912 research outputs found

    Deep Learning Based Face Detection and Recognition in MWIR and Visible Bands

    Get PDF
    In non-favorable conditions for visible imaging like extreme illumination or nighttime, there is a need to collect images in other spectra, specifically infrared. Mid-Wave infrared (3-5 microm) images can be collected without giving away the location of the sensor in varying illumination conditions. There are many algorithms for face detection, face alignment, face recognition etc. proposed in visible band till date, while the research using MWIR images is highly limited. Face detection is an important pre-processing step for face recognition, which in turn is an important biometric modality. This thesis works towards bridging the gap between MWIR and visible spectrum through three contributions. First, a dual band based deep face detection model that works well in visible and MWIR spectrum is proposed using transfer learning. Different models are trained and tested extensively using visible and MWIR images and the one model that works well for this data is determined. For this model, experiments are conducted to learn the speed/accuracy trade-off. Following this, the available MWIR dataset is extended through augmentation using traditional methods and generative adversarial networks (GANs). Traditional methods used to augment the data are brightness adjustment, contrast enhancement, applying noise to and de-noising the images. A deep learning based GAN architecture is developed and is used to generate new face identities. The generated images are added to the original dataset and the face detection model developed earlier is once again trained and tested. The third contribution is the proposal of another GAN that converts given thermal ace images into their visible counterparts. A pre-trained model is used as discriminator for this purpose and is trained to classify the images as real and fake and an identity network is used to provide further feedback to the generator. The generated visible images are used as probe images and the original visible images are used as gallery images to perform face recognition experiments using a state-of-the-art visible-to-visible face recognition algorithm

    Using GANs for face aging

    Get PDF
    Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Petia Radeva[en] Face Aging refers to processing an image of a face to make it look older or younger. In this work, we will study this problem by using Generative Models and, more specifically, Generative Adversarial Networks. This work belongs in the Artificial Intelligence and Computer Vision fields, since the problem requires the processing of images using Machine Learning. In this work we will study the available state of the art methods and also the mathematical background the models are based on. The aim is to implement and train some chosen methods on real data, propose an improvement to the models and analyse the results in order to propose a Face Aging solution

    Design and Real-World Application of Novel Machine Learning Techniques for Improving Face Recognition Algorithms

    Get PDF
    Recent progress in machine learning has made possible the development of real-world face recognition applications that can match face images as good as or better than humans. However, several challenges remain unsolved. In this PhD thesis, some of these challenges are studied and novel machine learning techniques to improve the performance of real-world face recognition applications are proposed. Current face recognition algorithms based on deep learning techniques are able to achieve outstanding accuracy when dealing with face images taken in unconstrained environments. However, training these algorithms is often costly due to the very large datasets and the high computational resources needed. On the other hand, traditional methods for face recognition are better suited when these requirements cannot be satisfied. This PhD thesis presents new techniques for both traditional and deep learning methods. In particular, a novel traditional face recognition method that combines texture and shape features together with subspace representation techniques is first presented. The proposed method is lightweight and can be trained quickly with small datasets. This method is used for matching face images scanned from identity documents against face images stored in the biometric chip of such documents. Next, two new techniques to increase the performance of face recognition methods based on convolutional neural networks are presented. Specifically, a novel training strategy that increases face recognition accuracy when dealing with face images presenting occlusions, and a new loss function that improves the performance of the triplet loss function are proposed. Finally, the problem of collecting large face datasets is considered, and a novel method based on generative adversarial networks to synthesize both face images of existing subjects in a dataset and face images of new subjects is proposed. The accuracy of existing face recognition algorithms can be increased by training with datasets augmented with the synthetic face images generated by the proposed method. In addition to the main contributions, this thesis provides a comprehensive literature review of face recognition methods and their evolution over the years. A significant amount of the work presented in this PhD thesis is the outcome of a 3-year-long research project partially funded by Innovate UK as part of a Knowledge Transfer Partnership between University of Hertfordshire and IDscan Biometrics Ltd (partnership number: 009547)

    Methods for data-related problems in person re-ID

    Get PDF
    In the last years, the ever-increasing need for public security has attracted wide attention in person re-ID. State-of-the-art techniques have achieved impressive results on academic datasets, which are nearly saturated. However, when it comes to deploying a re-ID system in a practical surveillance scenario, several challenges arise. 1) Full person views are often unavailable, and missing body parts make the comparison very challenging due to significant misalignment of the views. 2) Low diversity in training data introduces bias in re-ID systems. 3) The available data might come from different modalities, e.g., text and images. This thesis proposes Partial Matching Net (PMN) that detects body joints, aligns partial views, and hallucinates the missing parts based on the information present in the frame and a learned model of a person. The aligned and reconstructed views are then combined into a joint representation and used for matching images. The thesis also investigates different types of bias that typically occur in re-ID scenarios when the similarity between two persons is due to the same pose, body part, or camera view, rather than to the ID-related cues. It proposes a general approach to mitigate these effects named Bias-Control (BC) framework with two training streams leveraging adversarial and multitask learning to reduce bias-related features. Finally, the thesis investigates a novel mechanism for matching data across visual and text modalities. It proposes a framework Text (TAVD) with two complementary modules: Text attribute feature aggregation (TA) that aggregates multiple semantic attributes in a bimodal space for globally matching text descriptions with images and Visual feature decomposition (VD) which performs feature embedding for locally matching image regions with text attributes. The results and comparison to state of the art on different benchmarks show that the proposed solutions are effective strategies for person re-ID.Open Acces
    • …
    corecore