,

China in 2013. He is currently pursuing the Ph.D. degree from School of Industrial

Engineering, Purdue University, West Lafayette, IN, USA under the supervision of

Prof. Vaneet Aggarwal. During his Ph.D. study he interned at Technicolor Research

Artificial Intelligence Lab, Los Altos, CA, USA. He was the recipient of Purdue

University’s Bilsland Dissertation Fellowship in 2017. His research interests include

tensor networks and its application in machine learning and deep learning.

	Multi-dimensional data analytics and deep learning via tensor networks
	Recommended Citation

